1
|
Bernabè G, Brun P, Pietra GD, Zatta V, Asad S, Meneghello S, Cordioli G, Lavezzo E, Valente E, Mietto S, Besutti V, Castagliuolo I. Prevalence and virulence potential of Aeromonas spp. isolated from human diarrheal samples in North East Italy. Microbiol Spectr 2023; 11:e0080723. [PMID: 37855641 PMCID: PMC10715124 DOI: 10.1128/spectrum.00807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE In this work, we demonstrate the epidemiologic relevance of the Aeromonas genus as the cause of infective diarrhea in North East Italy, both in children and adult subjects, with the significative presence of highly pathogenic strains. Aeromonas strains possess a heterogeneous armamentarium of pathogenicity factors that allows the microbe to affect a wide range of human intestinal epithelial cell processes that justify the ability to induce diarrhea through different mechanisms and cause diseases of variable severity, as observed for other gastrointestinal pathogens. However, it remains to be determined whether specific genotype(s) are associated with clinical pictures of different severity to implement the diagnostic and therapeutic approaches for this relevant enteric pathogen.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Shirin Asad
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Meneghello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisabetta Valente
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padova, Italy
| | - Sofia Mietto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Valeria Besutti
- Microbiology Unit of Padua University Hospital, Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padova, Italy
| |
Collapse
|
2
|
Maia JCDS, Silva GADA, Cunha LSDB, Gouveia GV, Góes-Neto A, Brenig B, Araújo FA, Aburjaile F, Ramos RTJ, Soares SC, Azevedo VADC, Costa MMD, Gouveia JJDS. Genomic Characterization of Aeromonas veronii Provides Insights into Taxonomic Assignment and Reveals Widespread Virulence and Resistance Genes throughout the World. Antibiotics (Basel) 2023; 12:1039. [PMID: 37370358 DOI: 10.3390/antibiotics12061039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Aeromonas veronii is a Gram-negative bacterial species that causes disease in fish and is nowadays increasingly recurrent in enteric infections of humans. This study was performed to characterize newly sequenced isolates by comparing them with complete genomes deposited at the NCBI (National Center for Biotechnology Information). Nine isolates from fish, environments, and humans from the São Francisco Valley (Petrolina, Pernambuco, Brazil) were sequenced and compared with complete genomes available in public databases to gain insight into taxonomic assignment and to better understand virulence and resistance profiles of this species within the One Health context. One local genome and four NCBI genomes were misidentified as A. veronii. A total of 239 virulence genes were identified in the local genomes, with most encoding adhesion, motility, and secretion systems. In total, 60 genes involved with resistance to 22 classes of antibiotics were identified in the genomes, including mcr-7 and cphA. The results suggest that the use of methods such as ANI is essential to avoid misclassification of the genomes. The virulence content of A. veronii from local isolates is similar to those complete genomes deposited at the NCBI. Genes encoding colistin resistance are widespread in the species, requiring greater attention for surveillance systems.
Collapse
Affiliation(s)
- José Cleves da Silva Maia
- Graduate Program in Animal Science, Agricultural Sciences Campus, Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
- Center for Open Access Genomic Analysis (CALAnGO), Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
| | - Gabriel Amorim de Albuquerque Silva
- Center for Open Access Genomic Analysis (CALAnGO), Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
| | - Letícia Stheffany de Barros Cunha
- Graduate Program in Animal Science, Agricultural Sciences Campus, Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
- Center for Open Access Genomic Analysis (CALAnGO), Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
| | - Gisele Veneroni Gouveia
- Center for Open Access Genomic Analysis (CALAnGO), Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
| | - Aristóteles Góes-Neto
- Laboratory of Molecular Computational Biology of Fungi (LBMCF), Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37077 Göttingen, Niedersachsen, Germany
| | - Fabrício Almeida Araújo
- Biological Engineering Laboratory, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Rommel Thiago Jucá Ramos
- Biological Engineering Laboratory, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Siomar Castro Soares
- Department of Microbiology, Immunology, and Parasitology, Federal University of Triângulo Mineiro, Uberaba 38025-180, Minas Gerais, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics (LGCM), Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mateus Matiuzzi da Costa
- Center for Open Access Genomic Analysis (CALAnGO), Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
| | - João José de Simoni Gouveia
- Center for Open Access Genomic Analysis (CALAnGO), Federal University of Vale of São Francisco (Univasf), Petrolina 56304-917, Pernambuco, Brazil
| |
Collapse
|
3
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E. Comparative and Evolutionary Genomics of Isolates Provide Insight into the Pathoadaptation of Aeromonas. Genome Biol Evol 2021; 12:535-552. [PMID: 32196086 PMCID: PMC7250499 DOI: 10.1093/gbe/evaa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aeromonads are ubiquitous aquatic bacteria that cause opportunistic infections in humans, but their pathogenesis remains poorly understood. A pathogenomic approach was undertaken to provide insights into the emergence and evolution of pathogenic traits in aeromonads. The genomes of 64 Aeromonas strains representative of the whole genus were analyzed to study the distribution, phylogeny, and synteny of the flanking sequences of 13 virulence-associated genes. The reconstructed evolutionary histories varied markedly depending on the gene analyzed and ranged from vertical evolution, which followed the core genome evolution (alt and colAh), to complex evolution, involving gene loss by insertion sequence-driven gene disruption, horizontal gene transfer, and paraphyly with some virulence genes associated with a phylogroup (aer, ser, and type 3 secretion system components) or no phylogroup (type 3 secretion system effectors, Ast, ExoA, and RtxA toxins). The general pathogenomic overview of aeromonads showed great complexity with diverse evolution modes and gene organization and uneven distribution of virulence genes in the genus; the results provided insights into aeromonad pathoadaptation or the ability of members of this group to emerge as pathogens. Finally, these findings suggest that aeromonad virulence-associated genes should be examined at the population level and that studies performed on type or model strains at the species level cannot be generalized to the whole species.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, France
| | - Sophie M Colston
- US Naval Research Laboratory, National Academy of Sciences, National Research Council, Washington, District of Columbia
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département de Bactériologie, CHU de Nice and Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département d'Hygiène Hospitalière, CHRU de Montpellier, France
| |
Collapse
|
5
|
Rangel LT, Marden J, Colston S, Setubal JC, Graf J, Gogarten JP. Identification and characterization of putative Aeromonas spp. T3SS effectors. PLoS One 2019; 14:e0214035. [PMID: 31163020 PMCID: PMC6548356 DOI: 10.1371/journal.pone.0214035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/21/2019] [Indexed: 11/23/2022] Open
Abstract
The genetic determinants of bacterial pathogenicity are highly variable between species and strains. However, a factor that is commonly associated with virulent Gram-negative bacteria, including many Aeromonas spp., is the type 3 secretion system (T3SS), which is used to inject effector proteins into target eukaryotic cells. In this study, we developed a bioinformatics pipeline to identify T3SS effector proteins, applied this approach to the genomes of 105 Aeromonas strains isolated from environmental, mutualistic, or pathogenic contexts and evaluated the cytotoxicity of the identified effectors through their heterologous expression in yeast. The developed pipeline uses a two-step approach, where candidate Aeromonas gene families are initially selected using Hidden Markov Model (HMM) profile searches against the Virulence Factors DataBase (VFDB), followed by strict comparisons against positive and negative control datasets, greatly reducing the number of false positives. This approach identified 21 Aeromonas T3SS likely effector families, of which 8 represent known or characterized effectors, while the remaining 13 have not previously been described in Aeromonas. We experimentally validated our in silico findings by assessing the cytotoxicity of representative effectors in Saccharomyces cerevisiae BY4741, with 15 out of 21 assayed proteins eliciting a cytotoxic effect in yeast. The results of this study demonstrate the utility of our approach, combining a novel in silico search method with in vivo experimental validation, and will be useful in future research aimed at identifying and authenticating bacterial effector proteins from other genera.
Collapse
Affiliation(s)
- Luiz Thiberio Rangel
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Jeremiah Marden
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Sophie Colston
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - João Carlos Setubal
- Interunidades em Bioinformática, Universidade de São Paulo, São Paulo, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
| |
Collapse
|
6
|
Gonçalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho EVMM, Coelho LCBB. The genus Aeromonas: A general approach. Microb Pathog 2019; 130:81-94. [PMID: 30849490 DOI: 10.1016/j.micpath.2019.02.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The genus Aeromonas comprises more than thirty Gram-negative bacterial species which mostly act as opportunistic microorganisms. These bacteria are distributed naturally in diverse aquatic ecosystems, where they are easily isolated from animals such as fish and crustaceans. A capacity for adaptation also makes Aeromonas able to colonize terrestrial environments and their inhabitants, so these microorganisms can be identified from different sources, such as soils, plants, fruits, vegetables, birds, reptiles, amphibians, among others. Infectious processes usually develop in immunocompromised humans; in fish and other marine animals this process occurs under conditions of stress. Such events are most often associated with incorrect practices in aquaculture. Aeromonas has element diverse ranges, denominated virulence factors, which promote adhesion, colonization and invasion into host cells. These virulence factors, such as membrane components, enzymes and toxins, for example, are differentially expressed among species, making some strains more virulent than others. Due to their diversity, no single virulence factor was considered determinant in the infectious process generated by these microorganisms. Unlike other genera, Aeromonas species are erroneously differentiated by conventional biochemical tests. Therefore, molecular assays are necessary for this purpose. Nevertheless, new means of identification have been considered in order to generate methods that, like molecular tests, can correctly identify these microorganisms. The main objectives of this review are to explain environmental and structural characteristics of the Aeromonas genus and to discuss virulence mechanisms that these bacteria use to infect aquatic organisms and humans, which are important aspects for aquaculture and public health, respectively. In addition, this review aims to clarify new tests for the precise identification of the species of Aeromonas, contributing to the exact and specific diagnosis of infections by these microorganisms and consequently the treatment.
Collapse
Affiliation(s)
- Rafael Bastos Gonçalves Pessoa
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Diego Santa Clara Marques
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Maria Tereza Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Elba Verônica Matoso Maciel de Carvalho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, CEP: 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
7
|
Talagrand-Reboul E, Latif-Eugenín F, Beaz-Hidalgo R, Colston S, Figueras MJ, Graf J, Jumas-Bilak E, Lamy B. Genome-driven evaluation and redesign of PCR tools for improving the detection of virulence-associated genes in aeromonads. PLoS One 2018; 13:e0201428. [PMID: 30110345 PMCID: PMC6093642 DOI: 10.1371/journal.pone.0201428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Many virulence factors have been described for opportunistic pathogens within the genus Aeromonas. Polymerase Chain Reactions (PCRs) are commonly used in population studies of aeromonads to detect virulence-associated genes in order to better understand the epidemiology and emergence of Aeromonas from the environment to host, but their performances have never been thoroughly evaluated. We aimed to determine diagnostic sensitivity and specificity of PCR assays for the detection of virulence-associated genes in a collection of Aeromonas isolates representative for the genetic diversity in the genus. Thirty-nine Aeromonas strains belonging to 27 recognized species were screened by published PCR assays for virulence-associated genes (act, aerA, aexT, alt, ascFG, ascV, ast, lafA, lip, ser, stx1, stx2A). In parallel, homologues of the 12 putative virulence genes were searched from the genomes of the 39 strains. Of the 12 published PCR assays for virulence factors, the comparison of PCR results and genome analysis estimated diagnostic sensitivities ranging from 34% to 100% and diagnostic specificities ranged from 71% to 100% depending upon the gene. To improve the detection of virulence-associated genes in aeromonads, we have designed new primer pairs for aerA/act, ser, lafA, ascFG and ascV, which showed excellent diagnostic sensitivity and specificity. Altogether, the analysis of high quality genomic data, which are more and more easy to obtain, provides significant improvements in the genetic detection of virulence factors in bacterial strains.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, Strasbourg, France
- * E-mail: (BL); (ETR)
| | - Fadua Latif-Eugenín
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - Roxana Beaz-Hidalgo
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - Sophie Colston
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Maria-Jose Figueras
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, IISPV, Universidad Rovira i Virgili, Reus, Spain
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Département d’Hygiène Hospitalière, CHRU de Montpellier, Montpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Département de Bactériologie, CHU de Nice, Nice, France
- * E-mail: (BL); (ETR)
| |
Collapse
|
8
|
Maltz M, LeVarge BL, Graf J. Identification of iron and heme utilization genes in Aeromonas and their role in the colonization of the leech digestive tract. Front Microbiol 2015; 6:763. [PMID: 26284048 PMCID: PMC4516982 DOI: 10.3389/fmicb.2015.00763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/13/2015] [Indexed: 01/02/2023] Open
Abstract
It is known that many pathogens produce high-affinity iron uptake systems like siderophores and/or proteins for utilizing iron bound to heme-containing molecules, which facilitate iron-acquisition inside a host. In mutualistic digestive-tract associations, iron uptake systems have not been as well studied. We investigated the importance of two iron utilization systems within the beneficial digestive-tract association Aeromonas veronii and the medicinal leech, Hirudo verbana. Siderophores were detected in A. veronii using chrome azurol S. Using a mini Tn5, a transposon insertion in viuB generated a mutant unable to utilize iron using siderophores. The A. veronii genome was then searched for genes potentially involved in iron utilization bound to heme-containing molecules. A putative outer membrane heme receptor (hgpB) was identified with a transcriptional activator, termed hgpR, downstream. The hgpB gene was interrupted with an antibiotic resistance cassette in both the parent strain and the viuB mutant, yielding an hgpB mutant and a mutant with both iron uptake systems inactivated. In vitro assays indicated that hgpB is involved in utilizing iron bound to heme and that both iron utilization systems are important for A. veronii to grow in blood. In vivo colonization assays revealed that the ability to acquire iron from heme-containing molecules is critical for A. veronii to colonize the leech gut. Since iron and specifically heme utilization is important in this mutualistic relationship and has a potential role in virulence factor of other organisms, genomes from different Aeromonas strains (both clinical and environmental) were queried with iron utilization genes of A. veronii. This analysis revealed that in contrast to the siderophore utilization genes heme utilization genes are widely distributed among aeromonads. The importance of heme utilization in the colonization of the leech further confirms that symbiotic and pathogenic relationships possess similar mechanisms for interacting with animal hosts.
Collapse
Affiliation(s)
- Michele Maltz
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Barbara L LeVarge
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
9
|
Yano Y, Hamano K, Tsutsui I, Aue-umneoy D, Ban M, Satomi M. Occurrence, molecular characterization, and antimicrobial susceptibility of Aeromonas spp. in marine species of shrimps cultured at inland low salinity ponds. Food Microbiol 2015; 47:21-7. [DOI: 10.1016/j.fm.2014.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
10
|
Maltz MA, Bomar L, Lapierre P, Morrison HG, McClure EA, Sogin ML, Graf J. Metagenomic analysis of the medicinal leech gut microbiota. Front Microbiol 2014; 5:151. [PMID: 24860552 PMCID: PMC4029005 DOI: 10.3389/fmicb.2014.00151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/21/2014] [Indexed: 12/11/2022] Open
Abstract
There are trillions of microbes found throughout the human body and they exceed the number of eukaryotic cells by 10-fold. Metagenomic studies have revealed that the majority of these microbes are found within the gut, playing an important role in the host's digestion and nutrition. The complexity of the animal digestive tract, unculturable microbes, and the lack of genetic tools for most culturable microbes make it challenging to explore the nature of these microbial interactions within this niche. The medicinal leech, Hirudo verbana, has been shown to be a useful tool in overcoming these challenges, due to the simplicity of the microbiome and the availability of genetic tools for one of the two dominant gut symbionts, Aeromonas veronii. In this study, we utilize 16S rRNA gene pyrosequencing to further explore the microbial composition of the leech digestive tract, confirming the dominance of two taxa, the Rikenella-like bacterium and A. veronii. The deep sequencing approach revealed the presence of additional members of the microbial community that suggests the presence of a moderately complex microbial community with a richness of 36 taxa. The presence of a Proteus strain as a newly identified resident in the leech crop was confirmed using fluorescence in situ hybridization (FISH). The metagenome of this community was also pyrosequenced and the contigs were binned into the following taxonomic groups: Rikenella-like (3.1 MB), Aeromonas (4.5 MB), Proteus (2.9 MB), Clostridium (1.8 MB), Eryspelothrix (0.96 MB), Desulfovibrio (0.14 MB), and Fusobacterium (0.27 MB). Functional analyses on the leech gut symbionts were explored using the metagenomic data and MG-RAST. A comparison of the COG and KEGG categories of the leech gut metagenome to that of other animal digestive-tract microbiomes revealed that the leech digestive tract had a similar metabolic potential to the human digestive tract, supporting the usefulness of this system as a model for studying digestive-tract microbiomes. This study lays the foundation for more detailed metatranscriptomic studies and the investigation of symbiont population dynamics.
Collapse
Affiliation(s)
- Michele A Maltz
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Lindsey Bomar
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Pascal Lapierre
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Hilary G Morrison
- Marine Biological Laboratory, The Josephine Bay Paul Center Woods Hole, MA, USA
| | - Emily Ann McClure
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Mitchell L Sogin
- Marine Biological Laboratory, The Josephine Bay Paul Center Woods Hole, MA, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
11
|
Rosenzweig JA, Chopra AK. Modulation of host immune defenses by Aeromonas and Yersinia species: convergence on toxins secreted by various secretion systems. Front Cell Infect Microbiol 2013; 3:70. [PMID: 24199174 PMCID: PMC3812659 DOI: 10.3389/fcimb.2013.00070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022] Open
Abstract
Like other pathogenic bacteria, Yersinia and Aeromonas species have been continuously co-evolving with their respective hosts. Although the former is a bonafide human pathogen, the latter has gained notararity as an emerging disease-causing agent. In response to immune cell challenges, bacterial pathogens have developed diverse mechanism(s) enabling their survival, and, at times, dominance over various host immune defense systems. The bacterial type three secretion system (T3SS) is evolutionarily derived from flagellar subunits and serves as a vehicle by which microbes can directly inject/translocate anti-host factors/effector proteins into targeted host immune cells. A large number of Gram-negative bacterial pathogens possess a T3SS empowering them to disrupt host cell signaling, actin cytoskeleton re-arrangements, and even to induce host-cell apoptotic and pyroptotic pathways. All pathogenic yersiniae and most Aeromonas species possess a T3SS, but they also possess T2- and T6-secreted toxins/effector proteins. This review will focus on the mechanisms by which the T3SS effectors Yersinia outer membrane protein J (YopJ) and an Aeromonas hydrophila AexU protein, isolated from the diarrheal isolate SSU, mollify host immune system defenses. Additionally, the mechanisms that are associated with host cell apoptosis/pyroptosis by Aeromonas T2SS secreted Act, a cytotoxic enterotoxin, and Hemolysin co-regulated protein (Hcp), an A. hydrophila T6SS effector, will also be discussed.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research, Texas Southern University Houston, TX, USA ; Department of Environmental and Interdisciplinary Sciences, Texas Southern University Houston, TX, USA
| | | |
Collapse
|
12
|
Martino ME, Fasolato L, Montemurro F, Novelli E, Cardazzo B. Aeromonasspp.: ubiquitous or specialized bugs? Environ Microbiol 2013; 16:1005-18. [DOI: 10.1111/1462-2920.12215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Elena Martino
- Department of Comparative Biomedicine and Food Science; University of Padova; Legnaro 35020 Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science; University of Padova; Legnaro 35020 Italy
| | - Filomena Montemurro
- Department of Comparative Biomedicine and Food Science; University of Padova; Legnaro 35020 Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science; University of Padova; Legnaro 35020 Italy
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science; University of Padova; Legnaro 35020 Italy
| |
Collapse
|
13
|
Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 2012; 10:815-27. [PMID: 23147708 DOI: 10.1038/nrmicro2894] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The innate immune system is present in all animals and is a crucial first line of defence against pathogens. However, animals also harbour large numbers of beneficial microorganisms that can be housed in the digestive tract, in specialized organs or on tissue surfaces. Although invertebrates lack conventional antibody-based immunity, they are capable of eliminating pathogens and, perhaps more importantly, discriminating them from other microorganisms. This Review examines the interactions between the innate immune systems of several model invertebrates and the symbionts of these organisms, and addresses the central question of how these long-lived and specific associations are established and maintained.
Collapse
|
14
|
Carvalho MJ, Martínez-Murcia A, Esteves AC, Correia A, Saavedra MJ. Phylogenetic diversity, antibiotic resistance and virulence traits of Aeromonas spp. from untreated waters for human consumption. Int J Food Microbiol 2012; 159:230-9. [PMID: 23107502 DOI: 10.1016/j.ijfoodmicro.2012.09.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/11/2012] [Accepted: 09/14/2012] [Indexed: 01/14/2023]
Abstract
It is well known that water constitutes an important contamination route for microorganisms. This is especially true for Aeromonas which are widespread in untreated and treated waters. In this study, Portuguese untreated waters not regularly monitored were screened for the presence and diversity of aeromonads. A total of 206 isolates were discriminated by RAPD-PCR and 80 distinct strains were identified by gyrB based phylogenetic analysis. The most frequently detected species were Aeromonas hydrophila, Aeromonas bestiarum and Aeromonas media. The antibiotic susceptibility profile of these strains was determined and showed a typical profile of the genus. Nonetheless, the percentage of resistant strains to tetracycline, chloramphenicol and/or trimethoprim/sulfamethoxazole was lower than that reported for clinical isolates and isolates recovered from aquacultures and other environments historically subjected to antibiotic contamination. This suggests that the existence of such pressures in those environments selects for resistant Aeromonas. A similar trend for integron presence was found. Genes coding for CphA and TEM, and tet(A), (E), (C) or (D) genes were found in 28%, 1%, and 10% of the strains, respectively. 10% of the strains contained an integron. Variable regions of seven class 1 integrons and one class 2 integron were characterised. Furthermore, strains displayed virulence related phenotypes such as extracellular lipolytic and proteolytic activities as well as aerolysin related genes (43% of strains). The ascV and aexT genes were found in 16% and 3% of strains respectively and, in some cases, concomitantly in the same specimen. This study shows that diverse Aeromonas spp. presenting distinct antibiotic resistance features and putative virulence traits are frequently present in waters for human and animal consumption in Portugal. Genes associated to antibiotic resistance and microbial virulence previously identified in organisms with human health significance were detected in these aeromonads, suggesting that these waters may act as a pivotal route for infections.
Collapse
|
15
|
Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Antonie van Leeuwenhoek 2012; 103:53-67. [DOI: 10.1007/s10482-012-9786-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
|
16
|
Aujoulat F, Roger F, Bourdier A, Lotthé A, Lamy B, Marchandin H, Jumas-Bilak E. From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes (Basel) 2012; 3:191-232. [PMID: 24704914 PMCID: PMC3899952 DOI: 10.3390/genes3020191] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 02/07/2023] Open
Abstract
Environment is recognized as a huge reservoir for bacterial species and a source of human pathogens. Some environmental bacteria have an extraordinary range of activities that include promotion of plant growth or disease, breakdown of pollutants, production of original biomolecules, but also multidrug resistance and human pathogenicity. The versatility of bacterial life-style involves adaptation to various niches. Adaptation to both open environment and human specific niches is a major challenge that involves intermediate organisms allowing pre-adaptation to humans. The aim of this review is to analyze genomic features of environmental bacteria in order to explain their adaptation to human beings. The genera Pseudomonas, Aeromonas and Ochrobactrum provide valuable examples of opportunistic behavior associated to particular genomic structure and evolution. Particularly, we performed original genomic comparisons among aeromonads and between the strictly intracellular pathogens Brucella spp. and the mild opportunistic pathogens Ochrobactrum spp. We conclude that the adaptation to human could coincide with a speciation in action revealed by modifications in both genomic and population structures. This adaptation-driven speciation could be a major mechanism for the emergence of true pathogens besides the acquisition of specialized virulence factors.
Collapse
Affiliation(s)
- Fabien Aujoulat
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Frédéric Roger
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Alice Bourdier
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Anne Lotthé
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Brigitte Lamy
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Hélène Marchandin
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| | - Estelle Jumas-Bilak
- Université Montpellier 1, UMR 5119 (UM2, CNRS, IRD, IFREMER, UM1), équipe Pathogènes et Environnements, Montpellier 34093, France.
| |
Collapse
|
17
|
Senderovich Y, Ken-Dror S, Vainblat I, Blau D, Izhaki I, Halpern M. A molecular study on the prevalence and virulence potential of Aeromonas spp. recovered from patients suffering from diarrhea in Israel. PLoS One 2012; 7:e30070. [PMID: 22355306 PMCID: PMC3280246 DOI: 10.1371/journal.pone.0030070] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
Background Species of the genus Aeromonas are native inhabitants of aquatic environments and have recently been considered emerging human pathogens. Although the gastrointestinal tract is by far the most common anatomic site from which aeromonads are recovered, their role as etiologic agents of bacterial diarrhea is still disputed. Aeromonas-associated diarrhea is a phenomenon occurring worldwide; however, the exact prevalence of Aeromonas infections on a global scale is unknown. Methodology/Principal Findings The prevalence and virulence potential of Aeromonas in patients suffering from diarrhea in Israel was studied using molecular methods. 1,033 diarrheal stools were sampled between April and September 2010 and Aeromonas species were identified in 17 (∼2%) patients by sequencing the rpoD gene. Aeromonas species identity and abundance was: A. caviae (65%), A. veronii (29%) and Aeromonas taiwanensis (6%). This is the first clinical record of A. taiwanensis as a diarrheal causative since its recent discovery from a wound infection in a patient in Taiwan. Most of the patients (77%) from which Aeromonas species were isolated were negative for any other pathogens. The patients ranged from 1 to 92 years in age. Aeromonas isolates were found to possess different virulence-associated genes: ahpB (88%), pla/lip/lipH3/apl-1 (71%), act/hlyA/aerA (35%), alt (18%), ast (6%), fla (65%), lafA (41%), TTSS ascV (12%), TTSS ascF-ascG (12%), TTSS-dependent ADP-ribosylating toxins aexU (41%) and aexT (6%) in various combinations. Most of the identified strains were resistant to beta-lactam antibiotics but susceptible to third-generation cephalosporin antibiotics. Conclusions Aeromonas may be a causative agent of diarrhea in patients in Israel and therefore should be included in routine bacteriological screenings.
Collapse
Affiliation(s)
- Yigal Senderovich
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Shifra Ken-Dror
- Microbiology Laboratory of Clalit Health Services in Haifa, Haifa, Israel
| | - Irina Vainblat
- Microbiology Laboratory of Clalit Health Services in Haifa, Haifa, Israel
| | - Dvora Blau
- Microbiology Laboratory of Clalit Health Services in Haifa, Haifa, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
| | - Malka Halpern
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, Israel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, Israel
- * E-mail:
| |
Collapse
|
18
|
Recombinant AexU effector protein of Aeromonas veronii bv. sobria disrupts the actin cytoskeleton by downregulation of Rac1 and induces direct cytotoxicity to β4-integrin expressing cell lines. Microb Pathog 2011; 51:454-65. [DOI: 10.1016/j.micpath.2011.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 12/27/2022]
|
19
|
Determination of microbial diversity of Aeromonas strains on the basis of multilocus sequence typing, phenotype, and presence of putative virulence genes. Appl Environ Microbiol 2011; 77:4986-5000. [PMID: 21642403 DOI: 10.1128/aem.00708-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genus Aeromonas has been described as comprising several species associated with the aquatic environment, which represents their principal reservoir. Aeromonas spp. are commonly isolated from diseased and healthy fish, but the involvement of such bacteria in human infection and gastroenteritis has frequently been reported. The primary challenge in establishing an unequivocal link between the Aeromonas genus and pathogenesis in humans is the extremely complicated taxonomy. With the aim of clarifying taxonomic relationships among the strains and phenotypes, a multilocus sequencing approach was developed and applied to characterize 23 type and reference strains of Aeromonas spp. and a collection of 77 field strains isolated from fish, crustaceans, and mollusks. All strains were also screened for putative determinants of virulence by PCR (ast, ahh1, act, asa1, eno, ascV, and aexT) and the production of acylated homoserine lactones (AHLs). In addition, the phenotypic fingerprinting obtained from 29 biochemical tests was submitted to the nonparametric combination (NPC) test methodology to define the statistical differences among the identified genetic clusters. Multilocus sequence typing (MLST) achieved precise strain genotyping, and the phylogenetic analysis of concatenated sequences delineated the relationship among the taxa belonging to the genus Aeromonas, providing a powerful tool for outbreak traceability, host range diffusion, and ecological studies. The NPC test showed the feasibility of phenotypic differentiation among the majority of the MLST clusters by using a selection of tests or the entire biochemical fingerprinting. A Web-based MLST sequence database (http://pubmlst.org/aeromonas) specific for the Aeromonas genus was developed and implemented with all the results.
Collapse
|
20
|
Sreedharan K, Philip R, Singh ISB. Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. DISEASES OF AQUATIC ORGANISMS 2011; 94:29-39. [PMID: 21553566 DOI: 10.3354/dao02304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cichlid oscar Astronotus ocellatus has worldwide commercial value in the pet fish industry because of its early maturation, relatively high fecundity, ability to identify its caretaker and also to alter colouration amongst conspecifics. Pathogenic strains of Aeromonas veronii resistant to multiple antibiotics were isolated from A. ocellatus individuals showing signs of infectious abdominal dropsy. The moribund fish showed haemorrhage in all internal organs, and pure cultures could be obtained from the abdominal fluid. The isolates recovered were biochemically identified as A. veronii biovar sobria and genetically confirmed as A. veronii based on 16S rRNA gene sequence analysis (GenBank accession no. FJ573179). The RAPD profile using 3 primers (OPA-3, OPA-4 and OPD-20) generated similar banding patterns for all isolates. They displayed cytotoxic and haemolytic activity and produced several exoenzymes which were responsible for the pathogenic potential of the isolates. In the representative isolate MCCB 137, virulence genes such as enterotoxin act, haemolytic toxin aerA, type 3 secretion genes such as aexT, ascVand ascF-ascG, and gcat (glycerophospholipid-cholesterol acyltransferase) could be amplified. MCCB 137 exhibited a 50% lethal dose (LD50) of 10(5.071) colony-forming units ml(-1) in goldfish and could be subsequently recovered from lesions as well as from the internal organs. This is the first description of a virulent A. veronii from oscar.
Collapse
Affiliation(s)
- K Sreedharan
- National Centre for Aquatic Animal Health, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682 016, Kerala, India
| | | | | |
Collapse
|
21
|
Complex evolutionary history of the Aeromonas veronii group revealed by host interaction and DNA sequence data. PLoS One 2011; 6:e16751. [PMID: 21359176 PMCID: PMC3040217 DOI: 10.1371/journal.pone.0016751] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/10/2011] [Indexed: 12/23/2022] Open
Abstract
Aeromonas veronii biovar sobria, Aeromonas veronii biovar veronii, and Aeromonas allosaccharophila are a closely related group of organisms, the Aeromonas veronii Group, that inhabit a wide range of host animals as a symbiont or pathogen. In this study, the ability of various strains to colonize the medicinal leech as a model for beneficial symbiosis and to kill wax worm larvae as a model for virulence was determined. Isolates cultured from the leech out-competed other strains in the leech model, while most strains were virulent in the wax worms. Three housekeeping genes, recA, dnaJ and gyrB, the gene encoding chitinase, chiA, and four loci associated with the type three secretion system, ascV, ascFG, aexT, and aexU were sequenced. The phylogenetic reconstruction failed to produce one consensus tree that was compatible with most of the individual genes. The Approximately Unbiased test and the Genetic Algorithm for Recombination Detection both provided further support for differing evolutionary histories among this group of genes. Two contrasting tests detected recombination within aexU, ascFG, ascV, dnaJ, and gyrB but not in aexT or chiA. Quartet decomposition analysis indicated a complex recent evolutionary history for these strains with a high frequency of horizontal gene transfer between several but not among all strains. In this study we demonstrate that at least for some strains, horizontal gene transfer occurs at a sufficient frequency to blur the signal from vertically inherited genes, despite strains being adapted to distinct niches. Simply increasing the number of genes included in the analysis is unlikely to overcome this challenge in organisms that occupy multiple niches and can exchange DNA between strains specialized to different niches. Instead, the detection of genes critical in the adaptation to specific niches may help to reveal the physiological specialization of these strains.
Collapse
|
22
|
Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl Environ Microbiol 2010; 76:2313-25. [PMID: 20154106 DOI: 10.1128/aem.02535-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A total of 227 isolates of Aeromonas obtained from different geographical locations in the United States and different parts of the world, including 28 reference strains, were analyzed to determine the presence of various virulence factors. These isolates were also fingerprinted using biochemical identification and pulse-field gel electrophoresis (PFGE). Of these 227 isolates, 199 that were collected from water and clinical samples belonged to three major groups or complexes, namely, the A. hydrophila group, the A. caviae-A. media group, and the A. veronii-A. sobria group, based on biochemical profiles, and they had various pulsotypes. When virulence factor activities were examined, Aeromonas isolates obtained from clinical sources had higher cytotoxic activities than isolates obtained from water sources for all three Aeromonas species groups. Likewise, the production of quorum-sensing signaling molecules, such as N-acyl homoserine lactone, was greater in clinical isolates than in isolates from water for the A. caviae-A. media and A. hydrophila groups. Based on colony blot DNA hybridization, the heat-labile cytotonic enterotoxin gene and the DNA adenosine methyltransferase gene were more prevalent in clinical isolates than in water isolates for all three Aeromonas groups. Using colony blot DNA hybridization and PFGE, we obtained three sets of water and clinical isolates that had the same virulence signature and had indistinguishable PFGE patterns. In addition, all of these isolates belonged to the A. caviae-A. media group. The findings of the present study provide the first suggestive evidence of successful colonization and infection by particular strains of certain Aeromonas species after transmission from water to humans.
Collapse
|
23
|
|