1
|
Liu CF, Samsa WE, Zhou G, Lefebvre V. Transcriptional control of chondrocyte specification and differentiation. Semin Cell Dev Biol 2016; 62:34-49. [PMID: 27771362 DOI: 10.1016/j.semcdb.2016.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| | - William E Samsa
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Guang Zhou
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Maneix L, Servent A, Porée B, Ollitrault D, Branly T, Bigot N, Boujrad N, Flouriot G, Demoor M, Boumediene K, Moslemi S, Galéra P. Up-regulation of type II collagen gene by 17β-estradiol in articular chondrocytes involves Sp1/3, Sox-9, and estrogen receptor α. J Mol Med (Berl) 2014; 92:1179-200. [PMID: 25081415 DOI: 10.1007/s00109-014-1195-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/11/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
UNLABELLED The existence of a link between estrogen deprivation and osteoarthritis (OA) in postmenopausal women suggests that 17β-estradiol (17β-E2) may be a modulator of cartilage homeostasis. Here, we demonstrate that 17β-E2 stimulates, via its receptor human estrogen receptor α 66 (hERα66), type II collagen expression in differentiated and dedifferentiated (reflecting the OA phenotype) articular chondrocytes. Transactivation of type II collagen gene (COL2A1) by ligand-independent transactivation domain (AF-1) of hERα66 was mediated by "GC" binding sites of the -266/-63-bp promoter, through physical interactions between ERα, Sp1/Sp3, Sox9, and p300, as demonstrated in chromatin immunoprecipitation (ChIP) and Re-Chromatin Immuno-Precipitation (Re-ChIP) assays in primary and dedifferentiated cells. 17β-E2 and hERα66 increased the DNA-binding activities of Sp1/Sp3 and Sox-9 to both COL2A1 promoter and enhancer regions. Besides, Sp1, Sp3, and Sox-9 small interfering RNAs (siRNAs) prevented hERα66-induced transactivation of COL2A1, suggesting that these factors and their respective cis-regions are required for hERα66-mediated COL2A1 up-regulation. Our results highlight the genomic pathway by which 17β-E2 and hERα66 modulate Sp1/Sp3 heteromer binding activity and simultaneously participate in the recruitment of the essential factors Sox-9 and p300 involved respectively in the chondrocyte-differentiated status and COL2A1 transcriptional activation. These novel findings could therefore be attractive for tissue engineering of cartilage in OA, by the fact that 17β-E2 could promote chondrocyte redifferentiation. KEY MESSAGES 17β-E2 up-regulates type II collagen gene expression in articular chondrocytes. An ERα66/Sp1/Sp3/Sox-9/p300 protein complex mediates this stimulatory effect. This heteromeric complex interacts and binds to Col2a1 promoter and enhancer in vivo. Our findings highlight a new regulatory mechanism for 17β-E2 action in chondrocytes. 17β-E2 might be an attractive candidate for cartilage engineering applications.
Collapse
Affiliation(s)
- Laure Maneix
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Aurélie Servent
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Benoît Porée
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - David Ollitrault
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Thomas Branly
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Nicolas Bigot
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Noureddine Boujrad
- Laboratoire Endocrinologie Moléculaire de la Reproduction, Equipe Récepteurs des Oestrogènes et Destinée Cellulaire, CNRS UMR 6026, Université de Rennes I, 35042, Rennes, France
| | - Gilles Flouriot
- Laboratoire Endocrinologie Moléculaire de la Reproduction, Equipe Récepteurs des Oestrogènes et Destinée Cellulaire, CNRS UMR 6026, Université de Rennes I, 35042, Rennes, France
| | - Magali Demoor
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Karim Boumediene
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Safa Moslemi
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France
| | - Philippe Galéra
- Normandy University, Caen, France; UNICAEN, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT), EA4652, 14032, Caen, France.
| |
Collapse
|
3
|
Oppenheimer H, Kumar A, Meir H, Schwartz I, Zini A, Haze A, Kandel L, Mattan Y, Liebergall M, Dvir-Ginzberg M. Set7/9 impacts COL2A1 expression through binding and repression of SirT1 histone deacetylation. J Bone Miner Res 2014; 29:348-60. [PMID: 23873758 DOI: 10.1002/jbmr.2052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 12/12/2022]
Abstract
Type II collagen is a key cartilaginous extracellular protein required for normal endochondral development and cartilage homeostasis. COL2A1 gene expression is positively regulated by the NAD-dependent protein deacetylase Sirtuin 1 (SirT1), through its ability to bind chromatin regions of the COL2A1 promoter and enhancer. Although SirT1/Sox9 binding on the enhancer site of COL2A1 was previously demonstrated, little is known about its functional role on the gene promoter site. Here, we examined the mechanism by which promoter-associated SirT1 governs COL2A1 expression. Human chondrocytes were encapsulated in three-dimensional (3D) alginate beads where they exhibited upregulated COL2A1 mRNA expression and increased levels of SirT1 occupancy on the promoter and enhancer regions, when compared to monolayer controls. Chromatin immunoprecipitation (ChIP) analyses of 3D cultures showed augmented levels of the DNA-binding transcription factor SP1, and the histone methyltransferase Set7/9, on the COL2A1 promoter site. ChIP reChIP assays revealed that SirT1 and Set7/9 form a protein complex on the COL2A1 promoter region of 3D-cultured chondrocytes, which also demonstrated elevated trimethylated lysine 4 on histone 3 (3MeH3K4), a hallmark of Set7/9 methyltransferase activity. Advanced passaging of chondrocytes yielded a decrease in 3MeH3K4 and Set7/9 levels on the COL2A1 promoter and reduced COL2A1 expression, suggesting that the SirT1/Set7/9 complex is preferentially formed on the COL2A1 promoter and required for gene activation. Interestingly, despite SirT1 occupancy, its deacetylation targets (ie, H3K9/14 and H4K16) were found acetylated on the COL2A1 promoter of 3D-cultured chondrocytes. A possible explanation for this phenotype is the enrichment of the histone acetyltransferases P300 and GCN5 on the COL2A1 promoter of3 D-cultured chondrocytes. Our study indicates that Set7/9 prevents the histone deacetylase activity of SirT1, potentiating euchromatin formation on the promoter site of COL2A1 and resulting in morphology-dependent COL2A1 gene transactivation.
Collapse
Affiliation(s)
- Hanna Oppenheimer
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jash A, Yun K, Sahoo A, So JS, Im SH. Looping mediated interaction between the promoter and 3' UTR regulates type II collagen expression in chondrocytes. PLoS One 2012; 7:e40828. [PMID: 22815835 PMCID: PMC3397959 DOI: 10.1371/journal.pone.0040828] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
Type II collagen is the major component of articular cartilage and is mainly synthesized by chondrocytes. Repeated sub-culturing of primary chondrocytes leads to reduction of type II collagen gene (Col2a1) expression, which mimics the process of chondrocyte dedifferentiation. Although the functional importance of Col2a1 expression has been extensively investigated, mechanism of transcriptional regulation during chondrocyte dedifferentiation is still unclear. In this study, we have investigated the crosstalk between cis-acting DNA element and transcription factor on Col2a1 expression in primary chondrocytes. Bioinformatic analysis revealed the potential regulatory regions in the Col2a1 genomic locus. Among them, promoter and 3′ untranslated region (UTR) showed highly accessible chromatin architecture with enriched recruitment of active chromatin markers in primary chondrocytes. 3′ UTR has a potent enhancer function which recruits Lef1 (Lymphoid enhancer binding factor 1) transcription factor, leading to juxtaposition of the 3′ UTR with the promoter through gene looping resulting in up-regulation of Col2a1 gene transcription. Knock-down of endogenous Lef1 level significantly reduced the gene looping and subsequently down-regulated Col2a1 expression. However, these regulatory loci become inaccessible due to condensed chromatin architecture as chondrocytes dedifferentiate which was accompanied by a reduction of gene looping and down-regulation of Col2a1 expression. Our results indicate that Lef1 mediated looping between promoter and 3′ UTR under the permissive chromatin architecture upregulates Col2a1 expression in primary chondrocytes.
Collapse
Affiliation(s)
- Arijita Jash
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Kangsun Yun
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Anupama Sahoo
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jae-Seon So
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Sin-Hyeog Im
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
- * E-mail:
| |
Collapse
|
5
|
Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, Boumediene K, Galera P. Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. ACTA ACUST UNITED AC 2012; 60:199-207. [DOI: 10.1016/j.patbio.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 02/03/2012] [Indexed: 11/28/2022]
|
6
|
Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl) 2012; 90:649-66. [DOI: 10.1007/s00109-011-0842-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
|
7
|
Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 2011; 29:390-5. [PMID: 21594584 PMCID: PMC3354916 DOI: 10.1007/s00774-011-0273-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 04/06/2011] [Indexed: 12/19/2022]
Abstract
Since the discovery of SOX9 mutations in the severe human skeletal malformation syndrome campomelic dysplasia in 1994, Sox9 was shown to be both required and sufficient for chondrocyte specification and differentiation. At the same time, its distant relatives Sox5 and Sox6 were shown to act in redundancy with each other to robustly enhance its functions. The Sox trio is currently best known for its ability to activate the genes for cartilage-specific extracellular matrix components. Sox9 and Sox5/6 homodimerize through domains adjacent to their Sry-related high-mobility-group DNA-binding domain to increase the efficiency of their cooperative binding to chondrocyte-specific enhancers. Sox9 possesses a potent transactivation domain and thereby recruits diverse transcriptional co-activators, histone-modifying enzymes, subunits of the mediator complex, and components of the general transcriptional machinery, such as CBP/p300, Med12, Med25, and Wwp2. This information helps us begin to unravel the mechanisms responsible for Sox9-mediated transcription. We review here the discovery of this master chondrogenic trio and its roles in chondrogenesis in vivo and at the molecular level, and we discuss how these pioneering studies open the way for many additional studies that are needed to further increase our understanding of the transcriptional regulatory machinery operating in chondrogenesis.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Orthopaedics, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan.
| | | |
Collapse
|
8
|
Xie J, Han ZY, Matsuda T. Mechanical compressive loading stimulates the activity of proximal region of human COL2A1 gene promoter in transfected chondrocytes. Biochem Biophys Res Commun 2006; 344:1192-9. [PMID: 16650379 DOI: 10.1016/j.bbrc.2006.03.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/25/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have demonstrated that the mechanical compressive loading affects the biosynthesis of chondrocytes seeded in three dimensional scaffolds. In this study, the level of type II collagen mRNA expression was increased by a continuous dynamic compression at 10% compressive strain and 0.1 Hz in chondrocytes seeded in a biodegradable, elastomeric scaffold, poly(L-lactide-co-epsilon-caprolactone) (PLCL). To further examine this molecular mechanism, the promoter region of COL2A1 gene, which is encoding type II collagen, was analyzed using rabbit chondrocytes transfected with luciferase reporter vectors containing the 5'-flanking regions of human COL2A1 gene. A deletion mutant analysis revealed that the most active short promoter in response to continuous dynamic compression is in the region between -509 and -109 base pairs, where the transcription factor Sp1 is located. Additionally, an mRNA decay experiment using transcription inhibitor actinomycin D demonstrated that dynamic compression do not stabilize type II collagen mRNA. Our results indicate that mechanical compression increases the level of type II mRNA expression by transcriptional activation possibly through the Sp1 binding sites residing in the proximal region of the COL2A1 gene promoter.
Collapse
Affiliation(s)
- J Xie
- Division of Biomedical Engineering, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
9
|
Davies SR, Li J, Okazaki K, Sandell LJ. Tissue-restricted expression of the Cdrap/Mia gene within a conserved multigenic housekeeping locus. Genomics 2004; 83:667-78. [PMID: 15028289 DOI: 10.1016/j.ygeno.2003.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Accepted: 09/09/2003] [Indexed: 11/25/2022]
Abstract
The mouse cartilage-derived retinoic acid-sensitive protein (Cdrap/Mia) gene is expressed primarily in cartilage. Various promoter motifs that participate in restricted gene expression have been identified. To define mechanisms of regulation further, we determined the DNA sequence of 12 kb flanking this gene. We show that two genes, Snrpa and Rab4b, that have characteristics of housekeeping genes, including ubiquitous expression, closely flank Cdrap/Mia. We found the exon/intron structure and the organization of the gene locus to be conserved between the mouse and the human chromosomes, suggestive of functional relevance. DNase I hypersensitivity assays comparing expressing and nonexpressing cells indicate that the chromatin structure surrounding Cdrap/Mia is not greatly altered for transcription. The tissue-restricted expression of Cdrap/Mia, located between two housekeeping genes, provides a distinctive model for restricted transcriptional regulation from a multigenic locus.
Collapse
Affiliation(s)
- Sherri R Davies
- Department of Orthopaedic Surgery, Washington University at Barnes-Jewish Hospital, Mail Stop 90-34-674, 216 South Kingshighway, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
10
|
Chadjichristos C, Ghayor C, Kypriotou M, Martin G, Renard E, Ala-Kokko L, Suske G, de Crombrugghe B, Pujol JP, Galéra P. Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem 2003; 278:39762-72. [PMID: 12888570 DOI: 10.1074/jbc.m303541200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1 beta (IL-1 beta) is a pleiotropic cytokine that was shown to inhibit the biosynthesis of articular cartilage components. Here we demonstrate that IL-1 beta inhibits the production of newly synthesized collagens in proliferating rabbit articular chondrocytes and that this effect is accompanied by a decrease in the steady-state levels of type II collagen mRNA. IL-1 beta down-regulates COL2A1 gene transcription through a -41/-33 bp sequence that binds a multimeric complex including Sp1 and Sp3 transcription factors. Specificity of IL-1 beta effects on COL2A1 promoter activity was demonstrated in experiments in which transfection of a wild type -50/+1 sequence of COL2A1 promoter as a decoy oligonucleotide abolished the IL-1 beta inhibition of a -63/+47 COL2A1-mediated transcription. By contrast, transfection of the related oligonucleotide harboring a targeted mutation in the -41/-33 sequence did not modify the negative effect the cytokine. Because we demonstrated previously that Sp1 was a strong activator of COL2A1 gene expression via the -63/+1 promoter region, whereas Sp3 overexpression blocked Sp1-induced promoter activity and inhibited COL2A1 gene transcription, we conclude that IL-1 beta down-regulation of that gene, as we found previously for transforming growth factor-beta 1, is mediated by an increase in the Sp3/Sp1 ratio. Moreover, IL-1 beta increased steady-state levels of Sp1 and Sp3 mRNAs, whereas it enhanced Sp3 protein expression and inhibited Sp1 protein biosynthesis. Nevertheless, IL-1 beta decreased the binding activity of both Sp1 and Sp3 to the 63-bp short COL2A1 promoter, suggesting that the cytokine exerts a post-transcriptional regulatory mechanism on Sp1 and Sp3 gene expressions. Altogether, these data indicate that modulation of Sp3/Sp1 ratio in cartilage could be a potential target to prevent or limit the tissue degradation.
Collapse
Affiliation(s)
- Christos Chadjichristos
- Laboratoire de Biochimie du Tissu Conjonctif, Faculté de Médecine, CHU Niveau 3, Avenue de la Côte de Nacre, Caen Cedex 14032, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 2003; 278:17688-700. [PMID: 12637574 DOI: 10.1074/jbc.m301676200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following induction and activation of the early growth response (Egr)-1 transcription factor in human chondrocytes, interleukin-1beta (IL-1beta) suppresses the expression of the type II collagen gene (COL2A1), associated with induction of Egr-1 binding activity in nuclear extracts. The COL2A1 proximal promoter contains overlapping binding sites for Egr-1 and Sp1 family members at -119/-112 bp and -81/-74 bp. Mutations that block binding of Sp1 and Sp3 to either site markedly reduce constitutive expression of the core promoter. IL-1beta-induced Egr-1 binds strongly to the -119/-112 bp site, and mutations that block Egr-1 binding prevent inhibition by IL-1beta. Cotransfection with pCMV-Egr1 potentiates the inhibition of COL2A1 promoter activity by IL-1beta, whereas overexpression of dominant-negative Egr-1 mutant, Wilm's tumor-1 (WT1)/Egr1, Sp1, or Sp3 reverses the inhibition by IL-1beta. Cotransfection of pGL2-COL2/Gal4, in which we substituted the critical residue for Egr-1 binding with a Gal4 binding domain and a pCMV-Gal4-Egr1 chimera permits an inhibitory response to IL-1beta that is reversed by overexpression of Gal4-CBP. Our results indicate that IL-1beta-induced activation of Egr-1 binding is required for inhibition of COL2A1 proximal promoter activity and suggest that Egr-1 acts as a repressor of a constitutively expressed collagen gene by preventing interactions between Sp1 and the general transcriptional machinery.
Collapse
Affiliation(s)
- Lujian Tan
- Rheumatology Division, Beth Israel Deaconess Medical Center and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Yasuda K, Hirayoshi K, Hirata H, Kubota H, Hosokawa N, Nagata K. The Kruppel-like factor Zf9 and proteins in the Sp1 family regulate the expression of HSP47, a collagen-specific molecular chaperone. J Biol Chem 2002; 277:44613-22. [PMID: 12235161 DOI: 10.1074/jbc.m208558200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In several cells and tissues the synthesis of HSP47, a collagen-specific molecular chaperone in the endoplasmic reticulum, is closely correlated with the synthesis of collagen. We previously reported that the Sp1 binding site at -210 bp in the promoter region and the first and second introns are required for the tissue-specific expression of HSP47 in transgenic mice (Hirata, H., Yamamura, I., Yasuda, K., Kobayashi, A., Tada, N., Suzuki, M., Hirayoshi, K., Hosokawa, N., and Nagata, K. (1999) J. Biol. Chem. 274, 35703-35710). Here, we analyze how these introns influence the transcriptional regulation of the hsp47 gene in BALB/c 3T3 cells, which produce high levels of HSP47. In vitro promoter analysis using a luciferase reporter and gel mobility shift analysis revealed that two cis-acting elements in the first and second introns, BS5-B and EP7-D, respectively, are required for the activation of hsp47 in BALB/c 3T3 cells. Several members of the Kruppel-like factor (KLF) family of proteins were identified as BS5-B-binding proteins by yeast one-hybrid analysis using these elements as baits. One of these proteins, KLF-6/Zf9, binds to the BS5-B element and activates expression of the reporter construct when transfected into cells. Chromatin immunoprecipitation assay analysis revealed that the endogenous KLF-6/Zf9 binds the BS5-B elements that contain the CACCC motif, which is a consensus recognition sequence for other proteins in the KLF family. We also showed that BS5-B and EP7-D are bound by two members of the Sp1 family, Sp2 and Sp3. These results suggest that at least three sequences are required for the constitutive expression of hsp47 in BALB/c 3T3 cells: the -210 bp Sp1 binding site, the BS5-B element in the first intron, and the EP7-D element in the second intron. We suggest that KLF proteins regulate the transcription of hsp47 by binding the BS5-B element in cooperation with Sp2 and/or Sp3.
Collapse
Affiliation(s)
- Kunihiko Yasuda
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8397, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Palmer G, Manen D, Bonjour JP, Caverzasio J. Species-specific mechanisms control the activity of the Pit1/PIT1 phosphate transporter gene promoter in mouse and human. Gene 2001; 279:49-62. [PMID: 11722845 DOI: 10.1016/s0378-1119(01)00747-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Pit1 phosphate transporter is involved in regulated phosphate handling in bone forming cells. In this study, we compared the structure of the murine and human Pit1/PIT1 promoters and characterized cis-acting elements controlling Pit1/PIT1 expression. The Pit1/PIT1 promoter sequence and its location relative to the first transcribed exon are conserved and similar transcription factor binding sites are found at identical positions in mouse and human. Luciferase reporter gene assays in transiently transfected mouse ATDC5 chondrocytes and human SaOS-2 osteoblasts indicated that the activity of the mouse Pit1 promoter depends on several cis-acting elements, including ATF/CREB, Sp1 and AP-1 sites, an E-box and a TATA box. In contrast, the activity of the human promoter essentially requires a TATA-like sequence and one single Sp1 site. This Sp1 site binds Sp1, Sp3, as well as unidentified proteins present in SaOS-2 nuclear extracts and co-transfection experiments in SL2 cells indicate that Sp1 and Sp3 activate transcription from the human PIT1 promoter. These data suggest that, despite similarities in promoter structure, changes in the relative importance of conserved transcription factor binding sites cause species-dependent differences in Pit1 promoter function, which allow Sp1-related proteins to play a particularly important role in human.
Collapse
Affiliation(s)
- G Palmer
- Division of Bone Diseases, WHO Collaborating Center for Osteoporosis and Bone Diseases, Department of Internal Medicine, University Hospital of Geneva, 24 rue Micheli-du-Crest, CH-1211 14, Geneva, Switzerland
| | | | | | | |
Collapse
|
14
|
Ghayor C, Chadjichristos C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galera P. Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem 2001; 276:36881-95. [PMID: 11447232 DOI: 10.1074/jbc.m105083200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1 and Sp3 effects on the transcription of the human alpha1(II) procollagen gene (COL2A1) were investigated in both differentiated and de-differentiated rabbit articular chondrocytes. Transient transfection with constructs of deleted COL2A1 promoter sequences driving the luciferase reporter gene revealed that the region spanning -266 to +121 base pairs showed Sp1-enhancing effects, whatever the differentiation state. In contrast, Sp3 did not influence COL2A1 gene transcription. Concomitant overexpression of the two Sp proteins demonstrated that Sp3 blocked the Sp1 induction of COL2A1 promoter activity. Moreover, inhibition of Sp1/Sp3 binding to their target DNA sequence decreased both COL2A1 gene transcription and Sp1-enhancing effects. DNase I footprinting and gel retardation assays revealed that Sp1 and Sp3 bind specifically to cis-sequences of the COL2A1 gene promoter whereby they exert their transcriptional effects. Sp1 and Sp3 levels were found to be reduced in de-differentiated chondrocytes, as revealed by DNA-binding and immunochemical study. Sp1 specifically activated collagen neosynthesis whatever the differentiation state of chondrocytes, suggesting that this factor exerts a major role in the expression of collagen type II. However, our data indicate that type II collagen-specific expression in chondrocytes depend on both the Sp1/Sp3 ratio and cooperation of Sp1 with other transcription factors, the amounts of which are also modulated by phenotype alteration.
Collapse
Affiliation(s)
- C Ghayor
- Laboratoire de Biochimie du Tissu Conjonctif, Faculté de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032, Caen Cedex, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Deere M, Rhoades Hall C, Gunning KB, LeFebvre V, Ridall AL, Hecht JT. Analysis of the promoter region of human cartilage oligomeric matrix protein (COMP). Matrix Biol 2001; 19:783-92. [PMID: 11223338 DOI: 10.1016/s0945-053x(00)00127-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix protein expressed in cartilage, ligament, and tendon. The importance of COMP in the matrix of these cells is underscored by the discovery that mutations in COMP cause the skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). Here, we present the first report on the analysis of the human COMP promoter region in cartilage, ligament, and tendon cells. A 1.7-kb region of the COMP promoter has been cloned and sequenced and no TATA or CAAT boxes were found. Primer extension identified multiple transcription start sites. All four transcription start sites were utilized in chondrocytes with only three of them utilized in tendon and ligament cells. Differential regulation was observed for different parts of this 1.7-kb region with the 370-bp proximal region conveying the strongest promoter activity. The highest activity was observed in tendon and ligament. Finally, we provide evidence that the DNA binding protein SP1 plays a role in the regulation of COMP expression. These results indicate that COMP expression within these cells is regulated in a unique manner that differs from the expression of other extracellular matrix genes.
Collapse
Affiliation(s)
- M Deere
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Wegener's granulomatosis (WG) is a rare systemic autoimmune disease characterized by small-vessel vasculitis leading to organ damage and the presence of antineutrophil cytoplasmic autoantibodies (ANCAs). ANCAs were shown to be involved in the pathogenesis of the disease by increasing adhesion of polymorphonuclear cells (PMNs) to endothelial cells and through activation of primed PMN. The main autoantigen of ANCA in WG is proteinase 3 (PR3), a neutrophil- and monocyte-derived neutral serine protease. The association of WG with individuals continuously expressing a high level of PR3 on the surface of PMNs suggests that PR3 variants or altered regulation of PR3 expression might be directly involved in the pathogenesis of the disease. METHODS We screened the entire coding and promoter sequences of the PR3 gene for polymorphisms by means of polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP). Allelic, genotypic, and haplotype frequencies were compared between 79 WG patients and a cohort of 129 healthy controls. RESULTS Seven single-nucleotide polymorphisms (SNPs), one amino acid change (Val119Ile), one 84 bp insertion/deletion, and a microsatellite were identified. An association with WG could be demonstrated for the A-564G polymorphism in the PR3 promoter affecting a putative transcription factor-binding site. CONCLUSIONS This study excludes certain PR3 epitope variants as autoantigenic stimuli in WG, since the Val119Ile polymorphism showed no differences between patients and controls. Overexpression of PR3, however, might predispose the patient to the development of autoimmune ANCA-associated vasculitis.
Collapse
Affiliation(s)
- M Gencik
- Molecular Human Genetics, Ruhr-University Bochum, and Medizinische Klinik, Klinikum Innenstadt, Universität München, München, Germany.
| | | | | | | |
Collapse
|
17
|
Ghayor C, Herrouin JF, Chadjichristos C, Ala-Kokko L, Takigawa M, Pujol JP, Galéra P. Regulation of Human COL2A1 Gene Expression in Chondrocytes. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61527-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Murray D, Precht P, Balakir R, Horton WE. The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. J Biol Chem 2000; 275:3610-8. [PMID: 10652357 DOI: 10.1074/jbc.275.5.3610] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of Col2a1, which encodes type II collagen, likely results from a balance of both positive and negative proteins. Here we present evidence that the transcription factor deltaEF1 participates in the negative regulation of Col2a1 transcription. A deletion analysis suggested that a region between -100 and -307 of the rat Col2a1 gene was required for activity in differentiating chick limb bud mesenchymal cells; however, mutation of a conserved E2 box site in this region actually increased promoter activity. Supershift analysis demonstrated that deltaEF1, a known transcriptional repressor, bound to the E2 box in a sequence-dependent manner. Chick limb bud mesenchymal cells, which do not express type II collagen, expressed abundant deltaEF1 mRNA, but, following differentiation in micromass culture, deltaEF1 mRNA expression was lost. Primary embryonic chick sternal chondrocytes, which express abundant type II collagen, displayed minimal levels of deltaEF1 mRNA. The inhibition of Col2a1 transcription following treatment of chick sternal chondrocytes with growth factors was accompanied by increased deltaEF1 expression. Overexpression of deltaEF1 in differentiated chondrocytes resulted in decreased expression of a reporter construct containing a collagen II promoter/enhancer insert; however, this negative regulation was not dependent on the proximal E2 box. This is the first report of a specific transcription factor involved in the negative regulation of Col2a1.
Collapse
Affiliation(s)
- D Murray
- Laboratory of Biological Chemistry, Gerontology Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
19
|
Hirata H, Yamamura I, Yasuda K, Kobayashi A, Tada N, Suzuki M, Hirayoshi K, Hosokawa N, Nagata K. Separate cis-acting DNA elements control cell type- and tissue-specific expression of collagen binding molecular chaperone HSP47. J Biol Chem 1999; 274:35703-10. [PMID: 10585450 DOI: 10.1074/jbc.274.50.35703] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HSP47 is a collagen-binding heat shock protein and is assumed to act as a molecular chaperone in the biosynthesis and secretion of procollagen. As the synthesis of HSP47 is closely correlated with that of collagen in various cell lines and tissues, we performed a promoter/reporter assay using HSP47-producing and nonproducing cells. 280 base pairs (bp(s)) of upstream promoter were shown to be necessary for the basal expression but not to be enough for the cell type-specific expression. When the first and the second introns were introduced downstream of this 280-bp region, marked up-regulation of the reporter activity was observed in HSP47-producing cells but not in nonproducing cells. This was confirmed in transgenic mice by staining the lacZ gene product under the control of the 280-bp upstream promoter and the introns. Staining was observed in skin, chondrocytes, precursor of bone, and other HSP47/collagen-producing tissues. A putative Sp1-binding site at -210 bp in the promoter, to which Sp3 and an unidentified protein bind, was shown to be responsible for this up-regulation when combined with the introns. However no difference in the binding to this probe was observed between HSP47-producing and nonproducing cells. The responsible region for cell type-specific up-regulation was found to be located in a 500-bp segment in the first intron. On electrophoresis mobility shift assay using this 500-bp probe, specific DNA-protein complexes were only observed in HSP47-producing cell extracts. These results suggest that two separate elements are necessary for the cell type-specific expression of the hsp47 gene; one is a putative Sp1-binding site at -210 bp necessary for basal expression, and the other is a 500-bp region within the first intron, required for cell type-specific expression.
Collapse
Affiliation(s)
- H Hirata
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bernardini S, Argenton F, Vianello S, Colombo L, Bortolussi M. Regulatory regions in the promoter and third intron of the growth hormone gene in rainbow trout, Oncorhynchus mykiss walbaum. Gen Comp Endocrinol 1999; 116:261-71. [PMID: 10562456 DOI: 10.1006/gcen.1999.7367] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms involved in the transcriptional regulation of the rainbow trout (Oncorhynchus mykiss) growth hormone (tGH) gene have been investigated. Transient transfection assays, using deletion mutants of the tGH promoter, demonstrated that the -226/+24 5'-flanking region, bearing three binding sites for the pituitary-specific transcription factor GHF1/Pit1 and a cAMP-response element, is necessary and sufficient to confer strong tissue-specific and cAMP-stimulated expression to a luciferase reporter gene. This region is also upregulated by the synthetic glucocorticoid dexamethasone (DEX), the combined effects of cAMP, and DEX being synergistic. Footprinting and gel shift assays revealed that GHF1 binds to a recognition element in the third intron of the tGH gene, suggesting that GHF1 can affect the expression of this gene by interacting with response elements in the transcription unit. These results may be exploited to design tGH gene constructs for the production of autotransgenic fish, in which the expression of the isospecific transgene driven by a constitutive proximal promoter is specifically targeted to the pituitary and physiologically controlled.
Collapse
Affiliation(s)
- S Bernardini
- Dipartimento di Biologia, Universit¿a di Padova, Via Bassi 58/B, Padova, I-35131, Italy
| | | | | | | | | |
Collapse
|
21
|
Nuchprayoon I, Shang J, Simkevich CP, Luo M, Rosmarin AG, Friedman AD. An enhancer located between the neutrophil elastase and proteinase 3 promoters is activated by Sp1 and an Ets factor. J Biol Chem 1999; 274:1085-91. [PMID: 9873055 DOI: 10.1074/jbc.274.2.1085] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adjacent neutrophil elastase, proteinase 3, and azurocidin genes encode serine proteases expressed specifically in immature myeloid cells. Subclones of a 17-kilobase (kb) murine neutrophil elastase genomic clone were assessed for their ability to stimulate the neutrophil elastase promoter in 32D cl3 myeloid cells. Region -9.3 to -7.3 kb stimulated transcription 7-fold, whereas other genomic segments were inactive. This enhancer is located in the second intron of the proteinase-3 gene and so may regulate more than one gene in the myeloid protease cluster. Deletional analysis of the enhancer identified several segments which activated the neutrophil elastase and thymidine kinase promoters 3-6-fold. The most active segment was a 220-base pair region centered at -8.6 kb, which activated transcription 31-fold. This segment contains an Sp1 consensus site, which bound Sp1, flanked by two Ets family consensus sequences, which bound PU.1, GABP, and an Ets factor present in myeloid cell extracts. Mutation of the Sp1-binding site reduced enhancer activity 8-fold in 32D cl3 cells, and mutation of either or both Ets-binding sites reduced activity 3-4-fold. Sp1 activated the distal enhancer 5-fold, GABP 3-fold, and the combination 8-fold in Schneider cells.
Collapse
Affiliation(s)
- I Nuchprayoon
- Division of Pediatric Oncology, The Johns Hopkins Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
22
|
Leung KK, Ng LJ, Ho KK, Tam PP, Cheah KS. Different cis-regulatory DNA elements mediate developmental stage- and tissue-specific expression of the human COL2A1 gene in transgenic mice. J Biophys Biochem Cytol 1998; 141:1291-300. [PMID: 9628886 PMCID: PMC2132792 DOI: 10.1083/jcb.141.6.1291] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of the type II collagen gene (human COL2A1, mouse Col2a1) heralds the differentiation of chondrocytes. It is also expressed in progenitor cells of some nonchondrogenic tissues during embryogenesis. DNA sequences in the 5' flanking region and intron 1 are known to control tissue-specific expression in vitro, but the regulation of COL2A1 expression in vivo is not clearly understood. We have tested the regulatory activity of DNA sequences from COL2A1 on the expression of a lacZ reporter gene in transgenic mice. We have found that type II collagen characteristic expression of the transgene requires the enhancer activity of a 309-bp fragment (+2, 388 to +2,696) in intron 1 in conjunction with 6.1-kb 5' sequences. Different regulatory elements were found in the 1.6-kb region (+701 to +2,387) of intron 1 which only needs 90-bp 5' sequences for tissue-specific expression in different components of the developing cartilaginous skeleton. Distinct positive and negative regulatory elements act together to control tissue-specific transgene expression in the developing midbrain neuroepithelium. Positive elements affecting expression in the midbrain were found in the region from -90 to -1,500 and from +701 to +2,387, whereas negatively acting elements were detected in the regions from -1,500 to -6,100 and +2,388 to +2,855.
Collapse
Affiliation(s)
- K K Leung
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
23
|
Dharmavaram RM, Liu G, Mowers SD, Jimenez SA. Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation. J Biol Chem 1997; 272:26918-25. [PMID: 9341126 DOI: 10.1074/jbc.272.43.26918] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have detected DNA binding activity for a synthetic oligonucleotide containing an Sp1 consensus sequence in nuclear extracts from human chondrocytes. Changes in the levels of Sp1 oligonucleotide binding activity were examined in nuclear extracts from freshly isolated human chondrocytes, from chondrocytes that had been cultured under conditions that allowed the maintenance of a chondrocyte-specific phenotype on plastic dishes coated with the hydrogel poly(2-hydroxyethyl methacrylate), and from chondrocytes induced to dedifferentiate into fibroblast-like cells by passage in monolayer culture on plastic substrata. It was observed that Sp1 binding was 2-3-fold greater in nuclear extracts from dedifferentiated chondrocytes than in nuclear extracts from either freshly isolated chondrocytes or from cells cultured in suspension. The Sp1 binding activity was specific, since it was competed by unlabeled Sp1 but not by AP1 or AP2. The addition of a polyclonal antibody against Sp1 to nuclear extracts from freshly isolated chondrocytes or to extracts isolated from chondrocytes cultured in monolayer decreased the binding of Sp1 by approximately 85%. However, when the same experiment was carried out with nuclear extracts prepared from cells cultured on poly(2-hydroxyethyl methacrylate)-coated plates, only a very slight inhibition of Sp1 binding was observed. When fragments of the COL2A1 promoter containing putative Sp1 binding sites amplified by polymerase chain reaction were examined, it was found that the amounts of DNA-protein complex formed with nuclear extracts from dedifferentiated chondrocytes were 2-3-fold greater than the amounts formed with nuclear extracts from freshly isolated chondrocytes or from cells cultured in suspension. Quantitation of DNA binding activity by titration experiments demonstrated that nuclear extracts from fibroblast-like cells contained approximately 2-fold greater Sp-1 specific binding activity than nuclear extracts from chondrocytes. The direct role of Sp1 in type II collagen gene transcription was demonstrated by co-transfection experiments of COL2A1 promoter-CAT constructs in Drosophila Schneider line L2 cells that lack Sp1 homologs. This is the first demonstration of Sp1 binding activity in human chondrocytes and of differences in Sp1 DNA binding activity between differentiated and dedifferentiated chondrocytes.
Collapse
Affiliation(s)
- R M Dharmavaram
- Division of Rheumatology, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
24
|
Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS. SOX9 directly regulates the type-II collagen gene. Nat Genet 1997; 16:174-8. [PMID: 9171829 DOI: 10.1038/ng0697-174] [Citation(s) in RCA: 741] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in human SOX9 are associated with campomelic dysplasia (CD), characterised by skeletal malformation and XY sex reversal. During chondrogenesis in the mouse, Sox9 is co-expressed with Col2a1, the gene encoding type-II collagen, the major cartilage matrix protein. Col2a1 is therefore a candidate regulatory target of SOX9. Regulatory sequences required for chondrocyte-specific expression of the type-II collagen gene have been localized to conserved sequences in the first intron in rats, mice and humans. We show here that SOX9 protein binds specifically to sequences in the first intron of human COL2A1. Mutation of these sequences abolishes SOX9 binding and chondrocyte-specific expression of a COL2A1-driven reporter gene (COL2A1-lacZ) in transgenic mice. Furthermore, ectopic expression of Sox9 trans-activates both a COL2A1-driven reporter gene and the endogenous Col2a1 gene in transgenic mice. These results demonstrate that COL2A1 expression is directly regulated by SOX9 protein in vivo and implicate abnormal regulation of COL2A1 during, chondrogenesis as a cause of the skeletal abnormalities associated with campomelic dysplasia.
Collapse
Affiliation(s)
- D M Bell
- Department of Biochemistry, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
It is now evident that persistent overproduction of collagen and other connective tissue macromolecules results in excessive tissue deposition, and is responsible for the progressive nature of fibrosis in SSc. Up-regulation of collagen gene expression in SSc fibroblasts appears to be a critical event in the development of tissue fibrosis. The coordinate transcriptional activation of a number of extracellular matrix genes suggests a fundamental alteration in the regulatory control of gene expression in SSc fibroblasts. Trans-acting nuclear factors that bind to cis-acting elements in enhancer and promoter regions of the genes modulate the basal and inducible transcriptional activity of the collagen genes. The identity of the nuclear transcriptional factors that regulate normal collagen gene expression remains to be firmly established, and to date, no alterations in the level or in the activity of such DNA binding factors has been demonstrated in SSc fibroblasts. In addition to important interactions between fibroblasts and the extracellular matrix, cytokines and other cellular mediators can positively and negatively influence fibroblast collagen synthesis. Some of these signaling molecules may have physiologic roles, and their aberrant expression, or altered responsiveness of SSc fibroblasts to them, may result in the acquisition of the activated phenotype. The rapid expansion of knowledge regarding the effects of cytokines on extracellular matrix synthesis has led to an appreciation of the enormous complexity of regulatory networks that operate in the physiologic maintenance of connective tissue and which may be responsible for the occurrence of pathologic fibrosis. The ubiquitous growth factor TGF beta is the most potent inducer of collagen gene expression and connective tissue accumulation yet discovered. The expression of TGF beta in activated infiltrating mononuclear cells suggests a role for this cytokine as a mediator of fibroblast activation in SSc. Furthermore, the recognition that TGF beta is capable of inducing its own expression in a variety of cell types, coupled with the demonstration that a subpopulation of SSc dermal fibroblasts produces TGF beta, indicates the existence of a possible autocrine loop whereby lymphocyte-derived TGF beta in early SSc not only signals biosynthetic activation of fibroblasts in a paracrine manner, but autoinduces endogenous TGF beta production by the target fibroblasts themselves. Such an autocrine loop involving TGF beta may explain the persistent activation of collagen gene expression in SSc fibroblasts, and could be responsible for the progressive nature of fibrosis in SSc. Numerous other cytokines, as well as cell-matrix interactions, also modify collagen gene expression and can significantly influence the effects of TGF beta. Although their physiologic function in tissue remodeling or their involvement in abnormal fibrogenesis has not yet been conclusively demonstrated, the study of the biologic effects of these cytokines may provide important clues to understanding the pathogenesis of SSc, and to the development of rational drug therapy aimed at interrupting the abnormal fibrogenic process in this disease.
Collapse
Affiliation(s)
- S A Jimenez
- Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
26
|
Lefebvre V, Zhou G, Mukhopadhyay K, Smith CN, Zhang Z, Eberspaecher H, Zhou X, Sinha S, Maity SN, de Crombrugghe B. An 18-base-pair sequence in the mouse proalpha1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes. Mol Cell Biol 1996; 16:4512-23. [PMID: 8754852 PMCID: PMC231450 DOI: 10.1128/mcb.16.8.4512] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The molecular mechanisms by which mesenchymal cells differentiate into chondrocytes are still poorly understood. We have used the gene for a chondrocyte marker, the proalpha1(II) collagen gene (Col2a1), as a model to delineate a minimal sequence needed for chondrocyte expression and identify chondrocyte-specific proteins binding to this sequence. We previously localized a cartilage-specific enhancer to 156 bp of the mouse Col2a1 intron 1. We show here that four copies of a 48-bp subsegment strongly increased promoter activity in transiently transfected rat chondrosarcoma (RCS) cells and mouse primary chondrocytes but not in 10T1/2 fibroblasts. They also directed cartilage specificity in transgenic mouse embryos. These 48 bp include two 11-bp inverted repeats with only one mismatch. Tandem copies of an 18-bp element containing the 3' repeat strongly enhanced promoter activity in RCS cells and chondrocytes but not in fibroblasts. Transgenic mice harboring 12 copies of this 18-mer expressed luciferase in ribs and vertebrae and in isolated chondrocytes but not in noncartilaginous tissues except skin and brain. In gel retardation assays, an RCS cell-specific protein and another closely related protein expressed only in RCS cells and primary chondrocytes bound to a 10-bp sequence within the 18-mer. Mutations in these 10 bp abolished activity of the multimerized 18-bp enhancer, and deletion of these 10 bp abolished enhancer activity of 465- and 231-bp intron 1 segments. This sequence contains a low-affinity binding site for POU domain proteins, and competition experiments with a high-affinity POU domain binding site strongly suggested that the chondrocyte proteins belong to this family. Together, our results indicate that an 18-bp sequence in Col2a1 intron 1 controls chondrocyte expression and suggest that RCS cells and chondrocytes contain specific POU domain proteins involved in enhancer activity.
Collapse
Affiliation(s)
- V Lefebvre
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Krebsbach PH, Nakata K, Bernier SM, Hatano O, Miyashita T, Rhodes CS, Yamada Y. Identification of a minimum enhancer sequence for the type II collagen gene reveals several core sequence motifs in common with the link protein gene. J Biol Chem 1996; 271:4298-303. [PMID: 8626777 DOI: 10.1074/jbc.271.8.4298] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The type II collagen gene (Col2a1) is expressed primarily in chondrocytes. Transcription of Col2a1 is mediated by cell-specific regulatory elements located within the promoter and first intron. Here, we map a minimal enhancer and identify elements that determine cartilage-specific Col2a1 expression by analyzing the activity of a series of chimeric genes consisting of rat Col2a1 first intron deletion mutants ligated to the chloramphenicol acetyltransferase reporter gene. We show that a 100-base pair (bp) segment within the first intron is the minimum size necessary for high level, cell type-specific expression of Col2a1. Sequence analysis of this 100-bp Col2a1 enhancer revealed several sequence motifs similar to motifs present within the regulatory region of the link protein gene, another cartilage gene. These motifs include an AT-rich element, a C1 motif and a C3 motif. Deletion of any of these elements reduced Col2a1 enhancer activity in chick embryo chondrocytes. We also tested enhancer-mediated activity in CFK2 cells which differentiate to a chondrogenic phenotype and begin to express type II collagen mRNA after extended culture. In stably transfected CFK2 cells, constructs containing the 100-bp enhancer were activated during the transition from prechondrogenic to chondrogenic cell populations and deletions within the enhancer strongly down-regulated activity. Chondrocyte-specific DNA-protein complexes were identified using nuclear extracts prepared from chick embryo chondrocytes and 32P-labeled oligonucleotides from these regions of the first intron. These results suggest that interaction of chondrocyte specific nuclear factors with multiple core elements from a small region within the first intron are important for cell-type specific Col2a1 enhancer activity.
Collapse
Affiliation(s)
- P H Krebsbach
- Laboratory of Developmental Biology, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|