1
|
Dhilip Kumar SS, Nadene Houreld N, Abrahamse H. Influence of biopolymer based gold nanoparticles and photobiomodulation in in vitro wound healing. Sci Rep 2025; 15:15793. [PMID: 40328891 DOI: 10.1038/s41598-025-99400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
In nanomedicine, gold nanoparticles (GNPs) are based on metal-based nanomaterials and have attracted considerable attention from researchers for their use in drug delivery, including wound healing. This study examined the use of Gum tragacanth (GT) for producing gold nanoparticles (GNPs) through the green synthesis method (GT-GNPs). The antibacterial activity of GT-GNPs against pathogenic bacterial strains, as well as assess the wound healing potential of GT-GNPs combined with photobiomodulation (PBM) on normal and diabetic wound models (in vitro). In physicochemical characterization results, we found that the synthesized nanoparticles are 10-20 nm with an average of 12 ± 2 nm in size, and smooth surface and confirmed the presence of GT on the GT-GNPs. It also possessed optimal antibacterial activity and was confirmed through flow cytometry studies. Furthermore, we examined the combined effect of GT-GNPs and PBM against normal and diabetic wound models in WS1 (Humal Fibroblast cells), including cell morphology, percentage of wound closure, nuclear, and filamentous (F)-actin morphology. The combined effects of GT-GNPs and PBM effectively achieved progressive wound closure. In summary, this study has demonstrated that treating GT-GNPs has no adverse effects on both normal and diabetic wound healing processes.
Collapse
Affiliation(s)
- Sathish Sundar Dhilip Kumar
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
2
|
de Oliveira D, Luiz GP, Scussel R, Fagundes MI, Galvani NC, Abel JDS, Zaccaron RP, de Bem Silveira G, de Andrade TAM, Lock Silveira PC, Andrez Machado-de-Ávila R. The combined treatment of gold nanoparticles associated with photobiomodulation accelerate the healing of dermonecrotic lesion. J Drug Target 2024; 32:172-185. [PMID: 38155427 DOI: 10.1080/1061186x.2023.2298848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/10/2023] [Indexed: 12/30/2023]
Abstract
Introduction: The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the Loxosceles simillis, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.Methodology: For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.Results: All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.Conclusion: With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.
Collapse
Affiliation(s)
- Daysiane de Oliveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gabriel Paulino Luiz
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rahisa Scussel
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Mirian Ivens Fagundes
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Nathália Coral Galvani
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Jessica da Silva Abel
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Rubya Pereira Zaccaron
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Thiago Antônio Moretti de Andrade
- Postgraduate in Biomedical Sciences, University Center of Herminio Ometto Foundation, Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Postgraduate in Health Sciences, Universidade do Extremo Sul de Catarinense, Criciúma, Santa Catarina, Brazil
| | | |
Collapse
|
3
|
Mgwenya TN, Abrahamse H, Houreld NN. Modulatory Effects of 830 nm on Diabetic Wounded Fibroblast Cells: An In Vitro Study on Inflammatory Cytokines. Photobiomodul Photomed Laser Surg 2024; 42:676-692. [PMID: 39253808 DOI: 10.1089/photob.2024.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Background:After skin damage, a complicated set of processes occur for epidermal and dermal wound healing. This process is hindered under diabetic conditions, resulting in nonhealing diabetic ulcers. In diabetes there is an increase in inflammation and proinflammatory cytokines. Modulating cells using photobiomodulation (PBM) may have an effect on inflammation and cell viability, which are crucial for the healing of wounds. Objective: This study explored the impact of PBM in the near-infrared spectrum (830 nm; 5 J/cm2) on inflammation in diabetic wound healing. Materials and Methods: Five cell models, namely normal, wounded, diabetic, diabetic wounded, and wounded with d-galactose were used. Cell morphology and migration rate were assessed, while cellular response measures included viability (Trypan blue and adenosine triphosphate), apoptosis (annexin-V/PI), proinflammatory cytokines interleukin-6, tumor necrosis factor-alpha (TNF-α), and cyclooxygenase-2, nuclear translocation of nuclear factor kappa B (NF-κB), and gene expression of advanced glycation end product receptor (AGER). Results: PBM resulted in increased levels of TNF-α, supported by activation of NF-κB. PBM stimulated translocation of NF-κB and upregulation of AGER. Conclusions: PBM modulates diabetic wound healing in vitro at 830 nm through stimulated NF-κB signaling activated by TNF-α.
Collapse
Affiliation(s)
- Tintswalo Nomsa Mgwenya
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
4
|
Giannakopoulos E, Katopodi A, Rallis M, Politopoulos K, Alexandratou E. The effect of low-dose photodynamic therapy using the photosensitizer chloroaluminum phthalocyanine on a scratch wound model in skin fibroblasts. JOURNAL OF BIOPHOTONICS 2024:e202400033. [PMID: 38962832 DOI: 10.1002/jbio.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Different approaches on wound healing have been developed over the years but they suffer from high costs and adverse effects for the patients. The current paper was designed to study low dose PDT, a novel healing approach, in an in vitro fibroblasts wound healing model. Chloroaluminum phthalocyanine (AlClPc) was used as photosensitizer and was activated by a red diode laser at 661 nm. After PDT optimization, wound closure rate and reactive oxygen species were quantified by image processing and analysis. Our results revealed that wound healing rates were significantly higher in PDT treated groups than in the control. Additionally, the study revealed that a prolonged ROS increase did not promote wound closure, while a small increase acted as a trigger, resulting in faster wound closure. Concluding, low dose PDT using AlClPc enhances wound healing in vitro in a ROS dependent manner, allowing the assumption of similar positive effects in vivo.
Collapse
Affiliation(s)
- Efstathios Giannakopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Michail Rallis
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| |
Collapse
|
5
|
Saura Cardoso V, de Souza Lima da Silveira PR, Dos Santos CM, Miranda MB, Silva Barros AC, Veloso LC, Magalhães AT, da Rocha RB, Hazime FA. Dose-response and efficacy of 904 nm photobiomodulation on diabetic foot ulcers healing: a randomized controlled trial. Lasers Med Sci 2024; 39:142. [PMID: 38805069 DOI: 10.1007/s10103-024-04090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE This study aimed to examine the impact of a 904 nm photobiomodulation (PBM) on diabetic ulcers using varying dosages. METHODS The study was a randomized, double-blind, placebo-controlled clinical trial that compared treatments using PBM (GaAs 904 nm 30w) with three different energy densities (4 J/cm2; 8 J/cm2; 10 J/cm2) in the healing process of non-infected diabetic foot ulcers. Eighty volunteers (48.75% female; 58.5 ± 11.1 years) were randomized into three intervention groups treated with PBM and one control group (PBM placebo). Volunteers performed up 20 interventions with PBM, either placebo or actual, in conjunction with conventional therapy, which involved dressing the wound with Helianthus annuus vegetable oil. The primary variable was the ulcer size reduction rate. RESULTS GaAs 904 nm PBM yielded a clinically and significant ulcer size rate reduction of diabetic foot ulcers, independently of energy density range (p < 0.05). However, 10 J/cm² had 60% of completely healed ulcers and the highest proportion of patients reaching 50% of ulcer reduction rate after 5 weeks of treatment. In addition, only 10 J/cm² showed a significant difference between control group after a 10-week follow-up (p < 0.05). CONCLUSION GaAs 904 nm PBM was effective in treating diabetic foot ulcers in this study and a dosage of 10 J/cm², after a 10-week follow-up, proved to be the most effective compared to the other groups. CLINICAL TRIAL REGISTRATION NUMBER NCT04246814.
Collapse
Affiliation(s)
- Vinicius Saura Cardoso
- Center of Medical Specialties, Parnaíba, Piauí, Brazil.
- Postgraduate program in Biomedical Sciences, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil.
- Biosignal Laboratory, School of Physical Therapy, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil.
| | - Pedro Renan de Souza Lima da Silveira
- Center of Medical Specialties, Parnaíba, Piauí, Brazil
- Postgraduate program in Biomedical Sciences, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| | - Cristiana Maria Dos Santos
- Center of Medical Specialties, Parnaíba, Piauí, Brazil
- Postgraduate program in Biomedical Sciences, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| | - Mariana Bezerra Miranda
- Center of Medical Specialties, Parnaíba, Piauí, Brazil
- Postgraduate program in Biomedical Sciences, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| | - Ana Carolina Silva Barros
- Center of Medical Specialties, Parnaíba, Piauí, Brazil
- Biosignal Laboratory, School of Physical Therapy, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| | - Lorena Coelho Veloso
- Center of Medical Specialties, Parnaíba, Piauí, Brazil
- Biosignal Laboratory, School of Physical Therapy, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| | - Alessandra Tanuri Magalhães
- Center of Medical Specialties, Parnaíba, Piauí, Brazil
- Biosignal Laboratory, School of Physical Therapy, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| | | | - Fuad Ahmad Hazime
- Postgraduate program in Biomedical Sciences, Parnaíba Delta Federal University (UFDPar), Parnaíba, Piauí, Brazil
| |
Collapse
|
6
|
Leyane TS, Jere SW, Houreld NN. Effect of photobiomodulation at 830 nm on gene expression correlated with JAK/STAT signalling in wounded and diabetic wounded fibroblasts in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300230. [PMID: 38010362 DOI: 10.1002/jbio.202300230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Treatment of chronic diabetic wounds is an ongoing socio-economic challenge. Dysregulated signalling pathways characterise cells from chronic diabetic wounds. Photobiomodulation (PBM) stimulates healing by eliciting photochemical effects that affect gene regulation. JAK/STAT signalling is a primary signal transduction pathway involved in wound healing. This in vitro study aimed to determine if PBM at 830 nm and a fluence of 5 J/cm2 regulates genes related to JAK/STAT signalling in wounded and diabetic wounded fibroblast cells. A continuous wave diode laser (12.53 mW/cm2 ) was used to irradiate cells. Forty-eight hours post-PBM, RT-qPCR was used to analyse 84 genes related to JAK/STAT signalling. Five genes were upregulated and four downregulated in wounded cell models, while six genes were downregulated in diabetic wounded models. The results show drastic gene expression differences between wounded and diabetic wounded cell models in response to PBM using 830 nm.
Collapse
Affiliation(s)
- Thobekile S Leyane
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Sandy W Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
7
|
Wiegand C, Dirksen A, Tittelbach J. Treatment with a red-laser-based wound therapy device exerts positive effects in models of delayed keratinocyte and fibroblast wound healing. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12926. [PMID: 37957888 DOI: 10.1111/phpp.12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.
Collapse
Affiliation(s)
- Cornelia Wiegand
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Jörg Tittelbach
- Department of Dermatology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Kasowanjete P, Abrahamse H, Houreld NN. Photobiomodulation at 660 nm Stimulates In Vitro Diabetic Wound Healing via the Ras/MAPK Pathway. Cells 2023; 12:cells12071080. [PMID: 37048153 PMCID: PMC10093328 DOI: 10.3390/cells12071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are open chronic wounds that affect diabetic patients due to hyperglycaemia. DFUs are known for their poor response to treatment and frequently require amputation, which may result in premature death. The present study evaluated the effect of photobiomodulation (PBM) at 660 nm on wound healing via activation of Ras/MAPK signalling in diabetic wounded cells in vitro. This study used four human skin fibroblast cell (WS1) models, namely normal (N), wounded (W), diabetic (D), and diabetic wounded (DW). Cells were irradiated at 660 nm with 5 J/cm2. Non-irradiated cells (0 J/cm2) served as controls. Cells were incubated for 24 and 48 h post-irradiation, and the effect of PBM on cellular morphology and migration rate, viability, and proliferation was assessed. Basic fibroblast growth factor (bFGF), its phosphorylated (activated) receptor FGFR, and phosphorylated target proteins (Ras, MEK1/2 and MAPK) were determined by enzyme-linked immunosorbent assay (ELISA) and Western blotting; nuclear translocation of p-MAPK was determined by immunofluorescence. PBM resulted in an increase in bFGF and a subsequent increase in FGFR activation. There was also an increase in downstream proteins, p-Ras, p-MEK1/2 and p-MAPK. PBM at 660 nm led to increased viability, proliferation, and migration as a result of increased bFGF and subsequent activation of the Ras/MAPK signalling pathway. Therefore, this study can conclude that PBM at 660 nm stimulates in vitro diabetic wound healing via the bFGF-activated Ras/MAPK pathway.
Collapse
Affiliation(s)
- Patricia Kasowanjete
- Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
| | - Nicolette N. Houreld
- Laser Research Centre, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
9
|
Giannakopoulos E, Katopodi A, Rallis M, Politopoulos K, Alexandratou E. The effects of low power laser light at 661 nm on wound healing in a scratch assay fibroblast model. Lasers Med Sci 2022; 38:27. [PMID: 36574084 PMCID: PMC9794538 DOI: 10.1007/s10103-022-03670-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/12/2022] [Indexed: 12/28/2022]
Abstract
Wound treatment, especially for chronic and infected wounds, has been a permanent socio-economical challenge. This study aimed to investigate the ability of red light at 661 nm to accelerate wound healing an in vitro wound model using 3T3 fibroblasts. The purpose is further specified in clarifying the mechanisms of wound closure by means of intracellular ROS production, proliferation and migration of cells, and cellular orientation. Illumination effects of red light from a diode laser (661 nm) at different doses on 3T3 cell viability was assessed via MTT assay and tested in a scratch wound model. Wound closure rates were calculated by image analysis at 0, 24, and 48 h after laser treatment. ROS production was monitored and quantified immediately and 24 h after the treatment by fluorescence microscopy. Cellular orientation was quantified by image analysis. No phototoxic energy doses used and increased cell viability in most of the groups. Scratch assay revealed an energy interval of 3 - 4.5 J/cm2 that promote higher wound healing rate 24 h post treatment. An increase in ROS production was also observed 24 h post irradiation higher in the group with the highest wound healing rate. Also, cellular orientation toward the margin of the wound was observed and quantified after irradiation. Low power laser light at 661 nm activated both the migration and proliferation in the in vitro model used, providing evidence that it could also accelerate wound healing in vivo. Also, ROS production and cellular orientation seem to play an important role in wound healing process.
Collapse
Affiliation(s)
- Efstathios Giannakopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou Campus, 15771, Athens, Greece.
| | - Annita Katopodi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Michail Rallis
- Division of Pharmaceutical Technology, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli, Zografou Campus, 15771, Athens, Greece
| | - Konstantinos Politopoulos
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Eleni Alexandratou
- Laboratory of Biomedical Optics and Applied Biophysics, School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| |
Collapse
|
10
|
Rajendran NK, Houreld NN. Photobiomodulation hastens diabetic wound healing via modulation of the PI3K/AKT/FoxO1 pathway in an adipose derived stem cell-fibroblast co-culture. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Jere SW, Houreld NN, Abrahamse H. Photobiomodulation activates the PI3K/AKT pathway in diabetic fibroblast cells in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112590. [DOI: 10.1016/j.jphotobiol.2022.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
12
|
Zhang G, Yi L, Wang C, Yang P, Zhang J, Wang J, Lu C, Zhang X, Liu Y. Photobiomodulation promotes angiogenesis in wound healing through stimulating the nuclear translocation of VEGFR2 and STAT3. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 237:112573. [PMID: 36403534 DOI: 10.1016/j.jphotobiol.2022.112573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, Photobiomodulation (PBM) has gained prevalence as a kind of physical therapy for wound healing, however, concerning specific cellular mechanisms induced by PBM remains uncertain. The objective of this study is to evaluate the mechanisms of action of PBM (632.8 nm) on angiogenesis in wound healing in vitro and vivo. In the present work, we indicated that PBM with 1.0 J/cm2 irradiation dose exerts positive effects on cell viability, migration, proliferation and tube formation in human umbilical vein endothelial cells (HUVECs). Furthermore, we demonstrate that the VEGFA/VEGFR2/STAT3 pathway plays an important role in PBM effecting cellular function and promoting angiogenesis in wound healing. In addition, we also found that PBM activated the VEGFA/VEGFR2/STAT3 pathway by stimulating VEGFR2 and STAT3 nuclear translocation in the presence of importin-β. Our research offer a new insight into the potential molecular mechanisms in which PBM promotes angiogenesis in wound healing.
Collapse
Affiliation(s)
- Gai Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghao Lu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Kasowanjete P, Houreld NN, Abrahamse H. The effect of photomodulation on fibroblast growth factor and the Ras/MAPK signalling pathway: a review. J Wound Care 2022; 31:832-845. [DOI: 10.12968/jowc.2022.31.10.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Objective: Current therapies and technologies used to treat hard-to-heal diabetic wounds are limited to a 50% healing rate. The rise in the percentage of lower limb non-traumatic amputations in patients with diabetes has caused an increased demand for alternative, effective and safe treatment modalities. Photobiomodulation therapy (PBMT) utilises light to induce physiological changes and provide therapeutic benefits and has been shown to increase the healing of hard-to-heal wounds through the release of growth factors. The aim of this narrative review is to investigate the effect of photobiomodulation (PBM) on fibroblast growth factor (FGF) and the role of the Ras/MAPK signalling pathway in diabetic wound healing. Method: Relevant journal articles were obtained through PubMed and Google Scholar. Results: Experimental and clinical findings from the review show that PBM can stimulate the release of growth factors, including FGF, an essential cytokine in wound healing, and one which is present at lower concentrations in diabetic wounds. There is also activation of the Ras/MAPK signalling pathway. Conclusion: One mechanism through which healing may be stimulated by PBM is via the FGF-Ras/MAPK signalling pathway, although strong evidence under hyperglycaemic conditions is lacking.
Collapse
Affiliation(s)
| | - Nicolette N Houreld
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
14
|
Oyebode OA, Houreld NN. Photobiomodulation at 830 nm Stimulates Migration, Survival and Proliferation of Fibroblast Cells. Diabetes Metab Syndr Obes 2022; 15:2885-2900. [PMID: 36172056 PMCID: PMC9510698 DOI: 10.2147/dmso.s374649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Photobiomodulation (PBM) promotes diabetic wound healing by favoring cell survival and proliferation. This study aimed to investigate the potential of PBM in stimulating cellular migration, viability, and proliferation using the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. METHODS The study explored the in vitro effects of near infrared (NIR) light on cell viability (survival) and proliferation as well as the presence of TGF-β1, phosphorylated TGF-β receptor type I (pTGF-βR1) and phosphorylated mothers against decapentaplegic-homolog (Smad)-2/3 (p-Smad2/3) in different fibroblast cell models. RESULTS Results show a significant increase in cellular migration in wounded models, and increased viability and proliferation in irradiated cells compared to their respective controls. An increase in the presence of TGF-β1 in the culture media, a reduction in pTGF-βR1 and a slight presence of p-Smad2/3 was observed in the cells. CONCLUSION These findings show that PBM at 830 nm using a fluence of 5 J/cm2 could induce cell viability, migration and proliferation to favor successful healing of diabetic wounds. This study contributes to the growing body of knowledge on the molecular and cellular effect of PBM and showcases the suitability of PBM at 830 nm in managing diabetic wounds.
Collapse
Affiliation(s)
- Olajumoke Arinola Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
- Correspondence: Olajumoke Arinola Oyebode, Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa, Tel + 27781519058, Email
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, Gauteng, South Africa
| |
Collapse
|
15
|
Ryu HS, Lim NK, Padalhin AR, Abueva C, Park SY, Chung PS, Woo SH. Improved healing and macrophage polarization in oral ulcers treated with photobiomodulation (PBM). Lasers Surg Med 2021; 54:600-610. [PMID: 34913510 DOI: 10.1002/lsm.23510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The effect of photobiomodulation (PBM) treatment on wound healing and macrophage polarization was investigated in vivo. Animal models of oral ulcers were simulated through chemically induced oral ulcers in rats. MATERIALS AND METHODS PBM treatment using an infrared pulsed laser was used to treat oral ulcers in the animal models. Twelve Sprague-Dawley rats were randomly divided into four groups depending on set absorbed energy: Group 1 (control), Group 2 (30 J), Group 3 (60 J), and Group 4 (100 J). Laser treatment was performed every other day for 8 days after ulcer confirmation. Parameters used were as follows: wavelength 808 nm, power output 50 mW, spot size 10 mm, frequency 10 Hz, and pulse duration 1 millisecond. Ulcers were measured to determine the effect of the treatments over time. Histology, immunostaining, and real-time polymerase chain reaction analyses were performed to evaluate the effect of PBM treatment on macrophage-related (IL-6/IL-10) and wound-healing-related (TNF-α/TGF-β/MMP-2) cytokine expression. RESULTS Histological examinations indicate that the PBM treatment stimulated a higher level of wound recovery after 8 days of treatment at 60 J absorbed energy compared to other treatment groups. Analyses of relative gene expression of proinflammatory, anti-inflammatory, and tissue remodeling cytokines indicate that the macrophages in the tissue samples were predominantly characterized as M2 subtypes (alternatively activated), which possibly accounts for the accelerated tissue repair in the animal model of oral ulcer. CONCLUSION This preliminary study stands as a proof of concept regarding the potential use of infrared laser PBM treatment for oral ulcers which have not been previously investigated upon. PBM treatment affects macrophage polarization and enhances wound healing. Further experimentation will be conducted to expand the understanding of how PBM treatment affects the healing mechanism of ulcers.
Collapse
Affiliation(s)
- Hyun Seok Ryu
- Interdisciplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Nam Kyu Lim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Andrew Reyes Padalhin
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Celine Abueva
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea.,Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| | - So Young Park
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea.,Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea.,Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| |
Collapse
|
16
|
Wiegand C, Hipler UC, Elsner P, Tittelbach J. Keratinocyte and Fibroblast Wound Healing In Vitro Is Repressed by Non-Optimal Conditions but the Reparative Potential Can Be Improved by Water-Filtered Infrared A. Biomedicines 2021; 9:biomedicines9121802. [PMID: 34944618 PMCID: PMC8698951 DOI: 10.3390/biomedicines9121802] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.
Collapse
|
17
|
Rosa LP, Silva FCD, Luz SCL, Vieira RL, Tanajura BR, Silva Gusmão AGD, de Oliveira JM, Jesus Nascimento FD, Dos Santos NAC, Inada NM, Blanco KC, Carbinatto FM, Bagnato VS. Follow-up of pressure ulcer treatment with photodynamic therapy, low level laser therapy and cellulose membrane. J Wound Care 2021; 30:304-310. [PMID: 33856908 DOI: 10.12968/jowc.2021.30.4.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A pressure ulcer (PU) is an area of tissue trauma caused by continuous and prolonged pressure, often associated with hospitalised patients immobilised due to neurological problems, negatively affecting their quality of life, and burdening the public budget. The aim of this study was to report the follow-up, for 45 weeks, of three patients with neurological lesions due to trauma who subsequently developed PUs, and who were treated with a combination of photodynamic therapy (PDT), low level laser therapy (LLLT) and cellulose membrane (CM). METHOD PDT was mediated by the photosensitiser curcumin on a 1.5% emulsion base. Blue LED light at 450 nm was delivered continuously for 12 minutes at an irradiance of 30mW/cm2 and total energy delivered to the tissue was 22J/cm2. LLLT was performed with 660 nm laser, punctuated and continuous, twice a week with parameters: spot size 0.04cm2, power of 40mW, 10 seconds per point, fluence of 10J/cm2 and irradiance of 1000mW/cm2. RESULTS All PUs had a significant reduction (range: 95.2-100%) of their area after 45 weeks of follow-up and two PUs had complete healing at 20 weeks and 30 weeks. All of the PUs showed a reduction in contamination with the PDT treatments in different proportions. CONCLUSION From the results obtained, we conclude that the combination of PDT, LLLT and CM is a promising treatment for PU healing.
Collapse
Affiliation(s)
- Luciano Pereira Rosa
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | - Francine Cristina da Silva
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | - Suzete Carvalho Landulfo Luz
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | | | - Beatriz Rocha Tanajura
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | - Alana Gonçalves da Silva Gusmão
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | - Janeide Muritiba de Oliveira
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | - Fabiana de Jesus Nascimento
- Multidisciplinary Health Institute, Federal University of Bahia, Hormindo Barros Street, 58. Candeias. Vitória da Conquista, Bahia, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: A review of red and near-infrared wavelength applications. Cell Biochem Funct 2021; 39:596-612. [PMID: 33870502 DOI: 10.1002/cbf.3629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
The development of a painless, non-invasive, and faster way to diabetic wound healing is at the forefront of research. The complexity associated with diabetic wounds makes it a cause for concern amongst diabetic patients and the world at large. Irradiation of cells generates a photobiomodulatory response on cells and tissues, directly causing alteration of cellular processes and inducing diabetic wound repair. Photobiomodulation therapy (PBMT) using red and near-infrared (NIR) wavelengths is being considered as a promising technique for speeding up the rate of diabetic wound healing, eradication of pain and reduction of inflammation through the alteration of diverse cellular and molecular processes. This review presents the extent to which the potential of red and NIR wavelengths have been harnessed in PBMT for diabetic wound healing. Important research challenges and gaps are identified and discussed, and future directions mapped out. This review thus provides useful insights and strategies into improvement of PBMT, including its acceptance within the global medical research community.
Collapse
Affiliation(s)
- Olajumoke Oyebode
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
19
|
In Vitro Wound Healing Potential of Photobiomodulation Is Possibly Mediated by Its Stimulatory Effect on AKT Expression in Adipose-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6664627. [PMID: 33505585 PMCID: PMC7811432 DOI: 10.1155/2021/6664627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that adipose-derived stem cells (ADSCs) serve as a therapeutic approach for wound healing. The aim of this study was to determine the effect of photobiomodulation (PBM) on antioxidant enzymes in ADSCs. Four ADSC cell models, namely, normal, wounded, diabetic, and diabetic wounded, were irradiated with 660 nm (fluence of 5 J/cm2 and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2 and power density of 10.3 mW/cm2). Nonirradiated cells served as controls. Cell morphology and wound migration were determined using light microscopy. Cell viability was determined by the trypan blue exclusion assay. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of antioxidants (superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1)). AKT activation and FOXO1 levels were determined by immunofluorescence and western blotting. The gaps (wound) in PBM-treated wounded and diabetic wounded cell models closed faster than the controls. PBM treatment significantly increased antioxidant levels in all cell models. This reflects that oxidative stress is reduced on the counterpart of increased antioxidant levels. This might be due to the activation of the AKT signaling pathway as evidenced by the increased AKT signals via western blotting and immunofluorescence. This data suggests that PBM promotes wound healing by increasing antioxidant levels by activating AKT signaling.
Collapse
|
20
|
The effects of photobiomodulation on human dermal fibroblasts in vitro: A systematic review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 214:112100. [DOI: 10.1016/j.jphotobiol.2020.112100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
|
21
|
Duraes Gomes Oliva LF, Mesquita Dourado D. Healing Process of Rat Skin Wounds Treated With Vitamin C and Low-Intensity Laser Therapy. Cureus 2020; 12:e11933. [PMID: 33304712 PMCID: PMC7719467 DOI: 10.7759/cureus.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION This study evaluated, from a histological point of view, the process of repairing skin wounds caused in the dorsal region of rats when subjected to treatment with vitamin C, low-intensity laser, and association of both. METHODS Forty-eight adult male rats (Rattus norvegicus, albinus, Wistar), weighing between 250 and 300 g were used in this study. The rats were anesthetized with sodium pentobarbital (10 mg/kg) intraperitoneally (IP) and a circular area of skin of approximately 8 mm in diameter was removed from the dorsal region of their back by a punch. The animals were randomly divided into four groups of 12 individuals: Group I, control group, was treated with saline solution; Group II was treated with topical application of vitamin C; Group III was treated with low-intensity laser; and Group IV was treated with both low-intensity laser and topical application of vitamin C. Samples were histologically analyzed through optical microscopy with hematoxylin and eosin staining and collagen I and III concentrations were quantified using the picrosirius-hematoxylin histochemical method and further submitted to statistical analysis. RESULTS Whilst the control and vitamin C groups admittedly showed slight epithelial proliferation at the wound edges, the group irradiated with low-intensity laser and the group treated with both laser and vitamin C had already partially formed epidermis, with a more organized underlying connective tissue and less evident inflammatory process. The group treated with laser alone obtained a higher concentration of type I collagen fibers and the group with the highest amount of type III collagen fibers was the one treated with the association of vitamin C and laser. CONCLUSION The present findings suggest that in spite of all treatments being effective in the repair of skin wounds compared to the control group, the isolated use of low-intensity therapy laser and its combined use with topical vitamin C showed the most favorable results, indicating that those could be further used for the treatment of skin wounds.
Collapse
|
22
|
Sundaram P, Abrahamse H. Phototherapy Combined with Carbon Nanomaterials (1D and 2D) and their Applications in Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4830. [PMID: 33126750 PMCID: PMC7663006 DOI: 10.3390/ma13214830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Carbon-based materials have attracted research interest worldwide due to their physical and chemical properties and wide surface area, rendering them excellent carrier molecules. They are widely used in biological applications like antimicrobial activity, cancer diagnosis, bio-imaging, targeting, drug delivery, biosensors, tissue engineering, dental care, and skin care. Carbon-based nanomaterials like carbon nanotubes and graphene have drawn more attention in the field of phototherapy due to their unique properties such as thermal conductivity, large surface area, and electrical properties. Phototherapy is a promising next-generation therapeutic modality for many modern medical conditions that include cancer diagnosis, targeting, and treatment. Phototherapy involves the major administration of photosensitizers (PSs), which absorb light sources and emit reactive oxygen species under cellular environments. Several types of nontoxic PSs are functionalized on carbon-based nanomaterials and have numerous advantages in cancer therapy. In this review, we discuss the potential role and combined effect of phototherapy and carbon nanomaterials, the mechanism and functionalization of PSs on nanomaterials, and their promising advantages in cancer therapy.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
23
|
Rajendran NK, Houreld NN, Abrahamse H. Photobiomodulation reduces oxidative stress in diabetic wounded fibroblast cells by inhibiting the FOXO1 signaling pathway. J Cell Commun Signal 2020; 15:195-206. [PMID: 33052534 DOI: 10.1007/s12079-020-00588-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to elucidate the underlying molecular mechanism of photobiomodulation (PBM) in attenuating oxidative stress in diabetic wounded fibroblast cells. Cell models were exposed to PBM at a wavelength of 660 nm (fluence of 5 J/cm2, and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2, and power density of 10.3 mW/cm2). Non-irradiated cell models were used as controls. Cellular migration was determined at regular time intervals (0, 12, 24 and 48 h) using inverted light microscopy. Cell viability was determined by the Trypan blue exclusion assay. The levels of enzymic antioxidants superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1) were determined by the enzyme linked immunosorbent assay (ELISA). The alteration in the levels of AKT and FOXO1 was determined by immunofluorescence and western blotting. Upon PBM treatment, elevated oxidative stress was reversed in diabetic and diabetic wounded fibroblast cells. The reduced oxidative stress was represented by decreased FOXO1 levels and increased levels of SOD, CAT and HMOX1. This might be due to the activation of the AKT signaling pathway. This study concluded that treatment with PBM progressed diabetic wound healing by attenuating oxidative stress through inhibition of the FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
24
|
Dhilip Kumar SS, Houreld NN, Abrahamse H. Selective Laser Efficiency of Green-Synthesized Silver Nanoparticles by Aloe arborescens and Its Wound Healing Activities in Normal Wounded and Diabetic Wounded Fibroblast Cells: In vitro Studies. Int J Nanomedicine 2020; 15:6855-6870. [PMID: 32982237 PMCID: PMC7509482 DOI: 10.2147/ijn.s257204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Silver nanoparticles (AgNPs) have been extensively used in wound healing applications owing to their valuable physicochemical and biological properties. The main objective of this study was to evaluate the combined effects of green-synthesized silver nanoparticles (G-AgNPs) and photobiomodulation (PBM; laser irradiation at 830 nm with 5 J/cm2) in normal wounded and diabetic wounded fibroblast cells (WS1). Methods The combined effect of G-AgNPs and PBM was studied by various in vitro wound healing studies including cell morphology, cell migration rate and percentage wound closure, cell viability, cell proliferation, and filamentous (F)-actin and nuclear morphology staining. Results Cell viability results revealed good cellular compatibility of G-AgNPs to WS1 cells. The combined therapy of G-AgNPs and PBM demonstrated promising results to achieve progressive migration and wound closure in both normal wounded and diabetic wounded cell models. G-AgNPs alone and in combination with PBM had no negative effect on cell viability and proliferation, and there was an increase in cell migration. Conclusion Overall, these findings demonstrate that the combined treatment of G-AgNPs and PBM does not display any adverse effects on wound healing processes in both normal wounded and diabetic wounded cell models.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
25
|
Daisy EAC, Rajendran NK, Houreld NN, Marraiki N, Elgorban AM, Rajan M. Curcumin and Gymnema sylvestre extract loaded graphene oxide-polyhydroxybutyrate‑sodium alginate composite for diabetic wound regeneration. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104671] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers Med Sci 2020; 36:555-562. [PMID: 32643032 DOI: 10.1007/s10103-020-03057-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine, and it is related to the excessive generation of reactive oxygen species (ROS). Photobiomodulation (PBM) can promote wound healing in many ways, so it can be used as a method for the treatment of delayed healing of DM wounds. In this study, we investigated the effect of PBM on ROS homeostasis in human embryonic skin fibroblast cells (CCC-ESFs) cultured in high glucose concentrations. The CCC-ESFs were cultured in vitro and divided into two groups, including the control group and the 635 nm laser irradiation group. After 2 days of high glucose treatment, the experimental group was irradiated with different doses of laser for 3 days. First, we measured the cellular proliferation, and the results showed that laser irradiation could promote cellular proliferation. Then, we measured the generation of ROS, the activities of total superoxide dismutase (SOD), and total antioxidant capacity (TAC) of the cells; the results showed that high glucose destroyed cells by inducing high concentration of ROS, the balance of oxidation, and antioxidation cause oxidative stress damage to cells. PBM can increase the antioxidant capacity of cells, reducing the high concentration of ROS induced by high glucose. Finally, we measured the levels of mitochondrial membrane potential (∆ψm) and the secretion of nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); the results showed that PBM can reduce apoptosis and regulate the inflammatory state. We conclude that PBM can maintain the ROS homeostasis, increase the TAC of cells, and trigger the cellular proliferation, and the response of CCC-ESFs to PBM was dose-dependent.
Collapse
|
27
|
Girlane Sousa Albuquerque Brandão M, Aline Moreira Ximenes M, de Oliveira Ramalho A, Saraiva Veras V, Moreira Barros L, Moura de Araújo T. Efeitos da laserterapia de baixa intensidade na cicatrização de úlceras nos pés em pessoas com diabetes mellitus. ESTIMA 2020. [DOI: 10.30886/estima.v18.844_pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objetivo: Identificar os efeitos da laserterapia de baixa intensidade na cicatrização do pé diabético. Método: Revisão sistemática nas bases de dados PubMed, LILACS, SciELO, CINAHL, Cochrane, Web of Science e Scopus, em que foram identificados 73 artigos, dos quais seis foram incluídos na amostra final, após verificação dos critérios de elegibilidade. Resultados: Os artigos apontaram como efeitos da laserterapia a efetividade na progressão do processo de reparo tecidual do pé diabético, alívio da dor, ação antiinflamatória, aumento da perfusão tecidual da lesão e melhora da resposta vascular e do sistema nervoso. Conclusão: O laser é uma terapia adjuvante que pode acelerar o processo de cicatrização da lesão, diminuir a dor, melhorar a neovascularização e, assim, minimizar o risco de complicações, como amputação do membro inferior e melhora da qualidade de vida de pessoas com diabetes e integridade da pele prejudicada.
Collapse
Affiliation(s)
| | | | | | - Vivian Saraiva Veras
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira – Departamento de Enfermagem – Redenção (CE), Brazil
| | - Lívia Moreira Barros
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira – Departamento de Enfermagem – Redenção (CE), Brazil
| | - Thiago Moura de Araújo
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira – Departamento de Enfermagem – Redenção (CE), Brazil
| |
Collapse
|
28
|
Girlane Sousa Albuquerque Brandão M, Aline Moreira Ximenes M, de Oliveira Ramalho A, Saraiva Veras V, Moreira Barros L, Moura de Araújo T. Effects of low-level laser therapy on the healing of foot ulcers in people with diabetes mellitus. ESTIMA 2020. [DOI: 10.30886/estima.v18.844_in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: Identify the effects of low-level laser therapy on the healing of diabetic foot. Method: Systematic review of the PubMed, LILACS, SciELO, CINAHL, Cochrane, Web of Science and Scopus databases, in which 92 articles were identified and six were included in the final sample after the eligibility criteria. Results: The articles pointed out as effects of laser therapy the effectiveness in the progression of the tissue repair process of the diabetic foot, pain relief, anti-inflammatory action, increased tissue perfusion of the lesion and improvement of the vascular response and the nervous system. Conclusion: Laser is an adjuvant therapy that can accelerate the wound healing process, relieve pain, improve neovascularization, and thus minimize the risk of complications, such as lower limb amputation and improvement of quality of life for people with diabetes and impaired skin integrity.
Collapse
Affiliation(s)
| | | | | | - Vivian Saraiva Veras
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira – Departamento de Enfermagem – Redenção (CE), Brazil
| | - Lívia Moreira Barros
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira – Departamento de Enfermagem – Redenção (CE), Brazil
| | - Thiago Moura de Araújo
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira – Departamento de Enfermagem – Redenção (CE), Brazil
| |
Collapse
|
29
|
Moradi A, Zare F, Mostafavinia A, Safaju S, Shahbazi A, Habibi M, Abdollahifar MA, Hashemi SM, Amini A, Ghoreishi SK, Chien S, Hamblin MR, Kouhkheil R, Bayat M. Photobiomodulation plus Adipose-derived Stem Cells Improve Healing of Ischemic Infected Wounds in Type 2 Diabetic Rats. Sci Rep 2020; 10:1206. [PMID: 31988386 PMCID: PMC6985227 DOI: 10.1038/s41598-020-58099-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we sought to investigate the impact of photobiomodulation and adipose-derived stem cells (ADS), alone and in combination, on the maturation step of wound healing in an ischemic infected delayed healing wound model in rats with type 2 diabetes mellitus (DM2). We randomly divided 24 adult male rats into 4 groups (n = 6 per group). DM2 plus an ischemic delayed healing wound were induced in all rats. The wounds were infected with methicillin-resistant Staphylococcus aureus. Group 1 was the control (placebo) group. Group 2 received only photobiomodulation (890 nm, 80 Hz, 0.324 J/cm2, and 0.001 W/cm2). Group 3 received only the allograft ADS. Group 4 received allograft ADS followed by photobiomodulation. On days 0, 4, 8, 12, and 16, we performed microbiological examination (colony forming units, [CFU]), wound area measurement, wound closure rate, wound strength, and histological and stereological examinations. The results indicated that at day 16, there was significantly decreased CFU (Analysis of variance, p = 0.001) in the photobiomodulation + ADS (0.0 ± 0.0), ADS (1350 ± 212), and photobiomodulation (0.0 ± 0.0) groups compared with the control group (27250 ± 1284). There was significantly decreased wound area (Analysis of variance, p = 0.000) in the photobiomodulation + ADS (7.4 ± 1.4 mm2), ADS (11 ± 2.2 mm2), and photobiomodulation (11.4 ± 1.4 mm2) groups compared with the control group (25.2 ± 1.7). There was a significantly increased tensiometeric property (stress maximal load, Analysis of variance, p = 0.000) in the photobiomodulation + ADS (0.99 ± 0.06 N/cm2), ADS (0.51 ± 0.12 N/cm2), and photobiomodulation (0.35 ± 0.15 N/cm2) groups compared with the control group (0.18 ± 0.04). There was a significantly modulated inflammatory response in (Analysis of variance, p = 0.049) in the photobiomodulation + ADS (337 ± 96), ADS (1175 ± 640), and photobiomodulation (69 ± 54) treatments compared to control group (7321 ± 4099). Photobiomodulation + ADS gave significantly better improvements in CFU, wound area, and wound strength compared to photobiomodulation or ADS alone. Photobiomodulation, ADS, and their combination significantly hastened healing in ischemic methicillin-resistant Staphylococcus aureus infected delayed healing wounds in rats with DM2. Combined application of photobiomodulation plus ADS demonstrated an additive effect.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad university, Tehran, Iran
| | - Sobhan Safaju
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Shahbazi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Habibi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville, Louisville, KY, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Kouhkheil
- Department of Anatomical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
30
|
Photobiomodulation and the expression of genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111791. [PMID: 31981991 DOI: 10.1016/j.jphotobiol.2020.111791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
Photobiomodulation therapy (PBMT) is a curative technique that uses low intensity light to relegate pain and inflammation, and accelerate tissue repair. At a molecular level, the effects of photobiomodulation (PBM) are not fully established. The present study aimed to assess the impact of PBM on the alteration of genes linked to Janus kinase-Signal transducer and activator of transcription (JAK-STAT) signalling in wounded and diabetic wounded cells in vitro. Cells were irradiated using a diode laser at a wavelength of 660 nm and an energy density of 5 J/cm2. RNA was extracted from cells 48 h post-irradiation, and was used to synthesise complementary deoxyribonucleic acid (cDNA) that was used in PCR arrays to profile for 84 JAK/STAT signalling related genes. Irradiation at a wavelength of 660 nm and an energy density of 5 J/cm2 significantly regulated genes related to the JAK/STAT signalling pathway in wounded and diabetic wounded cells. In irradiated wounded cells, 19 genes were significantly regulated, of which two were up-regulated and 17 were down-regulated, while 73 genes were significantly regulated in irradiated diabetic wounded cells of which 46 were up-regulated and 27 were down-regulated. This data suggests that PBM modulates gene transcription for protein synthesis and activates cellular signalling, and may indeed be helpful in enhancing diabetic wound repair.
Collapse
|
31
|
Efficacy of Biophysical Energies on Healing of Diabetic Skin Wounds in Cell Studies and Animal Experimental Models: A Systematic Review. Int J Mol Sci 2019; 20:ijms20020368. [PMID: 30654555 PMCID: PMC6359711 DOI: 10.3390/ijms20020368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
We have systematically assessed published cell studies and animal experimental reports on the efficacy of selected biophysical energies (BPEs) in the treatment of diabetic foot ulcers. These BPEs include electrical stimulation (ES), pulsed electromagnetic field (PEMF), extracorporeal shockwave (ECSW), photo energies and ultrasound (US). Databases searched included CINAHL, MEDLINE and PubMed from 1966 to 2018. Studies reviewed include animal and cell studies on treatment with BPEs compared with sham, control or other BPEs. Information regarding the objective measures of tissue healing and data was extracted. Eighty-two studies were eventually selected for the critical appraisal: five on PEMF, four each on ES and ECSW, sixty-six for photo energies, and three about US. Based on the percentage of original wound size affected by the BPEs, both PEMF and low-level laser therapy (LLL) demonstrated a significant clinical benefit compared to the control or sham treatment, whereas the effect of US did not reveal a significance. Our results indicate potential benefits of selected BPEs in diabetic wound management. However, due to the heterogeneity of the current clinical trials, comprehensive studies using well-designed trials are warranted to confirm the results.
Collapse
|
32
|
Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med 2018; 51:370-382. [PMID: 30168605 DOI: 10.1002/lsm.23015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | | | - Charles Mignon
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Bianca Raafs
- Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - M Julie Thornton
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
33
|
Fekrazad R, Sarrafzadeh A, Kalhori KA, Khan I, Arany PR, Giubellino A. Improved Wound Remodeling Correlates with Modulated TGF-beta Expression in Skin Diabetic Wounds Following Combined Red and Infrared Photobiomodulation Treatments. Photochem Photobiol 2018; 94:775-779. [DOI: 10.1111/php.12914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/04/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Reza Fekrazad
- Laser Research Center in Medical Sciences; AJA University of Medical Sciences; Tehran Iran
| | - Arash Sarrafzadeh
- Oral and Maxillofacial Department; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | | | - Imran Khan
- National Institutes of Health; Bethesda MD USA
| | - Praveen R. Arany
- National Institutes of Health; Bethesda MD USA
- Oral Biology and Biomedical Engineering; University at Buffalo; Buffalo NY USA
| | - Alessio Giubellino
- National Institutes of Health; Bethesda MD USA
- Department of Laboratory Medicine and Pathology; University of Minnesota; Minneapolis MN USA
| |
Collapse
|
34
|
Thabet AAEM, Mahran HG, Ebid AA, Alshehri MA. Effect of pulsed high intensity laser therapy on delayed caesarean section healing in diabetic women. J Phys Ther Sci 2018; 30:570-575. [PMID: 29706708 PMCID: PMC5909004 DOI: 10.1589/jpts.30.570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/13/2018] [Indexed: 12/19/2022] Open
Abstract
[Purpose] The objective of this study was to determine the effect of pulsed high intensity laser therapy on delayed caesarean section healing in diabetic women. [Subjects and Methods] This study was conducted on forty diabetic women with delayed caesarean wound healing, ranging in age from 28 to 38 years. They were randomly assigned into two groups; the group I (n=20) received pulsed high intensity laser therapy for 6-weeks, 3 times per week plus standard medical treatment for treatment of diabetes and caesarean wound patients, the group II (n=20) received sham laser treatment for 6 weeks, 3 times per week plus standard medical treatment for treatment of diabetes and caesarean wound patients. The wound size and appearance in all participants were measured by the tracing method and pressure sore status tool before and after the 6-week treatment. [Results] Pulsed high intensity laser therapy produced a significant difference in wound size and appearance in comparison to the sham laser treatment in diabetic women with delayed caesarean wound healing. [Conclusion] Pulsed high intensity laser therapy is effective in the treatment of delayed caesarean section healing in diabetic women.
Collapse
Affiliation(s)
- Ali Abd El-Monsif Thabet
- Department of Physical Therapy for Gynaecology and Obstetrics, Faculty of Physical Therapy, Cairo University, Egypt
| | - Hesham Galal Mahran
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Egypt
| | - Anwar Abdelgayed Ebid
- Department of Physical Therapy for Surgery, Faculty of Physical Therapy, Cairo University, Egypt.,Physiotherapy Department, Faculty of Applied Medical Sciences, Umm Al-Qura University: PO Box 715, Postal Code 21421, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mansour Abdullah Alshehri
- Physiotherapy Department, Faculty of Applied Medical Sciences, Umm Al-Qura University: PO Box 715, Postal Code 21421, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
35
|
Ma H, Yang JP, Tan RK, Lee HW, Han SK. Effect of Low-Level Laser Therapy on Proliferation and Collagen Synthesis of Human Fibroblasts in Vitro. ACTA ACUST UNITED AC 2018. [DOI: 10.22467/jwmr.2018.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 2018. [PMID: 29520687 DOI: 10.1007/s10103-017-2432-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current study evaluated the photobiomodulatory effect of visible red light on cell proliferation and viability in various fibroblast diabetic models in vitro, namely, unstressed normal (N) and stressed normal wounded (NW), diabetic wounded (DW), hypoxic wounded (HW) and diabetic hypoxic wounded (DHW). Cells were irradiated at a wavelength of 660 nm with a fluence of 5 J/cm2 (11.23 mW/cm2), which related to an irradiation time of 7 min and 25 s. Control cells were not irradiated (0 J/cm2). Cells were incubated for 48 h and cellular proliferation was determined by measuring 5-bromo-2'-deoxyuridine (BrdU) in the S-phase (flow cytometry), while viability was assessed by the Trypan blue exclusion test and Apoptox-glo triplex assay. In comparison with the respective controls, PBM increased viability in N- (P ≤ 0.001), HW- (P ≤ 0.01) and DHW-cells (P ≤ 0.05). HW-cells showed a significant progression in the S-phase (P ≤ 0.05). Also, there was a decrease in the G2M phase in HW- and DHW-cells (P ≤ 0.05 and P ≤ 0.05, respectively). This study concludes that hypoxic wounded and diabetic hypoxic wounded models responded positively to PBM, and PBM does not damage stressed cells but has a stimulatory effect on cell viability and proliferation to promote repair and wound healing. This suggests that the more stressed the cells are the better they responded to photobiomodulation (PBM).
Collapse
Affiliation(s)
- S M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - N N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| | - H Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
37
|
Ayuk SM, Abrahamse H, Houreld NN. Photobiomodulation alters matrix protein activity in stressed fibroblast cells in vitro. JOURNAL OF BIOPHOTONICS 2018; 11:e201700127. [PMID: 29024528 DOI: 10.1002/jbio.201700127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/10/2017] [Indexed: 05/20/2023]
Abstract
A balance is maintained between matrix synthesis and degradation, and a prolonged increase in matrix metalloproteinases (MMPs) affects healing. Photobiomodulation (PBM) speeds up healing and alters wound environment. The study aimed to determine changes in protein and gene expression of collagen type 1 (Col-I), MMP-3 and -9 and TIMP-1 in fibroblasts irradiated at 660 or 830 nm. Commercially purchased human skin fibroblast cells were modeled into five groups namely, normal, normal wounded, diabetic wounded, hypoxic wounded and diabetic hypoxic wounded. Control cells were sham irradiated. Laser irradiation was conducted at 660 or 830 nm (108/or 94 mW, 9.1 cm2 , 420/or 483 s) with 5 J/cm2 . Forty-eight hours post-irradiation, protein expression of TIMP-1, MMP-3, -9 and Col-I was determined by flow cytometry and immunofluorescence, and gene expression by real-time RT-PCR. There was an increase in TIMP-1 and Col-I, and a decrease in MMP-3 and -9, as well as an alteration in mRNA expression of MMP3, MMP9, TIMP1 and COL1A1 in irradiated cells. Due to the responsiveness of the diabetic hypoxic wounded model, the findings propose this model as appropriate for wound healing studies and suggest that PBM promotes the remodeling phase of wound healing by decreasing matrix degradation and upregulating synthesis.
Collapse
Affiliation(s)
- Sandra M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
38
|
Jere SW, Houreld NN, Abrahamse H. Photobiomodulation at 660 nm stimulates proliferation and migration of diabetic wounded cells via the expression of epidermal growth factor and the JAK/STAT pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:74-83. [DOI: 10.1016/j.jphotobiol.2017.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/04/2017] [Accepted: 12/30/2017] [Indexed: 12/26/2022]
|
39
|
de Barros Araújo Júnior R, Gonzaga ICA, Fernandes GA, Lima ACG, Cortelazzi PST, de Oliveira RA, Nicolau RA. Low-intensity LED therapy (λ 640 ± 20 nm) on saphenectomy healing in patients who underwent coronary artery bypass graft: a randomized, double-blind study. Lasers Med Sci 2017; 33:103-109. [DOI: 10.1007/s10103-017-2354-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
|
40
|
Eissa M, Salih WHM. The influence of low-intensity He-Ne laser on the wound healing in diabetic rats. Lasers Med Sci 2017; 32:1261-1267. [PMID: 28547073 DOI: 10.1007/s10103-017-2230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
The low-level laser irradiation at certain wavelengths is reported to facilitate the healing process of diabetic wounds. Thus, this study carried out to look for the suitable laser parameters that could speed up the healing process. Fourteen healthy male and female rats were used in which a circular wound with a diameter of 2.5 ± 0.2 cm was created on the dorsum in each rat after injected them with alloxan to induced diabetic. They have been divided into two groups: control group (N = 7) and study group (N = 7) to conduct the study. He-Ne laser with a wavelength of 632.8 nm at power density of 4.0 mW/cm2 was used to irradiate the study group for five times a week until the wound healed (closed) completely, while the control group was kept untreated. The results showed that the laser-treated group healed (wounds were totally closed) faster compared to the control group. In numbers, the laser-treated group healed on average at the 21st day (0.0 ± 0.0 cm) (P ≤ 0.005), whereas the control group healed after 40 days or even 60 days in some cases (sample no. 2). This confirms that laser promotes the tissue repair process of diabetic wounds and reduces the healing period to the half.
Collapse
Affiliation(s)
- Maha Eissa
- Department of Laser, Alneelain University, Khartoum, Sudan
| | - Wasil H M Salih
- Department of Biomedical Physics, Alneelain University, Khartoum, Sudan.
| |
Collapse
|
41
|
Low-intensity laser (660 nm) on sternotomy healing in patients who underwent coronary artery bypass graft: a randomized, double-blind study. Lasers Med Sci 2016; 31:1907-1913. [DOI: 10.1007/s10103-016-2069-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
|
42
|
Lima ACG, Fernandes GA, de Barros Araújo R, Gonzaga IC, de Oliveira RA, Nicolau RA. Photobiomodulation (Laser and LED) on Sternotomy Healing in Hyperglycemic and Normoglycemic Patients Who Underwent Coronary Bypass Surgery with Internal Mammary Artery Grafts: A Randomized, Double-Blind Study with Follow-Up. Photomed Laser Surg 2016; 35:24-31. [PMID: 27564925 DOI: 10.1089/pho.2016.4143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE This study aimed at analyzing the healing effects of low-level laser therapy (LLLT) (λ620 nm, 6 J/cm2) and light-emitting diode (LED) therapy (λ640 nm, 6 J/cm2) on the longitudinal sternotomy incisions of hyperglycemic and normoglycemic patients who underwent coronary artery bypass grafting (CABG). MATERIALS AND METHODS 120 volunteers were electively submitted to CABG and were randomly allocated into four different groups of equal size (n = 30): control, placebo, laser (λ of 640 nm and spatial average energy fluency [SAEF] of 1.06 J/cm2), and LED (λ of 660 ± 20 nm and SAEF of 0.24 J/cm2). Laser and LED groups were irradiated from the second to eighth day postsurgery, and sternotomy incision was photographically registered. Then, participants were also separated into hyperglycemic and normoglycemic groups, according to their fasting blood glucose test before surgery. Three researchers blindly analyzed the incision photographs to determine hyperemia and wound closure at the first day of hospital discharge (eighth postoperative day). RESULTS LLLT and LED groups had similarly less hyperemia and less incision bleeding or dehiscence (p ≤ 0.005) and the outcomes were also analogous between hyperglycemic and normoglycemic patients, which indicates no difference observed in an intragroup analysis (p ≥ 0.05). CONCLUSIONS With the present therapy parameters, it may be assumed that both coherent light (laser) and non-coherent light (LED) are effective in promoting sternotomy and healing acceleration, which are evident on the eighth day postsurgery.
Collapse
Affiliation(s)
- Andréa Conceição Gomes Lima
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil .,2 University of Piauí State (UESPI) , Teresina, Brazil
| | - Gilderlene Alves Fernandes
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil .,3 Uninovafapi College , Teresina, Brazil
| | - Raimundo de Barros Araújo
- 4 Department of Cardiac Surgery, Santa Maria Hospital, University of Piauí State (UESPI) , Teresina, Brazil
| | - Isabel Clarisse Gonzaga
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil .,3 Uninovafapi College , Teresina, Brazil
| | - Rauirys Alencar de Oliveira
- 3 Uninovafapi College , Teresina, Brazil .,5 Department of Health Sciences, University of Piauí State (UESPI) , Teresina, Brazil
| | - Renata Amadei Nicolau
- 1 Lasertherapy and Photobiology Center, Research and Development Institute, IP&D, Universidade do Vale do Paraíba , UNIVAP, São Paulo, Brazil
| |
Collapse
|
43
|
Ayuk SM, Abrahamse H, Houreld NN. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:368-74. [PMID: 27295416 DOI: 10.1016/j.jphotobiol.2016.05.027] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Cell adhesion molecules (CAMs) are cell surface glycoproteins that facilitate cell-cell contacts and adhesion with the extracellular matrix (ECM). Cellular adhesion is affected by various disease conditions, such as diabetes mellitus (DM) and inflammation. Photobiomodulation (PBM) stimulates biological processes and expression of these cellular molecules. The aim of this experimental work was to demonstrate the role of PBM at 830nm on CAMs in diabetic wounded fibroblast cells. Isolated human skin fibroblast cells were used. Normal (N-) and diabetic wounded (DW-) cells were irradiated with a continuous wave diode laser at 830nm with an energy density of 5J/cm(2). Real time reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine the relative gene expression of 39 CAMs 48h post-irradiation. Normalized expression levels from irradiated cells were calculated relative to non-irradiated control cells according to the 2^(-ΔΔCt) method. Thirty-one genes were significantly regulated in N-cells (28 were genes up-regulated and three genes down-regulated), and 22 genes in DW-cells (five genes were up-regulated and 17 genes down-regulated). PBM induced a stimulatory effect on various CAMs namely cadherins, integrins, selectins and immunoglobulins, and hence may be used as a complementary therapy in advancing treatment of non-healing diabetic ulcers. The regulation of CAMs as well as evaluating the role of PBM on the molecular effects of these genes may expand knowledge and prompt further research into the cellular mechanisms in diabetic wound healing that may lead to valuable clinical outcomes.
Collapse
Affiliation(s)
- Sandra M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.0. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.0. Box 17011, Doornfontein 2028, South Africa.
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.0. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
44
|
Hendudari F, Piryaei A, Hassani SN, Darbandi H, Bayat M. Combined effects of low-level laser therapy and human bone marrow mesenchymal stem cell conditioned medium on viability of human dermal fibroblasts cultured in a high-glucose medium. Lasers Med Sci 2016; 31:749-757. [PMID: 26984346 DOI: 10.1007/s10103-016-1867-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
Abstract
Low-level laser therapy (LLLT) exhibited biostimulatory effects on fibroblasts viability. Secretomes can be administered to culture mediums by using bone marrow mesenchymal stem cells conditioned medium (BM-MSCs CM). This study investigated the combined effects of LLLT and human bone marrow mesenchymal stem cell conditioned medium (hBM-MSCs CM) on the cellular viability of human dermal fibroblasts (HDFs), which was cultured in a high-glucose (HG) concentration medium. The HDFs were cultured either in a concentration of physiologic (normal) glucose (NG; 5.5 mM/l) or in HG media (15 mM/l) for 4 days. LLLT was performed with a continuous-wave helium-neon laser (632.8 nm, power density of 0.00185 W/cm(2) and energy densities of 0.5, 1, and 2 J/cm(2)). About 10% of hBM-MSCs CM was added to the HG HDF culture medium. The viability of HDFs was evaluated using dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. A significantly higher cell viability was observed when laser of either 0.5 or 1 J/cm(2) was used to treat HG HDFs, compared to the control groups. The cellular viability of HG-treated HDFs was significantly lower compared to the LLLT + HG HDFs, hBM-MSCs CM-treated HG HDFs, and LLLT + hBM-MSCs CM-treated HG HDFs. In conclusion, hBM-MSCs CM or LLLT alone increased the survival of HG HDFs cells. However, the combination of hBM-MSCs CM and LLLT improved these results in comparison to the conditioned medium.
Collapse
Affiliation(s)
- Farzane Hendudari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, 19395/4719, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, 19395/4719, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hasan Darbandi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, 19395/4719, Tehran, Iran.
| |
Collapse
|
45
|
Abstract
Despite diverse methods being applied to induce wound healing, many wounds remain recalcitrant to all treatments. Photobiomodulation involves inducing wound healing by illuminating wounds with light emitting diodes or lasers. While used on different animal models, in vitro, and clinically, wound healing is induced by many different wavelengths and powers with no optimal set of parameters yet being identified. While data suggest that simultaneous multiple wavelength illumination is more efficacious than single wavelengths, the optimal single and multiple wavelengths must be better defined to induce more reliable and extensive healing of different wound types. This review focuses on studies in which specific wavelengths induce wound healing and on their mechanisms of action.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, 201 Calle Norzagaray, San Juan 00901, Puerto Rico
| |
Collapse
|
46
|
Ayuk SM, Abrahamse H, Houreld NN. The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation. J Diabetes Res 2016; 2016:2897656. [PMID: 27314046 PMCID: PMC4893587 DOI: 10.1155/2016/2897656] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 01/25/2023] Open
Abstract
The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.
Collapse
Affiliation(s)
- Sandra Matabi Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- *Nicolette Nadene Houreld:
| |
Collapse
|
47
|
Kurach LM, Stanley BJ, Gazzola KM, Fritz MC, Steficek BA, Hauptman JG, Seymour KJ. The Effect of Low-Level Laser Therapy on the Healing of Open Wounds in Dogs. Vet Surg 2015; 44:988-96. [DOI: 10.1111/vsu.12407] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Barbara A. Steficek
- Diagnostic Center for Population and Animal Health; College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | | | | |
Collapse
|
48
|
Chaves MEDA, Araújo ARD, Piancastelli ACC, Pinotti M. Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 2014; 89:616-23. [PMID: 25054749 PMCID: PMC4148276 DOI: 10.1590/abd1806-4841.20142519] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/29/2013] [Indexed: 12/28/2022] Open
Abstract
Several studies demonstrate the benefits of low-power light therapy on wound
healing. However, the use of LED as a therapeutic resource remains
controversial. There are questions regarding the equality or not of biological
effects promoted by LED and LASER. One objective of this review was to determine
the biological effects that support the use of LED on wound healing. Another
objective was to identify LED´s parameters for the treatment of wounds. The
biological effects and parameters of LED will be compared to those of LASER.
Literature was obtained from online databases such as Medline, PubMed, Science
Direct and Scielo. The search was restricted to studies published in English and
Portuguese from 1992 to 2012. Sixty-eight studies in vitro and in animals were
analyzed. LED and LASER promote similar biological effects, such as decrease of
inflammatory cells, increased fibroblast proliferation, stimulation of
angiogenesis, granulation tissue formation and increased synthesis of collagen.
The irradiation parameters are also similar between LED and LASER. The
biological effects are dependent on irradiation parameters, mainly wavelength
and dose. This review elucidates the importance of defining parameters for the
use of light devices.
Collapse
Affiliation(s)
| | | | | | - Marcos Pinotti
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
49
|
Beckmann KH, Meyer-Hamme G, Schröder S. Low level laser therapy for the treatment of diabetic foot ulcers: a critical survey. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:626127. [PMID: 24744814 PMCID: PMC3976827 DOI: 10.1155/2014/626127] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 12/17/2022]
Abstract
Diabetic foot ulcers as one of the most common complications of diabetes mellitus are defined as nonhealing or long-lasting chronic skin ulcers in diabetic patients. Multidisciplinary care for the diabetic foot is common, but treatment results are often unsatisfactory. Low level laser therapy (LLLT) on wound areas as well as on acupuncture points, as a noninvasive, pain-free method with minor side effects, has been considered as a possible treatment option for the diabetic foot syndrome. A systematic literature review identified 1764 articles on this topic. Finally, we adopted 22 eligible references; 8 of them were cell studies, 6 were animal studies, and 8 were clinical trials. Cell studies and animal studies gave evidence of cellular migration, viability, and proliferation of fibroblast cells, quicker reepithelization and reformed connective tissue, enhancement of microcirculation, and anti-inflammatory effects by inhibition of prostaglandine, interleukin, and cytokine as well as direct antibacterial effects by induction of reactive oxygen species (ROS). The transferral of these data into clinical medicine is under debate. The majority of clinical studies show a potential benefit of LLLT in wound healing of diabetic ulcers. But there are a lot of aspects in these studies limiting final evidence about the actual output of this kind of treatment method. In summary, all studies give enough evidence to continue research on laser therapy for diabetic ulcers, but clinical trials using human models do not provide sufficient evidence to establish the usefulness of LLLT as an effective tool in wound care regimes at present. Further well designed research trials are required to determine the true value of LLLT in routine wound care.
Collapse
Affiliation(s)
- Kathrin H Beckmann
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gesa Meyer-Hamme
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
50
|
Esmaeelinejad M, Bayat M. Effect of low-level laser therapy on the release of interleukin-6 and basic fibroblast growth factor from cultured human skin fibroblasts in normal and high glucose mediums. J COSMET LASER THER 2013; 15:310-7. [PMID: 23656570 DOI: 10.3109/14764172.2013.803366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION This study evaluated the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) that have been cultured in high glucose concentration media. MATERIALS AND METHODS HSFs were cultured under physiological glucose condition medium, and then cultured in high glucose concentration medium (15 mM/L) for 1 or 2 weeks prior to LLLT. Experimental HSFs were irradiated with three energy densities (0.5, 1, and 2 J/cm(2)) once daily for three consecutive days. Release of interleukin-6 (IL-6) and basic fibroblast growth factor (bFGF) was evaluated using the enzyme-linked immunosorbent assay (ELISA) method. RESULTS Statistical analysis showed three doses of 0.5 (p = 0.049), 1 (p = 0.027), and 2 J/cm(2) (p = 0.004) stimulated the release of IL-6 in HSFs cultured in high glucose concentration medium compared with that of non-irradiated HSFs that were cultured in the same medium. LLLT with 2 J/cm(2) induced the release of bFGF from HSFs cultured in high glucose concentration medium for 1 or 2 weeks (both p = 0.04). CONCLUSION Our study showed that LLLT stimulated the release of IL-6 and bFGF from HSFs cultured in high glucose concentration medium. LLLT was more effective in releasing IL-6 and bFGF while HSFs which were cultured in physiologic glucose concentration medium during laser irradiation.
Collapse
Affiliation(s)
- Mohammad Esmaeelinejad
- Oral and Maxillofacial Surgery Department, Dental Faculty, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | |
Collapse
|