1
|
Alkhammash A. Pharmacology of epitranscriptomic modifications: Decoding the therapeutic potential of RNA modifications in drug resistance. Eur J Pharmacol 2025; 994:177397. [PMID: 39978710 DOI: 10.1016/j.ejphar.2025.177397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
RNA modifications, collectively known as epitranscriptomic modifications, have emerged as critical regulators of gene expression, cellular adaptation, and therapeutic resistance. This review explores the pharmacological potential of targeting RNA modifications, including N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as strategies to overcome drug resistance in cancer. We examine key regulatory enzymes, writers, erasers, and readers-and their roles in modulating RNA stability, translation, and splicing. Advances in combination therapies, integrating RNA modification modulators with conventional chemotherapies and immune checkpoint inhibitors, have shown promising outcomes in reversing multidrug resistance (MDR). Emerging RNA-targeting technologies, such as CRISPR/Cas13 systems and advanced RNA sequencing platforms, further enable precision manipulation of RNA molecules, opening new therapeutic frontiers. However, several challenges persist, including issues related to pharmacokinetics, acquired resistance, and the complexity of epitranscriptomic networks. This review underscores the need for innovative delivery systems, such as lipid nanoparticles and tissue-specific targeting strategies, and highlights the dynamic nature of RNA modifications in response to environmental and therapeutic stress. Ongoing research into non-coding RNA modifications and the interplay between epitranscriptomics and epigenetics offers exciting possibilities for developing novel RNA-targeting therapies. The continued evolution of RNA-based technologies will be crucial in advancing precision medicine, addressing drug resistance, and improving clinical outcomes across multiple diseases.
Collapse
Affiliation(s)
- Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Zhu J, Jian Z, Liu F, Le L. The emerging landscape of small nucleolar RNA host gene 10 in cancer mechanistic insights and clinical relevance. Cell Signal 2025; 127:111590. [PMID: 39798772 DOI: 10.1016/j.cellsig.2025.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Small nucleolar RNA host gene 10 (SNHG10) is a newly recognized long non-coding RNA (lncRNA) with significant implications in cancer biology. Abnormal expression of SNHG10 has been observed in various solid tumors and hematological malignancies. Research conducted in vivo and in vitro has revealed that SNHG10 plays a pivotal role in numerous biological processes, including cell proliferation, apoptosis, invasion and migration, drug resistance, energy metabolism, immune evasion, as well as tumor growth and metastasis. SNHG10 regulates tumor development through several mechanisms, such as competing with microRNA (miRNA) for binding sites, modulating various signaling pathways, influencing transcriptional activity, and affecting epigenetic regulation. The diverse biological functions and intricate mechanisms of SNHG10 highlight its considerable clinical relevance, positioning it as a potential pan-cancer biomarker and therapeutic target. This review aims to summarize the role of SNHG10 in tumorigenesis and cancer progression, clarify the molecular mechanisms at play, and explore its clinical significance in cancer diagnosis and prognosis prediction, along with its therapeutic potential.
Collapse
Affiliation(s)
- Jingyu Zhu
- Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Zihao Jian
- Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China.
| | - Lulu Le
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China.
| |
Collapse
|
3
|
Khaleel AQ, Jasim SA, Menon SV, Kaur M, Sivaprasad GV, Rab SO, Hjazi A, Kumar A, Husseen B, Mustafa YF. siRNA-based knockdown of lncRNAs: A new modality to target tumor progression. Pathol Res Pract 2025; 266:155746. [PMID: 39657398 DOI: 10.1016/j.prp.2024.155746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
This study examines the potential of small interfering RNA (siRNA) as a therapeutic agent for cancer targeting long non-coding RNAs (lncRNAs). The article begins with an analysis of the structure and biogenesis of lncRNA. It explains the diverse functions of lncRNAs in cancer, establishing a foundation for assessing approaches to inhibit these molecules. The analysis focuses on the consequences of lncRNA suppression through siRNA on signaling pathways associated with cancer, connecting theoretical understanding to practical applications. An evaluation of ongoing clinical trials and applications contributes to the discourse by revealing the potential for siRNA-mediated interventions to be practiced. Furthermore, an evaluation of the advantages and disadvantages of this therapeutic approach offers a nuanced viewpoint. In conclusion, the paper synthesizes significant discoveries and outlines potential avenues for future research, contributing to the dialogue surrounding personalized cancer therapeutics and precision medicine. Future challenges in using siRNA to target lncRNAs in oncology include optimizing delivery systems for efficient tumor cell uptake, minimizing off-target effects, enhancing RNA stability for a longer therapeutic window, and overcoming barriers in the tumor microenvironment. Addressing these factors is essential for the practical application of siRNA-based cancer therapies.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar 31001, Iraq.
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India.
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
4
|
Youssef A, Sahgal A, Das S. Radioresistance and brain metastases: a review of the literature and applied perspective. Front Oncol 2024; 14:1477448. [PMID: 39540151 PMCID: PMC11557554 DOI: 10.3389/fonc.2024.1477448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Intracranial metastatic disease is a serious complication of cancer, treated through surgery, radiation, and targeted therapies. The central role of radiation therapy makes understanding the radioresistance of metastases a priori a key interest for prognostication and therapeutic development. Although historically defined clinic-radiographically according to tumour response, developments in new techniques for delivering radiation treatment and understanding of radioprotective mechanisms led to a need to revisit the definition of radioresistance in the modern era. Factors influencing radioresistance include tumour-related factors (hypoxia, cancer stem cells, tumour kinetics, tumour microenvironment, metabolic alterations, tumour heterogeneity DNA damage repair, non-coding RNA, exosomes, methylomes, and autophagy), host-related factors (volume effect & dose-limiting non-cancerous tissue, pathophysiology, and exosomes), technical factors, and probabilistic factors (cell cycle and random gravity of DNA damage). Influences on radioresistance are introduced and discussed in the context of brain metastases.
Collapse
Affiliation(s)
- Andrew Youssef
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Hospital, Toronto, ON, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
6
|
Lai Q, Wan Y, Zhang Y, Huang Y, Tang Q, Chen M, Li Q, Ma K, Xiao P, Luo C, Zhuang X. Hypomethylation-associated LINC00987 downregulation induced lung adenocarcinoma progression by inhibiting the phosphorylation-mediated degradation of SND1. Mol Carcinog 2024; 63:1260-1274. [PMID: 38607240 DOI: 10.1002/mc.23722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
DNA methylation, an epigenetic regulatory mechanism dictating gene transcription, plays a critical role in the occurrence and development of cancer. However, the molecular underpinnings of LINC00987 methylation in the regulation of lung adenocarcinoma (LUAD) remain elusive. This study investigated LINC00987 expression in LUAD patients through analysis of The Cancer Genome Atlas data sets. Quantitative real-time polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization assays were used to assess LINC00987 expression in LUAD. The bisulfite genomic sequence PCR (BSP) assay was used to determine the methylation levels of the LINC00987 promoter. The interaction between LINC00987 and SND1 was elucidated via immunoprecipitation and RNA pull-down assays. The functional significance of LINC00987 and SND1 in Calu-3 and NCI-H1688 cells was evaluated in vitro through CCK-8, EdU, Transwell, flow cytometry, and vasculogenic mimicry (VM) tube formation assays. LINC00987 expression decreased in LUAD concomitant with hypermethylation of the promoter region, while hypomethylation of the LINC00987 promoter in LUAD tissues correlated with tumor progression. Treatment with 5-Aza-CdR augmented LINC00987 expression and inhibited tumor growth. Mechanistically, LINC00987 overexpression impeded LUAD progression and VM through direct binding with SND1, thereby facilitating its phosphorylation and subsequent degradation. Additionally, overexpression of SND1 counteracted the adverse effects of LINC00987 downregulation on cell proliferation, apoptosis, cell migration, invasion, and VM in LUAD in vitro. In conclusion, this pioneering study focuses on the expression and function of LINC00987 and reveals that hypermethylation of the LINC00987 gene may contribute to LUAD progression. LINC00987 has emerged as a potential tumor suppressor gene in tumorigenesis through its binding with SND1 to facilitate its phosphorylation and subsequent degradation.
Collapse
Affiliation(s)
- Qi Lai
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yulin Wan
- Medical Department, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yingqian Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yingzhao Huang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qiuyue Tang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Chen
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Ma
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xiang Zhuang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
7
|
Zhang B, Bi Y, Wang K, Guo X, Liu Z, Li J, Wu M. Stem Cell-Derived Extracellular Vesicles: Promising Therapeutic Opportunities for Diabetic Wound Healing. Int J Nanomedicine 2024; 19:4357-4375. [PMID: 38774027 PMCID: PMC11108067 DOI: 10.2147/ijn.s461342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Wound healing is a sophisticated and orderly process of cellular interactions in which the body restores tissue architecture and functionality following injury. Healing of chronic diabetic wounds is difficult due to impaired blood circulation, a reduced immune response, and disrupted cellular repair mechanisms, which are often associated with diabetes. Stem cell-derived extracellular vesicles (SC-EVs) hold the regenerative potential, encapsulating a diverse cargo of proteins, RNAs, and cytokines, presenting a safe, bioactivity, and less ethical issues than other treatments. SC-EVs orchestrate multiple regenerative processes by modulating cellular communication, increasing angiogenesis, and promoting the recruitment and differentiation of progenitor cells, thereby potentiating the reparative milieu for diabetic wound healing. Therefore, this review investigated the effects and mechanisms of EVs from various stem cells in diabetic wound healing, as well as their limitations and challenges. Continued exploration of SC-EVs has the potential to revolutionize diabetic wound care.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Kang Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
8
|
Liao B, Wang J, Xie Y, Luo H, Min J. LINK-A: unveiling its functional role and clinical significance in human tumors. Front Cell Dev Biol 2024; 12:1354726. [PMID: 38645412 PMCID: PMC11032015 DOI: 10.3389/fcell.2024.1354726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
LINK-A, also recognized as LINC01139, has emerged as a key oncological lncRNA in cancer. LINK-A is upregulated in solid and liquid tumor samples, including breast cancer, ovarian cancer, glioma, non-small-cell lung cancer, and mantle cell lymphoma. Notably, LINK-A is involved in regulating critical cancer-related pathways, such as AKT and HIF1α signaling, and is implicated in a range of oncogenic activities, including cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), cell invasion and migration, and glycolysis reprogramming. LINK-A's differential expression and its correlation with clinical features enable it to be a promising biomarker for cancer diagnosis, prognosis, and the stratification of tumor progression. Additionally, LINK-A's contribution to the development of resistance to cancer therapies, including AKT inhibitors and immunotherapy, underscores its potential as a therapeutic target. This review provides a comprehensive overview of the available data on LINK-A, focusing on its molecular regulatory pathways and clinical significance. By exploring the multifaceted nature of LINK-A in cancer, the review aims to offer a valuable resource for future research directions, potentially guiding the development of novel therapeutic strategies targeting this lncRNA in cancer treatment.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yilin Xie
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
10
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
11
|
Zhao H, Zhu B, Jiang T, Cui Z, Wu H. Identification of DNA-protein binding residues through integration of Transformer encoder and Bi-directional Long Short-Term Memory. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:170-185. [PMID: 38303418 DOI: 10.3934/mbe.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
DNA-protein binding is crucial for the normal development and function of organisms. The significance of accurately identifying DNA-protein binding sites lies in its role in disease prevention and the development of innovative approaches to disease treatment. In the present study, we introduce a precise and robust identifier for DNA-protein binding residues. In the context of protein representation, we combine the evolutionary information of the protein, represented by its position-specific scoring matrix, with the spatial information of the protein's secondary structure, enriching the overall informational content. This approach initially employs a combination of Bi-directional Long Short-Term Memory and Transformer encoder to jointly extract the interdependencies among residues within the protein sequence. Subsequently, convolutional operations are applied to the resulting feature matrix to capture local features of the residues. Experimental results on the benchmark dataset demonstrate that our method exhibits a higher level of competitiveness when compared to contemporary classifiers. Specifically, our method achieved an MCC of 0.349, SP of 96.50%, SN of 44.03% and ACC of 94.59% on the PDNA-41 dataset.
Collapse
Affiliation(s)
- Haipeng Zhao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Baozhong Zhu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | | | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
12
|
Zhou M, He X, Mei C, Ou C. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers. Biomark Res 2023; 11:100. [PMID: 37981718 PMCID: PMC10658727 DOI: 10.1186/s40364-023-00538-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the most abundant immune cell types in the tumor microenvironment (TME), account for approximately 50% of the local hematopoietic cells. TAMs play an important role in tumorigenesis and tumor development through crosstalk between various immune cells and cytokines in the TME. Exosomes are small extracellular vesicles with a diameter of 50-150 nm, that can transfer biological information (e.g., proteins, nucleic acids, and lipids) from secretory cells to recipient cells through the circulatory system, thereby influencing the progression of various human diseases, including cancer. Recent studies have suggested that TAMs-derived exosomes play crucial roles in malignant cell proliferation, invasion, metastasis, angiogenesis, immune responses, drug resistance, and tumor metabolic reprogramming. TAMs-derived exosomes have the potential to be targeted for tumor therapy. In addition, the abnormal expression of non-coding RNAs and proteins in TAMs-derived exosomes is closely related to the clinicopathological features of patients with cancer, and these exosomes are expected to become new liquid biopsy markers for the early diagnosis, prognosis, and monitoring of tumors. In this review, we explored the role of TAMs-derived exosomes in tumorigenesis to provide new diagnostic biomarkers and therapeutic targets for cancer prevention.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Zhang L, Feng B, Zhou Z, Huang H, Yu C, Wang X, Xu C, Gao Y, Chen S. Extracellular vesicles-transmitted long non-coding RNA MTUS2-5 promotes proliferation and vascularization of human vascular endothelial cells in patients with Budd-Chiari syndrome. J Cell Mol Med 2023; 27:3431-3442. [PMID: 37596794 PMCID: PMC10660623 DOI: 10.1111/jcmm.17911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The high rates of misdiagnosis and untreated mortality with regard to Budd-Chiari syndrome (BCS) indicated the need to screen effective biomarkers. The aim of this study was to explore the function of extracellular vesicles (EVs) in patients with BCS as well as associated mechanisms. First, differentially expressed long non-coding RNAs (lncRNAs) from EVs separated from serum between BCS and healthy controls were screened using microarray analysis. Second, the proliferation, migration and tube formation of human vascular endothelial cells (HUVECs) were detected after EVs treatment, along with vascular endothelial growth factor (VEGF) levels and inflammatory factors from the cell supernatant. Last, the overexpressed lncRNA was transfected into the cells to further explore the mechanisms involved. Extracellular vesicles of BCS patients have significantly higher levels of lncRNA MTUS2-5 than healthy controls. Apparently, treatment with EVs from BCS or the ones transfected with plasmids that overexpress lncRNA MTUS2-5 enhances proliferation, migration and angiogenesis capacity. The results were considerably better than those obtained from treatment with EVs from healthy controls or transfection with the normal control plasmid, which also elevated the level of VEGF and inflammatory factors. Furthermore, FOS and PTGS2 were potentially regulated by the lncRNA MTUS2-5 transmitted by EVs. The lncRNA MTUS2-5 in EVs plays an important role in angiogenesis in the Budd-Chiari syndrome.
Collapse
Affiliation(s)
- Longfei Zhang
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Benchi Feng
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Zhuxin Zhou
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Hanlin Huang
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Chaowen Yu
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Xiaogao Wang
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Chao Xu
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Yong Gao
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| | - Shiyuan Chen
- Department of Vascular SurgeryThe First Affiliated Hospital of Bengbu Medical CollegeBengbuChina
| |
Collapse
|
14
|
Zheng W, Chen Y, Wang Y, Chen S, Xu XW. Genome-Wide Identification and Involvement in Response to Biotic and Abiotic Stresses of lncRNAs in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:15870. [PMID: 37958851 PMCID: PMC10648414 DOI: 10.3390/ijms242115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yaning Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xi-wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
15
|
Xie Y, Ye J, Luo H. HOXC Cluster Antisense RNA 3, a Novel Long Non-Coding RNA as an Oncological Biomarker and Therapeutic Target in Human Malignancies. Onco Targets Ther 2023; 16:849-865. [PMID: 37899986 PMCID: PMC10612484 DOI: 10.2147/ott.s425523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
HOXC cluster antisense RNA 3 (HOXC-AS3) is a novel long noncoding RNA (lncRNA) that exhibits aberrant expression patterns in various cancer types. Its expression is closely related to clinicopathological features, demonstrating significant clinical relevance across multiple tumors. And HOXC-AS3 plays multifaceted roles in tumor progression, impacting cell proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT), autophagy, senescence, tumor growth, and metastasis. In this review, we summarized and comprehensively analyzed the expression and clinical significance of HOXC-AS3 as a diagnostic and prognostic biomarker for malignancies. Additionally, we presented an in-depth update on HOXC-AS3's functions and regulatory mechanisms in cancer pathogenesis. This narrative review underscores the importance of HOXC-AS3 as a promising lncRNA candidate in cancer research and its potential as a predictive biomarker and therapeutic target in clinical applications.
Collapse
Affiliation(s)
- Yunhe Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330008, People’s Republic of China
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People’s Republic of China
| | - Jiarong Ye
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330008, People’s Republic of China
| |
Collapse
|
16
|
Yu T, Sun S. Role and mechanism of ferroptosis in acute lung injury. Cell Cycle 2023; 22:2119-2129. [PMID: 37946318 PMCID: PMC10732650 DOI: 10.1080/15384101.2023.2278328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
Ferroptosis is a new non-apoptotic cell death caused by the accumulation of dysregulated metabolism of ferric iron, amino acids or lipid peroxidation. Increasing studies suggest that ferroptosis is involved in the acute lung injury (ALI). This article aims to review the role of ferroptosis in ALI. ALI is a common respiratory disease and presents a high mortality rate. Inhibiting cell ferroptosis of lung improves the ALI. In addition, several signaling pathways are related to ferroptosis in ALI, involving in iron homeostasis, lipid peroxidation, and amino acid metabolism. Moreover, there are various key factors to regulate the occurrence of ferroptosis in ALI, such as ACSL4, NRF2, and P53. The ACSL4 promotes the ferroptosis, while the NRF2 alleviates the ferroptosis in ALI. The main effect of P53 is to promote ferroptosis. Accordingly, ferroptosis is involved in ALI and may be an important therapeutic target for ALI.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Pediatrics Class 1, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Ren G, Li H, Hong D, Hu F, Jin R, Wu S, Sun W, Jin H, Zhao L, Zhang X, Liu D, Huang C, Huang H. LINC00955 suppresses colorectal cancer growth by acting as a molecular scaffold of TRIM25 and Sp1 to Inhibit DNMT3B-mediated methylation of the PHIP promoter. BMC Cancer 2023; 23:898. [PMID: 37742010 PMCID: PMC10518100 DOI: 10.1186/s12885-023-11403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Long non-coding RNAs play an important role in the development of colorectal cancer (CRC), while many CRC-related lncRNAs have not yet been identified. METHODS The relationship between the expression of LINC00955 (Long Intergenic Non-protein Coding RNA 955) and the prognosis of colorectal cancer patients was analyzed using the sequencing results of the TCGA database. LINC00955 expression levels were measured using qRT-PCR. The anti-proliferative activity of LINC00955 was evaluated using CRC cell lines in vitro and xenograft models in nude mice in vivo. The interaction of TRIM25-Sp1-DNMT3B-PHIP-CDK2 was analyzed by western blotting, protein degradation experiment, luciferase, RNA-IP, RNA pull-down assays and immunohistochemically analysis. The biological roles of LINC00955, tripartite motif containing 25 (TRIM25), Sp1 transcription factor (Sp1), DNA methyltransferase 3 beta (DNMT3B), pleckstrin homology domain interacting protein (PHIP), cyclin dependent kinase 2 (CDK2) in colorectal cancer cells were analyzed using ATP assays, Soft agar experiments and EdU assays. RESULTS The present study showed that LINC00955 is downregulated in CRC tissues, and such downregulation is associated with poor prognosis of CRC patients. We found that LINC00955 can inhibit CRC cell growth both in vitro and in vivo. Evaluation of its mechanism of action showed that LINC00955 acts as a scaffold molecule that directly promotes the binding of TRIM25 to Sp1, and promotes ubiquitination and degradation of Sp1, thereby attenuating transcription and expression of DNMT3B. DNMT3B inhibition results in hypomethylation of the PHIP promoter, in turn increasing PHIP transcription and promoting ubiquitination and degradation of CDK2, ultimately leading to G0/G1 growth arrest and inhibition of CRC cell growth. CONCLUSIONS These findings indicate that downregulation of LINC00955 in CRC cells promotes tumor growth through the TRIM25/Sp1/DNMT3B/PHIP/CDK2 regulatory axis, suggesting that LINC00955 may be a potential target for the therapy of CRC.
Collapse
Affiliation(s)
- Ganglin Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dan Hong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fangyu Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rongjia Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dongxiang Liu
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
18
|
Wang P, Paquet ÉR, Robert C. Comprehensive transcriptomic analysis of long non-coding RNAs in bovine ovarian follicles and early embryos. PLoS One 2023; 18:e0291761. [PMID: 37725621 PMCID: PMC10508637 DOI: 10.1371/journal.pone.0291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been the subject of numerous studies over the past decade. First thought to come from aberrant transcriptional events, lncRNAs are now considered a crucial component of the genome with roles in multiple cellular functions. However, the functional annotation and characterization of bovine lncRNAs during early development remain limited. In this comprehensive analysis, we review lncRNAs expression in bovine ovarian follicles and early embryos, based on a unique database comprising 468 microarray hybridizations from a single platform designed to target 7,724 lncRNA transcripts, of which 5,272 are intergenic (lincRNA), 958 are intronic, and 1,524 are antisense (lncNAT). Compared to translated mRNA, lncRNAs have been shown to be more tissue-specific and expressed in low copy numbers. This analysis revealed that protein-coding genes and lncRNAs are both expressed more in oocytes. Differences between the oocyte and the 2-cell embryo are also more apparent in terms of lncRNAs than mRNAs. Co-expression network analysis using WGCNA generated 25 modules with differing proportions of lncRNAs. The modules exhibiting a higher proportion of lncRNAs were found to be associated with fewer annotated mRNAs and housekeeping functions. Functional annotation of co-expressed mRNAs allowed attribution of lncRNAs to a wide array of key cellular events such as meiosis, translation initiation, immune response, and mitochondrial related functions. We thus provide evidence that lncRNAs play diverse physiological roles that are tissue-specific and associated with key cellular functions alongside mRNAs in bovine ovarian follicles and early embryos. This contributes to add lncRNAs as active molecules in the complex regulatory networks driving folliculogenesis, oogenesis and early embryogenesis all of which are necessary for reproductive success.
Collapse
Affiliation(s)
- Pengmin Wang
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| | - Éric R. Paquet
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
19
|
Li R, Zhao M, Sun M, Miao C, Lu J. Construction and validation of a PANoptosis-related lncRNA signature for predicting prognosis and targeted drug response in thyroid cancer. PeerJ 2023; 11:e15884. [PMID: 37671354 PMCID: PMC10476615 DOI: 10.7717/peerj.15884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023] Open
Abstract
Thyroid cancer (TC) is the most prevalent malignancy of the endocrine system. PANoptosis, a newly discovered cell death pathway, is of interest in tumor research. However, the relationship between PANoptosis-related lncRNAs (PRlncRNAs) and TC remains unclear. The study aimed to develop a prognostic model based on PRlncRNAs in TC. Gene expression data of PANoptosis-associated genes and clinical information on TC from The Cancer Genome Atlas (TCGA) database were analyzed by Pearson correlation analysis, univariate/multivariate Cox analysis, and Lasso Cox regression analysis. A PRlncRNA signature was constructed and used to develop a nomogram to predict overall survival (OS). We further explored the correlation between the risk score and tumor immune microenvironment, immune checkpoints, and drug sensitivity. Moreover, we verified the expression and biological function of lncRNAs in TC cell lines. Finally, seven PRlncRNAs were used to construct a prognostic model for predicting the OS of TC patients. We found that the risk score was associated with the tumor microenvironment (TME) and the expression of critical immune checkpoints. In addition, we screened for drugs that high- or low-risk TC groups might be sensitive to. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed differential expression of four PRlncRNAs (GAPLINC, IDI2-AS1, LINC02154, and RBPMS-AS1) between tumor and normal tissues. Besides, a GEO database (GSE33630) was used to verify the expression differences of PRLncRNAs in THCA tissues and normal tissues. Finally, RBPMS-AS1 was found to inhibit the proliferation and migration of TC cells. In conclusion, we developed a PANoptosis-related lncRNA prognostic risk model that offers a comprehensive understanding of TME status in patients with TC and establishes a foundation for the choice of sensitive medications and immunotherapy.
Collapse
Affiliation(s)
- Ruowen Li
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingjian Zhao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Min Sun
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengxu Miao
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinghui Lu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
20
|
Dain L, Zhu G. Nucleic acid immunotherapeutics and vaccines: A promising approach to glioblastoma multiforme treatment. Int J Pharm 2023; 638:122924. [PMID: 37037396 PMCID: PMC10194422 DOI: 10.1016/j.ijpharm.2023.122924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly and difficult to treat primary brain tumor for which satisfactory therapeutics have yet to be discovered. While cancer immunotherapeutics, such as immune checkpoint inhibitors, have successfully improved the treatment of some other types of cancer, the poorly immunogenic GBM tumor cells and the immunosuppressive GBM tumor microenvironment have made it difficult to develop GBM immunotherapeutics. Nucleic acids therapeutics and vaccines, particularly those of mRNA, have become a popular field of research in recent years. This review presents the progress of nucleic acid therapeutics and vaccines for GBM and briefly covers some representative delivery methods of nucleic acids to the central nervous system (CNS) for GBM therapy.
Collapse
Affiliation(s)
- Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Du H, Hou S, Zhang L, Liu C, Yu T, Zhang W. LncRNA FALEC increases the proliferation, migration and drug resistance of cholangiocarcinoma through competitive regulation of miR-20a-5p/SHOC2 axis. Aging (Albany NY) 2023; 15:3759-3770. [PMID: 37166421 PMCID: PMC10449288 DOI: 10.18632/aging.204709] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND LncRNA is an important regulatory factor in the human genome. We aim to explore the roles of LncFALEC and miR-20a-5p/SHOC2 axis on the proliferation, migration, and Fluorouracil (5-FU) resistance of cholangiocarcinoma (CCA). METHODS In this study, the expression of FALEC and miR-20a-5p in CCA tissues and cell lines (HuCCT1, QBC939, and Huh-28) was detected by RT-qPCR. The FALEC in 5-FU-resistant CCA cell lines (QBC939-R, Huh-28-R) was knocked down to evaluate its effects on cell proliferation, migration, invasion, and drug resistance. RESULTS Our analysis showed that compared with the adjacent non-tumor tissues, FALEC was significantly higher in the CCA tissues and even higher in the samples from 5-FU-resistant patients. Knockdown FALEC increased the sensitivity of 5-FU and decreased migration and invasion of CCA cells. Dual luciferase reporter confirmed that FALEC sponges miR-20a-5p and down-regulated its expression. Moreover, SHOC2 leucine-rich repeat scaffold protein (SHOC2) was the target gene of miR-20a-5p. We found overexpression of FALEC (FALEC-OE) increased resistance of CCA cells to 5-FU significantly, which might contribute to increased SHOC2 expression and activation of the ERK1/2 signaling pathway. CONCLUSIONS In summary, our study revealed that down-regulation of FALEC could inhibit the proliferation, migration, and invasion of CCA cells in vitro by regulating the miR-20a-5p/SHOC2 axis and participating in 5-FU resistance by mediating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Haiming Du
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Senlin Hou
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lichao Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chao Liu
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tingting Yu
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhang
- The Biliopancreatic Endoscopic Surgery Department, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
22
|
Sulewska A, Pilz L, Manegold C, Ramlau R, Charkiewicz R, Niklinski J. A Systematic Review of Progress toward Unlocking the Power of Epigenetics in NSCLC: Latest Updates and Perspectives. Cells 2023; 12:cells12060905. [PMID: 36980246 PMCID: PMC10047383 DOI: 10.3390/cells12060905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Epigenetic research has the potential to improve our understanding of the pathogenesis of cancer, specifically non-small-cell lung cancer, and support our efforts to personalize the management of the disease. Epigenetic alterations are expected to have relevance for early detection, diagnosis, outcome prediction, and tumor response to therapy. Additionally, epi-drugs as therapeutic modalities may lead to the recovery of genes delaying tumor growth, thus increasing survival rates, and may be effective against tumors without druggable mutations. Epigenetic changes involve DNA methylation, histone modifications, and the activity of non-coding RNAs, causing gene expression changes and their mutual interactions. This systematic review, based on 110 studies, gives a comprehensive overview of new perspectives on diagnostic (28 studies) and prognostic (25 studies) epigenetic biomarkers, as well as epigenetic treatment options (57 studies) for non-small-cell lung cancer. This paper outlines the crosstalk between epigenetic and genetic factors as well as elucidates clinical contexts including epigenetic treatments, such as dietary supplements and food additives, which serve as anti-carcinogenic compounds and regulators of cellular epigenetics and which are used to reduce toxicity. Furthermore, a future-oriented exploration of epigenetic studies in NSCLC is presented. The findings suggest that additional studies are necessary to comprehend the mechanisms of epigenetic changes and investigate biomarkers, response rates, and tailored combinations of treatments. In the future, epigenetics could have the potential to become an integral part of diagnostics, prognostics, and personalized treatment in NSCLC.
Collapse
Affiliation(s)
- Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| | - Lothar Pilz
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, 60-569 Poznan, Poland
| | - Radoslaw Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence: (A.S.); (J.N.)
| |
Collapse
|
23
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
24
|
Ou C, He X, Liu Y, Zhang X. lncRNA cytoskeleton regulator RNA (CYTOR): Diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis 2023; 10:415-429. [PMID: 37223495 PMCID: PMC10201560 DOI: 10.1016/j.gendis.2021.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of non-coding RNA (ncRNA), that have been studied extensively in the field of tumor research in recent years. In the case of tumor-associated lncRNAs, lncRNA cytoskeleton regulator RNA (CYTOR) displays extensive functions in tumorigenesis, including invasion, metastasis, malignant proliferation, glycolysis, and inflammatory response. Moreover, the dysregulation of CYTOR is closely related to clinicopathological characteristics, such as tumor stage, lymph node metastasis and infiltration, and poor prognosis of tumor patients. In this review, we provide a novel strategy to summarize the biological functions and clinical value of CYTOR in tumors through an overview of the literature combined with gene set enrichment analysis. A deeper understanding of the role of CYTOR in tumorigenesis may provide new diagnostic, prognostic and therapeutic markers for human tumors.
Collapse
Affiliation(s)
- Chunlin Ou
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Changsha, Hunan 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Changsha, Hunan 410008, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan 410008, China
| |
Collapse
|
25
|
LINC02381 suppresses cell proliferation and promotes apoptosis via attenuating IGF1R/PI3K/AKT signaling pathway in breast cancer. Funct Integr Genomics 2023; 23:40. [PMID: 36648607 DOI: 10.1007/s10142-023-00965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Identification of the genes and genetic networks involved in breast cancer development is a major need for prevention and therapy. LINC02381 (lncRNA) has already been introduced as a tumor suppressor in colorectal and gastric cancers. Here, we intended to investigate its potential functional effects on breast cancer. In the analysis performed on RNA-Seq and microarray data, the LINC02381 lncRNA was found to be significantly downregulated in the breast tumors and associated with poor survival of the patients. Then, the differential expression of LINC02381 was confirmed in breast tumor tissues and cancer cell lines using RT-qPCR. Overexpression of LINC02381 resulted in reduced IGF1R and p-AKT expression levels which indicates decreased PI3K pathway activity, detected by RT-qPCR and western blotting. At the cellular level, LINC02381 overexpression was followed by a decreased proliferation rate of transfected breast cell lines, detected by PI flow cytometry, RT-qPCR, colony formation, and MTT assays. Consistently, the results of Annexin-V/PI flow cytometry, RT-qPCR, caspase3/7 activity, and AO/EB-H33342/PI dual staining revealed that LINC02381 overexpression induced apoptosis and cell death. The reduced migration rate of these cells was also verified through wound healing assay and RT-qPCR against the EMT-involved genes. Our data show that LINC02381 exerts its tumor suppressor effect at least partly through attenuation of the IGF1R/PI3K/AKT signaling pathway, which originated from IGF1R downregulation.
Collapse
|
26
|
Rastad H, Samimisedeh P, Alan MS, Afshar EJ, Ghalami J, Hashemnejad M, Alan MS. The role of lncRNA CERS6-AS1 in cancer and its molecular mechanisms: A systematic review and meta-analysis. Pathol Res Pract 2023; 241:154245. [PMID: 36580796 DOI: 10.1016/j.prp.2022.154245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND LncRNAs have the potential to play a regulatory role in different processes of cancer development and progression. We conducted a systematic review and meta-analysis of evidence on the clinical significance and prognostic value of lncRNA CERS6-AS1 in cancer. METHODS This systematic review was conducted following PRISMA guidelines. Medline and Embase databases were searched using the relevant key terms covering lncRNA CERS6-AS1 and cancer. We pooled the estimated effect sizes and their 95 % confidence interval (CI) using random-effects models in STATA 16.0 (StataCorp, College Station, TX, USA). RESULTS Eleven articles on pancreatic, colorectal, gastric, papillary thyroid, breast, and hepatocellular cancers fulfilled our eligibility criteria. Studies consistently found that lncRNA CERS6-AS1 expression is upregulated in all assessed cancers. Based on our meta-analysis, its aberrant expression was directly associated with unfavorable clinical outcomes, including higher stage (pooled Odds ratios (95 % CI): 3.15 (2.01-4.93; I2 = 0.0 %), tumor size (1.97 (1.27-3.05; I2 = 37.8 %), lymph node metastasis (6.48 (4.01-10.45; I2 = 0.40 %), and poor survival (Pooled log-rank test P-value < 0.001) in patients. Regarding potential mechanisms, functional studies revealed that LncRNA CERS6-AS1 is involved in cancer growth mainly by sponging miRNAs and regulating their downstream targets. CONCLUSION Available evidence suggests that LncRNA CERS6-AS1 is upregulated in different cancers and has an oncogenic role. LncRNA CERS6-AS1 expression level might predict cancer prognosis, highlighting its potential application as a prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Hadith Rastad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Samimisedeh
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahin Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elmira Jafari Afshar
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Jamileh Ghalami
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran; The Clinical Research Development units of Kamali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Hashemnejad
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Seifi Alan
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
27
|
Dai L, Liang W, Shi Z, Li X, Zhou S, Hu W, Yang Z, Wang X. Systematic characterization and biological functions of non-coding RNAs in glioblastoma. Cell Prolif 2022; 56:e13375. [PMID: 36457281 PMCID: PMC9977673 DOI: 10.1111/cpr.13375] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.
Collapse
Affiliation(s)
- Lirui Dai
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Wulong Liang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zimin Shi
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xiang Li
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Shaolong Zhou
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Weihua Hu
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Zhuo Yang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| | - Xinjun Wang
- Department of NeurosurgeryThe Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina,Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Henan International Joint Laboratory of Glioma Metabolism and Microenvironment ResearchZhengzhouHenanChina
| |
Collapse
|
28
|
Wang W, Zhang L, Sun J, Zhao Q, Shuai J. Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field. Brief Bioinform 2022; 23:6775599. [PMID: 36305458 DOI: 10.1093/bib/bbac463] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA-miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.
Collapse
Affiliation(s)
- Wenya Wang
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Jianqiang Sun
- School of Automation and Electrical Engineering, Linyi University, Linyi, 276000, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Jianwei Shuai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.,Department of Physics, and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China.,National Institute for Data Science in Health and Medicine, and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
29
|
Wang MN, Lei LL, He W, Ding DW. SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA–miRNA interactions. Front Genet 2022; 13:1032428. [DOI: 10.3389/fgene.2022.1032428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence indicated that the interaction between lncRNA and miRNA is crucial for gene regulation, which can regulate gene transcription, further affecting the occurrence and development of many complex diseases. Accurate identification of interactions between lncRNAs and miRNAs is helpful for the diagnosis and therapeutics of complex diseases. However, the number of known interactions of lncRNA with miRNA is still very limited, and identifying their interactions through biological experiments is time-consuming and expensive. There is an urgent need to develop more accurate and efficient computational methods to infer lncRNA–miRNA interactions. In this work, we developed a matrix completion approach based on structural perturbation to infer lncRNA–miRNA interactions (SPCMLMI). Specifically, we first calculated the similarities of lncRNA and miRNA, including the lncRNA expression profile similarity, miRNA expression profile similarity, lncRNA sequence similarity, and miRNA sequence similarity. Second, a bilayer network was constructed by integrating the known interaction network, lncRNA similarity network, and miRNA similarity network. Finally, a structural perturbation-based matrix completion method was used to predict potential interactions of lncRNA with miRNA. To evaluate the prediction performance of SPCMLMI, five-fold cross validation and a series of comparison experiments were implemented. SPCMLMI achieved AUCs of 0.8984 and 0.9891 on two different datasets, which is superior to other compared methods. Case studies for lncRNA XIST and miRNA hsa-mir-195–5-p further confirmed the effectiveness of our method in inferring lncRNA–miRNA interactions. Furthermore, we found that the structural consistency of the bilayer network was higher than that of other related networks. The results suggest that SPCMLMI can be used as a useful tool to predict interactions between lncRNAs and miRNAs.
Collapse
|
30
|
LncRNAs as biomarkers for predicting radioresistance and survival in cancer: a meta-analysis. Sci Rep 2022; 12:18494. [PMID: 36323697 PMCID: PMC9630540 DOI: 10.1038/s41598-022-21785-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022] Open
Abstract
The effect of long noncoding RNAs (lncRNAs) on the radiotherapy response has been gradually revealed. This systematic review and meta-analysis aimed to evaluate the association between the function and underlying mechanism of lncRNAs in regulating the radiosensitivity and radioresistance of different tumors. Hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were calculated to estimate the effect of lncRNAs on cancer patient prognosis, including overall survival (OS), recurrence-free survival (RFS), disease-free survival (DFS) and progression-free survival (PFS). Collectively, 23 lncRNAs in 11 cancer types were enrolled. Of them, 13 lncRNAs were downregulated and related to radiosensitivity, 11 lncRNAs were upregulated and related to radioresistance, and 3 lncRNAs were upregulated and related to radiosensitivity in cancers. Furthermore, 17 microRNAs and 20 pathways were targeted by different lncRNAs and contributed to the cancer radiotherapy response in this meta-analysis. The individual pooled HRs (95% CIs) of downregulated radiation-resistant and upregulated radiation-resistant lncRNAs for OS were 0.49 (0.40-0.60) and 1.88 (1.26-2.79), respectively. Our results showed that lncRNAs could modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways and serve as potential biomarkers to predict radiotherapy response.
Collapse
|
31
|
Eisa NH, Said E, Khodir AE, Sabry D, Ebrahim HA, Elsherbini DMA, Altemani R, Alnasser DM, Elsherbiny NM, El-Sherbiny M. Effect of Diacerein on HOTAIR/IL-6/STAT3, Wnt/β-Catenin and TLR-4/NF-κB/TNF-α axes in colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103943. [PMID: 35934220 DOI: 10.1016/j.etap.2022.103943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality and poor prognosis. Diacerein (DIA) is an anti-inflammatory used for treatment of osteoarthritis. We delineated some underlying molecular mechanisms of DIA's anti-carcinogenic effect in CRC using in vivo and in vitro models. Human Caco-2 cells were treated with DIA followed by MTT and Annexin V assays and CRC was experimentally induced using 1,2-dimethylhydrazine. DIA (50 mg/kg/day, orally) was administrated for 8 weeks. The MTT assay confirmed cytotoxic effect of DIA in vitro and Annexin V confirmed its apoptotic effect. DIA resulted in regression of tumour lesions with reduced colonic TLR4, NF-κB and TNF-α protein levels and down-regulated VEGF expression, confirming anti-angiogenic impact. DIA triggered caspase-3 expression and regulated Wnt/β-Catenin pathway, by apparently interrupting the IL-6/STAT3/ lncRNA HOTAIR axis. In conclusion, DIA disrupted IL-6/STAT3/ lncRNA HOTAIR axis which could offer an effective therapeutic strategy for the management of CRC.
Collapse
Affiliation(s)
- Nada H Eisa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt.
| | - Ahmed E Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O.Box 2014, Sakaka, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reem Altemani
- PharmD program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Nehal M Elsherbiny
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia.
| |
Collapse
|
32
|
Wu Q, Li B, Li Y, Liu F, Yang L, Ma Y, Zhang Y, Xu D, Li Y. Effects of PAMK on lncRNA, miRNA, and mRNA expression profiles of thymic epithelial cells. Funct Integr Genomics 2022; 22:849-863. [PMID: 35505120 DOI: 10.1007/s10142-022-00863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022]
Abstract
Polysaccharides from Atractylodes macrocephala Koidz (PAMK) can promote the proliferation of thymocytes and improve the body's immunity. However, the effect of PAMK on thymic epithelial cells has not been reported. Studies have shown that miRNAs and lncRNAs are key factors in regulating cell proliferation. In this study, we found that PAMK could promote the proliferation of mouse medullary thymic epithelial cell line 1 (MTEC1) cells through CCK-8 and EdU experiments. To further explore its mechanism, we detected the effect of PAMK on the expression profiles of lncRNAs, miRNAs, and mRNAs in MTEC1 cells. The results showed that PAMK significantly affected the expression of 225 lncRNAs, 29 miRNAs, and 800 mRNAs. Functional analysis showed that these differentially expressed genes were significantly enriched in cell cycle, cell division, NF-kappaB signaling, apoptotic process, and MAPK signaling pathway. Finally, we used Cytoscape to visualize lncRNA-miRNA-mRNA(14 lncRNAs, 17 miRNAs, 171 mRNAs) networks based on ceRNA theory. These results suggest that lncRNAs and miRNAs may be involved in the effect of PAMK on the proliferation of MTEC1 cells, providing a new research direction for exploring the molecular mechanism of PAMK promoting the proliferation of thymic epithelial cells.
Collapse
Affiliation(s)
- Qingru Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxin Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Fenfen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Zaki A, Ali MS, Hadda V, Ali SM, Chopra A, Fatma T. Long non-coding RNA (lncRNA): A potential therapeutic target in acute lung injury. Genes Dis 2022; 9:1258-1268. [PMID: 35873025 PMCID: PMC9293716 DOI: 10.1016/j.gendis.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/26/2022] Open
Abstract
Acute Lung Injury (ALI) and its severe form Acute Respiratory Distress Syndrome (ARDS) are the major cause of ICU death worldwide. ALI/ARDS is characterized by severe hypoxemia and inflammation that leads to poor lung compliance. Despite many advances in understanding and management, ALI/ARDS is still causing significant morbidity and mortality. Long non-coding RNA (lncRNA) is a fast-growing topic in lung inflammation and injury. lncRNA is a class of non-coding RNA having a length of more than 200 nucleotides. It has been a center of research for understanding the pathophysiology of various diseases in the past few years. Multiple studies have shown that lncRNAs are abundant in acute lung injury/injuries in mouse models and cell lines. By targeting these long non-coding RNAs, many investigators have demonstrated the alleviation of ALI in various mouse models. Therefore, lncRNAs show great promise as a therapeutic target in ALI. This review provides the current state of knowledge about the relationship between lncRNAs in various biological processes in acute lung injury and its use as a potential therapeutic target.
Collapse
Affiliation(s)
- Almaz Zaki
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| | - M. Shadab Ali
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia University, New Delhi 110025, India
| | - Anita Chopra
- Lab Oncology, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| |
Collapse
|
34
|
Yuan R, Dai C, Chen P, Lv M, Shu Y, Wang Z, Xu Y, Li J. Circulating TP73-AS1 and CRNDE serve as diagnostic and prognostic biomarkers for non-small cell lung cancer. Cancer Med 2022; 12:1655-1672. [PMID: 35871358 PMCID: PMC9883423 DOI: 10.1002/cam4.5013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/08/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Circulating long noncoding RNAs (lncRNAs) are considered a new class of biomarkers for the diagnosis and prognosis of various malignancies. We aimed to identify circulating lncRNAs as biomarkers for the diagnosis and prognosis of non-small cell lung cancer (NSCLC). METHODS The expression of 14 candidate lncRNAs was measured in matched cancer and ipsilateral normal lung tissues of 20 patients with NSCLC using quantitative reverse-transcription PCR. In plasma samples from training and testing sets, significantly and aberrantly expressed lncRNAs, TA73-AS1 and CRNDE, were further analyzed. Receiver operating characteristic (ROC) curves were constructed, and the areas under the ROC curves (AUC) were obtained to assess diagnostic performance. The Kaplan-Meier survival analysis was used to assess the impact of plasma TA73-AS1 and CRNDE expression on tumor-free survival (TFS) of patients with NSCLC. The effect of TP73-AS1 expression on NSCLC cells was investigated in vitro. RESULTS AUC values of plasma TA73-AS1 and CRNDE were 0.822 and 0.815 in the training set and 0.843 and 0.804 in the testing set, respectively, to distinguish NSCLC from healthy controls. The combination of plasma TP73-AS1, CRNDE, and two classical tumor markers, carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA21-1), showed excellent diagnostic performance for NSCLC (AUC =0.927 in the training set; AUC = 0.925 in the testing set). Furthermore, the high expression of the two plasma lncRNAs correlated with worse TFS in patients with NSCLC. In vitro cell model studies revealed that TP73-AS1 overexpression facilitated NSCLC cell survival, invasion, and migration. CONCLUSION Circulating TP73-AS1 and CRNDE could be potential biomarkers for the diagnosis and prognostic prediction of NSCLC.
Collapse
Affiliation(s)
- Rong‐Xia Yuan
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina,Department of Respiratory DiseaseYancheng Third People's HospitalYanchengChina
| | - Chun‐Hua Dai
- Department of RadiotherapyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Ping Chen
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Meng‐Jia Lv
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Yang Shu
- Center of Experimental MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Zhi‐Peng Wang
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Ya‐Ping Xu
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Jian Li
- Department of Pulmonary MedicineAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| |
Collapse
|
35
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
36
|
Pan Q, Yi C, Zhang Y. Overall Survival Signature of 5-Methylcytosine Regulators Related Long Non-Coding RNA in Hepatocellular Carcinoma. Front Oncol 2022; 12:884377. [PMID: 35686101 PMCID: PMC9172585 DOI: 10.3389/fonc.2022.884377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 12/28/2022] Open
Abstract
Purpose Studies reported that 5-methylcytosine (m5C) RNA transferase alters tumor progression; however, studies of m5C-related lncRNA remain lacking. This article intends to study the lncRNA modified by m5C RNA transferase in hepatocellular carcinoma using a combination of computational biology and basic experiments. Method We identified 13 m5C RNA transferase-related genes and selected long non-coding RNAs with a Pearson correlation coefficient greater than 0.4. Univariate Cox regression analysis was used to screen m5C RNA transferase lncRNA related to survival phenotype. We divided TCGA-LIHC into two types of m5C RNA using non-negative matrix decomposition. According to WGCNA, the co-expression models of two lncRNA regulation modes were constructed to analyze the characteristic biological processes of the two m5C RNA transferase-related lncRNA gene models. Then, a predictive model of m5C RNA transferase lncRNA was using LASSO regression. Finally, we used cell experiments, transwell experiments, and clone formation experiments to test the relationship between SNHG4 and tumor cell proliferation in Hep-G2 and Hep-3b cells line. Results We identified 436 m5C RNA transferase-related lncRNAs. Using univariate Cox regression analysis, 43 prognostic-related lncRNAs were determined according to P < 0.001. We divided TCGA-LIHC into two regulation modes of m5C RNA transferase using non-negative matrix factorization. The two regulation modes showed significant differences in overall and disease-free survival. We used LASSO to construct m5c-related lncRNA prognostic signature. Thus, a predictive m5C-lncRNA model was established using four lncRNAs: AC026412.3, AC010969.2, SNHG4, and AP003392.5. The score calculated by the m5C-lncRNA model significantly correlated with the overall survival of hepatocellular carcinoma. The receiver operating characteristic curve and decision curve analysis verified the accuracy of the predictive model. We observed a more robust immune response in the high-risk score group. The transwell experiments and clone formation experiments suggested that m5C RNA transferase-related lncRNA SNHG4 promotes the proliferation and migration of Hep-G2 and Hep-3b cells line. Conclusion Two lncRNA expression patterns regulated by m5C RNA transferase were identified. The difference between the two expression patterns and the survival phenotype in the biological process was pointed out. A 5-methylcytosine RNA methyltransferases-related lncRNA overall survival signature was constructed. These results provide some understanding of the influence of m5C transferase on hepatocellular carcinoma. The prediction model of m5C transferase lncRNA has potential clinical value in managing hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qi Pan
- Key Laboratory of Organ Transplantation of Liaoning Province, Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang, China
| | - Caiyu Yi
- China Medical University, Shenyang, China
| | - Yijie Zhang
- Key Laboratory of Organ Transplantation of Liaoning Province, Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Beylerli O, Gareev I, Sufianov A, Ilyasova T, Guang Y. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res 2022; 7:66-70. [PMID: 35310927 PMCID: PMC8891810 DOI: 10.1016/j.ncrna.2022.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Despite many advances in diagnosis and therapy (surgery, radiation therapy, chemotherapy), cancer remains one of the most important public health problems worldwide. Every day, the role of exosomes in cancer development and metastasis is being better described. Liquid biopsy was developed for early detection of cancer through minimally invasive and serial examinations of body fluids, with the advantage of tracking tumor progression in real time. Exosomes are extracellular membrane vesicles with a diameter of 30-100 nm, which are secreted by various types of cells and are present in most biological fluids. For a long time, they were considered non-functional cellular components, and today it has already been proven that they are a means of intercellular information exchange. They can move bioactive molecules such as proteins, lipids, RNA and DNA. Several studies have shown that their contents, including proteins and noncoding nucleic acids, may be of particular interest as biomarkers of diseases. The vast majority of gene transcripts are actually characterized as noncoding RNAs (ncRNAs) and are clusters of RNAs that do not encode functional proteins. They can be small, about 20 nucleotides in length, and are known as microRNAs (miRNAs), or transcripts over 200 nucleotides in length, defined as long noncoding RNAs (lncRNAs). LncRNAs are a large group of ncRNAs over 200 nucleotides in length. LncRNAs, as regulatory factors, play an important role in complex cellular processes such as apoptosis, growth, differentiation, proliferation, etc. Recently, the results of many studies have also shown their essential role in carcinogenesis. Endogenous lncRNAs can be secreted by tumor cells into human biological fluids in the form of microvesicles, exosomes, or protein complexes, thereby forming circulating lncRNAs that are not degraded by RNA and are in a stable state. Aberrant expression of lncRNAs has been observed in cancer patients. In this context, endogenous lncRNAs can regulate the basic characteristics of cancer cells by controlling the expression of oncogenes associated with their suppressive and oncogenic functions. Therefore, circulating lncRNAs can be excellent biomarkers in cancer as well. This paper provides an overview of current research on the functional role of lncRNAs in cancer and their potential clinical applications as diagnostic biomarkers and therapeutic targets for cancer.
Collapse
Affiliation(s)
| | | | - Albert Sufianov
- Federal Center of Neurosurgery, Tyumen, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russia
| | - Yang Guang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Brain Science, Harbin Medical University, Harbin, China
| |
Collapse
|
38
|
Chuang TD, Quintanilla D, Boos D, Khorram O. Differential Expression of Super-Enhancer-Associated Long Non-coding RNAs in Uterine Leiomyomas. Reprod Sci 2022; 29:2960-2976. [PMID: 35641855 PMCID: PMC9537225 DOI: 10.1007/s43032-022-00981-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Super-enhancer-associated long non-coding RNAs (SE-lncRNAs) are a specific set of lncRNAs transcribed from super-enhancer (SE) genomic regions. Recent studies have revealed that SE-lncRNAs play essential roles in tumorigenesis through the regulation of oncogenes. The objective of this study was to elucidate the expression profile of SE-lncRNAs with concurrent assessment of associated mRNAs in leiomyomas and paired myometrium. Arraystar SE-lncRNAs arrays were used to systematically profile the differentially expressed SE-lncRNAs along with the corresponding SE-regulated protein coding genes in eight leiomyomas and paired myometrium. The analysis indicated 7680 SE-lncRNAs were expressed, of which 721 SE-lncRNAs were overexpressed, while 247 SE-lncRNAs were underexpressed by 1.5-fold or greater in leiomyoma. Thirteen novel SE-lncRNAs and their corresponding protein coding genes were selected, and their expression was confirmed in eighty-one paired leiomyoma tissues by quantitative real-time PCR. The thirteen pairs of SE-lncRNAs and their corresponding protein coding genes included RP11-353N14.2/CBX4, SOCS2-AS1/SOCS2, RP1-170O19.14/HOXA11, CASC15/PRL, EGFLAM-AS1/EGFLAM, RP11-225H22/NEURL1, RP5-1086K13.1/CD58, AC092839.3/SPTBN1, RP11-69I8.3/CTGF, TM4SF1-AS1/TM4SF1, RP11-373D23/FOSL2, RP11-399K21.11/COMTD1, and CTB-113P19.1/SPARC. Among these SE-lncRNAs, the expression of SOCS2-AS1/SOCS2, RP11-353N14.2/CBX4, RP1-170O19.14/HOXA11, and RP11-225H22/NEURL1 was significantly higher in African Americans as compared with Caucasians. The expression of RP11-353N14.2/CBX4, SOCS2-AS1/SOCS2, CASC15/PRL, and CTB-113P19.1/SPARC was significantly higher in tumors with MED12-mutation-positive as compared with MED12-mutation-negative tumors. Collectively, our results indicate that the differential expression of SE in leiomyomas is another mechanism contributing to dysregulation of protein coding genes in leiomyomas and that race and MED12 mutation can influence the expression of a select group of SE.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, 90502, USA
| | - Derek Quintanilla
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, 90502, USA
| | - Drake Boos
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, 90502, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA, 90502, USA.
| |
Collapse
|
39
|
Liao J, Zhang Z, Yuan Q, Luo L, Hu X. The Mouse Anxa6/miR-9-5p/Anxa2 Axis Modulates TGF-β1-induced Mouse Hepatic Stellate Cell (mHSC) Activation and CCl 4-caused Liver Fibrosis. Toxicol Lett 2022; 362:38-49. [PMID: 35483553 DOI: 10.1016/j.toxlet.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 01/18/2023]
Abstract
Chronic liver disease such as hepatic fibrosis is a major cause of morbidity and mortality and has been related to high individual risk of hepatocellular carcinoma (HCC). Hepatic stellate cells (HSCs) activation is a central event of hepatic fibrosis progression. In this study, the up-regulation of lncRNA ANXA2P2 (mouse Anxa6) was found in liver fibrosis. Within CCl4-caused liver fibrosis murine model, Anxa6 knockdown partially ameliorated CCl4-induced hepatic fibrosis and blocked the PI3K/Akt signaling activation. In TGF-β1-stimulated HSCs, Anxa6 knockdown partially inhibited TGF-β1-induced HSC activation and blocked the PI3K/Akt signaling activation. Mouse Anxa6 downstream mmu-miR-9-5p directly targeted Anxa2; Anxa6 negatively regulated mmu-miR-9-5p, and mmu-miR-9-5p negatively regulated mouse Anxa2. In TGF-β1-stimulated HSCs, miR-9-5p inhibitor promoted TGF-β1-induced HSC activation and PI3K/Akt signaling activation, whereas Anxa2 knockdown exerted opposite effects; Anxa2 knockdown significantly attenuated miR-9-5p inhibitor effects upon TGF-β1-stimulated HSCs. In conclusion, lncRNA ANXA2P2 (mouse Anxa6) expression is up-regulated in hepatic fibrosis and exerts pro-fibrotic effects on CCl4-caused liver fibrosis model mice and TGF-β1-stimulated HSCs. The mouse Anxa6/miR-9-5p/Anxa2 axis and the PI3K/Akt pathway might participate in the functions of lncRNA ANXA2P2 (mouse Anxa6) on hepatic fibrosis.
Collapse
Affiliation(s)
- Jinmao Liao
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheng Zhang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Lidan Luo
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Xiaoxuan Hu
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
40
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
41
|
Yang Z, Pu M, Dong X, Yang H, Chang W, Liu T, Zhang X. CTCF-activated SNHG16 facilitates gastrointestinal stromal tumor by targeting miR-128-3p/CASC3 axis. Exp Cell Res 2022; 417:113131. [DOI: 10.1016/j.yexcr.2022.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
|
42
|
Ebrahimi N, Rezanejad H, Asadi MH, Vallian S. LncRNA LOC100507144 acts as a novel regulator of CD44/Nanog/Sox2/miR-302/miR-21 axis in colorectal cancer. Biofactors 2022; 48:164-180. [PMID: 34882869 DOI: 10.1002/biof.1813] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) appear as vital regulators and biomarkers in many human cancers. LOC100507144 is a validated lncRNA located in the neighborhood of CD44 in a head-to-head configuration, and its expression and function in cancer cells are still unknown. This research aimed to find out more about the expression and function of this lncRNA in colorectal cancer (CRC). Our expression data represented that the expression of LOC100507144 transcript was substantially higher in tumors with advanced stages, lymph node metastasis, and vascular invasion. Loss-of-function examinations demonstrated that LOC100507144 contributed to CRC cell proliferation by restricting apoptosis, cellular senescence, and promoting cell cycle. Gain-of-function experiments also confirmed these results. Our data illustrated that LOC100507144 enhanced the migration and the epithelial to mesenchymal transition (EMT) of CRC cells, accompanied by the generation of cells with stemness characteristics. Our findings revealed that the knocking-down of LOC100507144 inhibited the expression of crucial stemness factors, including CD44, Nanog, and Sox2, and accordingly resulted in suppressing their targets, miR-302 and miR-21. Overall, the current study's findings for the first time reveal that LOC100507144 could enhance CRC progression and metastasis through regulation of the CD44/Nanog/Sox2/miR-302/miR-21 axis.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hajar Rezanejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Malek Hossein Asadi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Sadeq Vallian
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
43
|
Jia CL, Yang F, Li R. Prognostic Model Construction and Immune Microenvironment Analysis of Breast Cancer Based on Ferroptosis-Related lncRNAs. Int J Gen Med 2021; 14:9817-9831. [PMID: 34949938 PMCID: PMC8691199 DOI: 10.2147/ijgm.s342783] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To construct a prognostic model of breast cancer using ferroptosis-related lncRNAs and explore novel therapeutic targets. Materials and Methods A prognostic characteristic model based on differential expression of ferroptosis-related lncRNAs in breast cancer was established based on TCGA data. Results Eleven ferroptosis-related lncRNAs associated with breast cancer prognosis were identified. Kaplan–Meier analysis suggested that high-risk lncRNA signatures correspond to a poor prognosis. The AUC of the signature lncRNAs was 0.682, demonstrating that it is accurate in predicting BC prognosis. GSEA showed that ferroptosis-related lncRNAs in high-risk individuals are mainly enriched in cell cycle, cell adhesion and tumor pathways. Immunity and gene expression analysis revealed that APC co-inhibition, check-point, HLA, inflammation-promoting and T cell co-stimulation among others were significantly different between the high-and low-risk group. Three immune checkpoints were highly expressed in the high-risk group. Conclusion Ferroptosis-related lncRNAs can be used as a prognostic feature to construct a prognostic model of breast cancer, based on which early detection markers, therapeutic targets and anti-tumor immune microenvironment can be studied, and clinical treatment can also be instructive.
Collapse
Affiliation(s)
- Cong Li Jia
- Institute of Plastic Surgery, Weifang Medical College, Weifang, Shandong, People's Republic of China
| | - Fu Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Ruining Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
44
|
Eptaminitaki GC, Wolff N, Stellas D, Sifakis K, Baritaki S. Long Non-Coding RNAs (lncRNAs) in Response and Resistance to Cancer Immunosurveillance and Immunotherapy. Cells 2021; 10:cells10123313. [PMID: 34943820 PMCID: PMC8699382 DOI: 10.3390/cells10123313] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulatory elements in cellular functions in states of both normalcy and disease, including cancer. LncRNAs can influence not only tumorigenesis but also cancer features such as metastasis, angiogenesis and resistance to chemo-and immune-mediated apoptotic signals. Several lncRNAs have been demonstrated to control directly or indirectly the number, type and activities of distinct immune cell populations of adaptive and innate immunities within and without the tumor microenvironment. The disruption of lncRNA expression in both cancer and immune cells may reflect alterations in tumor responses to cancer immunosurveillance and immunotherapy, thus providing new insights into lncRNA biomarker-based prognostic and therapeutic cancer assessment. Here we present an overview on lncRNAs’ functions and underlying molecular mechanisms related to cancer immunity and conventional immunotherapy, with the expectation that any elucidations may lead to a better understanding and management of cancer immune escape and response to current and future immunotherapeutics.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Nora Wolff
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece;
| | - Konstantinos Sifakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (G.C.E.); (N.W.); (K.S.)
- Correspondence: ; Tel.: +30-2810-39-4727
| |
Collapse
|
45
|
Gan L, Shangguan Q, Zhang F, Tong X, Qi D, Zhao Y, Ye X. HBV HBx-Downregulated lncRNA LINC01010 Attenuates Cell Proliferation by Interacting with Vimentin. Int J Mol Sci 2021; 22:ijms222212497. [PMID: 34830378 PMCID: PMC8620790 DOI: 10.3390/ijms222212497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus (HBV) infection is closely related to hepatocellular carcinoma (HCC) development. To investigate the mechanism of HBV causing HCC, we previously analyzed the transcription of the HBV-transgenic cell line HepG2-4D14 and parental HepG2 cells and identified a subset of long noncoding RNAs (lncRNAs) differentially expressed between them. In this study, we focus on lncRNA LINC01010, as it is significantly downregulated in HepG2-4D14 cells and in liver tissues of HCC patients, and positively correlated with survival. We found that HBV-encoded HBx can reduce the transcription of LINC01010. Functional analysis showed that the overexpression of LINC01010 inhibits proliferation, migration and invasion of HepG2 cells while the knockdown of LINC01010 promotes these processes. By taking the approach of RNA immunoprecipitation (RIP) and mass spectrometry, we identified that LINC01010 can interact with vimentin. Further studies demonstrated that LINC01010 negatively affects the vimentin network extension and causes more rapid subunit exchange and lower stability of vimentin filaments. In addition, LINC01010 can reduce the amount of insoluble vimentin within cells, which suggests that LINC01010 interfers with vimentin polymerization. These data indicate that LINC01010 can inhibit the assembly of vimentin filament. Thus, we revealed that HBV HBx-downregulated LINC01010, which suppresses cell proliferation and migration by negatively regulating the formation of vimentin filament. Taken together, LINC01010 is a potential tumor suppressor that may restrain HBV-related HCC development.
Collapse
Affiliation(s)
- Lipeng Gan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (L.G.); (Q.S.); (F.Z.); (X.T.); (D.Q.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Shangguan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (L.G.); (Q.S.); (F.Z.); (X.T.); (D.Q.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (L.G.); (Q.S.); (F.Z.); (X.T.); (D.Q.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (L.G.); (Q.S.); (F.Z.); (X.T.); (D.Q.)
| | - Dandan Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (L.G.); (Q.S.); (F.Z.); (X.T.); (D.Q.)
| | - Yan Zhao
- Department of General Surgery, Strategic Support Force Medical Center, No.9 Anxiang Beili, Chaoyang District, Beijing 100101, China;
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; (L.G.); (Q.S.); (F.Z.); (X.T.); (D.Q.)
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-010-64807508
| |
Collapse
|
46
|
Chuang TD, Quintanilla D, Boos D, Khorram O. Long Noncoding RNA MIAT Modulates the Extracellular Matrix Deposition in Leiomyomas by Sponging MiR-29 Family. Endocrinology 2021; 162:6365958. [PMID: 34491311 PMCID: PMC8459448 DOI: 10.1210/endocr/bqab186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 01/01/2023]
Abstract
The objective of this study was to determine the expression and functional role of a long noncoding RNA (lncRNA) MIAT (myocardial infarction-associated transcript) in leiomyoma pathogenesis. Leiomyoma compared with myometrium (n = 66) expressed significantly more MIAT that was independent of race/ethnicity and menstrual cycle phase but dependent on MED12 (mediator complex subunit 12) mutation status. Leiomyomas bearing the MED12 mutation expressed higher levels of MIAT and lower levels of microRNA 29 family (miR-29a, -b, and -c) compared with MED12 wild-type leiomyomas. Using luciferase reporter activity and RNA immunoprecipitation analysis, MIAT was shown to sponge the miR-29 family. In a 3-dimensional spheroid culture system, transient transfection of MIAT siRNA in leiomyoma smooth muscle cell (LSMC) spheroids resulted in upregulation of miR-29 family and downregulation of miR-29 targets, collagen type I (COL1A1), collagen type III (COL3A1), and TGF-β3 (transforming growth factor β-3). Treatment of LSMC spheroids with TGF-β3 induced COL1A1, COL3A1, and MIAT levels, but repressed miR-29 family expression. Knockdown of MIAT in LSMC spheroids blocked the effects of TGF-β3 on the induction of COL1A1 and COL3A1 expression. Collectively, these results underscore the physiological significance of MIAT in extracellular matrix accumulation in leiomyoma.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Ob/Gyn Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA 90502, USA
| | - Derek Quintanilla
- Department of Ob/Gyn Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA 90502, USA
| | - Drake Boos
- Department of Ob/Gyn Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA 90502, USA
| | - Omid Khorram
- Department of Ob/Gyn Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA 90502, USA
- Correspondence: Omid Khorram, MD, PhD, Department of Ob/Gyn, Harbor-UCLA Medical Center, 1124 W. Carson St., Box 467, Torrance, CA 90502, USA.
| |
Collapse
|
47
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES In recent years, long non-coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. DESIGN AND METHODS Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin-Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016-2021/5/1, except for Kashin-Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. RESULTS LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. CONCLUSIONS Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Dan Xing
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Qingxi Zhang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Hui Li
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianjing Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Zihao He
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| |
Collapse
|
48
|
Sun R, He XY, Mei C, Ou CL. Role of exosomal long non-coding RNAs in colorectal cancer. World J Gastrointest Oncol 2021; 13:867-878. [PMID: 34457192 PMCID: PMC8371516 DOI: 10.4251/wjgo.v13.i8.867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a class of small extracellular vesicles, 30-150 nm in diameter, that transfer biological information (e.g., DNA, RNA, and protein) via cell-to-cell communication. Exosomes play critical roles in the occurrence and development of human cancers, including colorectal cancer (CRC). Recent studies have shown that long non-coding RNAs (lncRNAs) can be encapsulated in exosomes, which transfer lncRNAs from secretory cells into recipient cells. This process affects the progression of CRC, since exosomal lncRNAs display special and extensive functions in CRC tumorigenesis, including malignant proliferation, metastasis, chemoresistance, and inflammatory response. Moreover, due to their specificity and sensitivity, exosomal lncRNAs are released into body fluids (e.g., urine, sputum, and plasma), which have the potential to be biomarkers of CRC tumorigenesis within screening efforts and medical and epidemiologic research. In this review, we aim to clarify the function and mechanism of exosomal lncRNAs in CRC tumorigenesis and provide a strategy for early diagnosis and medical treatment of this malignancy.
Collapse
Affiliation(s)
- Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Yun He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Chun-Lin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
49
|
Barazetti JF, Jucoski TS, Carvalho TM, Veiga RN, Kohler AF, Baig J, Al Bizri H, Gradia DF, Mader S, Carvalho de Oliveira J. From Micro to Long: Non-Coding RNAs in Tamoxifen Resistance of Breast Cancer Cells. Cancers (Basel) 2021; 13:3688. [PMID: 34359587 PMCID: PMC8345104 DOI: 10.3390/cancers13153688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality among women. Two thirds of patients are classified as hormone receptor positive, based on expression of estrogen receptor alpha (ERα), the main driver of breast cancer cell proliferation, and/or progesterone receptor, which is regulated by ERα. Despite presenting the best prognosis, these tumors can recur when patients acquire resistance to treatment by aromatase inhibitors or antiestrogen such as tamoxifen (Tam). The mechanisms that are involved in Tam resistance are complex and involve multiple signaling pathways. Recently, roles for microRNAs and lncRNAs in controlling ER expression and/or tamoxifen action have been described, but the underlying mechanisms are still little explored. In this review, we will discuss the current state of knowledge on the roles of microRNAs and lncRNAs in the main mechanisms of tamoxifen resistance in hormone receptor positive breast cancer. In the future, this knowledge can be used to identify patients at a greater risk of relapse due to the expression patterns of ncRNAs that impact response to Tam, in order to guide their treatment more efficiently and possibly to design therapeutic strategies to bypass mechanisms of resistance.
Collapse
Affiliation(s)
- Jéssica Fernanda Barazetti
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tayana Shultz Jucoski
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Tamyres Mingorance Carvalho
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Rafaela Nasser Veiga
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Jumanah Baig
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Hend Al Bizri
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
| | - Daniela Fiori Gradia
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (J.B.); (H.A.B.)
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jaqueline Carvalho de Oliveira
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-000, Parana, Brazil; (J.F.B.); (T.S.J.); (T.M.C.); (R.N.V.); (A.F.K.); (D.F.G.)
| |
Collapse
|
50
|
Maleki M, Khelghati N, Alemi F, Younesi S, Asemi Z, Abolhasan R, Bazdar M, Samadi-Kafil H, Yousefi B. Multiple interactions between melatonin and non-coding RNAs in cancer biology. Chem Biol Drug Des 2021; 98:323-340. [PMID: 33905613 DOI: 10.1111/cbdd.13849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The melatonin hormone secreted by the pineal gland is involved in physiological functions such as growth and maturation, circadian cycles, and biological activities including antioxidants, anti-tumor, and anti-ischemia. Melatonin not only interacts with proteins but also has functional effects on regulatory RNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). In this study, we overview various physiological and pathological conditions affecting melatonin through lncRNA and miRNA. The information compiled herein will serve as a solid foundation to formulate ideas for future mechanistic studies on melatonin. It will also provide a chance to more clarify the emerging functions of the non-coding transcriptome.
Collapse
Affiliation(s)
- Masomeh Maleki
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Khelghati
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Simin Younesi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia
| | - Zatollah Asemi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Vic., Australia.,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rozita Abolhasan
- Stem Cell and Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahtab Bazdar
- Department of Clinical Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|