1
|
Liu Y, Hu L, Li Z, Zhu H, Dou X, Ma Y, Qin X, Wang X, Xia X, Dong Q. Elucidating the biofilm formation process, microstructure and functional gene expression of Listeria monocytogenes in beef juice. Int J Food Microbiol 2025; 434:111160. [PMID: 40106873 DOI: 10.1016/j.ijfoodmicro.2025.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/02/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Listeria monocytogenes biofilm is recognized as a frequent cross-contamination source in the food industry, with raw beef and beef products as common food reservoirs. L. monocytogenes sequence types 9 (ST9) and ST8 are frequently isolated in meats and meat processing environment. In this study, beef juice was selected and compared to a laboratory medium (tryptone soy broth with 0.6 % yeast extract, TSB-YE). The purpose of this work was to investigate the effect of beef juice on the biofilm formation of ST9 and ST8 strains, including biofilm microstructure and modelling the biofilm formation process. Then the expression of biofilm functional genes in two culture media was also investigated. L. monocytogenes ST9 and ST8 can form a dense three-dimensional structure biofilm with multilayers of cells in beef juice after 48 h of incubation, but both strains formed a monolayer biofilm structure in TSB-YE. The ST9 strain developed more sessile cells on the stainless-steel surfaces than the ST8 strain under the same culture conditions. The Logistic model showed a good fit for with the biofilm formation process, and the estimated model parameters in beef juice and TSB-YE were considerably different. Under the same conditions, the maximum specific biofilm formation rate (μmax) in beef juice was higher than that in TSB-YE. This indicated that beef juice can facilitate the biofilm formation of L. monocytogenes, suggesting that the particles in beef juice act as a surface conditioner to support attachment. However, the maximum counts of L. monocytogenes biofilm formed on stainless steel coupon (Ymax) in beef juice was smaller than that in TSB-YE. The ST9 strain exhibited a stronger biofilm formation ability than the ST8 strain, and this was consistent with the scanning electron microscopy images. In the corresponding culture suspensions, the number of adherent cells increases with the number of planktonic cells. Moreover, the expression of biofilm functional genes was significantly different in the two culture media. Compared to biofilm cultured in TSB-YE, the expression of the agrA gene of biofilm in beef juice was significantly down-regulated for both the ST9 and the ST8 strains, and the expression of the inlB and the actA genes were dramatically up-regulated for the ST8 strain. Our results suggested that beef juice promotes biofilm formation of L. monocytogenes in meat processing and provide new insights into controlling biofilm.
Collapse
Affiliation(s)
- Yangtai Liu
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Lili Hu
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Zhuosi Li
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Huajian Zhu
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Xin Dou
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Yue Ma
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Xiaojie Qin
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Xiang Wang
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Xuejuan Xia
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China
| | - Qingli Dong
- University of Shanghai for Science and Technology, 516 Jun Gong Rd., Shanghai 200093, China.
| |
Collapse
|
2
|
Hosseini H, Abdollahzadeh E, Pilevar Z. Addition of lime juice and NaCl to minced seafood may stimulate the expression of Listeria monocytogenes virulence, adhesion, and stress response genes. Food Sci Nutr 2024; 12:4615-4622. [PMID: 39055235 PMCID: PMC11266898 DOI: 10.1002/fsn3.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 07/27/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic bacterium responsible for deadly listeriosis outbreaks. This pathogen has been recognized as a significant food-borne pathogen in seafood products. The present study aimed to investigate the transcript levels of virulence, adhesion, and stress response genes of L. monocytogenes upon exposure to sublethal levels of lime juice and NaCl in shrimp matrix. For this purpose, minced and broth shrimp samples (control, 2% NaCl, 5% NaCl, 25 μL/mL lime, and 50 μL/mL lime, as well as 2% NaCl+25 μL/mL lime) were inoculated with approximately 107 CFU/g or ml of L. monocytogenes, and subsequently, the samples were stored at 12°C or 37°C. For the minced samples, the transcription of one stress-related (sigB), two adhesion (imo1634 and imo1847), and four virulence (hly, prf, intA, and plc) genes was assessed by RT-qPCR after different storage times (0 and 48 h). Results showed that the transcript levels of sigB, imo1847, and imo1634 genes increased with increasing storage temperatures of shrimp broth (12°C to 37°C). At the beginning, the transcription of the studied genes decreased in all treatments of minced shrimp; however, after 48 h of storage at 12°C, the transcript levels of hly, prf, imo1847, imo1634, and intA genes were significantly upregulated up to 0.5-9 log2 fold-change in all treatments compared to the control group (p < .05). These results highlight that the survived L. monocytogenes after exposure to moderate salt content or lime juice could represent enhanced virulence and adhesion capabilities, posing a significant public health risk.
Collapse
Affiliation(s)
- Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnoloyShahid Beheshti University of Medical SciencesTehranIran
| | - Esmail Abdollahzadeh
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural ResearchEducation and Extension Organization (AREEO)RashtIran
| | - Zahra Pilevar
- School of HealthArak University of Medical SciencesArakIran
| |
Collapse
|
3
|
Dishan A, Barel M, Hizlisoy S, Arslan RS, Hizlisoy H, Gundog DA, Al S, Gonulalan Z. The ARIMA model approach for the biofilm-forming capacity prediction of Listeria monocytogenes recovered from carcasses. BMC Vet Res 2024; 20:123. [PMID: 38532403 DOI: 10.1186/s12917-024-03950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
The present study aimed to predict the biofilm-formation ability of L. monocytogenes isolates obtained from cattle carcasses via the ARIMA model at different temperature parameters. The identification of L. monocytogenes obtained from carcass samples collected from slaughterhouses was determined by PCR. The biofilm-forming abilities of isolates were phenotypically determined by calculating the OD value and categorizing the ability via the microplate test. The presence of some virulence genes related to biofilm was revealed by QPCR to support the biofilm profile genotypically. Biofilm-formation of the isolates was evaluated at different temperature parameters (37 °C, 22 °C, 4 °C and - 20 °C). Estimated OD values were obtained with the ARIMA model by dividing them into eight different estimation groups. The prediction performance was determined by performance measurement metrics (ME, MAE, MSE, RMSE, MPE and MAPE). One week of incubation showed all isolates strongly formed biofilm at all controlled temperatures except - 20 °C. In terms of the metrics examined, the 3 days to 7 days forecast group has a reasonable prediction accuracy based on OD values occurring at 37 °C, 22 °C, and 4 °C. It was concluded that measurements at 22 °C had lower prediction accuracy compared to predictions from other temperatures. Overall, the best OD prediction accuracy belonged to the data obtained from biofilm formation at -20 °C. For all temperatures studied, especially after the 3 days to 7 days forecast group, there was a significant decrease in the error metrics and the forecast accuracy increased. When evaluating the best prediction group, the lowest RMSE at 37 °C (0.055), 22 °C (0.027) and 4 °C (0.024) belonged to the 15 days to 21 days group. For the OD predictions obtained at -20 °C, the 15 days to 21 days prediction group had also good performance (0.011) and the lowest RMSE belongs to the 7 days to 15 days group (0.007). In conclusion, this study will guide in using indicator parameters to evaluate biofilm forming ability to predict optimum temperature-time. The ARIMA models integrated with this study can be useful tools for industrial application and risk assessment studies using different parameters such as pH, NaCl concentration, and especially temperature applied during food processing and storage on the biofilm-formation ability of L. monocytogenes.
Collapse
Affiliation(s)
- Adalet Dishan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Yozgat Bozok University, Yozgat, Turkey.
| | - Mukaddes Barel
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Serhat Hizlisoy
- Faculty of Engineering and Architecture, Department of Computer Engineering, Kayseri University, Kayseri, Turkey
| | - Recep Sinan Arslan
- Faculty of Engineering and Architecture, Department of Computer Engineering, Kayseri University, Kayseri, Turkey
| | - Harun Hizlisoy
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Dursun Alp Gundog
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Serhat Al
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Faculty of Veterinary Medicine, Department of Veterinary Public Health, Erciyes University, Kayseri, Turkey
| |
Collapse
|
4
|
Bannenberg JW, Boeren S, Zwietering MH, Abee T, den Besten HMW. Insight in lag phase of Listeria monocytogenes during enrichment through proteomic and transcriptomic responses. Food Res Int 2024; 175:113609. [PMID: 38128973 DOI: 10.1016/j.foodres.2023.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
Abstract
The dynamics of the enrichment-based detection procedure of the foodborne pathogen Listeria monocytogenes from food still remains poorly understood. This enrichment is crucial in the reliable detection of this pathogen and more insight into the recovery mechanism during this step is important to advance our understanding of lag phase behaviour during enrichment. In this study we combined transcriptomic and proteomic analyses to better understand the physiological processes within the lag phase of L. monocytogenes during enrichment. Upon transfer of BHI-cultured stationary phase L. monocytogenes cells to half-Fraser enrichment broth (HFB), motility-associated genes and proteins were downregulated, while expression of metal uptake transporters, resuscitation-promoting factors that stimulate growth from dormancy, antibiotic efflux pumps and oxidative stress proteins were upregulated. Next to this, when cells with a heat stress history were cultured in enrichment broth, proteins necessary for recovery were upregulated with functions in DNA-damage repair, protein refolding, cell-wall repair, and zinc transport. Proteomic results pointed to possible factors that support shortening the lag duration, including the addition of 10 µM zinc and the addition of spent HFB containing presumed concentrations of resuscitation-promoting factors. However, these interventions did not lead to biologically relevant reduction of lag phase. Also, when cells were enriched in spent HFB, final cell concentrations were similar to enrichments in fresh HFB, indicating that the enrichment broth seems not to lack critical substrates. Concludingly, this study gives insight into the proteomic changes in the lag phase during enrichment and shows that supplementation of HFB is not the best strategy to optimize the current enrichment method.
Collapse
Affiliation(s)
- Jasper W Bannenberg
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Marcel H Zwietering
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Martín I, Córdoba JJ, Rodríguez A. Effect of acidic conditions on the growth and expression of two virulence genes of Listeria monocytogenes serotype 4b. Res Microbiol 2023; 174:104042. [PMID: 36740027 DOI: 10.1016/j.resmic.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In this work, the effect of the usual acidic conditions of dry-cured fermented foods (pH values between 4.5 and 6), on the growth and expression of the virulence genes, hly and inlA, of Listeria monocytogenes serotype 4b, was evaluated. To analyse the expression of the inlA gene, a novel real-time PCR (qPCR) method using SYBR® Green methodology was developed. L. monocytogenes levels increased as the pH did and they were kept constant throughout incubation time at pH 4.5. However, a significant increase in the relative expression of the virulence genes was detected in most of the acidic conditions in all the incubation times. The most pronounced upregulation of the relative expression of the virulence genes was found at pH 4.5. The efficient inlA-based qPCR method could be of interest to check changes in the expression of such virulence gene of this pathogenic bacterium in acidic environments.
Collapse
Affiliation(s)
- Irene Martín
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n. 10003-Cáceres, Spain
| | - Juan J Córdoba
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n. 10003-Cáceres, Spain
| | - Alicia Rodríguez
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias, s/n. 10003-Cáceres, Spain.
| |
Collapse
|
6
|
Liu Y, Yoo BB, Hwang CA, Martinez MR, Datta AR, Fratamico PM. Involvement of a putative ATP-Binding Cassette (ABC) Involved in manganese transport in virulence of Listeria monocytogenes. PLoS One 2022; 17:e0268924. [PMID: 35617277 PMCID: PMC9135185 DOI: 10.1371/journal.pone.0268924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen and the causative agent of listeriosis, a disease associated with high fatality (20–30%) and hospitalization rates (>95%). ATP-Binding Cassette (ABC) transporters have been demonstrated to be involved in the general stress response. In previous studies, in-frame deletion mutants of the ABC transporter genes, LMOf2365_1875 and LMOf2365_1877, were constructed and analyzed; however, additional work is needed to investigate the virulence potential of these deletion mutants. In this study, two in vitro methods and one in vivo model were used to investigate the virulence potential of in-frame deletion mutants of ABC transporter genes. First, the invasion efficiency in host cells was measured using the HT-29 human cell line. Second, cell-to-cell spread activity was measured using a plaque forming assay. Lastly, virulence potential of the mutants was tested in the Galleria mellonella wax moth model. Our results demonstrated that the deletion mutant, ⊿LMOf2365_1875, displayed decreased invasion and cell-to-cell spread efficiency in comparison to the wild-type, LMOf2365, indicating that LMOf2365_1875 may be required for virulence. Furthermore, the reduced virulence of these mutants was confirmed using the Galleria mellonella wax moth model. In addition, the expression levels of 15 virulence and stress-related genes were analyzed by RT-PCR assays using stationary phase cells. Our results showed that virulence-related gene expression levels from the deletion mutants were elevated (15/15 genes from ⊿LMOf2365_1877 and 7/15 genes from ⊿LMOf2365_1875) compared to the wild type LMOf2365, suggesting that ABC transporters may negatively regulate virulence gene expression under specific conditions. The expression level of the stress-related gene, clpE, also was increased in both deletion mutants, indicating the involvement of ABC transporters in the stress response. Taken together, our findings suggest that ABC transporters may be used as potential targets to develop new therapeutic strategies to control L. monocytogenes.
Collapse
Affiliation(s)
- Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
- * E-mail:
| | - Brian ByongKwon Yoo
- Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Cheng-An Hwang
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| | - Mira Rakic Martinez
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States of America
| | - Atin R. Datta
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States of America
| | - Pina M. Fratamico
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA, United States of America
| |
Collapse
|
7
|
Saint Martin C, Darsonval M, Grégoire M, Caccia N, Midoux L, Berland S, Leroy S, Dubois-Brissonnet F, Desvaux M, Briandet R. Spatial organisation of Listeria monocytogenes and Escherichia coli O157:H7 cultivated in gel matrices. Food Microbiol 2022; 103:103965. [DOI: 10.1016/j.fm.2021.103965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
|
8
|
Dong Q, Lu X, Gao B, Liu Y, Aslam MZ, Wang X, Li Z. Lactiplantibacillus plantarum subsp. plantarum and Fructooligosaccharides Combination Inhibits the Growth, Adhesion, Invasion, and Virulence of Listeria monocytogenes. Foods 2022; 11:170. [PMID: 35053902 PMCID: PMC8775058 DOI: 10.3390/foods11020170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for many food outbreaks worldwide. This study aimed to investigate the single and combined effect of fructooligosaccharides (FOS) and Lactiplantibacillus plantarum subsp. plantarum CICC 6257 (L. plantarum) on the growth, adhesion, invasion, and virulence of gene expressions of Listeria monocytogenes 19112 serotype 4b (L. monocytogenes). Results showed that L. plantarum combined with 2% and 4% (w/v) FOS significantly (p < 0.05) inhibited the growth of L. monocytogenes (3-3.5 log10 CFU/mL reduction) at the incubation temperature of 10 °C and 25 °C. Under the same combination condition, the invasion rates of L. monocytogenes to Caco-2 and BeWo cells were reduced more than 90% compared to the result of the untreated group. After L. plantarum was combined with the 2% and 4% (w/v) FOS treatment, the gene expression of actin-based motility, sigma factor, internalin A, internalin B, positive regulatory factor A, and listeriolysin O significantly (p < 0.05) were reduced over 91%, 77%, 92%, 89%, 79%, and 79% compared to the result of the untreated group, respectively. The inhibition level of the L. plantarum and FOS combination against L. monocytogenes was higher than that of FOS or L. plantarum alone. Overall, these results indicated that the L. plantarum and FOS combination might be an effective formula against L. monocytogenes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (X.L.); (B.G.); (Y.L.); (M.Z.A.); (X.W.)
| |
Collapse
|
9
|
The Effect of Incubation Temperature, Substrate and Initial pH Value on Plantaricin Activity and the Relative Transcription of pln Genes of Six Sourdough Derived Lactiplantibacillus plantarum Strains. FERMENTATION 2021. [DOI: 10.3390/fermentation7040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to assess the effect of sourdough related parameters on the growth and plantaricin activity of six Lactiplantibacillus plantarum strains against a mixture of 5 Listeria monocytogenes strains and to analyze the transcriptomic response of their pln genes. Parameters included 3 substrates (MRS broth, mMRS broth, WFE), 3 temperatures (20, 30, 37 °C), 2 initial pH values (5.0, 6.0), 2 NaCl concentrations (0.0, 1.8%) and 12 time points (ranging from 0 to 33 h). The transcriptomic response of the plantaricin genes to the aforementioned parameters was assessed after 21 h of growth. In general, plantaricin activity was strain dependent with that of Lp. plantarum strains LQC 2422, 2441, 2485 and 2516, harboring four pln genes, namely, pln423 (plαA), plαΒ, plαC and plαD, reaching 2560 AU/mL. However, strains LQC 2320 and 2520, in which 18 pln genes were detected, namely, plNC8a, plNC8b, plNC8c, plnL, plnR, plnJ, plnK, plnE, plnF, plnH, plnS, plnY, plNC8-IF, plNC8-HK, plnD, plnI, plnM and plnG, exhibited plantaricin activity barely reaching 160 AU/mL. Substrate, temperature, initial pH value and strains significantly affected plantaricin activity, while NaCl had only a marginal effect. Similarly, growth substrate and temperature had a more pronounced effect than initial pH value on gene transcription. A strong correlation between the transcription of the genes belonging to the same locus was observed; however, only a weak correlation, if any, was observed between plantaricin activity and the transcription of the genes assessed.
Collapse
|
10
|
Martín I, Alía A, Rodríguez A, Gómez F, Córdoba JJ. Growth and Expression of Virulence Genes of Listeria monocytogenes during the Processing of Dry-Cured Fermented "Salchichón" Manufactured with a Selected Lactilactobacillus sakei. BIOLOGY 2021; 10:1258. [PMID: 34943173 PMCID: PMC8698599 DOI: 10.3390/biology10121258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023]
Abstract
The effect of the dry-cured fermented processing of "salchichón" inoculated with a selected strain of Lactilactobacillus sakei (205) on the growth and transcriptional response of three virulence genes (plcA, hly, and iap) of Listeria monocytogenes was evaluated. For this, three different batches of "salchichón" were analyzed: batch B (inoculated only with L. sakei), batch L (inoculated only with L. monocytogenes), and batch L + B (inoculated with both microorganisms). Sausages were ripened for 90 days according to a traditional industrial process. The processing of "salchichón" provoked a reduction in L. monocytogenes counts of around 2 log CFU/g. The downregulation of the expression of the three genes was found at the end of ripening when the water activity (aw) of "salchichón" was <0.85 aw. The combined effect on the reduction in L. monocytogenes counts together with the downregulation in the expression of the virulence genes throughout the "salchichón" processing could be of great interest to control the hazard caused by the presence of this pathogenic bacterium.
Collapse
Affiliation(s)
| | | | - Alicia Rodríguez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n, 10003 Cáceres, Spain; (I.M.); (A.A.); (F.G.); (J.J.C.)
| | | | | |
Collapse
|
11
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
12
|
In vitro virulence potential, surface attachment and transcriptional response of sublethally injured Listeria monocytogenes following exposure to peracetic acid. Appl Environ Microbiol 2021; 88:e0158221. [PMID: 34731051 DOI: 10.1128/aem.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disinfectant Peracetic acid (PAA) can cause high levels of sublethal injury to L. monocytogenes. This study aims to evaluate phenotypic and transcriptional characteristics concerning surface attachment and virulence potential of sublethally injured L. monocytogenes ScottA and EGDe after exposure to 0.75 ppm PAA for 90 min at 4°C and subsequent incubation in TSBY at 4°C. Results showed that injured L. monocytogenes cells (99% of total population) were able to attach (after 2 and 24h) on stainless steel coupons at 4°C and 20°C. In vitro virulence assays using human intestinal epithelial Caco-2 cells showed that injured L. monocytogenes could invade host cells but could not proliferate intracellularly. In vitro virulence response was strain-dependent; injured ScottA was more invasive than EGDe. Assessment of PAA-injury at the transcriptional level showed upregulation of genes (motB, flaA) involved in flagellum motility and surface attachment. The transcriptional response of L. monocytogenes EGDe and ScottA was different; only injured ScottA demonstrated upregulation of the virulence genes inlA and plcA. Downregulation of the stress-related genes fri and kat, and upregulation of lmo0669 was observed in injured ScottA. The obtained results indicate that sublethally-injured L. monocytogenes cells may retain part of their virulence properties as well as their ability to adhere on food processing surfaces. Transmission to food products and introduction of these cells in the food chain is therefore a plausible scenario that is worth taking into consideration in terms of risk assessment. Importance L. monocytogenes is the causative agent of listeriosis a serious food-borne illness. Antimicrobial practices, such as disinfectants used for the elimination of this pathogen in food industry can produce a sublethally injured population fraction. Injured cells of this pathogen, that may survive an antimicrobial treatment, may pose a food safety-risk. Nevertheless, knowledge regarding how sublethal injury may impact important cellular traits and phenotypic responses of this pathogen is limited. This work suggests that sublethally injured L. monocytogenes cells maintain the virulence and surface attachment potential and highlights the importance of the occurrence of sublethally injured cells regarding food safety.
Collapse
|
13
|
Kokkoni EA, Andritsos N, Sakarikou C, Michailidou S, Argiriou A, Giaouris E. Investigating Transcriptomic Induction of Resistance and/or Virulence in Listeria monocytogenes Cells Surviving Sublethal Antimicrobial Exposure. Foods 2021; 10:foods10102382. [PMID: 34681431 PMCID: PMC8535302 DOI: 10.3390/foods10102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The potential transcriptomic induction of resistance and/or virulence in two L. monocytogenes strains belonging to the most frequent listeriosis-associated serovars (i.e., 1/2a and 4b), following their sublethal antimicrobial exposure, was studied through qPCR determination of the relative expression of 10 selected related genes (i.e., groEL, hly, iap, inlA, inlB, lisK, mdrD, mdrL, prfA, and sigB). To induce sublethal stress, three common antimicrobials (i.e., benzalkonium chloride, thymol, and ampicillin) were individually applied for 2 h at 37 °C against stationary phase cells of each strain, each at a sublethal concentration. In general, the expression of most of the studied genes remained either stable or was significantly downregulated following the antimicrobial exposure, with some strain-specific differences to be yet recorded. Thymol provoked downregulation of most of the studied genes, significantly limiting the expression of 6/10 and 4/10 genes in the strains of ser. 1/2a and ser. 4b, respectively, including those coding for the master regulators of stress response and virulence (SigB and PrfA, respectively), in both strains. At the same time, the two genes coding for the invasion internalin proteins (InlA and InlB), with crucial role in the onset of L. monocytogenes pathogenesis, were both importantly upregulated in ser. 4b strain. The results obtained increase our knowledge of the stress physiology of L. monocytogenes under certain sublethal antimicrobial conditions that could be encountered within the food chain and in clinical settings, and may assist in better and more effective mitigation strategies.
Collapse
Affiliation(s)
- Eleni-Anna Kokkoni
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Nikolaos Andritsos
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Athens Analysis Laboratories S.A., Microbiology Laboratory, Nafpliou 29, 14452 Metamorfosi, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
| | - Sofia Michailidou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Anagnostis Argiriou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Centre for Research and Technology Hellas (CERTH), Institute of Applied Biosciences, 57001 Thessaloniki, Greece
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Ierou Lochou 10 & Makrygianni, 81400 Myrina, Greece; (E.-A.K.); (N.A.); (C.S.); (S.M.); (A.A.)
- Correspondence: ; Tel.: +30-22540-83115
| |
Collapse
|
14
|
Al S, Disli HB, Hizlisoy H, Ertas Onmaz N, Yildirim Y, Gonulalan Z. Prevalence and molecular characterization of Listeria monocytogenes isolated from wastewater of cattle slaughterhouses in Turkey. J Appl Microbiol 2021; 132:1518-1525. [PMID: 34415644 DOI: 10.1111/jam.15261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
AIM The study aimed to investigate the role of cattle slaughterhouse wastewater as a possible source for the environmental distribution of Listeria monocytogenes. METHODS AND RESULTS Listeria spp. isolation was performed by collecting 117 wastewater samples from four different cattle slaughterhouses in Turkey. Species-specific identification was performed biochemically, and L. monocytogenes isolates were confirmed with polymerase chain reaction (PCR). In all, 71 (62.2%) of the wastewater samples were found to be positive for Listeria spp., and 17 (14.9%) of these samples were contaminated with L. monocytogenes. Pulsed field gel electrophoresis (PFGE) analysis revealed that all L. monocytogenes isolates were of different pulsotypes and isolates belonged to seven different phylogenetic clusters. Multiplex PCR analysis for genoserotypes and lineage determination showed that the isolates were divided into genoserotypes IVb and IIc in Lineages I and II. Also, it has been investigated with SYBR-Green Real-time PCR whether the L. monocytogenes isolates harboured virulence genes (hly, sigB, plcA, plcB, inlA, inlB, inlC and inlJ), and it was found that all isolates were substantially positive. Antibiotic resistance profiles and MIC values of the isolates were determined, and all L. monocytogenes isolates were found susceptible to ampicillin. In contrast, two isolates were resistant to meropenem and erythromycin, and three isolates were resistant to trimethoprim/sulfamethoxazole. CONCLUSION L. monocytogenes, which pose a threat to public health and resists to antibiotics effectively used in treatments, can environmentally spread via wastewater of cattle slaughterhouses. The wastewater of the food industry, which has rich microbiota, should be treated carefully, and possible environmental contamination should be prevented. SIGNIFICANCE AND IMPACT OF STUDY This is the first study that investigates the molecular characterization of L. monocytogenes isolated from cattle slaughterhouse wastewater and the findings represent the importance of cattle wastewater in the epidemiology of L. monocytogenes in Turkey.
Collapse
Affiliation(s)
- Serhat Al
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Hüseyin Burak Disli
- Veterinary Faculty, Food Hygiene and Technology Department, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Harun Hizlisoy
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Nurhan Ertas Onmaz
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Yeliz Yildirim
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| | - Zafer Gonulalan
- Veterinary Faculty, Food Hygiene and Technology Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
Effect of high pressure processing on the inactivation and the relative gene transcription patterns of Listeria monocytogenes in dry-cured ham. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Kim SH, Chelliah R, Ramakrishnan SR, Perumal AS, Bang WS, Rubab M, Daliri EBM, Barathikannan K, Elahi F, Park E, Jo HY, Hwang SB, Oh DH. Review on Stress Tolerance in Campylobacter jejuni. Front Cell Infect Microbiol 2021; 10:596570. [PMID: 33614524 PMCID: PMC7890702 DOI: 10.3389/fcimb.2020.596570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Campylobacter spp. are the leading global cause of bacterial colon infections in humans. Enteropathogens are subjected to several stress conditions in the host colon, food complexes, and the environment. Species of the genus Campylobacter, in collective interactions with certain enteropathogens, can manage and survive such stress conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera Klebsiella and Shigella. This review summarizes the different mechanisms of various stress-adaptive factors on the basis of species diversity in Campylobacter, including their response to various stress conditions that enhance their ability to survive on different types of food and in adverse environmental conditions. Understanding how these stress adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to overcome various challenging environments facilitates the fight against resistance mechanisms in Campylobacter spp., and aids the development of novel therapeutics to control Campylobacter in both veterinary and human populations.
Collapse
Affiliation(s)
- Se-Hun Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea.,College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sudha Rani Ramakrishnan
- School of Food Science, Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | | | - Woo-Suk Bang
- Department of Food and Nutrition, College of Human Ecology and Kinesiology, Yeungnam University, Gyeongsan, South Korea
| | - Momna Rubab
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Kaliyan Barathikannan
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eunji Park
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyeon Yeong Jo
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Su-Bin Hwang
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog Hwan Oh
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
17
|
Lucas JR, Alía A, Velasco R, Selgas MD, Cabeza MC. Effect of E-beam treatment on expression of virulence and stress-response genes of Listeria monocytogenes in dry-cured ham. Int J Food Microbiol 2021; 340:109057. [PMID: 33460999 DOI: 10.1016/j.ijfoodmicro.2021.109057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/05/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022]
Abstract
Various adverse conditions can trigger defensive mechanisms in Listeria monocytogenes that can increase the virulence of surviving cells. The objective of this study was to evaluate the expression of one stress-response (sigB) and three virulence (plcA, hly, and iap) genes in L. monocytogenes exposed to a sub lethal dose of E-beam irradiation in dry-cured ham. To accomplish this, dry-cured ham slices (10 g) were immersed in a 109 CFU/mL suspension of L. monocytogenes strain S4-2 and subsequently irradiated with 1, 2, or 3 kGy. After irradiation, samples were stored at 7 °C or 15 °C for 30 days. Absolute gene expression levels were determined by RT-qPCR, and numbers of surviving Listeria cells were assessed by microbial counts after different storage times (0, 7, 15, and 30 days). At 7 °C, after E-beam treatment at doses of 2 or 3 kGy, Listeria gene expression significantly increased (p ≤ 0.05) up to day 15. Listeria counts decreased with increasing dosage. The relationship between absolute gene expression and the number of surviving Listeria cells could indicate that sublethal doses of E-beam irradiation can increase expression of the genes studied. We observed no significant influence of storage time or temperature on gene expression (p > 0.05). Listeria that survives E-beam treatment may display increased virulence, constituting a significant potential public health risk.
Collapse
Affiliation(s)
- J R Lucas
- Food Technology Dept. Section, Veterinary Faculty, Complutense University, Avd. Puerta de Hierro s/n, 28040 Madrid, Spain.
| | - A Alía
- Food Hygiene and Safety, Meat and Meat Products Research Institute, University of Extremadura, Avda. de la Universidad, s/n., 10003 Cáceres, Spain
| | - R Velasco
- Food Technology Dept. Section, Veterinary Faculty, Complutense University, Avd. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - M D Selgas
- Food Technology Dept. Section, Veterinary Faculty, Complutense University, Avd. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - M C Cabeza
- Food Technology Dept. Section, Veterinary Faculty, Complutense University, Avd. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
18
|
Differential Modulation of Listeria monocytogenes Fitness, In Vitro Virulence, and Transcription of Virulence-Associated Genes in Response to the Presence of Different Microorganisms. Appl Environ Microbiol 2020; 86:AEM.01165-20. [PMID: 32591377 DOI: 10.1128/aem.01165-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/20/2020] [Indexed: 02/03/2023] Open
Abstract
Interactions between Listeria monocytogenes and food-associated or environmental bacteria are critical not only for the growth but also for a number of key biological processes of the microorganism. In this regard, limited information exists on the impact of other microorganisms on the virulence of L. monocytogenes In this study, the growth of L. monocytogenes was evaluated in a single culture or in coculture with L. innocua, Bacillus subtilis, Lactobacillus plantarum, or Pseudomonas aeruginosa in tryptic soy broth (10°C/10 days and 37°C/24 h). Transcriptional levels of 9 key virulence genes (inlA, inlB, inlC, inlJ, sigB, prfA, hly, plcA, and plcB) and invasion efficiency and intracellular growth in Caco-2 cells were determined for L. monocytogenes following growth in mono- or coculture for 3 days at 10°C or 9 h at 37°C. The growth of L. monocytogenes was negatively affected by the presence of L. innocua and B. subtilis, while the effect of cell-to-cell contact on L. monocytogenes growth was dependent on the competing microorganism. Cocultivation affected the in vitro virulence properties of L. monocytogenes in a microorganism-specific manner, with L. innocua mainly enhancing and B. subtilis reducing the invasion of the pathogen in Caco-2 cells. Assessment of the mRNA levels of L. monocytogenes virulence genes in the presence of the four tested bacteria revealed a complex pattern in which the observed up- or downregulation was only partially correlated with growth or in vitro virulence and mainly suggested that L. monocytogenes may display a microorganism-specific transcriptional response.IMPORTANCE Listeria monocytogenes is the etiological agent of the severe foodborne disease listeriosis. Important insight regarding the physiology and the infection biology of this microorganism has been acquired in the past 20 years. However, despite the fact that L. monocytogenes coexists with various microorganisms throughout its life cycle and during transmission from the environment to foods and then to the host, there is still limited knowledge related to the impact of surrounding microorganisms on L. monocytogenes' biological functions. In this study, we showed that L. monocytogenes modulates specific biological activities (i.e., growth and virulence potential) as a response to coexisting microorganisms and differentially alters the expression of virulence-associated genes when confronted with different bacterial genera and species. Our work suggests that the interaction with different bacteria plays a key role in the survival strategies of L. monocytogenes and supports the need to incorporate biotic factors into the research conducted to identify mechanisms deployed by this organism for establishment in different environments.
Collapse
|
19
|
Alves Â, Magalhães R, Brandão TR, Pimentel L, Rodríguez-Alcalá LM, Teixeira P, Ferreira V. Impact of exposure to cold and cold-osmotic stresses on virulence-associated characteristics of Listeria monocytogenes strains. Food Microbiol 2020; 87:103351. [DOI: 10.1016/j.fm.2019.103351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
|
20
|
Effect of Zataria multiflora Boiss. Essential oil, time, and temperature on the expression of Listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Alía A, Córdoba JJ, Rodríguez A, García C, Andrade MJ. Evaluation of the efficacy of Debaryomyces hansenii as protective culture for controlling Listeria monocytogenes in sliced dry-cured ham. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Hadjilouka A, Gkolfakis P, Patlaka A, Grounta A, Vourli G, Paramithiotis S, Touloumi G, Triantafyllou K, Drosinos EH. In Vitro Gene Transcription of Listeria monocytogenes after Exposure to Human Gastric and Duodenal Aspirates. J Food Prot 2020; 83:89-100. [PMID: 31855615 DOI: 10.4315/0362-028x.jfp-19-210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to assess, for the first time to our knowledge, Listeria monocytogenes CFU changes, as well as to determine the transcription of key virulence genes, namely, sigB, prfA, hly, plcA, plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 after in vitro exposure to human gastric and duodenal aspirates. Furthermore, investigations of the potential correlation between CFU changes and gene regulation with factors influencing gastric (proton pump inhibitor intake and presence of gastric atrophy) and duodenal pH were the secondary study aims. Gastric and duodenal fluids that were collected from 25 individuals undergoing upper gastrointestinal endoscopy were inoculated with L. monocytogenes serotype 4b strain LQC 15257 at 9 log CFU·mL-1 and incubated at 37°C for 100 min and 2 h, respectively, with the time corresponding to the actual exposure time to gastric and duodenal fluids in the human gastrointestinal tract. Sampling was performed upon gastric fluid inoculation, after incubation of the inoculated gastric fluids, upon pathogen resuspension in duodenal fluids and after incubation of the inoculated duodenal fluids. L. monocytogenes CFU changes were assessed by colony counting, as well as reverse transcription quantitative PCR by using inlB as a target. Gene transcription was assessed by reverse transcription quantitative PCR. In 56% of the cases, reduction of the pathogen CFU occurred immediately after exposure to gastric aspirate. Upregulation of hly and inlC was observed in 52 and 58% of the cases, respectively. On the contrary, no upregulation or downregulation was noticed regarding sigB, prfA, plcA, plcB, inlA, inlB, inlJ, inlP, and lmo2672. In addition, sigB and plcA transcription was positively and negatively associated, respectively, with an increase of the pH value, and inlA transcription was negatively associated with the presence of gastric atrophy. Finally, a positive correlation between the transcriptomic responses of plcB, inlA, inlB, inlC, inlJ, inlP, and lmo2672 was detected. This study revealed that the CFU of the pathogen was negatively affected after exposure to human gastroduodenal aspirates, as well as significant correlations between the characteristics of the aspirates with the virulence potential of the pathogen.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Apostolia Patlaka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Athena Grounta
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Georgia Vourli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| | - Giota Touloumi
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Research Institute and Diabetes Center "Attikon" University General Hospital, Haidari 124 62, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens 118 55, Greece (ORCID: https://orcid.org/0000-0002-6062-1701 [E.H.D.])
| |
Collapse
|
23
|
Wałecka-Zacharska E, Korkus J, Skowron K, Wietlicka-Piszcz M, Kosek-Paszkowska K, Bania J. Effect of Temperatures Used in Food Storage on Duration of Heat Stress Induced Invasiveness of L. monocytogenes. Microorganisms 2019; 7:E467. [PMID: 31627472 PMCID: PMC6843778 DOI: 10.3390/microorganisms7100467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/31/2019] [Accepted: 10/17/2019] [Indexed: 12/02/2022] Open
Abstract
The unpropitious conditions of the food processing environmenttrigger in Listeria monocytogenes stress response mechanisms that may affect the pathogen's virulence. To date, many studies have revealed that acid, osmotic, heat, cold and oxidative stress modify invasiveness of L. monocytogenes. Nonetheless, there is limited data on the duration of the stress effect on bacterial invasiveness. Since most food is stored at low or room temperatures we studied the impact of these temperatures on the duration of heat stress effect on invasiveness of 8 L. monocytogenes strains. Bacteria were heat-treated for 20 min at 54 °C and then incubated at 5 and 20 °C up to 14 days. A decrease in invasiveness over time was observed for bacteria not exposed to heating. It was found that heat shock significantly reduced the invasion capacity of all strains and the effect lasted between 7 and 14 days at both 5 and 20 °C. In conclusion, 20-min heating reduces invasion capacity of all L. monocytogenes strains; however, the stress effect is temporary and lasts between 7 and 14 days in the food storage conditions. The invasiveness of bacteria changes along with the incubation time and is temperature-dependent.
Collapse
Affiliation(s)
- Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| | - Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, 85-094 Bydgoszcz, Poland;
| | - Magdalena Wietlicka-Piszcz
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Katarzyna Kosek-Paszkowska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; (J.K.); (K.K.-P.); (J.B.)
| |
Collapse
|
24
|
Horlbog JA, Stevens MJA, Stephan R, Guldimann C. Global Transcriptional Response of Three Highly Acid-Tolerant Field Strains of Listeria monocytogenes to HCl Stress. Microorganisms 2019; 7:microorganisms7100455. [PMID: 31623206 PMCID: PMC6843411 DOI: 10.3390/microorganisms7100455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Tolerance to acid is of dual importance for the food-borne pathogen Listeria monocytogenes: acids are used as a preservative, and gastric acid is one of the first defenses within the host. There are considerable differences in the acid tolerance of strains. Here we present the transcriptomic response of acid-tolerant field strains of L. monocytogenes to HCl at pH 3.0. RNAseq revealed significant differential expression of genes involved in phosphotransferase systems, oxidative phosphorylation, cell morphology, motility, and biofilm formation. Genes in the acetoin biosynthesis pathway were upregulated, suggesting that L. monocytogenes shifts to metabolizing pyruvate to acetoin under organic acid stress. We also identified the formation of cell aggregates in microcolonies as a potential relief strategy. A motif search within the first 150 bp upstream of differentially expressed genes identified a novel potential regulatory sequence that may have a function in the regulation of virulence gene expression. Our data support a model where an excess of intracellular H+ ions is counteracted by pumping H+ out of the cytosol via cytochrome C under reduced activity of the ATP synthase. The observed morphological changes suggest that acid stress may cause cells to aggregate in biofilm microcolonies to create a more favorable microenvironment. Additionally, HCl stress in the host stomach may serve as (i) a signal to downregulate highly immunogenic flagella, and (ii) as an indicator for the imminent contact with host cells which triggers early stage virulence genes.
Collapse
Affiliation(s)
- Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| | - Claudia Guldimann
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8006 Zürich, Switzerland.
| |
Collapse
|
25
|
Sheet S, Yesupatham S, Ghosh K, Choi MS, Shim KS, Lee YS. Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme Microb Technol 2019; 133:109440. [PMID: 31874690 DOI: 10.1016/j.enzmictec.2019.109440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022]
Abstract
The present study investigated the influence of low-shear modeled microgravity (LSMMG) conditions on Listeria monocytogenes stress response (heat, cold, and acid), membrane fatty acid composition, and virulence potential as well as stress-/virulence-associated gene expression. The results showed that LSMMG-cultivated cells had lower survival rate and lower D-values under heat and acid stress conditions compared to cells grown under normal gravity (NG). Interestingly, the cold resistance was elevated in cells cultivated under LSMMG conditions when compared to NG conditions. A higher amount of anteiso-branched chain fatty acids and lower ratio of iso/anteiso were observed in LSMMG cultured cells, which would contribute to increased membrane fluidity. Under LSMMG conditions, upregulated expression of cold stress-related genes (cspA, cspB, and cspD) was noticed but no change in expression was observed for heat (dnaK, groES, clpC, clpP, and clpE) and acid stress-related genes (sigB). The LSMMG-grown cells showed inferior virulence capacity in terms of infection, cell cycle arrest, and apoptosis induction in Caco-2 cells compared to those grown under NG conditions. Approximately 3.65, 2.13, 4.02, and 2.65-fold downregulation of prfA, hly, inlA, and bsh genes, respectively, in LSMMG-cultured cells might be the reason for reduced virulence. In conclusion, these findings suggest that growth under LSMMG conditions stimulates alterations in L. monocytogenes stress/virulence response, perhaps due to changes in lipid composition and related genes expression.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Sathishkumar Yesupatham
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daehak-Ro, Daejeon, Republic of Korea
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Kuturiya, P.O. Bhadutala, Pin-721129, Paschim Medinipur, West Bengal, India
| | - Mi-Sook Choi
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yang Soo Lee
- Department of Forest Science and Technology, College of Agriculture and Life Sciences,Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
26
|
Paramithiotis S, Papadelli M, Pardali E, Mataragas M, Drosinos EH. Evaluation of Plantaricin Genes Expression During Fermentation of Raphanus sativus Roots with a Plantaricin-Producing Lactobacillus plantarum Starter. Curr Microbiol 2019; 76:909-916. [PMID: 31119361 DOI: 10.1007/s00284-019-01708-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to assess the transcription of the plnE/F, plnN, plnG, plnD and plnI genes during lactic acid fermentation of radish (Raphanus sativus) roots by Lactobacillus plantarum strain LQC 740 at 20 and 30 °C. At both temperatures, this strain dominated the fermentation process, as indicated by (GTG)5 analysis. A total of five pln genes were detected in the genome of this strain, namely plnE/F, plnN, plnG, plnD and plnI. Regarding plantaricin genes expression, no regulation was observed in the majority of the samples at both temperatures, therefore, the transcription of the pln genes was not affected by the experimental conditions, i.e. radish fermentation vs. growth in MRS broth. Although transcription of the pln genes was similar between the two conditions, bacteriocin activity was different. The maximum plantaricin activity was 87.5 AU/mL during radish fermentation and 700 AU/mL during growth in MRS broth. Thus, no apparent correlation between bacteriocin activity and transcription level of the five pln genes could be established.
Collapse
Affiliation(s)
- Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Marina Papadelli
- Department of Food Technology, Technological Educational Institute of Peloponnese, 24100, Kalamata, Greece
| | - Eleni Pardali
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Marios Mataragas
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization "DEMETER", Ethnikis Antistaseos 3, 45221, Ioannina, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
27
|
Wałecka-Zacharska E, Gmyrek R, Skowron K, Kosek-Paszkowska K, Bania J. Duration of Heat Stress Effect on Invasiveness of L. monocytogenes Strains. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1457480. [PMID: 30402461 PMCID: PMC6198540 DOI: 10.1155/2018/1457480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 09/13/2018] [Indexed: 01/17/2023]
Abstract
During food production and food conservation, as well as the passage through the human gastrointestinal (GI) tract, L. monocytogenes is exposed to many adverse conditions which may elicit a stress response. As a result the pathogen may become more resistant to other unpropitious factors and may change its virulence. It has been shown that low and high temperature, salt, low pH, and high pressure affect the invasion capacity of L. monocytogenes. However, there is a scarcity of data on the duration of the stress effect on bacterial biology, including invasiveness. The aim of this work was to determine the period during which L. monocytogenes invasiveness remains altered under optimal conditions following exposure of bacteria to mild heat shock stress. Ten L. monocytogenes strains were exposed to heat shock at 54°C for 20 minutes. Then both heat-treated and nontreated control bacteria were incubated under optimal growth conditions, 37°C, for up to 72 hours and the invasion capacity was tested. Additionally, the expression of virulence and stress response genes was investigated in 2 strains. We found that heat stress exposure significantly decreases the invasiveness of all tested strains. However, during incubation at 37°C the invasion capacity of heat-treated strains recovered to the level of nontreated controls. The observed effect was strain-dependent and lasted from less than 24 hours to 72 hours. The invasiveness of 6 out of the 10 nontreated strains decreased during incubation at 37°C. The expression of inlAB correlated with the increase of invasiveness but the decrease of invasiveness did not correlate with changes of the level of these transcripts. Conclusions. The effect of heat stress on L. monocytogenes invasiveness is strain-dependent and was transient, lasting up to 72 hours.
Collapse
Affiliation(s)
- Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Gmyrek
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, Bydgoszcz, Poland
| | - Katarzyna Kosek-Paszkowska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
28
|
Gomes CN, Passaglia J, Vilela FP, Pereira da Silva FM, Duque SS, Falcão JP. High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol 2018. [DOI: 10.1016/j.fm.2018.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Kim NH, Cho TJ, Rhee MS. Sodium Chloride Does Not Ensure Microbiological Safety of Foods: Cases and Solutions. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:1-47. [PMID: 29050664 DOI: 10.1016/bs.aambs.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Addition of salt or salt-containing water to food is one of the oldest and most effective preservation methods in history; indeed, salt-cured foods are generally recognized as microbiologically safe due to their high salinity. However, a number of microbiological risks remain. The microbiological hazards and risks associated with salt-cured foods must be addressed more in-depth as they are likely to be underestimated by previous studies. This review examined a number of scientific reports and articles about the microbiological safety of salt-cured foods, which included salted, brined, pickled, and/or marinated vegetables, meat, and seafood. The following subjects are covered in order: (1) clinical cases and outbreaks attributed to salt-cured foods; (2) the prevalence of foodborne pathogens in such foods; (3) the molecular, physiological, and virulent responses of the pathogens to the presence of NaCl in both laboratory media and food matrices; (4) the survival and fate of microorganisms in salt-cured foods (in the presence/absence of additional processes); and (5) the interaction between NaCl and other stressors in food processes (e.g., acidification, antimicrobials, drying, and heating). The review provides a comprehensive overview of potentially hazardous pathogens associated with salt-cured foods and suggests further research into effective intervention techniques that will reduce their levels in the food chain.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Liu Y, Yoo BB, Hwang CA, Suo Y, Sheen S, Khosravi P, Huang L. LMOf2365_0442 Encoding for a Fructose Specific PTS Permease IIA May Be Required for Virulence in L. monocytogenes Strain F2365. Front Microbiol 2017; 8:1611. [PMID: 28900418 PMCID: PMC5581801 DOI: 10.3389/fmicb.2017.01611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, which is a major public health concern due to the high fatality rate. LMOf2365_0442, 0443, and 0444 encode for fructose-specific EIIABC components of phosphotransferase transport system (PTS) permease that is responsible for sugar transport. In previous studies, in-frame deletion mutants of a putative fructose-specific PTS permease (LMOf2365_0442, 0443, and 0444) were constructed and analyzed. However, the virulence potential of these deletion mutants has not been studied. In this study, two in vitro methods were used to analyze the virulence potential of these L. monocytogenes deletion mutants. First, invasion assays were used to measure the invasion efficiencies to host cells using the human HT-29 cell line. Second, plaque forming assays were used to measure cell-to-cell spread in host cells. Our results showed that the deletion mutant ΔLMOf2365_0442 had reduced invasion and cell-to-cell spread efficiencies in human cell line compared to the parental strain LMOf2365, indicating that LMOf2365_0442 encoding for a fructose specific PTS permease IIA may be required for virulence in L. monocytogenes strain F2365. In addition, the gene expression levels of 15 virulence and stress-related genes were analyzed in the stationary phase cells of the deletion mutants using RT-PCR assays. Virulence-related gene expression levels were elevated in the deletion mutants ΔLMOf2365_0442-0444 compared to the wild type parental strain LMOf2365, indicating the down-regulation of virulence genes by this PTS permease in L. monocytogenes. Finally, stress-related gene clpC expression levels were also increased in all of the deletion mutants, suggesting the involvement of this PTS permease in stress response. Furthermore, these deletion mutants displayed the same pressure tolerance and the same capacity for biofilm formation compared to the wild-type parental strain LMOf2365. In summary, our findings suggest that the LMOf2365_0442 gene can be used as a potential target to develop inhibitors for new therapeutic and pathogen control strategies for public health.
Collapse
Affiliation(s)
- Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, United States
| | - Brian B Yoo
- Clinical and Environmental Microbiology Branch, Division of Healthcare Quality and Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, AtlantaGA, United States
| | - Cheng-An Hwang
- Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, United States
| | - Yujuan Suo
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural SciencesShanghai, China
| | - Shiowshuh Sheen
- Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, United States
| | - Parvaneh Khosravi
- Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, United States
| | - Lihan Huang
- Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, WyndmoorPA, United States
| |
Collapse
|
31
|
Hadjilouka A, Mavrogiannis G, Mallouchos A, Paramithiotis S, Mataragas M, Drosinos EH. Effect of lemongrass essential oil on Listeria monocytogenes gene expression. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Stollewerk K, Cruz CD, Fletcher G, Garriga M, Jofré A. The effect of mild preservation treatments on the invasiveness of different Listeria monocytogenes strains on Greenshell™ mussels. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Zilelidou E, Karmiri CV, Zoumpopoulou G, Mavrogonatou E, Kletsas D, Tsakalidou E, Papadimitriou K, Drosinos E, Skandamis P. Listeria monocytogenes Strains Underrepresented during Selective Enrichment with an ISO Method Might Dominate during Passage through Simulated Gastric Fluid and In Vitro Infection of Caco-2 Cells. Appl Environ Microbiol 2016; 82:6846-6858. [PMID: 27637880 PMCID: PMC5103084 DOI: 10.1128/aem.02120-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Various Listeria monocytogenes strains may contaminate a single food product, potentially resulting in simultaneous exposure of consumers to multiple strains. However, due to bias in strain recovery, L. monocytogenes strains isolated from foods by selective enrichment (SE) might not always represent those that can better survive the immune system of a patient. We investigated the effect of cocultivation in tryptic soy broth with 0.6% yeast extract (TSB-Y) at 10°C for 8 days on (i) the detection of L. monocytogenes strains during SE with the ISO 11290-1:1996/Amd 1:2004 protocol and (ii) the in vitro virulence of strains toward the Caco-2 human colon epithelial cancer cell line following exposure to simulated gastric fluid (SGF; pH 2.0)-HCl (37°C). We determined whether the strains which were favored by SE would be effective competitors under the conditions of challenges related to gastrointestinal passage of the pathogen. Interstrain competition of L. monocytogenes in TSB-Y determined the relative population of each strain at the beginning of SE. This in turn impacted the outcome of SE (i.e., favoring survival of competitors with better fitness) and the levels exposed subsequently to SGF. However, strong growth competitors could be outcompeted after SGF exposure and infection of Caco-2 cells by strains outgrown in TSB-Y and underdetected (or even missed) during enrichment. Our data demonstrate a preferential selection of certain L. monocytogenes strains during enrichments, often not reflecting a selective advantage of strains during infection. These findings highlight a noteworthy scenario associated with the difficulty of matching the source of infection (food) with the L. monocytogenes isolate appearing to be the causative agent during listeriosis outbreak investigations.IMPORTANCE This report is relevant to understanding the processes involved in selection and prevalence of certain L. monocytogenes strains in different environments (i.e., foods or sites of humans exposed to the pathogen). It highlights the occurrence of multiple strains in the same food as an important aspect contributing to mismatches between clinical isolates and infection sources during listeriosis outbreak investigations.
Collapse
Affiliation(s)
- Evangelia Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Christina-Vasiliki Karmiri
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Georgia Zoumpopoulou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Effie Tsakalidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Konstantinos Papadimitriou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Dairy Research, Athens, Greece
| | - Eleftherios Drosinos
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| | - Panagiotis Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Athens, Greece
| |
Collapse
|
34
|
Liu Z, Meng R, Zhao X, Shi C, Zhang X, Zhang Y, Guo N. Inhibition effect of tea tree oil onListeria monocytogenesgrowth and exotoxin proteins listeriolysin O and p60 secretion. Lett Appl Microbiol 2016; 63:450-457. [DOI: 10.1111/lam.12666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/29/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Z. Liu
- Department of Food Quality and Safety; College of Food Science and Engineering; Jilin University; Changchun China
| | - R. Meng
- Jilin Enrty-exit Inspection And Quarantine Bureau; Changchun China
| | - X. Zhao
- Department of Food Quality and Safety; College of Food Science and Engineering; Jilin University; Changchun China
| | - C. Shi
- Department of Food Quality and Safety; College of Food Science and Engineering; Jilin University; Changchun China
| | - X. Zhang
- Department of Food Quality and Safety; College of Food Science and Engineering; Jilin University; Changchun China
| | - Y. Zhang
- Department of Food Quality and Safety; College of Food Science and Engineering; Jilin University; Changchun China
| | - N. Guo
- Department of Food Quality and Safety; College of Food Science and Engineering; Jilin University; Changchun China
| |
Collapse
|
35
|
Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Arch Microbiol 2016; 199:259-265. [PMID: 27695911 DOI: 10.1007/s00203-016-1300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/25/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry. This ubiquity can be partly explained by the ability of the organism to grow and persist at very low temperatures, a consequence of its ability to accumulate cryoprotective compound called osmolytes. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the stress response genes opuCA and betL (encoding carnitine and betaine transporters, respectively) and the housekeeping gene 16S rRNA. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting cold and freezing stress, conditions usually used to preserve foods. We showed that expression of the two cold-adapted genes encoded the transporters of the cryoprotectants carnitine and betaine in ATCC 19115 and the food-isolated L. monocytogenes S1 is induced after cold and freezing stress exposure. Furthermore, transcriptional analysis of the genes encoding opuCA and betL revealed that each transporter is induced to different degrees upon cold shock of L. monocytogenes ATCC 19115 and S1. Our results confirm an increase in carnitine uptake at low temperatures more than in betaine after cold-shocked temperature compared to the non-stress control treatment. It was concluded the use of carnitine and betaine as cryoprotectants is essential for rapid induction of the tested stress response under conditions typically encountered during food preservation.
Collapse
|
36
|
Hadjilouka A, Molfeta C, Panagiotopoulou O, Paramithiotis S, Mataragas M, Drosinos EH. Expression of Listeria monocytogenes key virulence genes during growth in liquid medium, on rocket and melon at 4, 10 and 30 °C. Food Microbiol 2016; 55:7-15. [DOI: 10.1016/j.fm.2015.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
|
37
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
38
|
Zhang Y, Carpenter CE, Broadbent JR, Luo X. Influence of habituation to inorganic and organic acid conditions on the cytoplasmic membrane composition of Listeria monocytogenes. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
White SJ, McClung DM, Wilson JG, Roberts BN, Donaldson JR. Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions. J Med Microbiol 2015; 64:1287-1296. [PMID: 26307079 PMCID: PMC4755106 DOI: 10.1099/jmm.0.000160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Listeria monocytogenes is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20 % of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of L. monocytogenes to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S (P = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how L. monocytogenes senses and responds to oxygen and how this varies between invasive and non-invasive strains.
Collapse
Affiliation(s)
- Sally J White
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel M McClung
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jessica G Wilson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Brandy N Roberts
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Janet R Donaldson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
40
|
Larsen N, Jespersen L. Expression of Virulence-Related Genes in Listeria monocytogenes Grown on Danish Hard Cheese as Affected by NaCl Content. Foodborne Pathog Dis 2015; 12:536-44. [DOI: 10.1089/fpd.2014.1930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nadja Larsen
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Faculty of Science, Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
41
|
Differential gene expression profiling of Listeria monocytogenes in Cacciatore and Felino salami to reveal potential stress resistance biomarkers. Food Microbiol 2015; 46:408-417. [DOI: 10.1016/j.fm.2014.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 01/20/2023]
|
42
|
Orsi RH, Bergholz TM, Wiedmann M, Boor KJ. The Listeria monocytogenes strain 10403S BioCyc database. Database (Oxford) 2015; 2015:bav027. [PMID: 25819074 PMCID: PMC4377088 DOI: 10.1093/database/bav027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen of humans and other animals. The striking ability to survive several stresses usually used for food preservation makes L. monocytogenes one of the biggest concerns to the food industry, while the high mortality of listeriosis in specific groups of humans makes it a great concern for public health. Previous studies have shown that a regulatory network involving alternative sigma (σ) factors and transcription factors is pivotal to stress survival. However, few studies have evaluated at the metabolic networks controlled by these regulatory mechanisms. The L. monocytogenes BioCyc database uses the strain 10403S as a model. Computer-generated initial annotation for all genes also allowed for identification, annotation and display of predicted reactions and pathways carried out by a single cell. Further ongoing manual curation based on published data as well as database mining for selected genes allowed the more refined annotation of functions, which, in turn, allowed for annotation of new pathways and fine-tuning of previously defined pathways to more L. monocytogenes-specific pathways. Using RNA-Seq data, several transcription start sites and promoter regions were mapped to the 10403S genome and annotated within the database. Additionally, the identification of promoter regions and a comprehensive review of available literature allowed the annotation of several regulatory interactions involving σ factors and transcription factors. The L. monocytogenes 10403S BioCyc database is a new resource for researchers studying Listeria and related organisms. It allows users to (i) have a comprehensive view of all reactions and pathways predicted to take place within the cell in the cellular overview, as well as to (ii) upload their own data, such as differential expression data, to visualize the data in the scope of predicted pathways and regulatory networks and to carry on enrichment analyses using several different annotations available within the database.
Collapse
Affiliation(s)
- Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Teresa M Bergholz
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Makariti I, Printezi A, Kapetanakou A, Zeaki N, Skandamis P. Investigating boundaries of survival, growth and expression of genes associated with stress and virulence of Listeria monocytogenes in response to acid and osmotic stress. Food Microbiol 2015; 45:231-44. [DOI: 10.1016/j.fm.2014.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/18/2014] [Accepted: 06/22/2014] [Indexed: 01/03/2023]
|
44
|
Melo J, Andrew P, Faleiro M. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Fusco V, Quero GM. Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Compr Rev Food Sci Food Saf 2014; 13:493-537. [DOI: 10.1111/1541-4337.12074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/08/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Vincenzina Fusco
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| | - Grazia Marina Quero
- Nal. Research Council of Italy; Inst. of Sciences of Food Production (CNR-ISPA); Bari Italy
| |
Collapse
|
46
|
Mataragas M, Greppi A, Rantsiou K, Cocolin L. Gene transcription patterns of pH- and salt-stressed Listeria monocytogenes cells in simulated gastric and pancreatic conditions. J Food Prot 2014; 77:254-61. [PMID: 24490919 DOI: 10.4315/0362-028x.jfp-13-182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A Listeria monocytogenes subgenomic array, targeting 54 genes involved in the adhesion, adaptation, intracellular life cycle, invasion, and regulation of the infection cycle was used to investigate the gene expression patterns of acid- and salt-stressed Listeria cells after exposure to conditions similar to those in gastric and pancreatic fluids. Three L. monocytogenes strains, one laboratory reference strain (EGDe) and two food isolates (wild strain 12 isolated from milk and wild strain 3 isolated from fermented sausage), were used during the studies. Differences in the expressed genes were observed between the gastric and pancreatic treatments and also between the serotypes. Increased transcripts were observed of the genes belonging to the adaptation and regulation group for serotype 4b (strain 12) and to the invasion and regulation group for serotype 1/2a (strain EGDe). Interestingly, no significantly differentially expressed genes were found for serotype 3c (strain 3) in most cases. The genes related to adaptation (serotype 1/2a) and to intracellular life cycle and invasion (serotype 4b) were down-regulated in order to cope with the hostile environment of the gastric and pancreatic fluids. These findings may provide experimental evidence for the dominance of serotypes 1/2a and 4b in clinical cases of listeriosis and for the sporadic occurrence of serotype 3c.
Collapse
Affiliation(s)
- Marios Mataragas
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Via Leonardo da Vinci 44, Grugliasco, 10095 Turin, Italy; Agricultural University of Athens, Department of Food Science and Technology, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, 11855 Athens, Greece
| | - Anna Greppi
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Via Leonardo da Vinci 44, Grugliasco, 10095 Turin, Italy
| | - Kalliopi Rantsiou
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Via Leonardo da Vinci 44, Grugliasco, 10095 Turin, Italy
| | - Luca Cocolin
- Università di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Via Leonardo da Vinci 44, Grugliasco, 10095 Turin, Italy.
| |
Collapse
|
47
|
Giaouris E, Chorianopoulos N, Nychas GJ. Impact of acid adaptation on attachment of Listeria monocytogenes to stainless steel during long-term incubation under low or moderate temperature conditions and on subsequent recalcitrance of attached cells to lethal acid treatments. Int J Food Microbiol 2013; 171:1-7. [PMID: 24296256 DOI: 10.1016/j.ijfoodmicro.2013.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/06/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
This study aimed to evaluate the possible impact of acid adaptation of Listeria monocytogenes cells on their attachment to stainless steel (SS) during long-term incubation under either low or moderate temperature conditions and on the subsequent recalcitrance of attached cells to lethal acid treatments. Initially, nonadapted or acid-adapted stationary phase L. monocytogenes cells were used to inoculate (ca. 10⁸ CFU/ml) brain-heart infusion (BHI) broth in test tubes containing vertically placed SS coupons. Incubation was carried out at either 5 or 30 °C for up to 15 days, under static conditions. On the 5th, 10th and 15th days of incubation, attached cells were subjected to lethal acid treatments by exposing them, for either 6 or 60 min, to pH 2, adjusted with either hydrochloric or lactic acid. Following the acid treatments, remaining viable cells were detached (through strong vortexing with glass beads) and enumerated by agar plating, and also indirectly quantified by conductance measurements via their metabolic activity. Results obtained from both quantification techniques, employed here in parallel, revealed that although the numbers of attached cells for nonadapted and acid-adapted ones were similar, the latter were found to present significantly (p<0.05) increased recalcitrance to all the acid treatments for both incubation temperatures and all sampling days. In addition and regardless of acid adaptation, when long (60 min) acid treatments were applied, conductance measurements revealed that the weak organic lactic acid exhibited significantly (p<0.05) stronger antilisterial activity compared to the strong inorganic hydrochloric acid (at the same pH value of 2). To conclude, present results show that acid adaptation of L. monocytogenes cells during their planktonic growth is conserved even after 15 days of incubation under both low and moderate temperature conditions, and results in the increased recalcitrance of their sessile population to otherwise lethal acid treatments. This "stress hardening" should be severely taken into account when acidic decontamination interventions are used to kill attached to equipment surfaces cells of this important pathogenic bacterium.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Mitropoliti Ioakeim 2, Myrina 81400, Lemnos Island, Greece.
| | - Nikos Chorianopoulos
- Veterinary Research Institute of Athens, Greek Agricultural Organization "Demeter", Neapoleos 25, Aghia Paraskeui 15310, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens (AUA) Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
48
|
Reference Gene Selection in Carnobacterium maltaromaticum, Lactobacillus curvatus, and Listeria innocua Subjected to Temperature and Salt Stress. Mol Biotechnol 2013; 56:210-22. [DOI: 10.1007/s12033-013-9697-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Kumar-Phillips GS, Hanning I, Slavik M. Influence of acid-adaptation of Campylobacter jejuni on adhesion and invasion of INT 407 cells. Foodborne Pathog Dis 2013; 10:1037-43. [PMID: 23952474 DOI: 10.1089/fpd.2013.1544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to determine the influence of acid-adaptation on the survival as well as adhesion and invasion of human intestinal cells by nine Campylobacter jejuni strains after exposure to different stress conditions. Acid-adapted and nonadapted C. jejuni were exposed to different secondary stress conditions such as acid (pH 4.5), starvation (phosphate-buffered saline, pH 7.2), or salt (3% wt/vol NaCl). After exposure to the secondary stress, the adhesion and invasion abilities of the strains were evaluated in vitro in tissue culture using the human intestinal cell line INT 407. The survival rates of acid-adapted cells of some strains of C. jejuni exposed to different secondary stresses were found to be significantly higher than the non-acid-adapted cells. Similarly, some strains also showed an increase in adhesion and invasion (p<0.05) when acid-adapted C. jejuni were exposed to stresses such as acid, starvation, or salt as compared to non-acid-adapted C. jejuni. We found that adaptation to acid stress can enhance the survival of C. jejuni when exposed to secondary stresses and, thus, result in increased adhesion and invasion of human intestinal cells in vitro. However, the survival rates as well as the degree of adhesion and invasion were found to vary with the strain of C. jejuni, the time of adaptation to acid, the type of the secondary stress and exposure time to the secondary stress. These results show that adaptation to stresses could influence virulence of C. jejuni. Understanding the conditions by which C. jejuni adapts to stresses will provide information concerning how this organism is able to survive inside and outside the host. This, in turn, could offer methods to reduce or eliminate C. jejuni in the environment.
Collapse
|
50
|
The effect of milk components and storage conditions on the virulence of Listeria monocytogenes as determined by a Caco-2 cell assay. Int J Food Microbiol 2013; 166:59-64. [DOI: 10.1016/j.ijfoodmicro.2013.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 11/21/2022]
|