1
|
Ye Q, Eves R, Vance TDR, Hansen T, Sage AP, Petkovic A, Bradley B, Escobedo C, Graham LA, Allingham JS, Davies PL. Aeromonas hydrophila RTX adhesin has three ligand-binding domains that give the bacterium the potential to adhere to and aggregate a wide variety of cell types. mBio 2025; 16:e0315824. [PMID: 40243363 PMCID: PMC12077191 DOI: 10.1128/mbio.03158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteria often make initial contact with their hosts through the ligand-binding domains of large adhesin proteins. Recent analyses of repeats-in-toxin (RTX) adhesins in Gram-negative bacteria suggest that ligand-binding domains can be identified by the way they emerge from "split" domains within the adhesin. Here, using this criterion and an AlphaFold3 model of a 5047-residue RTX adhesin from Aeromonas hydrophila, we identified three different ligand-binding domains in this fibrillar protein. The crystal structures of the two novel domains were solved to 1.4 and 1.95 Å resolution, respectively, and demonstrate excellent agreement with their modeled structures. The other domain was recognized as a carbohydrate-binding module based on its beta-strand topology and confirmed by its micromolar affinity for fucosylated glycans, including the Lewis B and Y antigens. This lectin-like module, which was recombinantly produced with its companion split domain and nearby extender domain, bound to a wide variety of cells including yeasts, diatoms, erythrocytes, and human endothelial cells. In each case, 50 mM free fucose prevented this binding and may offer some protection from infection. The carbohydrate-binding module with its neighboring domains also caused aggregation of yeast and erythrocytes, which was again blocked by the addition of free fucose. The second putative ligand-binding domain has a beta-roll structure supported by a parallel alpha-helix, and the third is a homolog of a von Willebrand Factor A domain. These two domains bind to a more limited range of cell types, and their ligands have yet to be identified.IMPORTANCECharacterizing the ligand-binding domains of fibrillar adhesins is important for understanding how bacteria can colonize host surfaces and how this colonization might be blocked. Here, we show that the opportunistic pathogen, Aeromonas hydrophila, uses a carbohydrate-binding module (CBM) to attach to several different cell types. The CBM is one of three ligand-binding domains at the distal tip of the adhesin. Identifying the glycans bound by the CBM as Lewis B and Y antigens has helped explain the range of cell types that the bacterium will bind and colonize, and it has suggested sugars that might interfere with these processes. Indeed, fucose, which is a constituent of the Lewis B and Y antigens, is effective at 50 mM concentrations in blocking the attachment of the CBM to host cells. This will lead to the design of more effective inhibitors against bacterial infections.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tyler D. R. Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adam P. Sage
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andrea Petkovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Brianna Bradley
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Laurie A. Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Rahman MA, Akter S, Ashrafudoulla M, Rapak MT, Lee KO, Ha SD. Targeted insights into Aeromonas hydrophila biofilms: Surface preferences, resistance mechanisms, and gene expression. Poult Sci 2025; 104:104851. [PMID: 40043669 PMCID: PMC11927691 DOI: 10.1016/j.psj.2025.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/24/2025] Open
Abstract
This study provides a comprehensive analysis of biofilm formation, antibiotic resistance, motility, and gene expression in four Aeromonas hydrophila strains-ATCC 15467, ATCC 7966, KCTC 2358, and KCTC 11533-on stainless steel (SS), silicon rubber (SR), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) surfaces over 24, 48, 72, and 96 h. Biofilm formation peaked at 72 h, with ATCC 7966 demonstrating the highest biofilm density on PET (6.50 ± 0.08 log CFU/cm²), underscoring PET's role as a favorable substrate for biofilm development. In contrast, HDPE consistently exhibited the lowest biofilm levels, reflecting its potential as a biofilm-resistant material. Antibiotic susceptibility profiling revealed multidrug resistance (MDR) in ATCC 15467 and KCTC 11533 (MARI = 0.80), particularly against beta-lactams, aminoglycosides, and fluoroquinolones while ATCC 7966 and KCTC 2358 displayed moderate resistance. Motility assays highlighted strain-specific capabilities, with KCTC 11533 exhibiting the highest swimming motility (76.0 ± 6.6 mm) and KCTC 2358 excelling in swarming (47.7 ± 3.5 mm). Genetic analysis confirmed the presence of luxS and ahyR in all strains, while csgA was exclusive to ATCC 7966, correlating with its superior biofilm formation. Confocal microscopy revealed biofilm maturation dynamics, with red fluorescence indicating cell death and aging at 96 h, while SEM images captured intricate surface-specific biofilm architectures. These findings elucidate the critical interplay between strain characteristics, surface properties, and incubation time, providing a foundation for developing targeted strategies to control A. hydrophila biofilms in food processing environments.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ashrafudoulla
- National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Meidistria Tandi Rapak
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Kyung Ok Lee
- Food Safety Division Research Institute of Food Hygiene, Hyundai green food, Yongin, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
3
|
Bernabè G, Brun P, Pietra GD, Zatta V, Asad S, Meneghello S, Cordioli G, Lavezzo E, Valente E, Mietto S, Besutti V, Castagliuolo I. Prevalence and virulence potential of Aeromonas spp. isolated from human diarrheal samples in North East Italy. Microbiol Spectr 2023; 11:e0080723. [PMID: 37855641 PMCID: PMC10715124 DOI: 10.1128/spectrum.00807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE In this work, we demonstrate the epidemiologic relevance of the Aeromonas genus as the cause of infective diarrhea in North East Italy, both in children and adult subjects, with the significative presence of highly pathogenic strains. Aeromonas strains possess a heterogeneous armamentarium of pathogenicity factors that allows the microbe to affect a wide range of human intestinal epithelial cell processes that justify the ability to induce diarrhea through different mechanisms and cause diseases of variable severity, as observed for other gastrointestinal pathogens. However, it remains to be determined whether specific genotype(s) are associated with clinical pictures of different severity to implement the diagnostic and therapeutic approaches for this relevant enteric pathogen.
Collapse
Affiliation(s)
- Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Veronica Zatta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Shirin Asad
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Meneghello
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisabetta Valente
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padova, Italy
| | - Sofia Mietto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Valeria Besutti
- Microbiology Unit of Padua University Hospital, Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, Padova, Italy
- Microbiology Unit of Padua University Hospital, Padova, Italy
| |
Collapse
|
4
|
El-Hossary D, Mahdy A, Elariny EYT, Askora A, Merwad AMA, Saber T, Dahshan H, Hakami NY, Ibrahim RA. Antibiotic Resistance, Virulence Gene Detection, and Biofilm Formation in Aeromonas spp. Isolated from Fish and Humans in Egypt. BIOLOGY 2023; 12:biology12030421. [PMID: 36979113 PMCID: PMC10045910 DOI: 10.3390/biology12030421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
The genus Aeromonas is widely distributed in aquatic environments and is recognized as a potential human pathogen. Some Aeromonas species are able to cause a wide spectrum of diseases, mainly gastroenteritis, skin and soft-tissue infections, bacteremia, and sepsis. The aim of the current study was to determine the prevalence of Aeromonas spp. in raw fish markets and humans in Zagazig, Egypt; identify the factors that contribute to virulence; determine the isolates’ profile of antibiotic resistance; and to elucidate the ability of Aeromonas spp. to form biofilms. The examined samples included fish tissues and organs from tilapia (Oreochromis niloticus, n = 160) and mugil (Mugil cephalus, n = 105), and human skin swabs (n = 51) and fecal samples (n = 27). Based on biochemical and PCR assays, 11 isolates (3.2%) were confirmed as Aeromonas spp. and four isolates (1.2%) were confirmed as A. hydrophila. The virulence genes including haemolysin (hyl A) and aerolysin (aer) were detected using PCR in A. hydrophila in percentages of 25% and 50%, respectively. The antimicrobial resistance of Aeromonas spp. was assessed against 14 antibiotics comprising six classes. The resistance to cefixime (81.8%) and tobramycin (45.4%) was observed. The multiple antibiotic resistance (MAR) index ranged between 0.142–0.642 with 64.2% of the isolates having MAR values equal to 0.642. Biofilm formation capacity was assessed using a microtiter plate assay, and two isolates (18.1%) were classified as biofilm producers. This study establishes a baseline for monitoring and controlling the multidrug-resistant Aeromonas spp. and especially A. hydrophila in marine foods consumed in our country to protect humans and animals.
Collapse
Affiliation(s)
- Dalia El-Hossary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa Mahdy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Eman Y. T. Elariny
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Askora
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Abdallah M. A. Merwad
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hesham Dahshan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nora Y. Hakami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rehab A. Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Correspondence:
| |
Collapse
|
5
|
Sharan M, Vijay D, Dhaka P, Bedi JS, Gill JPS. Biofilms as a microbial hazard in the food industry: A scoping review. J Appl Microbiol 2022; 133:2210-2234. [PMID: 35945912 DOI: 10.1111/jam.15766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001-2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.
Collapse
Affiliation(s)
- Manjeet Sharan
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Deepthi Vijay
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Mannuthy, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Jatinder Paul Singh Gill
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
6
|
Nature-Inspired Antimicrobial Surfaces and Their Potential Applications in Food Industries. Foods 2022; 11:foods11060844. [PMID: 35327267 PMCID: PMC8949295 DOI: 10.3390/foods11060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is a growing global concern and has called for the integration of different areas of expertise for designing robust solutions. One such approach is the development of antimicrobial surfaces to combat the emerging resistance in microbes against drugs and disinfectants. This review is a compressive summary of the work done in the field of material science, chemistry, and microbiology in the development of antimicrobial materials and surfaces that are inspired by examples in nature. The focus includes examples of natural antimicrobial surfaces, such as cicada wings or nanopillars, dragonfly wings, shrimp shells, taro leaves, lotus leaves, sharkskin, gecko skin, and butterfly wings, along with their mechanism of action. Techniques, compositions, and combinations that have been developed to synthetically mimic these surfaces against bacterial/viral and fungal growth in food-processing areas have also been discussed. The applications of synthetic mimics of natural antimicrobial surfaces in food-processing environments is still a naïve area of research. However, this review highlights the potential applications of natural antimicrobial surfaces in the food-processing environment as well as outlines the challenges that need mitigations.
Collapse
|
7
|
Solaiman S, Micallef SA. Aeromonas spp. diversity in U.S. mid-Atlantic surface and reclaimed water, seasonal dynamics, virulence gene patterns and attachment to lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146472. [PMID: 34030273 DOI: 10.1016/j.scitotenv.2021.146472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/14/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Aeromonas, a ubiquitous taxon in water environments, is emerging as a foodborne pathogen of concern that remains understudied and under-reported. We evaluated the distribution of 331 Aeromonas spp. isolates collected from irrigation water over one year and characterised their virulence profile, attachment and ability to persist on lettuce. Water sources included non-tidal and tidal river, farm pond and reclaimed water. Twenty Aeromonas species were identified; A. veronii, A. hydrophila and A. jandaei predominated in all water types and seasons, comprising ~63% of isolates. Species distribution was most affected by water type. The highest and lowest diversity were detected in river and pond water, respectively. A. hydrophila and A. veronii ranked highest in frequency in fresh river and reclaimed water, while A. jandaei ranked first in pond water. Only two isolates carried all five virulence genes tested, while 46% of A. hydrophila (n = 50), 54% of A. veronii (n = 61) and 50% of A. jandaei (n = 32) isolates harboured multiple enterotoxin genes. Detection of alt and ast genes was more likely in summer collections, while ast detection was less likely in tidal brackish river and pond water isolates. Season was a factor in attachment to polystyrene, being strongest in spring isolates. The gene flaA was associated with strong attachment and was more likely to be detected in non-tidal fresh river isolates. A. hydrophila and A. jandaei isolates persisted on lettuce leaves for 24 h, but populations dwindled over 120 h, while loosely and strongly attached cells of A. veronii isolates persisted for 120 h. This study provides comprehensive data on Aeromonas species distribution and environmental traits. The associations revealed among diversity, water type, season, virulence factors and phyllosphere attachment capacity can inform agricultural water standards in novel ways. Moreover, understanding Aeromonas-plant interactions is an important step in advancing food safety of fruit and vegetables.
Collapse
Affiliation(s)
- Sultana Solaiman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Seike S, Kobayashi H, Ueda M, Takahashi E, Okamoto K, Yamanaka H. Outer Membrane Vesicles Released From Aeromonas Strains Are Involved in the Biofilm Formation. Front Microbiol 2021; 11:613650. [PMID: 33488556 PMCID: PMC7817658 DOI: 10.3389/fmicb.2020.613650] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aeromonas spp. are Gram-negative rod-shaped bacteria ubiquitously distributed in diverse water sources. Several Aeromonas spp. are known as human and fish pathogens. Recently, attention has been focused on the relationship between bacterial biofilm formation and pathogenicity or drug resistance. However, there have been few reports on biofilm formation by Aeromonas. This study is the first to examine the in vitro formation and components of the biofilm of several Aeromonas clinical and environmental strains. A biofilm formation assay using 1% crystal violet on a polystyrene plate revealed that most Aeromonas strains used in this study formed biofilms but one strain did not. Analysis of the basic components contained in the biofilms formed by Aeromonas strains confirmed that they contained polysaccharides containing GlcNAc, extracellular nucleic acids, and proteins, as previously reported for the biofilms of other bacterial species. Among these components, we focused on several proteins fractionated by SDS-PAGE and determined their amino acid sequences. The results showed that some proteins existing in the Aeromonas biofilms have amino acid sequences homologous to functional proteins present in the outer membrane of Gram-negative bacteria. This result suggests that outer membrane components may affect the biofilm formation of Aeromonas strains. It is known that Gram-negative bacteria often release extracellular membrane vesicles from the outer membrane, so we think that the outer membrane-derived proteins found in the Aeromonas biofilms may be derived from such membrane vesicles. To examine this idea, we next investigated the ability of Aeromonas strains to form outer membrane vesicles (OMVs). Electron microscopic analysis revealed that most Aeromonas strains released OMVs outside the cells. Finally, we purified OMVs from several Aeromonas strains and examined their effect on the biofilm formation. We found that the addition of OMVs dose-dependently promoted biofilm formation, except for one strain that did not form biofilms. These results suggest that the OMVs released from the bacterial cells are closely related to the biofilm formation of Aeromonas strains.
Collapse
Affiliation(s)
- Soshi Seike
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Mitsunobu Ueda
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| | - Eizo Takahashi
- Laboratory of Medical Microbiology, Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
9
|
Solaiman S, Allard SM, Callahan MT, Jiang C, Handy E, East C, Haymaker J, Bui A, Craddock H, Murray R, Kulkarni P, Anderson-Coughlin B, Craighead S, Gartley S, Vanore A, Duncan R, Foust D, Taabodi M, Sapkota A, May E, Hashem F, Parveen S, Kniel K, Sharma M, Sapkota AR, Micallef SA. Longitudinal Assessment of the Dynamics of Escherichia coli, Total Coliforms, Enterococcus spp., and Aeromonas spp. in Alternative Irrigation Water Sources: a CONSERVE Study. Appl Environ Microbiol 2020; 86:e00342-20. [PMID: 32769196 PMCID: PMC7531960 DOI: 10.1128/aem.00342-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/02/2020] [Indexed: 11/20/2022] Open
Abstract
As climate change continues to stress freshwater resources, we have a pressing need to identify alternative (nontraditional) sources of microbially safe water for irrigation of fresh produce. This study is part of the center CONSERVE, which aims to facilitate the adoption of adequate agricultural water sources. A 26-month longitudinal study was conducted at 11 sites to assess the prevalence of bacteria indicating water quality, fecal contamination, and crop contamination risk (Escherichia coli, total coliforms [TC], Enterococcus, and Aeromonas). Sites included nontidal freshwater rivers/creeks (NF), a tidal brackish river (TB), irrigation ponds (PW), and reclaimed water sites (RW). Water samples were filtered for bacterial quantification. E. coli, TC, enterococci (∼86%, 98%, and 90% positive, respectively; n = 333), and Aeromonas (∼98% positive; n = 133) were widespread in water samples tested. Highest E. coli counts were in rivers, TC counts in TB, and enterococci in rivers and ponds (P < 0.001 in all cases) compared to other water types. Aeromonas counts were consistent across sites. Seasonal dynamics were detected in NF and PW samples only. E. coli counts were higher in the vegetable crop-growing (May-October) than nongrowing (November-April) season in all water types (P < 0.05). Only one RW and both PW sites met the U.S. Food Safety Modernization Act water standards. However, implementation of recommended mitigation measures of allowing time for microbial die-off between irrigation and harvest would bring all other sites into compliance within 2 days. This study provides comprehensive microbial data on alternative irrigation water and serves as an important resource for food safety planning and policy setting.IMPORTANCE Increasing demands for fresh fruit and vegetables, a variable climate affecting agricultural water availability, and microbial food safety goals are pressing the need to identify new, safe, alternative sources of irrigation water. Our study generated microbial data collected over a 2-year period from potential sources of irrigation (rivers, ponds, and reclaimed water sites). Pond water was found to comply with Food Safety Modernization Act (FSMA) microbial standards for irrigation of fruit and vegetables. Bacterial counts in reclaimed water, a resource that is not universally allowed on fresh produce in the United States, generally met microbial standards or needed minimal mitigation. We detected the most seasonality and the highest microbial loads in river water, which emerged as the water type that would require the most mitigation to be compliant with established FSMA standards. This data set represents one of the most comprehensive, longitudinal analyses of alternative irrigation water sources in the United States.
Collapse
Affiliation(s)
- Sultana Solaiman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Sarah M Allard
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Chengsheng Jiang
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Eric Handy
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Cheryl East
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Joseph Haymaker
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Anthony Bui
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Hillary Craddock
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Rianna Murray
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Prachi Kulkarni
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | | | - Shani Craighead
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Samantha Gartley
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Adam Vanore
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Rico Duncan
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Derek Foust
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Maryam Taabodi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Amir Sapkota
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Eric May
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Fawzy Hashem
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Kalmia Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA
| | - Manan Sharma
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Amy R Sapkota
- Maryland Institute for Applied and Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
10
|
Metagenomic Characterization of Bacterial Communities on Ready-to-Eat Vegetables and Effects of Household Washing on their Diversity and Composition. Pathogens 2019; 8:pathogens8010037. [PMID: 30893890 PMCID: PMC6471099 DOI: 10.3390/pathogens8010037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
Ready-to-eat (RTE) leafy salad vegetables are considered foods that can be consumed immediately at the point of sale without further treatment. The aim of the study was to investigate the bacterial community composition of RTE salads at the point of consumption and the changes in bacterial diversity and composition associated with different household washing treatments. The bacterial microbiomes of rocket and spinach leaves were examined by means of 16S rRNA gene high-throughput sequencing. Overall, 886 Operational Taxonomic Units (OTUs) were detected in the salads’ leaves. Proteobacteria was the most diverse high-level taxonomic group followed by Bacteroidetes and Firmicutes. Although they were processed at the same production facilities, rocket showed different bacterial community composition than spinach salads, mainly attributed to the different contributions of Proteobacteria and Bacteroidetes to the total OTU number. The tested household decontamination treatments proved inefficient in changing the bacterial community composition in both RTE salads. Furthermore, storage duration of the salads at refrigeration temperatures affected the microbiome, by decreasing the bacterial richness and promoting the dominance of psychrotropic bacteria. Finally, both salads were found to be a reservoir of opportunistic human pathogens, while washing methods usually applied at home proved to be inefficient in their removal.
Collapse
|
11
|
Basumatary K, Daimary P, Das SK, Thapa M, Singh M, Mukherjee A, Kumar S. Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar based nanocomposite films for antimicrobial food packaging. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Investigation of cellulosic packets impregnated with silver nanoparticles for enhancing shelf-life of vegetables. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Dias C, Borges A, Saavedra MJ, Simões M. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. J Glob Antimicrob Resist 2017; 12:227-234. [PMID: 28951073 DOI: 10.1016/j.jgar.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/12/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The 'One Health' concept recognises that the health of humans, animals and the environment are interconnected. Therefore, knowledge on the behaviour of micro-organisms from the most diverse environmental niches is important to prevent the emergence and dissemination of antimicrobial resistance. Wild animals are known to carry antimicrobial-resistant micro-organisms with potential public health impact. However, no data are available on the behaviour of sessile bacteria from wild animals, although antimicrobial resistance is amplified in biofilms. This study characterised the ciprofloxacin susceptibility and the adhesion and biofilm formation abilities of 14 distinct Aeromonas spp. (8 Aeromonas salmonicida, 3 Aeromonas eucrenophila, 2 Aeromonas bestiarum and 1 Aeromonas veronii) isolated from wild animals and already characterised as resistant to β-lactam antibiotics. METHODS The ciprofloxacin MIC was determined according to CLSI guidelines. A biofilm formation assay was performed by a modified microtitre plate method. Bacterial surface hydrophobicity was assessed by sessile drop contact angle measurement. RESULTS All Aeromonas spp. strains were resistant to ciprofloxacin (MICs of 6-60μg/mL) and had hydrophilic surfaces (range 2-37mJ/m2). These strains were able to adhere and form biofilms with distinct magnitudes. Biofilm exposure to 10×MIC of ciprofloxacin only caused low to moderate biofilm removal. CONCLUSIONS This study shows that the strains tested are of potential public health concern and emphasises that wild animals are potential reservoirs of multidrug-resistant strains. In fact, Aeromonas spp. are consistently considered opportunistic pathogens. Moreover, bacterial ability to form biofilms increases antimicrobial resistance and the propensity to cause persistent infections.
Collapse
Affiliation(s)
- Carla Dias
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; CECAV, Veterinary and Animal Science Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Anabela Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; CECAV, Veterinary and Animal Science Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria José Saavedra
- CECAV, Veterinary and Animal Science Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CITAB, Centre for the Research and Technology for Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Department of Veterinary Sciences, School of Agriculture and Veterinary Science, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Chenia HY, Duma S. Characterization of virulence, cell surface characteristics and biofilm-forming ability of Aeromonas spp. isolates from fish and sea water. JOURNAL OF FISH DISEASES 2017; 40:339-350. [PMID: 27425219 DOI: 10.1111/jfd.12516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Members of the genus Aeromonas are emerging human pathogens, causing a variety of extra-intestinal, systemic and gastrointestinal infections in both immunocompetent and immunocompromised persons. Aeromonas virulence is multifaceted and involves surface-associated molecules, motility, biologically active extracellular products and biofilm formation. Aeromonads, isolated from diverse freshwater fish species as well as sea water, were screened for biofilm formation, with varying physicochemical parameters including temperature, agitation and nutrient availability. Motility, cell surface characteristics (auto-aggregation, hydrophobicity and S layer), and extracellular virulence factor production (haemolysis, proteolysis, DNase production) were also assessed to identify potential associations with the biofilm phenotype. Biofilm formation was influenced by environmental conditions, with isolates preferentially forming biofilms in nutrient-rich media at 30 °C, although strong biofilm formation also occurred at 37 °C. Strong biofilm formation was observed for Aeromonas culicicola isolates following exposure to nutrient-rich conditions, while Aeromonas allosaccharophila isolates preferred nutrient-poor conditions for biofilm formation. Source-/species-specific correlations, ranging from weak to strong, were observed between biofilm formation and motility, cell surface characteristics and/or extracellular virulence factor production. Understanding the specific mechanisms by which Aeromonas species adhere to abiotic surfaces may aid in preventing and/or treating disease outbreaks in aquaculture systems and could lead to effective eradication of these fish pathogens.
Collapse
Affiliation(s)
- H Y Chenia
- Microbiology (Westville Campus), School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - S Duma
- Microbiology (Westville Campus), School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Nagar V, Pansare Godambe L, Bandekar JR, Shashidhar R. Biofilm formation by Aeromonas
strains under food-related environmental stress conditions. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vandan Nagar
- Food Technology Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | | | - Jayant R. Bandekar
- Food Technology Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | | |
Collapse
|
16
|
Ormanci S, Yucel N. Biofilm formation on polystyrene and glass surface byAeromonasspecies isolated from different sources. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Nagar V, Pansare Godambe L, Shashidhar R. Radiation sensitivity of planktonic and biofilm-associatedShigellaspp. andAeromonasspp. on food and food-contact surfaces. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Vandan Nagar
- Food Technology Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | | | | |
Collapse
|
18
|
Nagar V, Bandekar JR, Shashidhar R. Expression of virulence and stress response genes in Aeromonas hydrophila under various stress conditions. J Basic Microbiol 2016; 56:1132-1137. [PMID: 27163835 DOI: 10.1002/jobm.201600107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 11/10/2022]
Abstract
Aeromonas hydrophila has emerged as an important human pathogen as it causes gastroenteritis and extra-intestinal infections. Information regarding the influence of environmental stresses on gene expression profile of A. hydrophila is lacking. The impact of nutrient replenishment, nutrient deprivation, acid stress, and cold shock on housekeeping, general stress-response, and virulence genes was studied using quantitative real-time PCR in two A. hydrophila strains, CECT 839T , and A331. These sub-lethal stresses invoked significant changes in the expression of these genes in a strain-dependent manner. Overall, nutrient replenishment and deprivation significantly induced the expression of housekeeping (rpoD), general stress regulators (uspA and rpoS), and virulence (aer) genes, indicating their importance in regulating the survival and virulence of A. hydrophila under these stress conditions. rpoS gene was significantly induced under cold shock; whereas, acid stress significantly induced the expression of uspA gene. This is the first study to investigate the effect of environmental parameters on the expression of stress-response and virulence genes in A. hydrophila strains.
Collapse
Affiliation(s)
- Vandan Nagar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
| | - Jayant R Bandekar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
19
|
Ghatak S, Blom J, Das S, Sanjukta R, Puro K, Mawlong M, Shakuntala I, Sen A, Goesmann A, Kumar A, Ngachan SV. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila. Antonie van Leeuwenhoek 2016; 109:945-56. [PMID: 27075453 DOI: 10.1007/s10482-016-0693-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/30/2016] [Indexed: 11/26/2022]
Abstract
Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India.
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Samir Das
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Rajkumari Sanjukta
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Kekungu Puro
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | | | - Ingudam Shakuntala
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Arnab Sen
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - S V Ngachan
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| |
Collapse
|
20
|
Jalilsood T, Baradaran A, Song AAL, Foo HL, Mustafa S, Saad WZ, Yusoff K, Rahim RA. Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of heterologous proteins. Microb Cell Fact 2015; 14:96. [PMID: 26150120 PMCID: PMC4491867 DOI: 10.1186/s12934-015-0283-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/12/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Bacterial biofilms are a preferred mode of growth for many types of microorganisms in their natural environments. The ability of pathogens to integrate within a biofilm is pivotal to their survival. The possibility of biofilm formation in Lactobacillus communities is also important in various industrial and medical settings. Lactobacilli can eliminate the colonization of different pathogenic microorganisms. Alternatively, new opportunities are now arising with the rapidly expanding potential of lactic acid bacteria biofilms as bio-control agents against food-borne pathogens. RESULTS A new isolate Lactobacillus plantarum PA21 could form a strong biofilm in pure culture and in combination with several pathogenic and food-spoilage bacteria such as Salmonella enterica, Bacillus cereus, Pseudomonas fluorescens, and Aeromonas hydrophila. Exposure to Lb. plantarum PA21 significantly reduced the number of P. fluorescens, A. hydrophila and B. cereus cells in the biofilm over 2-, 4- and 6-day time periods. However, despite the reduction in S. enterica cells, this pathogen showed greater resistance in the presence of PA21 developed biofilm, either in the planktonic or biofilm phase. Lb. plantarum PA21 was also found to be able to constitutively express GFP when transformed with the expression vector pMG36e which harbors the gfp gene as a reporter demonstrating that the newly isolated strain can be used as host for genetic engineering. CONCLUSION In this study, we evaluate the ability of a new Lactobacillus isolate to form strong biofilm, which would provide the inhibitory effect against several spoilage and pathogenic bacteria. This new isolate has the potential to serve as a safe and effective cell factory for recombinant proteins.
Collapse
Affiliation(s)
- Tannaz Jalilsood
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Ali Baradaran
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Adelene Ai-Lian Song
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Wan Zuhainis Saad
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Khatijah Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
21
|
Laganà P, Caruso G, Mazzù F, Caruso G, Parisi S, Santi Delia A. Brief Notes About Biofilms. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2015. [DOI: 10.1007/978-3-319-20559-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Jahid IK, Ha SD. Inactivation Kinetics of Various Chemical Disinfectants on Aeromonas hydrophila Planktonic Cells and Biofilms. Foodborne Pathog Dis 2014; 11:346-53. [DOI: 10.1089/fpd.2013.1682] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology, Chung-Ang University, Kyunggido, South Korea
- Department of Microbiology, Jessore Science and Technology University, Jessore, Bangladesh
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Kyunggido, South Korea
| |
Collapse
|
23
|
Effect of plasma processing and organosilane modifications of polyethylene on Aeromonas hydrophila biofilm formation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:232514. [PMID: 24605323 PMCID: PMC3925535 DOI: 10.1155/2014/232514] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022]
Abstract
The aim of our research was to study how the modifications of polyethylene—a material commonly used in medicine and water industry—influence bacterial cell attachment and biofilm formation. The native surface was activated and modified using two-step process consisting in the activation of native surface with a H2O vapor plasma followed by its treatment with various organosilanes, namely, [3(tertbutylamine-2hydroxy) propyloxypropyl] diethoxymethylsilane, 1H,1H,2H,2H-perfluorooctylmethyldimethoxysilane, dimethoxydimethylsilane, and isobutylmethyldimethoxysilane. The effect of polyethylene modification after chemical treatment was analyzed using surface tension measurement. The adhesive properties of Aeromonas hydrophila LOCK0968 were studied in water with a low concentration of organic compounds, using luminometric and microscopic methods, and the viability of the adhered bacterial cells was evaluated using the colony forming units method. After two-week incubation the chemically modified materials exhibited better antiadhesive and antibacterial characteristics in comparison to the native surface. Among the examined modifying agents, dimethoxydimethylsilane showed the best desired properties.
Collapse
|
24
|
Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Jahid IK, Lee NY, Kim A, Ha SD. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J Food Prot 2013; 76:239-47. [PMID: 23433371 DOI: 10.4315/0362-028x.jfp-12-321] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.
Collapse
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology, Chung-Ang University, 72-1 Nae-Ri, Daedeok-Myun, Ansung, Kyunggido 456-756, South Korea
| | | | | | | |
Collapse
|
26
|
Elhariry HM. Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol 2011; 28:1266-74. [PMID: 21839375 DOI: 10.1016/j.fm.2011.05.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/06/2011] [Accepted: 05/11/2011] [Indexed: 11/25/2022]
Abstract
The present study was designed to investigate the ability of six Bacillus cereus strains to attach and form biofilm on cabbage and lettuce surfaces. These six strains were; a reference strain DSMZ 345 and five biofilm-producing strains (aquatic strains; TUB8, TUB30, TUB31, TUB32 and TUB33) isolated from drinking-water distribution network. Hydrophobicity, biofilm formation ability, attachment strength (S(R)) of spores and vegetative cells of the six B. cereus strains were also determined. Due to their high hydrophobicity, spores of all strains had high ability to attach polystyrene and did not affect by dilution of tryptone soy broth (TSB, 1:20 v/v) in the in vitro experiment. Significant (p < 0.05) enhancement in vitro biofilm formation by vegetative cells of B. cereus was recorded in the diluted TSB. The highest biofilm formation on cabbage and lettuce surfaces was obtained by spores and vegetative cells of all tested strains on the 4(th) hour of the incubation period. These populations were significantly (p < 0.05) increased by elongating incubation time from 4 h to 24 h except DSMZ 345 and TUB8. Biofilm formation behavior obtained by B. cereus spores and vegetative cells on the polystyrene surface was different compared with that recorded on produce surface. The S(R) of both spores and vegetative cells of the studied strains to the lettuce surface was higher than that of the cabbage surface. The hydrophobicity, biofilm formation and S(R) of spores and vegetative cells of the biofilm-producing strains were higher than that of the reference strain DSMZ 345. Scanning electron microscopy (SEM) exposed random distribution of cells either on the surface or cut edge, without clear obvious affinity for the surface structures. Increasing in the presence of large clusters of cells on leaf surfaces was demonstrated after 4 and 24 h. In conclusion, use of aquatic environmental isolates is more useful for studying biofilm formation than the reference strain. Lettuce surface supported the attachment of B. cereus spores and vegetative cells compared with the cabbage surface. Further investigations are required to improve our knowledge of biofilm formation mechanisms by the human pathogenic microorganisms, especially by using the environmental and clinical isolates. To ensure safety level of green-leafy vegetables, biofilm formation after harvest should be considered as critical control point during handling of these vegetables.
Collapse
|