1
|
Lee YG, Jang SA, Song HS, Kwon JE, Ko M, Hong W, Gwon A, Park SE, Jeong Y, Kim H, Kang SC. Bakuchiol from Cullen corylifolium and its efficacy on apoptosis and autophagy in HepG2 cells. Heliyon 2024; 10:e40758. [PMID: 39717592 PMCID: PMC11664279 DOI: 10.1016/j.heliyon.2024.e40758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Bakuchiol (4), a component of Cullen corylifolium, has been reported to have estrogenic, antimicrobial, and anti-inflammatory activities. Nonetheless, its anticancer mechanisms and effectiveness against hepatocellular carcinoma remain unexplored. This study sought to elucidate the mechanism of apoptosis, autophagy, and cell cycle arrest caused by bakuchiol (4) and three flavonoids (1-3) with similar structures to compound 4 in hepatocellular carcinoma. Among the evaluated components (1-4), bakuchiol (4) exhibited a significant potential to induce apoptosis in HepG2 cells. This compound facilitates apoptotic processes by engaging both intrinsic and extrinsic signaling cascades, as evidenced by the enhanced ratios of Bax to Bcl-2 and tBid to Bid. In addition, bakuchiol (4) induced a dose-dependent cell cycle arrest, as assessed using a TaliⓇ image-based cytometer. Since bakuchiol decreased CDK2 and CDK4, while increasing p53, p21, and p27, these data suggest that bakuchiol regulated early cell cycle progression. It also promotes the activity of AMPK and the LC3Ⅱ/LC3Ⅰ ratio, while suppressing Akt and mTOR. In conclusion, these results demonstrate that bakuchiol (4), a major component of C. corylifolium, has an anticancer effect in hepatocarcinoma cells by inducing both apoptosis and autophagy. This significant finding enlightens us about the potential of bakuchiol in cancer research, particularly in liver cancer treatment.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Seon-A Jang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hae Seong Song
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
- Kolmar Korea R&D Complex, Kolmar Korea Co. Ltd, Seoul, 06500, Republic of Korea
| | - Jeong Eun Kwon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Minsung Ko
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woojae Hong
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ahyeong Gwon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
- Mbiometherapeutics Co., Ltd., Seongnam, 13488, Republic of Korea
| | - Se-Eun Park
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
- Mbiometherapeutics Co., Ltd., Seongnam, 13488, Republic of Korea
| | - Yujin Jeong
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
2
|
Simborio H, Hayek H, Kosmider B, Elrod JW, Bolla S, Marchetti N, Criner GJ, Bahmed K. Mitochondrial dysfunction and impaired DNA damage repair through PICT1 dysregulation in alveolar type II cells in emphysema. Cell Commun Signal 2024; 22:562. [PMID: 39578839 PMCID: PMC11583753 DOI: 10.1186/s12964-024-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Alveolar type II (ATII) cells have a stem cell potential in the adult lung and repair the epithelium after injury induced by harmful factors. Their damage contributes to emphysema development, characterized by alveolar wall destruction. Cigarette smoke is the main risk factor for this disease development. METHODS ATII cells were obtained from control non-smoker and smoker organ donors and emphysema patients. Isolated cells were used to study the role of PICT1 in this disease. Also, a cigarette smoke-induced murine model of emphysema was applied to define its function in disease progression further. RESULTS Decreased PICT1 expression was observed in human and murine ATII cells in emphysema. PICT1 was immunoprecipitated, followed by mass spectrometry analysis. We identified MRE11, which is involved in DNA damage repair, as its novel interactor. PICT1 and MRE11 protein levels were decreased in ATII cells in this disease. Moreover, cells with PICT1 deletion were exposed to cigarette smoke extract. This treatment induced cellular and mitochondrial ROS, cell cycle arrest, nuclear and mitochondrial DNA damage, decreased mitochondrial respiration, and impaired DNA damage repair. CONCLUSIONS This study indicates that PICT1 dysfunction can negatively affect genome stability and mitochondrial activity in ATII cells, contributing to emphysema development. Targeting PICT1 can lead to novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Hannah Simborio
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hassan Hayek
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Wu J, Jiang Y, Zhang Q, Mao X, Wu T, Hao M, Zhang S, Meng Y, Wan X, Qiu L, Han J. KDM6A-SND1 interaction maintains genomic stability by protecting the nascent DNA and contributes to cancer chemoresistance. Nucleic Acids Res 2024; 52:7665-7686. [PMID: 38850159 PMCID: PMC11260493 DOI: 10.1093/nar/gkae487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A-SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A-SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance.
Collapse
Affiliation(s)
- Jian Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yixin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaobing Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tong Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqiu Hao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Yuan S, Zhang H, Wang S, Jiang X, Ma M, Xu Y, Han Y, Wang Z. Do the same chlorinated organophosphorus flame retardants that cause cytotoxicity and DNA damage share the same pathway? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116158. [PMID: 38417316 DOI: 10.1016/j.ecoenv.2024.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Organophosphorus flame retardants (OPFRs) have been frequently detected with relatively high concentrations in various environmental media and are considered emerging environmental pollutants. However, their biological effect and underlying mechanism is still unclear, and whether chlorinated OPFRs (Cl-OPFRs) cause adverse outcomes with the same molecular initial events or share the same key events (KEs) remains unknown. In this study, in vitro bioassays were conducted to analyze the cytotoxicity, mitochondrial impairment, DNA damage and molecular mechanisms of two Cl-OPFRs. The results showed that these two Cl-OPFRs, which have similar structures, induced severe cellular and molecular damages via different underlying mechanisms. Both tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) (TCPP) induced oxidative stress-mediated mitochondrial impairment and DNA damage, as shown by the overproduction of intracellular reactive oxygen species (ROS) and mitochondrial superoxide. Furthermore, the DNA damage caused by TCPP resulted in p53/p21-mediated cell cycle arrest, as evidenced by flow cytometry and real-time PCR. At the cellular and molecular levels, TCPP increased the sub-G1 apoptotic peak and upregulated the p53/Bax apoptosis pathway, possibly resulted in apoptosis associated with its stronger cytotoxicity. Although structurally similar to TCPP, TCEP did not induce mitochondrial impairment and DNA damage by the same KEs. These results provide insight into the toxicity of Cl-OPFRs with similar structures but different mechanisms, which is of great significance for constructing adverse outcome pathways or determining intermediate KEs.
Collapse
Affiliation(s)
- Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hong Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingnan Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Zhang L, Zhang Y, Li K, Xue S. Hedgehog signaling and the glioma-associated oncogene in cancer radioresistance. Front Cell Dev Biol 2023; 11:1257173. [PMID: 38020914 PMCID: PMC10679362 DOI: 10.3389/fcell.2023.1257173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor radioresistance remains a key clinical challenge. The Hedgehog (HH) signaling pathway and glioma-associated oncogene (GLI) are aberrantly activated in several cancers and are thought to contribute to cancer radioresistance by influencing DNA repair, reactive oxygen species production, apoptosis, autophagy, cancer stem cells, the cell cycle, and the tumor microenvironment. GLI is reported to activate the main DNA repair pathways, to interact with cell cycle regulators like Cyclin D and Cyclin E, to inhibit apoptosis via the activation of B-cell lymphoma-2, Forkhead Box M1, and the MYC proto-oncogene, to upregulate cell stemness related genes (Nanog, POU class 5 homeobox 1, SRY-box transcription factor 2, and the BMI1 proto-oncogene), and to promote cancer stem cell transformation. The inactivation of Patched, the receptor of HH, prevents caspase-mediated apoptosis. This causes some cancer cells to survive while others become cancer stem cells, resulting in cancer recurrence. Combination treatment using HH inhibitors (including GLI inhibitors) and conventional therapies may enhance treatment efficacy. However, the clinical use of HH signaling inhibitors is associated with toxic side effects and drug resistance. Nevertheless, selective HH agonists, which may relieve the adverse effects of inhibitors, have been developed in mouse models. Combination therapy with other pathway inhibitors or immunotherapy may effectively overcome resistance to HH inhibitors. A comprehensive cancer radiotherapy with HH or GLI inhibitor is more likely to enhance cancer treatment efficacy while further studies are still needed to overcome its adverse effects and drug resistance.
Collapse
Affiliation(s)
- Li Zhang
- Nephrology Department, The 1st Hospital of Jilin University, Changchun, China
| | - Yuhan Zhang
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| | - Kaixuan Li
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- General Surgery Center, Department of Thyroid Surgery, The 1st Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Thapa R, Afzal O, Bhat AA, Goyal A, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Singh SK, Dua K, Thangavelu L, Gupta G. New horizons in lung cancer management through ATR/CHK1 pathway modulation. Future Med Chem 2023; 15:1807-1818. [PMID: 37877252 DOI: 10.4155/fmc-2023-0164] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Molecular profiling has contributed to a new classification of lung cancer, driving advancements in research and therapy. The ataxia telangiectasia and rad3/checkpoint kinase 1 (ATR/CHK1) pathway plays a crucial role in maintaining genomic stability, and its activation has been linked to the development of lung cancer, drug resistance and poor prognosis. Clinical and preclinical studies have demonstrated promising results in targeting this pathway. ATR and CHK1 are proteins that collaborate to repair DNA damage caused by radiation or chemotherapy. ATR/CHK1 inhibitors are currently under investigation in preclinical and clinical trials. This article explores the ATR/CHK1 pathway and its potential for treating lung cancer.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P., India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University Dehradun, 248007, India
| |
Collapse
|
7
|
Kumari P, Kumar R, Singh D, Kumar R. N-acetyl-L-tryptophan (NAT) provides protection to intestinal epithelial cells (IEC-6) against radiation-induced apoptosis via modulation of oxidative stress and mitochondrial membrane integrity. Mol Biol Rep 2023; 50:6381-6397. [PMID: 37322322 DOI: 10.1007/s11033-023-08579-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ionizing radiation generates oxidative stress in biological systems via inducing free radicals. Gastro-intestinal system has been known for its high radiosensitivity. Therefore, to develop an effective radiation countermeasure for gastrointestinal system, N-acetyl L-tryptophan was evaluated for its radioprotective efficacy using intestinal epithelial cells-6 (IEC-6) cells as the experimental model. METHODS AND RESULTS Cellular metabolic and lysosomal activity of L-NAT and L-NAT treated irradiated IEC-6 cells were assessed by MTT and NRU staining, respectively. ROS and mitochondrial superoxide levels along with mitochondrial disruption were detected using specific fluorescent probes. Endogenous antioxidants (CAT, SOD, GST, GPx) activities were determined using calorimetric assay. Apoptosis and DNA damage were assessed using flow cytometery and Comet assay, respectively. Results of the study were demonstrated that L-NAT pre-treatment (- 1 h) to irradiated IEC-6 cells significantly contribute to ensuring 84.36% to 87.68% (p < 0.0001) survival at 0.1 μg/mL concentration against LD50 radiation dose (LD50; 20 Gy). Similar level of radioprotection was observed with a clonogenic assay against γ radiation (LD50; 5 Gy). L-NAT was found to provide radioprotection by neutralizing radiation-induced oxidative stress, enhancing antioxidant enzymes (CAT, SOD, GST, and GPx), and protecting DNA from radiation-induced damage. Further, significant restoration of mitochondrial membrane integrity along with apoptosis inhibition was observed with irradiated IEC-6 cells upon L-NAT pretreatment.
Collapse
Affiliation(s)
- Pratibha Kumari
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Ravi Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Darshana Singh
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India
| | - Raj Kumar
- Radiation Biotechnology Group, Division of Chemical, Biological, Radiological & Nuclear Defence (CBRN), Defence Research and Development Organization (DRDO), Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
8
|
Gandhi VV, Bihani SC, Phadnis PP, Kunwar A. Diselenide-derivative of 3-pyridinol targets redox enzymes leading to cell cycle deregulation and apoptosis in A549 cells. Biol Chem 2022; 403:891-905. [PMID: 36002994 DOI: 10.1515/hsz-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
The aim of present study was to understand the mechanism of action of 2,2'-diselenobis(3-pyridinol) or DISPOL in human lung cancer (A549) cells. A549 cells were treated with 10 µM (∼IC50) of DISPOL for varying time points to corelate the intracellular redox changes with its cytotoxic effect. The results indicated that DISPOL treatment led to a time dependant decrease in the basal level of reactive oxygen species (ROS). Additionally, DISPOL treatment elevated the ratio of reduced (GSH) and oxidised (GSSG) glutathione by upregulating gamma-glutamylcysteine ligase (γ-GCL) involved in GSH biosynthesis and inhibiting the activities of redox enzymes responsible for GSH utilization and recycling, such as glutathione-S-transferase (GST) and glutathione reductase (GR). Molecular docking analysis suggests putative interactions of DISPOL with GST and GR which could account for its inhibitory effect on these enzymes. Further, DISPOL induced reductive environment preceded G1 arrest and apoptosis as evidenced by decreased expression of cell cycle genes (Cyclin D1 and Cyclin E1) and elevation of p21 and apoptotic markers (cleaved caspase 3 and cleaved PARP). The combinatorial experiments involving DISPOL and redox modulatory agents such as N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) indeed confirmed the role of reductive stress in DISPOL-induced cell death. Finally, Lipinski's rule suggests attributes of drug likeness in DISPOL. Taken together, DISPOL exhibits a novel mechanism of reductive stress-mediated cell death in A549 cells that warrants future exploration as anticancer agent.
Collapse
Affiliation(s)
- Vishwa V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Subhash C Bihani
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasad P Phadnis
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
9
|
Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells. Molecules 2022; 27:molecules27154851. [PMID: 35956805 PMCID: PMC9369970 DOI: 10.3390/molecules27154851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.
Collapse
|
10
|
Kumari M, Kamat S, Jayabaskaran C. Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121098. [PMID: 35257985 DOI: 10.1016/j.saa.2022.121098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Many natural products induce apoptotic cell death in cancer cells, though studies on their interactions with macromolecules are limited. For the first time, this study demonstrated the cytotoxic potential of usnic acid (UA) against squamous carcinoma (A-431) cells and the associated changes in cell surface proteins, lipids and DNA by attenuated total reflection- fourier transform infrared spectroscopy (ATR-FTIR) and dynamic light scattering (DLS) spectroscopic studies. The IC50 for UA was 98.9 µM after treatment of A-431 cells for 48 h, while the IC50 reduced to 39.2 µM after 72 h of incubation time. UA induced oxidative stress in treated cells as confirmed by DCFHDA flow cytometry assay, depletion in reduced glutathione and increase in lipid peroxidation. The oxidative stress resulted in conformation change in amide I, amide II protein bands and DNA as observed by ATR-FTIR in UA treated A-431 cells. Shift in secondary structures of proteins from α helix to β sheets and structural changes in DNA was observed in UA treated A-431 cells. An increase in the band intensity of phospholipids, increased distribution of lipid and change in membrane potential was noted in UA treated cells, which was confirmed by externalization of phosphatidylserine to the outer membrane by annexin V-FITC/PI assay. Increase in mitochondrial membrane potential, cell cycle arrest at G0/G1 phase by flow cytometry and activation of caspase-3/7 dependent proteins confirmed the UA induced apoptosis in treated A-431 cells. FTIR and DLS spectroscopy confirmed the changes in biomolecules after UA treatment, which were associated with apoptosis, as observed by flow cytometry.
Collapse
Affiliation(s)
- Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
11
|
Vimalkumar K, Sangeetha S, Felix L, Kay P, Pugazhendhi A. A systematic review on toxicity assessment of persistent emerging pollutants (EPs) and associated microplastics (MPs) in the environment using the Hydra animal model. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109320. [PMID: 35227876 DOI: 10.1016/j.cbpc.2022.109320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022]
Abstract
Emerging pollutants (EPs) are causative for teratogenic and reproductive effects. EPs are detected in all the environmental matrices at higher levels. A suitable model for aquatic toxicity assessment is Hydra, because of morphological, behavioral, reproductive (sexual and asexual), and biochemical changes. Many researchers have used Hydra for toxicity assessment of organic chemicals (BPA), heavy metals, pharmaceuticals, nanomaterials and microplastics. Various Hydra species were used for environmental toxicity studies; however H. magnipapillata was predominantly used due to the availability of its genome and proteome sequences. Teratogenic and reproductive changes in Hydra are species specific. Teratogenic effects were studied using sterozoom dissecting microscope, acridine orange (AO) and 4',6-diamidino-2-phenylindole (DPAI) staining. Reactive oxygen species (ROS) generation by EPs had been understood by the Dichlorodihydrofluorescein Diacetate (DCFDA) staining and comet assay. Multiple advanced techniques would aid to understand the effects at molecular level, such as real-time PCR, rapid amplification of cDNA end- PCR. EPs modulated the major antioxidant enzyme levels, therefore, defense mechanism was affected by the higher generation of reactive oxygen species. Genome sequencing helps to know the mode of action of pollutants, role of enzymes in detoxification, defense genes and stress responsive genes. Molecular techniques were used to obtain the information for evolutionary changes of genes and modulation of gene expression by EPs.
Collapse
Affiliation(s)
| | - Seethappan Sangeetha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Lewisoscar Felix
- Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Paul Kay
- School of Geography, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
12
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:1437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
13
|
Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 2021; 76:120-131. [PMID: 33979676 PMCID: PMC8576067 DOI: 10.1016/j.semcancer.2021.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Zingales V, Fernández-Franzón M, Ruiz MJ. Sterigmatocystin-induced DNA damage triggers cell-cycle arrest via MAPK in human neuroblastoma cells. Toxicol Mech Methods 2021; 31:479-488. [PMID: 34039253 DOI: 10.1080/15376516.2021.1916801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sterigmatocystin (STE) is a common mycotoxin found in food and feed. Many studies showed that STE is genotoxic. However, up to now, the potential genotoxicity of STE on human neuronal system remains unknown. In this study, we explored the effect of STE on DNA damage and cell-cycle progression on human neuroblastoma SH-SY5Y cells exposed to various concentrations of STE (0.78, 1.56 and 3.12 µM) for 24 h. The results indicated that STE exposure induced DNA damage, as evidenced by DNA comet tails formation and increased γH2AX foci. Additionally, genotoxicity was confirmed by micronuclei (MN) analysis. Furthermore, we found that STE exposure led to cell-cycle arrest at the S and the G2/M phase. Considering the important role played by MAPK and p53 signaling pathways in cell-cycle arrest, we explored their potential involvement in STE-induced cell-cycle arrest by using specific inhibitors. The inhibition of JNK and ERK resulted to attenuate S and G2/M arrest, whereas the inhibition of p38 and p53 attenuated only STE-induced S phase arrest. In conclusion, the present study demonstrates that STE induced DNA damage and triggered MAPK and p53 pathways activation, resulting in cell-cycle arrest at the S and the G2/M phase.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
15
|
Polybrominated diphenyl ethers quinone exhibits neurotoxicity by inducing DNA damage, cell cycle arrest, apoptosis and p53-driven adaptive response in microglia BV2 cells. Toxicology 2021; 457:152807. [PMID: 33961949 DOI: 10.1016/j.tox.2021.152807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are world-wide used flame retardants before they were listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention. Previously, our studies indicated that a quinone type of PBDE metabolite (PBDEQ) exposure was linked with neurotoxicity via excess free radical formation and oxidative stress. However, it is current unknown the effect of PBDEQ on genetic biomacromolecules DNA and corresponding biological consequences in neurological cells. Here, by employing phosphorylated histone H2AX in Serine 139 (γ-H2AX) and comet assay in microglia BV2 cells, our data suggested PBDEQ could triggered DNA damage. Furthermore, PBDEQ exposure led to the caspase 3-dependent cell apoptosis. Moreover, PBDEQ induced G2/M-phase cell arrest in a p53-dependent manner. Notably, p53 activation coordinated cell cycle progression, alleviated DNA damage and ultimately mitigated apoptosis in BV2 cells. Finally, antioxidant N-acetyl-l-cysteine (NAC) inhibited p53 activation upon PBDEQ exposure, and then ameliorated PBDEQ-induced DNA damage, cell cycle arrest and apoptosis, which illustrated that PBDEQ-induced DNA damage and p53 activation were mediated by reactive oxygen species (ROS). Together, the current findings unveil the fundamental toxicological mechanisms of PBDEQ, which propose a potential therapeutic strategy against the adverse effect caused by PBDE exposure.
Collapse
|
16
|
Yoblinski AR, Chung S, Robinson SB, Forester KE, Strahl BD, Dronamraju R. Catalysis-dependent and redundant roles of Dma1 and Dma2 in maintenance of genome stability in Saccharomyces cerevisiae. J Biol Chem 2021; 296:100721. [PMID: 33933452 PMCID: PMC8165551 DOI: 10.1016/j.jbc.2021.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 10/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the deleterious lesions that are both endogenous and exogenous in origin and are repaired by nonhomologous end joining or homologous recombination. However, the molecular mechanisms responsible for maintaining genome stability remain incompletely understood. Here, we investigate the role of two E3 ligases, Dma1 and Dma2 (homologs of human RNF8), in the maintenance of genome stability in budding yeast. Using yeast spotting assays, chromatin immunoprecipitation and plasmid and chromosomal repair assays, we establish that Dma1 and Dma2 act in a redundant and a catalysis-dependent manner in the maintenance of genome stability, as well as localize to transcribed regions of the genome and increase in abundance upon phleomycin treatment. In addition, Dma1 and Dma2 are required for the normal kinetics of histone H4 acetylation under DNA damage conditions, genetically interact with RAD9 and SAE2, and are in a complex with Rad53 and histones. Taken together, our results demonstrate the requirement of Dma1 and Dma2 in regulating DNA repair pathway choice, preferentially affecting homologous recombination over nonhomologous end joining, and open up the possibility of using these candidates in manipulating the repair pathways toward precision genome editing.
Collapse
Affiliation(s)
- Andrew R Yoblinski
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Seoyoung Chung
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Sophie B Robinson
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kaitlyn E Forester
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Raghuvar Dronamraju
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
17
|
Mahadevan G, Valiyaveettil S. Comparison of Genotoxicity and Cytotoxicity of Polyvinyl Chloride and Poly(methyl methacrylate) Nanoparticles on Normal Human Lung Cell Lines. Chem Res Toxicol 2021; 34:1468-1480. [PMID: 33861932 DOI: 10.1021/acs.chemrestox.0c00391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
High concentrations of micro- and nanoparticles of common plastic materials present in the environment are causing an adverse health impact on living organisms. As a model study, here we report the synthesis and characterization of luminescent polyvinyl chloride (PVC) and poly(methyl methacrylate) (PMMA) nanoparticles and investigate the interaction with normal human lung fibroblast cells (IMR 90) to understand the uptake, translocation, and toxicity of PVC and PMMA nanoparticles. The synthesized particles are in the size range of 120-140 nm with a negative surface potential. The colocalization and uptake efficiency of the nanoparticles were analyzed, and the cytotoxicity assay shows significant reduction in cell viability. Cellular internalization was investigated using colocalization and dynasore inhibitor tests, which showed that the PVC and PMMA nanoparticles enter into the cell via endocytosis. The polymer nanoparticles induced a reduction in viability, decrease in adenosine triphosphate, and increase in reactive oxygen species and lactate dehydrogenase concentrations. In addition, the polymer nanoparticles caused cell cycle arrest at sub-G1, G0/G1, and G2/M phases, followed by apoptotic cell death. Our results reported here are important to the emerging data on understanding the impact of common polymer particles on human health.
Collapse
Affiliation(s)
- Gomathi Mahadevan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
18
|
Alessio N, Aprile D, Cappabianca S, Peluso G, Di Bernardo G, Galderisi U. Different Stages of Quiescence, Senescence, and Cell Stress Identified by Molecular Algorithm Based on the Expression of Ki67, RPS6, and Beta-Galactosidase Activity. Int J Mol Sci 2021; 22:3102. [PMID: 33803589 PMCID: PMC8002939 DOI: 10.3390/ijms22063102] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
During their life span, cells have two possible states: a non-cycling, quiescent state (G0) and a cycling, activated state. Cells may enter a reversible G0 state of quiescence or, alternatively, they may undergo an irreversible G0 state. The latter may be a physiological differentiation or, following a stress event, a senescent status. Discrimination among the several G0 states represents a significant investigation, since quiescence, differentiation, and senescence are progressive phenomena with intermediate transitional stages. We used the expression of Ki67, RPS6, and beta-galactosidase to identify healthy cells that progressively enter and leave quiescence through G0-entry, G0 and G0-alert states. We then evaluated how cells may enter senescence following a genotoxic stressful event. We identified an initial stress stage with the expression of beta-galactosidase and Ki67 proliferation marker. Cells may recover from stress events or become senescent passing through early and late senescence states. Discrimination between quiescence and senescence was based on the expression of RPS6, a marker of active protein synthesis that is present in senescent cells but absent in quiescent cells. Even taking into account that fixed G0 states do not exist, our molecular algorithm may represent a method for identifying turning points of G0 transitional states that continuously change.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (N.A.); (D.A.); (G.D.B.)
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (N.A.); (D.A.); (G.D.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy;
| | | | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (N.A.); (D.A.); (G.D.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (N.A.); (D.A.); (G.D.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri 38280, Turkey
| |
Collapse
|
19
|
Tang JF, Li GL, Zhang T, Du YM, Huang SY, Ran JH, Li J, Chen DL. Homoharringtonine inhibits melanoma cells proliferation in vitro and vivo by inducing DNA damage, apoptosis, and G2/M cell cycle arrest. Arch Biochem Biophys 2021; 700:108774. [PMID: 33548212 DOI: 10.1016/j.abb.2021.108774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
Homoharringtonine (HHT), an approved anti-leukemic alkaloid, has been reported effectively in many types of tumor cells. However, its effect on melanoma cells has not been investigated. And the anti-melanoma mechanism of HHT is still unknown. In this study, we detected the effects of HHT on two melanoma cell lines (A375 and B16F10) and on the A375 xenograft mouse model. HHT significantly inhibited the proliferation of melanoma cells as investigated by the CCK8 method, cell cloning assay, and EdU experiment. HHT induced A375 and B16F10 cells DNA damage, apoptosis, and G2/M cell cycle arrest as proved by TdT-mediated dUTP Nick-End Labeling (TUNEL) and flow cytometry assay. Additionally, the loss of mitochondrial membrane potential in HHT-treated cells were visualized by JC-1 fluorescent staining. For the molecule mechanism study, western blotting results indicated the protein expression levels of ATM, P53, p-P53, p-CHK2, γ-H2AX, PARP, cleaved-PARP, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Aurka, p-Aurka, Plk1, p-Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were regulated by HHT. And the relative mRNA expression level of Aurka, Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were ascertained by q-PCR assay. The results in vivo experiment showed that HHT can slow down the growth rate of tumors. At the same time, the protein expression levels in vivo were consistent with that in vitro. Collectively, our study provided evidence that HHT could be considered an effective anti-melanoma agent by inducing DNA damage, apoptosis, and cell cycle arrest.
Collapse
Affiliation(s)
- Jia-Feng Tang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China
| | - Guo-Li Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China
| | - Tao Zhang
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China
| | - Yu-Mei Du
- College of Public Health and Management, Chongqing Medical University, Chongqing, PR China
| | - Shi-Ying Huang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China
| | - Jian-Hua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China.
| | - Di-Long Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China.
| |
Collapse
|
20
|
Zeng RJ, Zheng CW, Chen WX, Xu LY, Li EM. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev 2020; 39:1245-1262. [PMID: 32772212 DOI: 10.1007/s10555-020-09923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malignancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integration of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metastasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and simultaneously reducing the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
21
|
Samutrtai P, Krobthong S, Roytrakul S. Proteomics for Toxicological Pathways Screening: A Case Comparison of Low-concentration Ionic and Nanoparticulate Silver. ANAL SCI 2020; 36:981-987. [PMID: 32115467 DOI: 10.2116/analsci.20p018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
LC-MS/MS-based proteomics coupled with an online bioinformatics platform was under evaluation for applicability to toxicological pathways evaluation at low cytotoxic concentration (LC10) of silver nanoparticles (AgNP) and ionic silver in human carcinoma cells after 48 h of exposure. Significantly, differentially-expressed proteins (One-way ANOVA, p < 0.05) with more than 4-fold compared to the control were subjected to functional pathway analysis by STITCH. SOTA clustering indicated a similarity of the protein expression between AgNP and the control group. We established a resemblance of proteins in the cell cycle pathway affected by both Ag substances. The differences in the toxicological pathways from AgNO3 were involved in the cellular organization and metabolic process of macromolecules, while the nucleic acid metabolic process was altered by AgNP. The present study supported the practicability of LC-MS/MS-based proteomics coupled with STITCH for the identification of toxicological pathways in both silvers. We appraised this platform technology to be promising and powerful for a toxicological screening of other new substances.
Collapse
Affiliation(s)
- Pawitrabhorn Samutrtai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA)
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, Genome Technology Research Unit, BIOTEC, National Science and Technology Development Agency
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, BIOTEC, National Science and Technology Development Agency
| |
Collapse
|
22
|
Sur-Erdem I, Muslu K, Pınarbası N, Altunbek M, Seker-Polat F, Cingöz A, Aydın SO, Kahraman M, Culha M, Solaroglu I, Bagcı-Önder T. TRAIL-conjugated silver nanoparticles sensitize glioblastoma cells to TRAIL by regulating CHK1 in the DNA repair pathway. Neurol Res 2020; 42:1061-1069. [PMID: 32715947 DOI: 10.1080/01616412.2020.1796378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers apoptosis in cancer cells, but not in normal cells. Resistance of glioblastoma cells to TRAIL is a major obstacle for successful clinical treatment of TRAIL. Thus, there is an essential requirement for novel approaches to sensitize TRAIL resistance. Silver nanoparticles (AgNPs) are one of the most promising nanomaterials that show immense antitumor potential via targeting various cellular and molecular processes; however, the effects of AgNPs on TRAIL sensitivity in cancer cells remain unclear. Therefore, we hypothesized that TRAIL-conjugated AgNPs (TRAIL-AgNPs) can overcome TRAIL resistance through inducing death receptor activation in glioblastoma cells, but not normal cells. METHODS In this study, the therapeutic effect of TRAIL-AgNPs is investigated by analyzing the cell viability, caspase activity, and CHK1 gene expression in T98 G TRAIL-Sensitive (TS) and T98 G TRAIL-Resistant (TR) glioblastoma cells. RESULTS It is found that TRAIL-AgNPs are more toxic compared to TRAIL and AgNPs treatments alone on TR cells. While TRAIL and AgNPs alone do not enhance the caspase activity, conjugation of TRAIL to AgNPs increases the caspase activity in TR cells. Moreover, the TRAIL-AgNPs-treated TR cells show less CHK1 expression compared to the TRAIL treatment. CONCLUSION These results suggest that TRAIL sensitivity of TR cells can be enhanced by conjugation of TRAIL with AgNPs, which would be a novel therapeutic approach to sensitize TRAIL resistance.
Collapse
Affiliation(s)
- Ilknur Sur-Erdem
- Koç University School of Medicine , Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| | - Kerem Muslu
- Koç University School of Medicine , Istanbul, Turkey
| | - Nareg Pınarbası
- Koç University School of Medicine , Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| | - Mine Altunbek
- Department of Genetics and Bioengineering, Yeditepe University , Istanbul, Turkey
| | - Fidan Seker-Polat
- Koç University School of Medicine , Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| | - Ahmet Cingöz
- Koç University School of Medicine , Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| | - Serdar Onur Aydın
- Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| | - Mehmet Kahraman
- Department of Chemistry, University of Gaziantep , Gaziantep, Turkey
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Yeditepe University , Istanbul, Turkey
| | - Ihsan Solaroglu
- Koç University School of Medicine , Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| | - Tugba Bagcı-Önder
- Koç University School of Medicine , Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM) , Istanbul, Turkey
| |
Collapse
|
23
|
Pei XD, Yao HL, Shen LQ, Yang Y, Lu L, Xiao JS, Wang XY, He ZL, Jiang LH. α-Cyperone inhibits the proliferation of human cervical cancer HeLa cells via ROS-mediated PI3K/Akt/mTOR signaling pathway. Eur J Pharmacol 2020; 883:173355. [PMID: 32687921 DOI: 10.1016/j.ejphar.2020.173355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 01/06/2023]
Abstract
Cervical cancer is the fourth leading killer of female cancer patients worldwide. Each year more than half a million women are diagnosed with cervical cancer and the disease results in over 300, 000 deaths. α-Cyperone is known as the principal active ingredient in the Cyperus rotundus (Family: Cyperaceae). However, the effects of α-Cyperone on cancers, especially on cervical cancer, are yet to be explored. In the present study, the underlying mechanism of the anti-tumor activity of α-Cyperone against HeLa cells was investigated. The results showed that α-Cyperone inhibited proliferation and induced apoptosis in HeLa cells. Mechanistically, α-Cyperone promoted HeLa cells apoptosis via a mitochondrial apoptotic pathway, which was proved by increased level of intracellular reactive oxygen species (ROS) and upregulated expression of cytochrome c, cleaved caspase-3, PARP, and Bax. Further RNA-sequencing revealed α-Cyperone inhibited the activation of PI3K/Akt/mTOR signaling pathway in HeLa cells, which confirmed by PI3K inhibitor and agonist. The PI3K inhibitor (LY294002) synergized with α-Cyperone in arresting the growth of HeLa cells, whereas the PI3K agonist (IGF-1) abrogated such an effect. Interestingly, the expression of PD-L1 was attenuated by both α-Cyperone and LY294002, while the supplement of IGF-1 rescued the low expression of PD-L1. In conclusion, our results reveal that the inhibitory effect of α-Cyperone on HeLa cell growth is triggered via the ROS-mediated PI3K/Akt/mTOR signaling pathway and closely related to a decline in the PD-L1 expression.
Collapse
Affiliation(s)
- Xiao-Dong Pei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563100, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Hong-Liang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangdong, PR China
| | - Li-Qun Shen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530006, PR China
| | - Yang Yang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi, 541000, PR China
| | - Lan Lu
- Sichuan Industrial Institute of Antibiotics, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, 610106, Chengdu, PR China
| | - Jun-Song Xiao
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University-BTBU, Beijing, 100048, PR China
| | - Xin-Yu Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Zhi-Long He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Li-He Jiang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563100, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College, Guangxi University, Nanning, 530004, PR China; School of Basic Medical Science, YouJiang Medical University for Nationaties, No. 98 Chengxiang Road, Baise, Guangxi, 533000, PR China.
| |
Collapse
|
24
|
Bonomo MM, Fernandes JB, Carlos RM, Fernandes MN. Biochemical and genotoxic biomarkers and cell cycle assessment in the zebrafish liver (ZF-L) cell line exposed to the novel metal-insecticide magnesium-hespiridin complex. CHEMOSPHERE 2020; 250:126416. [PMID: 32380589 DOI: 10.1016/j.chemosphere.2020.126416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The flavonoid metal-insecticide magnesium-hesperidin complex (MgHP) has recently been considered as a novel insecticide to replace some persistent pesticides. However, it is important to evaluate its action on non-target species, mainly those living in an aquatic environment, as these ecosystems are the final receptors of most chemicals. Reactive oxygen species, antioxidant and oxidative stress biomarkers, genotoxicity as well as cell cycle was evaluated in the liver cell line from zebrafish (Danio rerio; ZF-L) exposed to 0, 0.1, 1, 10, 100 and 1000 ng mL-1 MgHP. MgHP affected cell stability by increasing reactive oxygen species (ROS) in both exposure times (24 and 96 h) at high concentrations. Catalase (CAT) activity decreased after 24 h exposure, and glutathione and metallothionein values increased, avoiding the lipid peroxidation. Genotoxicity increased as MgHP concentration increased, after 24 h exposure, exhibiting nuclear abnormalities; it was recovered after 96 h exposure, evidencing possible stimulation of DNA repair mechanisms. The alteration in the cell cycle (increasing in the Sub-G1 phase and decreasing in the S-phase) was associated with chromosomal instability. In conclusion, the responses of ROS and the antioxidant defense system depended on MgHP concentration and time exposure, while DNA exhibited some instability after 24 h exposure, which was recovered after 96 h.
Collapse
Affiliation(s)
- Marina Marques Bonomo
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Av. Washington Luiz, km 235, 13563-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| | - João Batista Fernandes
- Chemistry Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Rose Maria Carlos
- Chemistry Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Marisa Narciso Fernandes
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Av. Washington Luiz, km 235, 13563-905, São Carlos, SP, Brazil; Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
25
|
Zhou D, Yang WK, Zhang YF, Xie JH, Ma L, Yang HD, Li Y, Xie P. Sodium tanshinone IIA sulfonate prevents radiation-induced damage in primary rat cardiac fibroblasts. Chin J Nat Med 2020; 18:436-445. [PMID: 32503735 DOI: 10.1016/s1875-5364(20)30051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 12/19/2022]
Abstract
This study investigated the effects of X-ray irradiation on primary rat cardiac fibroblasts (CFs) and its potential mechanism, as well as whether sodium tanshinone IIA sulfonate (STS) has protective effect on CFs and its possible mechanism. Our data demonstrated that X-rays inhibited cell growth and increased oxidative stress in CFs, and STS mitigated X-ray-induced injury. Enzyme-linked immuno-sorbent assay showed that X-rays increased the levels of secreted angiotensin II (Ang II) and brain natriuretic peptide (BNP). STS inhibited the X-ray-induced increases in Ang II and BNP release. Apoptosis and cell cycle of CFs were analyzed using flow cytometry. X-rays induced apoptosis in CFs, whereas STS inhibited apoptosis in CFs after X-ray irradiation. X-rays induced S-phase cell cycle arrest in CFs, which could be reversed by STS. X-rays increased the expression of phosphorylated-P38/P38, cleaved caspase-3 and caspase-3 as well as decreased the expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK 1/2)/ERK 1/2 and B cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein (BAX) in CFs, as shown by Western blotting. STS mitigated the X-ray radiation-induced expression changes of these proteins. In conclusion, our results demonstrated that STS may potentially be developed as a medical countermeasure to mitigate radiation-induced cardiac damage.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China; School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wen-Ke Yang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, China
| | - Yi-Fan Zhang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China; Ningxia Medical University, Yinchuan 750004, China
| | - Jin-Hui Xie
- Gansu Provincial Hospital, Lanzhou 730000, China
| | - Li Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China; Ningxia Medical University, Yinchuan 750004, China
| | | | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China.
| | - Ping Xie
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
26
|
Yuan S, Zhu K, Ma M, Zhu X, Rao K, Wang Z. In vitro oxidative stress, mitochondrial impairment and G1 phase cell cycle arrest induced by alkyl-phosphorus-containing flame retardants. CHEMOSPHERE 2020; 248:126026. [PMID: 32006839 DOI: 10.1016/j.chemosphere.2020.126026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Phosphorus-containing flame retardants (PFRs) have been frequently detected in various environmental samples at relatively high concentrations and are considered emerging environmental pollutants. However, their biological effects and the underlying mechanism remain unclear, especially alkyl-PFRs. In this study, a battery of in vitro bioassays was conducted to analyze the cytotoxicity, oxidative stress, mitochondrial impairment, DNA damage and the involved molecular mechanisms of several selected alkyl-PFRs. Results showed that alkyl-PFRs induced structural related toxicity, where alkyl-PFRs with higher logKow values induced higher cytotoxicity. Long-chain alkyl-PFRs caused mitochondrial and DNA damage, resulting from intracellular reactive oxygen species (ROS) and mitochondrial superoxide overproduction; while short-chain alkyl-PFRs displayed adverse outcomes by significantly impairing mitochondria without obvious ROS generation. In addition, alkyl-PFRs caused DNA damage-induced cell cycle arrest, as determined by flow cytometry, and transcriptionally upregulated key transcription factors in p53/p21-mediated cell cycle pathways. Moreover, compared to the control condition, triisobutyl phosphate and trimethyl phosphate exposure increased the sub-G1 apoptotic peak and upregulated the p53/bax apoptosis pathway, indicating potential cell apoptosis at the cellular and molecular levels. These results provide insight into PFR toxicity and the involved mode of action and indicate the mitochondria is an important target for some alkyl-PFRs.
Collapse
Affiliation(s)
- Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Kongrui Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoshan Zhu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
27
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:599-608. [PMID: 31904905 DOI: 10.1002/tox.22895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Extensive application of amorphous silica nanoparticles (Si NPs) and ubiquitous cadmium (Cd) may increase their chances of coexposure to humans. Studies on combined effects of Si NPs and Cd in human cells are very limited. We investigated the potential mechanism of toxicity caused by coexposure of amorphous Si NPs and Cd in human liver (HepG2) cells. Results showed that Si NPs were not toxic to HepG2. However, Cd induced significant toxicity in HepG2 cells. Interestingly, we observed that a noncytotoxic concentration of Si NPs potentiated the cytotoxicity of Cd in HepG2 cells. We further noticed that coexposure of Si NPs and Cd augmented oxidative stress evidenced by the generation of oxidants (reactive oxygen species, hydrogen peroxide, and lipid peroxidation) and depletion of antioxidants (glutathione level and antioxidant enzyme activity). Coexposure of Si NPs and Cd also augmented mitochondria-mediated apoptosis in HepG2 cells indicated by altered regulation of apoptotic genes (p53, bax, bcl-2, caspase-3, and caspase-9) along with reduced mitochondrial membrane potential. Interaction data indicated that Si NPs facilitate the cellular uptake of Cd due to its strong adsorption on the surface of Si NPs. Hence, Si NPs increased the bioaccumulation and toxicity of Cd in HepG2 cells. This study warrants further research to explore the potential mechanisms of combined toxicity of Si NPs and Cd in animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Ahamed M, Akhtar MJ, Alaizeri ZM, Alhadlaq HA. TiO 2 nanoparticles potentiated the cytotoxicity, oxidative stress and apoptosis response of cadmium in two different human cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10425-10435. [PMID: 31942711 DOI: 10.1007/s11356-019-07130-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Widespread application of titanium dioxide nanoparticles (nTiO2) and ubiquitous cadmium (Cd) pollution may increase their chance of co-existence in the natural environment. Toxicological information on co-exposure of nTiO2 and Cd in mammalian models is largely lacking. Hence, we studied the combined effects of nTiO2 and Cd in human liver (HepG2) and breast cancer (MCF-7) cells. We observed that nTiO2 did not produce toxicity to HepG2 and MCF-7 cells. However, moderate concentration of Cd exposure caused cytotoxicity to both cells. Interestingly, non-cytotoxic concentration of nTiO2 effectively enhanced the oxidative stress response of Cd indicated by pro-oxidants generation (reactive oxygen species, hydrogen peroxide, and lipid peroxidation) and antioxidants depletion (glutathione level and glutathione reductase, superoxide dismutase, and catalase enzymes). Moreover, nTiO2 potentiated the Cd-induced apoptosis in both cells suggested by altered expression of p53, bax, and bcl-2 genes along with low mitochondrial membrane potential. Cellular uptake results demonstrated that nTiO2 facilitates the internalization of Cd into the cells. Overall, this study demonstrated that non-cytotoxic concentration of nTiO2 enhanced the toxicological potential of Cd in human cells. Therefore, more attention should be paid on the combine effects of nTiO2 and Cd on human health.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
29
|
Li J, Wang C, Feng G, Zhang L, Chen G, Sun H, Wang J, Zhang Y, Zhou Q, Li W. Rbm14 maintains the integrity of genomic DNA during early mouse embryogenesis via mediating alternative splicing. Cell Prolif 2020; 53:e12724. [PMID: 31794640 PMCID: PMC6985654 DOI: 10.1111/cpr.12724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE In this study, we generated an Rbm14 knockout mouse model to explore its functions during early mouse embryogenesis. MATERIALS AND METHODS The Rbm14 knockout mouse model was generated by a combination of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and microinjection techniques. The developmental defects of the knockout embryos were characterized by histological analyses. The accumulation of DNA damage in mouse embryonic stem cells (ESCs) was detected by γH2AX staining and comet assay. The altered mRNA splicing of DNA damage response (DDR)-related genes was detected by RNA-Seq analysis and confirmed by semi-quantitative PCR. The interaction of RBM14 with alternative splicing-related genes was detected by immunoprecipitation-mass spectra (IP-MS) and confirmed by co-immunoprecipitation (Co-IP). RESULTS Rbm14 knockout in mice results in apoptosis and cell proliferation defects in early post-implantation epiblast cells, leading to gastrulation disruption and embryonic lethality. FACS and immunostaining demonstrate accumulation of DNA damage in Rbm14 knockout ES cells. We also identified altered splicing of DDR-related genes in the knockout mouse ESCs by RNA-Seq, indicating that RBM14-mediated alternative splicing is required for the maintenance of genome integrity during early mouse embryogenesis. CONCLUSIONS Our work reveals that Rbm14 plays an essential role in the maintenance of genome integrity during early mouse embryonic development by regulating alternative splicing of DDR-related genes.
Collapse
Affiliation(s)
- Jing Li
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Linlin Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guilai Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Hao Sun
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiaqiang Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- College of Life ScienceNortheast Agricultural University of ChinaHarbinChina
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wei Li
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
30
|
Ahamed M, Akhtar MJ, Khan MAM, Alaizeri ZM, Alhadlaq HA. Evaluation of the Cytotoxicity and Oxidative Stress Response of CeO 2-RGO Nanocomposites in Human Lung Epithelial A549 Cells. NANOMATERIALS 2019; 9:nano9121709. [PMID: 31795404 PMCID: PMC6955679 DOI: 10.3390/nano9121709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Graphene-based nanocomposites have attracted enormous interest in nanomedicine and environmental remediation, owing to their unique characteristics. The increased production and widespread application of these nanocomposites might raise concern about their adverse health effects. In this study, for the first time, we examine the cytotoxicity and oxidative stress response of a relatively new nanocomposite of cerium oxide-reduced graphene oxide (CeO2-RGO) in human lung epithelial (A549) cells. CeO2-RGO nanocomposites and RGO were prepared by a simple hydrothermal method and characterized by relevant analytical techniques. Cytotoxicity data have shown that RGO significantly induces toxicity in A549 cells, evident by cell viability reduction, membrane damage, cell cycle arrest, and mitochondrial membrane potential loss. However, CeO2-RGO nanocomposites did not cause statistically significant toxicity as compared to a control. We further observed that RGO significantly induces reactive oxygen species generation and reduces glutathione levels. However, CeO2-RGO nanocomposites did not induce oxidative stress in A549 cells. Interestingly, we observed that CeO2 nanoparticles (NPs) alone significantly increase glutathione (GSH) levels in A549 cells as compared to a control. The GSH replenishing potential of CeO2 nanoparticles could be one of the possible reasons for the biocompatible nature of CeO2-RGO nanocomposites. Our data warrant further and more advanced research to explore the biocompatibility/safety mechanisms of CeO2-RGO nanocomposites in different cell lines and animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
- Correspondence: ; Tel.: +966-146-98781
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - M. A. Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hisham A. Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
31
|
Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00293-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
32
|
Dai YJ, Cao XF, Zhang DD, Li XF, Liu WB, Jiang GZ. Chronic inflammation is a key to inducing liver injury in blunt snout bream (Megalobrama amblycephala) fed with high-fat diet. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 97:28-37. [PMID: 30910418 DOI: 10.1016/j.dci.2019.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The aim of this article is to investigate the mechanism of lipotoxicity induced by high-fat diets (HFD) in Megalobrama amblycephala. In the present study, fish (average initial weight 40.0 ± 0.35 g) were fed with two fat levels (6% and 11%) diets with four replicates for 60 days. At the end of the feeding trial, fish were challenged by thioacetamide (TAA) and survival rate was recorded for the next 96 h. The result showed that long-term HFD feeding induced a significant increase (P < 0.05) in the levels of aspartate aminotransferase (GOT) and alanine aminotransferase (GPT) in plasma. In addition, liver histopathological analysis showed an increased dilation of the blood vessels, erythrocytes outside of the blood vessels and vacuolization in fish fed with high-fat diet. After TAA challenge, compared with group fed with normal-fat diets (NFD), fish fed with HFD showed a significantly (P < 0.05) low survival rate. After feeding Megalobrama amblycephala with HFD for 60 days, the protein content and gene expression of pro-inflammatory factors were significantly elevated (P < 0.05). The protein and gene relative expressions of a Caspase-3, Caspase-9 and CD68 were significantly increased (P < 0.05), while antioxidant-related enzyme activities were significantly reduced (P < 0.05) in the liver of fish fed with HFD. In addition, HFD feeding also induced genotoxicity. Comet assay showed a significantly (P < 0.05) elevated DNA damage in blunt snout bream fed with HFD. Compared with normal-fat diets (NFD) group, the protein expression of γH2AX and gene expressions involved in cell cycle arrest were significantly increased (P < 0.05) in fish fed with HFD. Data in this research showed that lipotoxicity induced by HFD was likely mediated by chronic inflammation regulating macrophage recruitment, apoptosis and DNA damage. The study was valuable to understand the mechanism by which liver injury is induced in fish fed with HFD.
Collapse
Affiliation(s)
- Yong-Jun Dai
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiu-Fei Cao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
33
|
Pinho R, Paiva I, Jercic KG, Fonseca-Ornelas L, Gerhardt E, Fahlbusch C, Garcia-Esparcia P, Kerimoglu C, Pavlou MAS, Villar-Piqué A, Szego É, Lopes da Fonseca T, Odoardi F, Soeroes S, Rego AC, Fischle W, Schwamborn JC, Meyer T, Kügler S, Ferrer I, Attems J, Fischer A, Becker S, Zweckstetter M, Borovecki F, Outeiro TF. Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum Mol Genet 2019; 28:31-50. [PMID: 30219847 DOI: 10.1093/hmg/ddy326] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 11/14/2022] Open
Abstract
Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Raquel Pinho
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Kristina Gotovac Jercic
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases, Barcelona, Spain
| | - Cemil Kerimoglu
- Department for Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Maria A S Pavlou
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Villar-Piqué
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Éva Szego
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Tomás Lopes da Fonseca
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Francesca Odoardi
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Szabolcs Soeroes
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Göttingen, Germany.,Oxford Nanopore Technologies LTD, Oxford, United Kingdom
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Wolfgang Fischle
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Göttingen, Germany.,King Abdullah University of Science and Technology, Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | - Jens C Schwamborn
- Development and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Meyer
- Klinik für Psychosomatische Medizin und Psychotherapie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases, Barcelona, Spain
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - André Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Structural Biology in Dementia, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom.,Chronic Disease Research Center, NOVA Medical School, Lisboa, Portugal.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
34
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Preventive effect of TiO2 nanoparticles on heavy metal Pb-induced toxicity in human lung epithelial (A549) cells. Toxicol In Vitro 2019; 57:18-27. [DOI: 10.1016/j.tiv.2019.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
|
35
|
Kumar C, P.T.V. L, Arunachalam A. Structure based pharmacophore study to identify possible natural selective PARP-1 trapper as anti-cancer agent. Comput Biol Chem 2019; 80:314-323. [DOI: 10.1016/j.compbiolchem.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
36
|
Ju J, Zheng Z, Xu YJ, Cao P, Li J, Li Q, Liu Y. Influence of total polar compounds on lipid metabolism, oxidative stress and cytotoxicity in HepG2 cells. Lipids Health Dis 2019; 18:37. [PMID: 30709407 PMCID: PMC6359786 DOI: 10.1186/s12944-019-0980-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, the harmful effects of frying oil on health have been gradually realized. However, as main components of frying oils, biochemical effects of total polar compounds (TPC) on a cellular level were underestimated. METHODS The effects of total polar compounds (TPC) in the frying oil on the lipid metabolism, oxidative stress and cytotoxicity of HepG2 cells were investigated through a series of biochemical methods, such as oil red staining, real-time polymerase chain reaction (RT-PCR), cell apoptosis and cell arrest. RESULTS Herein, we found that the survival rate of HepG2 cells treated with TPC decreased in a time and dose dependent manner, and thereby presented significant lipid deposition over the concentration of 0.5 mg/mL. TPC were also found to suppress the expression levels of PPARα, CPT1 and ACOX, elevate the expression level of MTP and cause the disorder of lipid metabolism. TPC ranged from 0 to 2 mg/mL could significantly elevate the amounts of reactive oxygen species (ROS) in HepG2 cells, and simultaneously increase the malondialdehyde (MDA) content from 21.21 ± 2.62 to 65.71 ± 4.20 μmol/mg of protein (p < 0.05) at 24 h. On the contrary, antioxidant enzymes superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) respectively decreased by 0.52-, 0.56- and 0.28-fold, when HepG2 cells were exposed to 2 mg/mL TPC for 24 h. In addition, TPC could at least partially induce the apoptosis of HepG2 cells, and the transition from G0/G1 to G2 phase in HepG2 cells was impeded. CONCLUSIONS TPC could progressively cause lipid deposition, oxidative stress and cytotoxicity, providing the theoretical support for the detrimental health effects of TPC.
Collapse
Affiliation(s)
- Jingjie Ju
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhaojun Zheng
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Peirang Cao
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jingwei Li
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Qiu Li
- Shandong LuHua group co., LTD, Laiyang, 265200, People's Republic of China
| | - Yuanfa Liu
- School of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Ahamed M, Akhtar MJ, Khan MAM, Alrokayan SA, Alhadlaq HA. Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi 2O 3) nanoparticles in human breast cancer (MCF-7) cells. CHEMOSPHERE 2019; 216:823-831. [PMID: 30399561 DOI: 10.1016/j.chemosphere.2018.10.214] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 05/27/2023]
Abstract
Bismuth oxide nanoparticles (Bi2O3 NPs) have shown great potential for several applications including cosmetics and biomedicine. However, there is paucity of research on toxicity of Bi2O3 NPs. In this study, we first examined dose-dependent cytotoxicity and apoptosis response of Bi2O3 NPs in human breast cancer (MCF-7) cells. We further explored the potential mechanisms of cytotoxicity of Bi2O3 NPs through oxidative stress. Physicochemical study demonstrated that Bi2O3 NPs have crystalline structure and spherical shape with mean size of 97 nm. Toxicity studies have shown that Bi2O3 NPs reduce cell viability and induce membrane damage dose-dependently in the concentration range of 50-300 μg/ml. Bi2O3 NPs also disturbed cell cycle of MCF-7 cells. Oxidative stress response of Bi2O3 NPs was evident by generation of reactive oxygen species (ROS), higher lipid peroxidation, reduction of glutathione (GSH) and low superoxide dismutase (SOD) enzyme activity. Interestingly, supplementation of external antioxidant N-acetyl-cysteine almost negated the effect of Bi2O3 NPs induced oxidative stress and cell death. We also found that exposure of Bi2O3 NPs induced apoptotic response in MCF-7 cells suggested by impaired regulation of Bcl-2, Bax and caspase-3 genes. Altogether, we found that Bi2O3 NPs induced cytotoxicity in MCF-7 cells through modulating the redox homeostasis via Bax/Bcl-2 pathway. This study warranted further research to delineate the underlying mechanism of Bi2O3 NPs induced toxicity at in vivo level.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Salman A Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Oxidative stress mediated cytotoxicity of tin (IV) oxide (SnO 2) nanoparticles in human breast cancer (MCF-7) cells. Colloids Surf B Biointerfaces 2018; 172:152-160. [PMID: 30172199 DOI: 10.1016/j.colsurfb.2018.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 01/15/2023]
Abstract
Due to unique optical and electronic properties tin oxide nanoparticles (SnO2 NPs) have shown potential for various applications including solar cell, catalyst, and biomedicine. However, there is limited information concerning the interaction of SnO2 NPs with human cells. In this study, we explored the potential mechanisms of cytotoxicity of SnO2 NPs in human breast cancer (MCF-7) cells. Results demonstrated that SnO2 NPs induce cell viability reduction, lactate dehydrogenase leakage, rounded cell morphology, cell cycle arrest and low mitochondrial membrane potential in dose- and time-dependent manner. SnO2 NPs were also found to provoke oxidative stress evident by generation of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and lipid peroxidation, while depletion of glutathione (GSH) level and lower activity of several antioxidant enzymes. Remarkably, we observed that ROS generation, GSH depletion, and cytotoxicity induced by SnO2 NPs were effectively abrogated by antioxidant N-acetylcycteine. Our data have shown that SnO2 NPs induce toxicity in MCF-7 cells via oxidative stress. This study warrants further research to explore the genotoxicity of SnO2 NPs in different types of cancer cells.
Collapse
|
39
|
Zhu HF, Yan PW, Wang LJ, Liu YT, Wen J, Zhang Q, Fan YX, Luo YH. Protective properties of Huperzine A through activation Nrf2/ARE-mediated transcriptional response in X-rays radiation-induced NIH3T3 cells. J Cell Biochem 2018; 119:8359-8367. [PMID: 29932247 DOI: 10.1002/jcb.26919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
Huperzine A (HupA), derived from Huperzia Serrata, has exhibited a variety of biological actions, in particular neuroprotective effect. However, the protective activities of HupA on murine embryonic fibroblast NIH3T3 cells after X-rays radiation have not been fully elucidated. Herein, HupA treatment dramatically promoted cell viability, abated a G0/G1 peak accumulation, and ameliorated increase of cell apoptosis in NIH3T3 cells after X-rays radiation. Simultaneously, HupA notably enhanced activities of anti-oxidant enzymes, inhibited activity of lipid peroxide, and efficiently eliminated production of reactive oxygen species in NIH3T3 cells after X-rays radiation. Dose-dependent increase of antioxidant genes by HupA were associated with up-regulated Nrf2 and down-regulated Keap-1 expression, which was confirmed by increasing nuclear accumulation, and inhibiting of degradation of Nrf2. Notably, augmented luciferase activity of ARE may explained Nrf2/ARE-mediated signaling pathways behind HupA protective properties. Moreover, expression of Nrf2 HupA-mediated was significant attenuated by AKT inhibitor (LY294002), p38 MAPK inhibitor (SB202190) and ERK inhibitor (PD98059). Besides, HupA-mediated cell viability, and ROS production were dramatically bated by LY294002, SB202190, and PD98059. Taken together, HupA effectively ameliorated X-rays radiation-induced damage Nrf2-ARE-mediated transcriptional response via activation AKT, p38, and ERK signaling in NIH3T3 cells.
Collapse
Affiliation(s)
- Huan-Feng Zhu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Peng-Wei Yan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Li-Jun Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Ya-Tian Liu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jing Wen
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qian Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yan-Xin Fan
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yan-Hong Luo
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
40
|
Lee CC, Hsieh TS. Wuho/WDR4 deficiency inhibits cell proliferation and induces apoptosis via DNA damage in mouse embryonic fibroblasts. Cell Signal 2018; 47:16-26. [PMID: 29574139 DOI: 10.1016/j.cellsig.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022]
Abstract
Wuho known as WDR4 encodes a highly conserved WD40-repeat protein, which has known homologues of WDR4 in human and mouse. Wuho-FEN1 interaction may have a critical role in the growth and development, and in the maintenance of genome stability. However, how Wuho gene deletion contributes to cell growth inhibition and apoptosis is still unknown. We utilized CAGGCre-ER transgenic mice have a tamoxifen-inducible cre-mediated recombination cassette to prepare primary mouse embryonic fibroblasts (MEFs) with Wuho deficiency. We have demonstrated that Wuho deficiency would induces γH2AX protein level elevation, heterochromatin relaxation and DNA damage down-stream sequences, including p53 activation, caspase-mediated apoptotic pathway, and p21-mediated G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Chi-Chiu Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Sec. 2, Nangang, Taipei 11529, Taiwan.
| | - Tao-Shih Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Sec. 2, Nangang, Taipei 11529, Taiwan; Department of Biochemistry, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
Fei HR, Li ZJ, Ying-Zhang, Yue-Liu, Wang FZ. HBXIP regulates etoposide-induced cell cycle checkpoints and apoptosis in MCF-7 human breast carcinoma cells. Gene 2018; 647:39-47. [DOI: 10.1016/j.gene.2018.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 11/17/2022]
|
42
|
Twist1 promotes radioresistance in nasopharyngeal carcinoma. Oncotarget 2018; 7:81332-81340. [PMID: 27793033 PMCID: PMC5348396 DOI: 10.18632/oncotarget.12875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 09/12/2016] [Indexed: 11/25/2022] Open
Abstract
With the development of advanced imaging and radiation technologies, radiotherapy has been employed as the principal treatment approach for nasopharyngeal carcinoma (NPC). So far, a number of patients still suffer from the failure of this treatment due to the acquired radioresistance, but the underlying mechanisms are still poorly defined. In this study, we found that Twist1, participating in a variety of cell biological process, was associated with the malignancy of NPC and could induce NPC radioresistance in vitro and in vivo. Mechanically, Twist1 could promote the accumulation of DNA damage repair and inhibit the apoptosis of NPC cells. Therefore, our study not only elucidates the significant role of Twist1 in radioresistance of NPC, but also highlights Twist1 as a potential therapeutic target for NPC.
Collapse
|
43
|
Verma S, Jha E, Panda PK, Thirumurugan A, Parashar SKS, Patro S, Suar M. Mechanistic Insight into Size-Dependent Enhanced Cytotoxicity of Industrial Antibacterial Titanium Oxide Nanoparticles on Colon Cells Because of Reactive Oxygen Species Quenching and Neutral Lipid Alteration. ACS OMEGA 2018; 3:1244-1262. [PMID: 30023799 PMCID: PMC6044987 DOI: 10.1021/acsomega.7b01522] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
This study evaluates the impact of industrially prepared TiO2 nanoparticles on the biological system by using an in vitro model of colon cancer cell lines (HCT116). Industrial synthesis of titanium oxide nanoparticles was mimicked on the lab scale by the high-energy ball milling method by milling bulk titanium oxide particles for 5, 10, and 15 h in an ambient environment. The physiochemical characterization by field emission scanning electron microscopy, dynamic light scattering, and UV-visible spectroscopy revealed alteration in the size and surface charge with respect to increase in the milling time. The size was found to be reduced to 82 ± 14, 66 ± 12, and 42 ± 10 nm in 5, 10, and 15 h milled nano TiO2 from 105 ± 12 nm of bulk TiO2, whereas the zeta potential increased along with the milling time in all biological media. Cytotoxicity and genotoxicity assays performed with HCT116 cell lines by MTT assay, oxidative stress, intracellular lipid analysis, apoptosis, and cell cycle estimation depicted cytotoxicity as a consequence of reactive oxygen species quenching and lipid accumulation, inducing significant apoptosis and genotoxic cytotoxicity. In silico analysis depicted the role of Sod1, Sod2, p53, and VLDR proteins-TiO2 hydrogen bond interaction having a key role in determining the cytotoxicity. The particles exhibited significant antibacterial activities against Escherichia coli and Salmonella typhimurium.
Collapse
Affiliation(s)
- Suresh
K. Verma
- School
of Biotechnology, School of Applied Sciences, and Kalinga School of Medical Sciences, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Ealisha Jha
- Department
of Physics and Physical Oceanography, Memorial
University of Newfoundland, St. John’s, Newfoundland and Labrador NL A1C 5S7, Canada
| | - Pritam Kumar Panda
- School
of Biotechnology, School of Applied Sciences, and Kalinga School of Medical Sciences, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Arun Thirumurugan
- Advanced
Materials Laboratory, Department of Mechanical Engineering, Faculty
of Mathematical and Physical Sciences, University
of Chile, Av. Beauchef 851, piso 5, Santiago, Chile
| | - S. K. S. Parashar
- School
of Biotechnology, School of Applied Sciences, and Kalinga School of Medical Sciences, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Shubhransu Patro
- School
of Biotechnology, School of Applied Sciences, and Kalinga School of Medical Sciences, KIIT University, Bhubaneswar, Orissa 751024, India
| | - Mrutyunjay Suar
- School
of Biotechnology, School of Applied Sciences, and Kalinga School of Medical Sciences, KIIT University, Bhubaneswar, Orissa 751024, India
| |
Collapse
|
44
|
You X, Zhu D, Lu W, Sun Y, Qiao S, Luo B, Du Y, Pi R, Hu Y, Huang P, Wen S. Design, synthesis and biological evaluation of N-arylsulfonyl carbazoles as novel anticancer agents. RSC Adv 2018; 8:17183-17190. [PMID: 35539273 PMCID: PMC9080423 DOI: 10.1039/c8ra02939c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In this work, a set of structurally diverse synthetic carbazoles was screened for their anticancer activities. According to structure–activity relationship studies, carbazoles with an N-substituted sulfonyl group exhibited better anticancer activity. Moreover, compound 8h was discovered to show the most potent anticancer effects on Capan-2 cells by inducing apoptosis and cell cycle arrest in G2/M phase. Finally, the in vivo study demonstrated that 8h prevented the tumor growth in PANC-1 and Capan-2 xenograft models without apparent toxicity. In this work, a set of structurally diverse synthetic carbazoles was screened for their anticancer activities.![]()
Collapse
|
45
|
Chen H, Wang P, Du Z, Wang G, Gao S. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1,3-dichloro-2-propyl) phosphate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:37-45. [PMID: 29149642 DOI: 10.1016/j.aquatox.2017.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an additive flame retardant of high production volume, and frequently detected in biota and environment. However, knowledge on its potential risk and toxicological mechanism still remains limited. In this study, DNA damage, transcriptomic responses and biochemical changes in the liver of zebrafish (Danio rerio) induced by TDCPP were investigated. Zebrafish was exposed to 45.81μg/L (1/100 (96h-LC50)) and 229.05μg/L (1/20 (96h-LC50)) TDCPP for 7 d. The reactive oxygen species (ROS) and GSH contents, in addition to antioxidant enzyme activities in the liver changed significantly, and the mRNA levels of genes related to oxidative stress were alerted in a dose-dependent and/or sex-dependent manner after exposure to TDCPP. Significant DNA damage in zebrafish liver was found, and olive tail moment increased in a concentration-dependent manner. Moreover, exposure of TDCPP at 45.81μg/L level activated the cell cycle arrest, DNA repair system and apoptosis pathway in male zebrafish, and 229.05μg/L TDCPP exposure inhibited those pathways in both male and female zebrafish. The cell apoptosis was confirmed in TUNEL assay as higher incidence of TUNEL-positive cells were observed in zebrafish exposed to 229.05μg/L TDCPP. Our results also indicated that males were more sensitive to TDCPP exposure compared with females. Taken together, our results showed that TDCPP could induce oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish liver in sex- and concentration-dependent manners.
Collapse
Affiliation(s)
- Hanyan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zhongkun Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Guowei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
46
|
Che B, Luo Q, Zhai B, Fan G, Liu Z, Cheng K, Xin L. Cytotoxicity and genotoxicity of nanosilver in stable GADD45α promoter-driven luciferase reporter HepG2 and A549 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2203-2211. [PMID: 28568508 DOI: 10.1002/tox.22433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The intense commercial application of silver nanoparticles (AgNPs) has been raising concerns about their potential adverse health effects to human. This study aimed to explore the potency of AgNPs to induce GADD45α gene, an important stress sensor, and its relationships with the cytotoxicity and genotoxicity elicited by AgNPs. METHODS Two established HepG2 and A549 cell lines containing the GADD45α promoter-driven luciferase reporter were treated with increasing concentrations of AgNPs for 48 hours. After the treatment, transcriptional activation of GADD45α indicated by luciferase activity, cell viability, cell cycle arrest, and levels of genotoxicity were determined. The uptake and intracellular localization of AgNPs, cellular Ag doses as well as Ag+ release were also detected. RESULTS AgNPs could activate GADD45α gene at the transcriptional level as demonstrated by the dose-dependent increases in luciferase activity in both the reporter cells. The relative luciferase activity was greater than 12× the control level in HepG2-luciferase cells at the highest concentration tested where the cell viability decreased to 17.0% of the control. These results was generally in accordance with the positive responses in cytotoxicity, cell cycle arrest of Sub G1 and G2/M phase, Olive tail moment, micronuclei frequency, and the cellular Ag content. CONCLUSIONS The cytotoxicity and genotoxicity of AgNPs seems to occur mainly via particles uptake and the subsequent liberation of ions inside the cells. And furthermore, the GADD45α promoter-driven luciferase reporter cells, especially the HepG2-luciferase cells, could provide a new and valuable tool for predicting nanomaterials genotoxicity in humans.
Collapse
Affiliation(s)
- Bizhong Che
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Qiulin Luo
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Bingzhong Zhai
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Guoqiang Fan
- Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu, China
| | - Zhiyong Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| | - Kaiming Cheng
- Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu, China
| | - Lili Xin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
47
|
Yang Q, Wu L, Li L, Zhou Z, Huang Y. Subcellular co-delivery of two different site-oriented payloads for tumor therapy. NANOSCALE 2017; 9:1547-1558. [PMID: 28067924 DOI: 10.1039/c6nr08200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Co-delivery of multiple agents via nanocarriers is of great interest in cancer therapy, but subcellular delivery to the corresponding site of action remains challenging. Here we report a smart nanovehicle which enables two different site-oriented payloads to reach their targeted organelles based on stimulus-responsive release and nucleus-targeted modification. First, all trans retinoic acid (RA) conjugated camptothecin (RA-CPT) was loaded in a polyhedral oligomericsilsesquioxane (POSS)-based core; docetaxel (DTX) was grafted on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers. The POSS core grafted with semitelechelic HPMA copolymers then self-assembled into micelles. Once internalized into the cell, the two drugs were unleashed environment-responsively, and nuclear targeted RA remarkably facilitated the nuclear transport of CPT. Compared with single drug-loaded micelles, the dual drug-loaded platform showed superior synergic cytotoxicity, which was further strengthened by the involvement of RA. The ability to induce DNA damage and apoptosis was also enhanced by nucleus-targeted modification. Finally, dual drug-loaded micelles exhibited much better in vivo tumor inhibition (87.1%) and less systemic toxicity than the combination of single drug-loaded systems or the dual drug-loaded micelles without RA. Therefore, our study provides a novel "one platform, two targets" strategy in combinatory anti-cancer therapy.
Collapse
Affiliation(s)
- Qingqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Lei Wu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Lian Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Zhou Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
48
|
A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Future Med Chem 2016; 9:37-60. [PMID: 27995810 DOI: 10.4155/fmc-2016-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The finding of promising drugs represents a huge challenge in cancer therapeutics, therefore it is important to seek out novel approaches and elucidate essential cellular processes in order to identify potential drug targets. Studies on DNA repair pathway suggested that an enzyme, PARP, which plays a significant role in DNA repair responses, could be targeted in cancer therapy. Hence, the efficacy of PARP inhibitors in cancer therapy has been investigated and has progressed from the laboratory to clinics, with olaparib having already been approved by the US FDA for ovarian cancer treatment. Here, we have discussed the development of PARP inhibitors, strategies to improve their selectivity and efficacy, including innovative combinational and synthetic lethality approaches to identify effective PARP inhibitors in cancer treatment.
Collapse
|
49
|
Zhang ZY, Li Y, Li R, Zhang AA, Shang B, Yu J, Xie XD. Tetrahydrobiopterin Protects against Radiation-induced Growth Inhibition in H9c2 Cardiomyocytes. Chin Med J (Engl) 2016; 129:2733-2740. [PMID: 27824007 PMCID: PMC5126166 DOI: 10.4103/0366-6999.193455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOSs) for the synthesis of nitric oxide (NO). BH4 therapy can reverse the disease-related redox disequilibrium observed with BH4 deficiency. However, whether BH4 exerts a protective effect against radiation-induced damage to cardiomyocytes remains unknown. METHODS Clonogenic assays were performed to determine the effects of X-ray on H9c2 cells with or without BH4 treatment. The contents of lactate dehydrogenase (LDH), superoxide dismutase (SOD), and malondialdehyde (MDA) in H9c2 cells were measured to investigate oxidative stress levels. The cell cycle undergoing radiation with or without BH4 treatment was detected using flow cytometry. The expression levels of proteins in the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/P53 signaling pathway, inducible NOS (iNOS), and endothelial NOS (eNOS) were examined using Western blotting. RESULTS X-ray radiation significantly inhibited the growth of H9c2 cells in a dose-dependent manner, whereas BH4 treatment significantly reduced the X-ray radiation-induced growth inhibition (control group vs. X-ray groups, respectively, P< 0.01). X-ray radiation induced LDH release, apoptosis, and G0/G1 peak accumulation, significantly increasing the level of MDA and the production of NO, and decreased the level of SOD (control group vs. X-ray groups, respectively, P < 0.05 or P < 0.01). By contrast, BH4 treatment can significantly reverse these processes (BH4 treatment groups vs. X-ray groups, P < 0.05 or P < 0.01). BH4 reversed the X-ray radiation-induced expression alterations of apoptosis-related molecules, including B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein, and caspase-3, and molecules of the PI3K/Akt/P53 signaling pathway. BH4 enhanced the production of NO in 2 Gy and 4 Gy radiated groups by upregulating eNOS protein expression and downregulating iNOS protein expression. CONCLUSIONS BH4 treatment can protect against X-ray-induced cardiomyocyte injury, possibly by recoupling eNOS rather than iNOS. BH4 treatment also decreased oxidative stress in radiated H9c2 cells.
Collapse
Affiliation(s)
- Zheng-Yi Zhang
- Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
- Department of Heart Failure, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yi Li
- Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Rui Li
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - An-An Zhang
- Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Shang
- Department of Heart Failure, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Jing Yu
- Department of Hypertension, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Xiao-Dong Xie
- Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
50
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alrokayan SA. Cytotoxic response of platinum-coated gold nanorods in human breast cancer cells at very low exposure levels. ENVIRONMENTAL TOXICOLOGY 2016; 31:1344-1356. [PMID: 25846798 DOI: 10.1002/tox.22140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Because of unique optical behavior gold nanorods (GNRs) have attracted attention for the application in biomedical field such as bio-sensing, bio-imaging and hyperthermia. However, toxicological response of GNRs is controversial due to their different surface coating. Therefore, a comprehensive knowledge about toxicological profile of GNRs is necessary before their biomedical applications. First time, we investigated the toxic response of GNRs coated with platinum (GNRs-Pt) in human breast carcinoma (MCF-7) cells. Platinum coating further improves the optical and catalytic properties of GNRs. Assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydroganase (LDH) assays have shown that GNRs-Pt induced cytotoxicity at very low exposure levels (0.1-0.8 μg mL-1 ). Accumulation of cells in SubG1 phase and low mitochondrial membrane potential (JC-1 probe) in treated cells suggest that GNRs-Pt induced cell death via apoptotic pathway. Quantitative real-time PCR data demonstrated that mRNA expression of apoptotic genes (bax, caspase-3 and caspase-9) were up-regulated while anti-apoptotic gene bcl-2 was down-regulated in cells exposed to GNRs-Pt. We further observed the higher activity of caspase-3 and caspase-9 enzymes in GNRs-Pt treated cells supporting mRNA data. Moreover, N-acetyl cysteine (NAC) significantly attenuated the ROS generation and cytotoxicity induced by GNRs-Pt in MCF-7 cells suggesting that ROS might plays a crucial role in GNRs-Pt induced toxicity. This study warns of possible toxicity of GNRs even at very low exposure levels. Further investigations needed to explore potential mechanisms of this low dose toxicity phenomenon. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1344-1356, 2016.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salman A Alrokayan
- Research Chair in Drug Targeting and Treatment of Cancer Using Nanoparticles, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|