1
|
Ortega-Sanz I, Rovira J, Melero B. Whole-genome comparative analysis of the genetic, virulence and antimicrobial resistance diversity of Campylobacter spp. from Spain. Int J Food Microbiol 2025; 427:110940. [PMID: 39447227 DOI: 10.1016/j.ijfoodmicro.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Whole-Genome Sequencing has the potential to be an effective method for surveillance of foodborne diseases. This study aims to determine the genetic relatedness and prevalence of virulence-associated genes and antimicrobial resistance determinants in 135 Campylobacter jejuni, seven Campylobacter coli and three Campylobacter lari isolates from the poultry supply chain and a hospital in Spain. The isolates showed a wide genetic diversity between and within species with Clonal Complex 21 the most frequent lineage found. Among species, C. jejuni showed the highest prevalence of virulence genes (287/333) in which a high occurring variability was observed in the capsule biosynthesis and transport, O-linked flagellar glycosylation and lipooligosaccharide biosynthesis loci, with a great impact of phase-variation that led to 72 different virulence gene patterns among all isolates. High prevalence (> 90 %) of blaOXA-type β-lactamase genes and mutations in DNA gyrase gene associated with fluoroquinolones resistance were observed, and at a frequency similar to the tet(O) gene in C. jejuni (93 %) and C. coli (86 %), both of which also harboured resistance determinants to aminoglycosides with a higher occurrence rate in C. coli (43 %), that was the only species in which mutations in the 23S ribosomal subunit conferring resistance to erythromycin were identified (43 %). The present study constitutes the largest genomic survey of Campylobacter isolates in Spain providing insight into the prevalence and diversity of the pathogen along the poultry supply chain in the country.
Collapse
Affiliation(s)
- Irene Ortega-Sanz
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
2
|
Boston TE, Wang F, Lin X, Kim SW, Fellner V, Scott MF, Ziegler AL, Van Landeghem L, Blikslager AT, Odle J. Prebiotic galactooligosaccharide improves piglet growth performance and intestinal health associated with alterations of the hindgut microbiota during the peri-weaning period. J Anim Sci Biotechnol 2024; 15:88. [PMID: 38867260 PMCID: PMC11170840 DOI: 10.1186/s40104-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Weaning stress reduces growth performance and health of young pigs due in part to an abrupt change in diets from highly digestible milk to fibrous plant-based feedstuffs. This study investigated whether dietary galactooligosaccharide (GOS), supplemented both pre- and post-weaning, could improve growth performance and intestinal health via alterations in the hindgut microbial community. METHODS Using a 3 × 2 factorial design, during farrowing 288 piglets from 24 litters received either no creep feed (FC), creep without GOS (FG-) or creep with 5% GOS (FG+) followed by a phase 1 nursery diet without (NG-) or with 3.8% GOS (NG+). Pigs were sampled pre- (D22) and post-weaning (D31) to assess intestinal measures. RESULTS Creep fed pigs grew 19% faster than controls (P < 0.01) prior to weaning, and by the end of the nursery phase (D58), pigs fed GOS pre-farrowing (FG+) were 1.85 kg heavier than controls (P < 0.05). Furthermore, pigs fed GOS in phase 1 of the nursery grew 34% faster (P < 0.04), with greater feed intake and efficiency. Cecal microbial communities clustered distinctly in pre- vs. post-weaned pigs, based on principal coordinate analysis (P < 0.01). No effects of GOS were detected pre-weaning, but gruel creep feeding increased Chao1 α-diversity and altered several genera in the cecal microbiota (P < 0.05). Post-weaning, GOS supplementation increased some genera such as Fusicatenibacter and Collinsella, whereas others decreased such as Campylobacter and Frisingicoccus (P < 0.05). Changes were accompanied by higher molar proportions of butyrate in the cecum of GOS-fed pigs (P < 0.05). CONCLUSIONS Gruel creep feeding effectively improves suckling pig growth regardless of GOS treatment. When supplemented post-weaning, prebiotic GOS improves piglet growth performance associated with changes in hindgut microbial composition.
Collapse
Affiliation(s)
- Timothy E Boston
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Feng Wang
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xi Lin
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vivek Fellner
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mark F Scott
- Milk Specialties Global, Eden Prairie, MN, 55344, USA
| | - Amanda L Ziegler
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anthony T Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, College of Ag and Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Gomes CN, Frazão MR, Seribelli AA, Barker DOR, Che EV, Nogueira MCL, Taboada EN, Falcão JP. Insights on the genomic diversity, virulence and resistance profile of a Campylobacter jejuni strain isolated from a hospitalized patient in Brazil. Braz J Microbiol 2024; 55:1381-1391. [PMID: 38546951 PMCID: PMC11153483 DOI: 10.1007/s42770-024-01314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/21/2024] [Indexed: 06/07/2024] Open
Abstract
Campylobacteriosis is currently recognized as one of the major causes of foodborne bacterial diseases worldwide. In Brazil, there is insufficient data to estimate the impact of Campylobacter in public health. The aim of this present study was to characterize a C. jejuni CJ-HBSJRP strain isolated from a hospitalized patient in Brazil by its ability to invade human Caco-2 epithelial cells, to survive in U937 human macrophages, and to assess its phenotypic antimicrobial resistance profile. In addition, prophages, virulence and antimicrobial resistance genes were search using whole-genome sequencing data. The genetic relatedness was evaluated by MLST and cgMLST analysis by comparison with 29 other C. jejuni genomes isolated from several countries. The CJ-HBSJRP strain showed an invasion percentage of 50% in Caco-2 polarized cells, 37.5% of survivability in U937 cells and was phenotypically resistant to ampicillin, ciprofloxacin and nalidixic acid. A total of 94 virulence genes related to adherence, biofilm, chemotaxis, immune modulation, invasion process, metabolism, motility and toxin were detected. The resistance genes blaOXA-605 (blaOXA-61), cmeB and mutations in the QRDR region of gyrA were also found and none prophages were detected. The MLST analysis showed 23 different STs among the strains studied. Regarding cgMLST analysis, the CJ-HBSJRP strain was genetically distinct and did not group closely to any other isolate. The results obtained reinforce the pathogenic potential of the CJHBSJRP strain and highlighted the need for more careful attention to Campylobacter spp. infections in Brazil since this pathogen has been the most commonly reported zoonosis in several countries worldwide.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Miliane Rodrigues Frazão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Aparecida Seribelli
- Laboratório de Patogenicidade Microbiana E Imunidade Inata, Faculdade de Medicina de Ribeirão Preto- Universidade de São Paulo, São Paulo, Brazil
| | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Mara Corrêa Lelles Nogueira
- Centro de Investigação de Microrganismos, Departamento de Doenças Dermatológicas, Infecciosas E Parasitárias- Faculdade de Medicina de São José Do Rio Preto, São José Do Rio Preto, São Paulo, Brazil
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto- Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Ju C, Ma Y, Zhang B, Zhou G, Wang H, Yu M, He J, Duan Y, Zhang M. Prevalence, genomic characterization and antimicrobial resistance of Campylobacter spp. isolates in pets in Shenzhen, China. Front Microbiol 2023; 14:1152719. [PMID: 37323906 PMCID: PMC10267384 DOI: 10.3389/fmicb.2023.1152719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence of Campylobacter spp.in pets is a potential concern for human health. However, little is known about the pet-related Campylobacter spp. in China. A total of 325 fecal samples were collected from dogs, cats, and pet foxes. Campylobacter spp. were isolated by culture, and MALDI-TOF MS was used to identify 110 Campylobacter spp. isolates in total. C. upsaliensis (30.2%, 98/325), C. helveticus (2.5%, 8/325), and C. jejuni (1.2%, 4/325) were the three found species. In dogs and cats, the prevalence of Campylobacter spp. was 35.0% and 30.1%, respectively. A panel of 11 antimicrobials was used to evaluate the antimicrobial susceptibility by the agar dilution method. Among C. upsaliensis isolates, ciprofloxacin had the highest rate of resistance (94.9%), followed by nalidixic acid (77.6%) and streptomycin (60.2%). Multidrug resistance (MDR) was found in 55.1% (54/98) of the C. upsaliensis isolates. Moreover, 100 isolates, including 88 C. upsaliensis, 8 C. helveticus, and 4 C. jejuni, had their whole genomes sequenced. By blasting the sequence against the VFDB database, virulence factors were identified. In total, 100% of C. upsaliensis isolates carried the cadF, porA, pebA, cdtA, cdtB, and cdtC genes. The flaA gene was present in only 13.6% (12/88) of the isolates, while the flaB gene was absent. By analyzing the sequence against the CARD database, we found that 89.8% (79/88) of C. upsaliensis isolates had antibiotic target alteration in the gyrA gene conferring resistance to fluoroquinolone, 36.4% (32/88) had the aminoglycoside resistance gene, and 19.3% (17/88) had the tetracycline resistance gene. The phylogenetic analysis using the K-mer tree method obtained two major clades among the C. upsaliensis isolates. All eight isolates in subclade 1 possessed the gyrA gene mutation, the aminoglycoside and tetracycline resistance genes, and were phenotypically resistant to six classes of antimicrobials. It has been established that pets are a significant source of Campylobacter spp. strains and a reservoir for them. This study is the first to have documented the presence of Campylobacter spp. in pets in Shenzhen, China. In this study, C. upsaliensis of subclade 1 required additional attention due to its broad MDR phenotype and relatively high flaA gene prevalence.
Collapse
Affiliation(s)
- Changyan Ju
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yanping Ma
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Bi Zhang
- Clinic, IVC Shenzhen Animal Hospital, Shenzhen, China
| | - Guilan Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hairui Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Muhua Yu
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Jiaoming He
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Yongxiang Duan
- Laboratory, Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Maojun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
Borovikov S, Tursunov K, Syzdykova A, Begenova A, Zhakhina A. Expression of recombinant Omp18 and MOMP of Campylobacter jejuni and the determination of their suitability as antigens for serological diagnosis of campylobacteriosis in animals. Vet World 2023; 16:222-228. [PMID: 36855354 PMCID: PMC9967712 DOI: 10.14202/vetworld.2023.222-228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
Background and Aim Campylobacteriosis causes gastrointestinal tract lesions in adults and children and may result in severe complications. The primary sources of infection are infected animals and animal products. Immunochemical methods effectively diagnose intestinal infections but require highly specific antigens to detect their antibodies. This study aimed to obtain two recombinant immunogenic antigens of Campylobacter jejuni, an outer membrane protein with a molecular weight of 18 kDa (Omp18) and the major outer membrane protein (MOMP) with a molecular weight of 45 kDa, and evaluate their suitability for the serological diagnosis of campylobacteriosis using immunochromatographic assay (ICA). Materials and Methods The C. jejuni Omp18 and MOMP gene sequences were synthesized de novo (Macrogen, Korea) and cloned into the pET32 expression plasmid. Using these genetic constructs, electrocompetent cells of the Escherichia coli BL21 strain were transformed and cultured under various conditions. Antigens were purified and refolded using metal affinity chromatography. The properties of the purified proteins were studied by western blotting, liquid chromatography with tandem mass spectrometry, and enzyme-linked immunosorbent assay (ELISA). Results We developed two recombinant E. coli BL21 cells producing rOmp18 and Recombinant MOMP (rMOMP) antigens with molecular weights of 36 and 64 kDa, respectively. Amino acid sequence analysis of the obtained antigens showed complete homology with the reference sequences in the PubMed NCBI database. Western blotting using positive-control sera demonstrated the specificity of the recombinant antigens. The results of ELISA with 94 bovine sera showed the interaction of recombinant antigens with specific antibodies. Conclusion The obtained rOmp18 and rMOMP antigens can detect antibodies in the serum of infected or recovered animals and can be used to develop ICA.
Collapse
Affiliation(s)
- Sergey Borovikov
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan,Corresponding author: Sergey Borovikov, e-mail: Co-authors: KT: , AS: , AB: , AZ:
| | - Kanat Tursunov
- Laboratory of Immunochemistry and Immunobiotechnology, National Center for Biotechnology, 010000, Astana, Kazakhstan
| | - Alfiya Syzdykova
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan
| | - Ainagul Begenova
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan
| | - Alfira Zhakhina
- Department of Microbiology and Biotechnology, Faculty of Veterinary and Animal Husbandry Technology, S. Seifullin Kazakh Agro Technical University, 010000, Astana, Kazakhstan
| |
Collapse
|
6
|
El-Adawy H, Hotzel H, García-Soto S, Tomaso H, Hafez HM, Schwarz S, Neubauer H, Linde J. Genomic insight into Campylobacter jejuni isolated from commercial turkey flocks in Germany using whole-genome sequencing analysis. Front Vet Sci 2023; 10:1092179. [PMID: 36875995 PMCID: PMC9978446 DOI: 10.3389/fvets.2023.1092179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Campylobacter (C.) jejuni is a zoonotic bacterium of public health significance. The present investigation was designed to assess the epidemiology and genetic heterogeneity of C. jejuni recovered from commercial turkey farms in Germany using whole-genome sequencing. The Illumina MiSeq® technology was used to sequence 66 C. jejuni isolates obtained between 2010 and 2011 from commercial meat turkey flocks located in ten German federal states. Phenotypic antimicrobial resistance was determined. Phylogeny, resistome, plasmidome and virulome profiles were analyzed using whole-genome sequencing data. Genetic resistance markers were identified with bioinformatics tools (AMRFinder, ResFinder, NCBI and ABRicate) and compared with the phenotypic antimicrobial resistance. The isolates were assigned to 28 different sequence types and 11 clonal complexes. The average pairwise single nucleotide-polymorphisms distance of 14,585 SNPs (range: 0-26,540 SNPs) revealed a high genetic distinction between the isolates. Thirteen virulence-associated genes were identified in C. jejuni isolates. Most of the isolates harbored the genes flaA (83.3%) and flaB (78.8%). The wlaN gene associated with the Guillain-Barré syndrome was detected in nine (13.6%) isolates. The genes for resistance to ampicillin (bla OXA), tetracycline [tet(O)], neomycin [aph(3')-IIIa], streptomycin (aadE) and streptothricin (sat4) were detected in isolated C. jejuni using WGS. A gene cluster comprising the genes sat4, aph(3')-IIIa and aadE was present in six isolates. The single point mutation T86I in the housekeeping gene gyrA conferring resistance to quinolones was retrieved in 93.6% of phenotypically fluoroquinolone-resistant isolates. Five phenotypically erythromycin-susceptible isolates carried the mutation A103V in the gene for the ribosomal protein L22 inferring macrolide resistance. An assortment of 13 β-lactam resistance genes (bla OXA variants) was detected in 58 C. jejuni isolates. Out of 66 sequenced isolates, 28 (42.4%) carried plasmid-borne contigs. Six isolates harbored a pTet-like plasmid-borne contig which carries the tet(O) gene. This study emphasized the potential of whole-genome sequencing to ameliorate the routine surveillance of C. jejuni. Whole-genome sequencing can predict antimicrobial resistance with a high degree of accuracy. However, resistance gene databases need curation and updates to revoke inaccuracy when using WGS-based analysis pipelines for AMR detection.
Collapse
Affiliation(s)
- Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.,Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Silvia García-Soto
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Veterinary Centre of Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
7
|
Min J, Kim P, Yun S, Hong M, Park W. Zoo animal manure as an overlooked reservoir of antibiotic resistance genes and multidrug-resistant bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:710-726. [PMID: 35906519 DOI: 10.1007/s11356-022-22279-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Animal fecal samples collected in the summer and winter from 11 herbivorous animals, including sable antelope (SA), long-tailed goral (LTG), and common eland (CE), at a public zoo were examined for the presence of antibiotic resistance genes (ARGs). Seven antibiotics, including meropenem and azithromycin, were used to isolate culturable multidrug-resistant (MDR) strains. The manures from three animals (SA, LTG, and CE) contained 104-fold higher culturable MDR bacteria, including Chryseobacterium, Sphingobacterium, and Stenotrophomonas species, while fewer MDR bacteria were isolated from manure from water buffalo, rhinoceros, and elephant against all tested antibiotics. Three MDR bacteria-rich samples along with composite samples were further analyzed using nanopore-based technology. ARGs including lnu(C), tet(Q), and mef(A) were common and often associated with transposons in all tested samples, suggesting that transposons carrying ARGs may play an important role for the dissemination of ARGs in our tested animals. Although several copies of ARGs such as aph(3')-IIc, blaL1, blaIND-3, and tet(42) were found in the sequenced genomes of the nine MDR bacteria, the numbers and types of ARGs appeared to be less than expected in zoo animal manure, suggesting that MDR bacteria in the gut of the tested animals had intrinsic resistant phenotypes in the absence of ARGs.
Collapse
Affiliation(s)
- Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Pureun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sohyeon Yun
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minyoung Hong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Gharbi M, Kamoun S, Hkimi C, Ghedira K, Béjaoui A, Maaroufi A. Relationships between Virulence Genes and Antibiotic Resistance Phenotypes/Genotypes in Campylobacter spp. Isolated from Layer Hens and Eggs in the North of Tunisia: Statistical and Computational Insights. Foods 2022; 11:foods11223554. [PMID: 36429146 PMCID: PMC9689815 DOI: 10.3390/foods11223554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Globally, Campylobacter is a significant contributor to gastroenteritis. Efficient pathogens are qualified by their virulence power, resistance to antibiotics and epidemic spread. However, the correlation between antimicrobial resistance (AR) and the pathogenicity power of pathogens is complex and poorly understood. In this study, we aimed to investigate genes encoding virulence and AR mechanisms in 177 Campylobacter isolates collected from layer hens and eggs in Tunisia and to assess associations between AR and virulence characteristics. Virulotyping was determined by searching 13 virulence genes and AR-encoding genes were investigated by PCR and MAMA-PCR. The following genes were detected in C. jejuni and C. coli isolates: tet(O) (100%/100%), blaOXA-61 (18.82%/6.25%), and cmeB (100%/100%). All quinolone-resistant isolates harbored the Thr-86-Ile substitution in GyrA. Both the A2074C and A2075G mutations in 23S rRNA were found in all erythromycin-resistant isolates; however, the erm(B) gene was detected in 48.38% and 64.15% of the C. jejuni and C. coli isolates, respectively. The machine learning algorithm Random Forest was used to determine the association of virulence genes with AR phenotypes. This analysis showed that C. jejuni virulotypes with gene clusters encompassing the racR, ceuE, virB11, and pldA genes were strongly associated with the majority of phenotypic resistance. Our findings showed high rates of AR and virulence genes among poultry Campylobacter, which is a cause of concern to human health. In addition, the correlations of specific virulence genes with AR phenotypes were established by statistical analysis.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
- Correspondence: ; Tel.: +216-27310041
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1006, Tunisia
| | - Awatef Béjaoui
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology Development, Laboratory of Epidemiology and Veterinary Microbiology, Institut Pasteur de Tunis, University of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
9
|
Islam MS, Hasib FMY, Nath C, Ara J, Logno TA, Uddin MH, Khalil MI, Dutta P, Das T, Chowdhury S. Molecular detection and risk factors associated with multidrug-resistant Campylobacter jejuni from broiler cloacal and meat samples in Bangladesh. Zoonoses Public Health 2022; 69:843-855. [PMID: 35619326 DOI: 10.1111/zph.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/22/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The gastrointestinal tract of poultry is a potential source of Campylobacter jejuni. Here, the prevalence, risk factors, antimicrobial susceptibility profile and genetic relationship of C. jejuni were studied in broilers from farms and meat from live bird markets (LBMs) and super shops (SS). Pooled cloacal samples were obtained from farms in six districts of Bangladesh between June 2019 and March 2020. Pooled meat samples were obtained from LBMs and SS in the Chattogram district. Microbial culture, polymerase chain reaction (PCR), antimicrobial susceptibility tests were used to detect multidrug-resistant C. jejuni. A positive PCR amplicon was validated by mapA partial gene sequencing and subsequent phylogenetic analysis. In total, 12.5% (95% CI: 8.5-17.7%) of farms (N = 216) and 27.1% (95% CI: 15.28-41.85%) of LBMs and SS (N = 48) tested positive for C. jejuni. Moreover, 98% of the isolates were multidrug-resistant, with 86% resistant to five or more antimicrobial groups. Multivariable logistic regression analysis showed a downtime of <14 days, no separate footwear for shed access, and more than one person entering the sheds were significantly associated with C. jejuni colonization. Phylogenetic analysis revealed a strong relationship between C. jejuni strains obtained in Bangladesh and strains isolated in India, South Africa and Grenada from humans, pigs and bats. This study revealed significant contamination of broiler meat with Campylobacter spp. and C. jejuni. Potential sources of contamination and anthropogenic factors associated with the alarming prevalence of C. jejuni identified in this study would aid in reducing the growing risks of broiler-associated pathogens.
Collapse
Affiliation(s)
- Md Sirazul Islam
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Farazi Muhammad Yasir Hasib
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.,Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Jahan Ara
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tahia Ahmed Logno
- Department of Microbiology and Veterinary Public Health, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Helal Uddin
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Ibrahim Khalil
- One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Pronesh Dutta
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Tridip Das
- Poultry Research and Training Centre, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh.,One Health Institute, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
10
|
Paintsil EK, Ofori LA, Adobea S, Akenten CW, Phillips RO, Maiga-Ascofare O, Lamshöft M, May J, Obiri Danso K, Krumkamp R, Dekker D. Prevalence and Antibiotic Resistance in Campylobacter spp. Isolated from Humans and Food-Producing Animals in West Africa: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:140. [PMID: 35215086 PMCID: PMC8877155 DOI: 10.3390/pathogens11020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Campylobacter species are one of the leading causes of gastroenteritis in humans. This review reports on the prevalence and antibiotic resistance data of Campylobacter spp. isolated from humans and food-producing animals in West Africa. A systematic search was carried out in five databases for original articles published between January 2000 and July 2021. Among 791 studies found, 38 original articles from seven (41%) out of the 17 countries in West Africa met the inclusion criteria. For studies conducted in food-producing animals, the overall pooled prevalence of Campylobacter spp. was 34% (95% CI: 25-45). The MDR prevalence was 59% (95% CI: 29-84) and half (50%, 13/26) of the animal studies had samples collected from the market. The human studies recorded a lower pooled prevalence of Campylobacter spp. (10%, 95% CI: 6-17), but a considerably higher rate of MDR prevalence (91%; 95% CI: 67-98). The majority (85%, 11/13) of the human studies took place in a hospital. Campylobacter jejuni and Campylobacter coli were the most common species isolated from both animals and humans. Our findings suggest that Campylobacter spp. is highly prevalent in West Africa. Therefore, improved farm hygiene and 'One Health' surveillance systems are needed to reduce transmission.
Collapse
Affiliation(s)
- Ellis Kobina Paintsil
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi 039-5028, Ghana; (C.W.A.); (R.O.P.); (O.M.-A.)
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi 039-5028, Ghana; (L.A.O.); (K.O.D.)
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi 039-5028, Ghana; (L.A.O.); (K.O.D.)
| | - Sarah Adobea
- Department of Emergency Medicine, Komfo Anokye Teaching Hospital, Okomfo Anokye Road, Kumasi 034-9094, Ghana;
| | - Charity Wiafe Akenten
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi 039-5028, Ghana; (C.W.A.); (R.O.P.); (O.M.-A.)
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi 039-5028, Ghana; (L.A.O.); (K.O.D.)
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi 039-5028, Ghana; (C.W.A.); (R.O.P.); (O.M.-A.)
| | - Oumou Maiga-Ascofare
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, Kumasi 039-5028, Ghana; (C.W.A.); (R.O.P.); (O.M.-A.)
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany; (M.L.); (J.M.); (D.D.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Maike Lamshöft
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany; (M.L.); (J.M.); (D.D.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany; (M.L.); (J.M.); (D.D.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Tropical Medicine II, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Kwasi Obiri Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi 039-5028, Ghana; (L.A.O.); (K.O.D.)
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany; (M.L.); (J.M.); (D.D.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| | - Denise Dekker
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany; (M.L.); (J.M.); (D.D.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
| |
Collapse
|
11
|
Gomes CN, Barker DOR, Duque SDS, Che EV, Jayamanna V, Taboada EN, Falcão JP. Campylobacter coli isolated in Brazil typed by core genome Multilocus Sequence Typing shows high genomic diversity in a global context. INFECTION GENETICS AND EVOLUTION 2021; 95:105018. [PMID: 34332158 DOI: 10.1016/j.meegid.2021.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Campylobacter has been one of the most common causative agent of bacterial food-borne gastroenteritis in humans worldwide. However, in Brazil the campylobacteriosis has been a neglected disease and there is insufficient data to estimate the incidence of this pathogen in the country. AIMS The current study aimed to determine the phylogenetic relationships among Campylobacter coli strains isolated in Brazil and to compare them with international Campylobacter isolates available in some public databases. METHODS AND RESULTS A total of 63C. coli strains isolated in Brazil were studied. The MLST analysis showed 18 different STs including three STs not yet described in the PubMLST database. The cgMLST allocated the Brazilian strains studied into five main clusters and each cluster comprised groups of strains with nearly identical cgMLST profiles and with significant genetic distance observed among the distinct clusters. The comparison of the Brazilian strains with 3401 isolates from different countries showed a wide distribution of these strains isolated in this country. CONCLUSIONS The results showed a high similarity among some strains studied and a wide distribution of the Brazilian strains when compared to isolates from different countries, which is an interesting data set since it showed a high genetic diversity of these strains from Brazil in a global context. This study contributed for a better genomic characterization of C. coli strains isolated in Brazil and provided important information about the diversity of this clinically-relevant pathogen.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Vasena Jayamanna
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Genomic Characterization of Fluoroquinolone-Resistant Thermophilic Campylobacter Strains Isolated from Layer Chicken Feces in Gangneung, South Korea by Whole-Genome Sequencing. Genes (Basel) 2021; 12:genes12081131. [PMID: 34440305 PMCID: PMC8391547 DOI: 10.3390/genes12081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Thermophilic Campylobacter species of poultry origin have been associated with up to 80% of human campylobacteriosis cases. Layer chickens have received less attention as possible reservoirs of Campylobacter species. Initially, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of two archived Campylobacter isolates (Campylobacter jejuni strain 200605 and Campylobacter coli strain 200606) from layer chickens to five antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, tetracycline, and gentamicin) were determined using broth microdilution while the presence of selected antimicrobial resistance genes was performed by polymerase chain reaction (PCR) using specific primers. Whole-genome sequencing (WGS) was performed by the Illumina HiSeq X platform. The analysis involved antimicrobial resistance genes, virulome, multilocus sequence typing (MLST), and phylogeny. Both isolates were phenotypically resistant to ciprofloxacin (MIC: 32 vs. 32 µg/mL), nalidixic acid (MIC: 128 vs. 64 µg/mL), and tetracycline (MIC: 64 vs. 64 µg/mL), but sensitive to erythromycin (MIC: 1 vs. 2 µg/mL) and gentamicin (MIC: 0.25 vs. 1 µg/mL) for C. jejuni strain 200605 and C. coli strain 200606, respectively. WGS confirmed C257T mutation in the gyrA gene and the presence of cmeABC complex conferring resistance to FQs in both strains. Both strains also exhibited tet(O) genes associated with tetracycline resistance. Various virulence genes associated with motility, chemotaxis, and capsule formation were found in both isolates. However, the analysis of virulence genes showed that C. jejuni strain 200605 is more virulent than C. coli strain 200606. The MLST showed that C. jejuni strain 200605 belongs to sequence type ST-5229 while C. coli strain 200606 belongs to ST-5935, and both STs are less common. The phylogenetic analysis clustered C. jejuni strain 200605 along with other strains reported in Korea (CP028933 from chicken and CP014344 from human) while C. coli strain 200606 formed a separate cluster with C. coli (CP007181) from turkey. The WGS confirmed FQ-resistance in both strains and showed potential virulence of both strains. Further studies are recommended to understand the reasons behind the regional distribution (Korea, China, and Vietnam) of such rare STs.
Collapse
|
13
|
Wallace RL, Cribb DM, Bulach DM, Ingle DJ, Joensen KG, Nielsen EM, Leekitcharoenphon P, Stingl K, Kirk MD. Campylobacter jejuni ST50, a pathogen of global importance: A comparative genomic analysis of isolates from Australia, Europe and North America. Zoonoses Public Health 2021; 68:638-649. [PMID: 34041858 DOI: 10.1111/zph.12853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/10/2021] [Accepted: 04/24/2021] [Indexed: 12/23/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis globally, and infections are often transmitted through consumption of raw or undercooked poultry. Campylobacter jejuni ST50 is among the top ten sequence types (STs) reported in the collected isolates listed at PubMLST records from poultry, food and clinical sources for Asia, Europe, North America, Oceania and South America. This study was designed to determine the most commonly reported C. jejuni STs globally using the PubMLST database and assess similarities between genomes of C. jejuni ST50 isolates from geographically distinct locations. To gain a better understanding of C. jejuni diversity, we compared draft genome sequences of 182 ST50 isolates recovered from retail or caecal poultry samples in Oceania, Europe and North America that were collected over a period of 9 years (2010 to 2018). Overall, phylogenetic analysis revealed that isolates from geographically distinct locations tended to cluster based on the continent where the sample was collected. Among ST50 isolates from Europe and North America, we identified resistance determinants associated with phenotypic resistance to beta-lactams (EU: 55%; GB: 43.1%), tetracyclines (CA: 77.3%; EU: 37.5%; GB: 9.8%; US: 43.5%) and fluoroquinolones (EU: 60.0%; GB: 15.7%); no resistance determinants were identified in isolates from Australia. In general, the majority of the virulence genes, with rare exceptions such as wlaN, cj1138, hddA and rfbC, were evenly distributed throughout the genomes of all ST50 isolates in this study. Genomic-based characterization of C. jejuni ST50 isolates from poultry on three continents highlighted that geographically distinct isolates have evolved independently but only represent a glimpse into the diversity of C. jejuni.
Collapse
Affiliation(s)
- Rhiannon L Wallace
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Danielle M Cribb
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| | - Dieter M Bulach
- Melbourne Bioinformatics, The University of Melbourne, Carlton, Vic., Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic., Australia
| | - Danielle J Ingle
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.,Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kerstin Stingl
- Department of Biological Safety, German Federal Institute for Risk Assessment, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
14
|
Antimicrobial Resistance of Campylobacter spp. Causing Human Infection in Australia: An International Comparison. Microb Drug Resist 2021; 27:518-528. [DOI: 10.1089/mdr.2020.0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Emanowicz M, Meade J, Bolton D, Golden O, Gutierrez M, Byrne W, Egan J, Lynch H, O'Connor L, Coffey A, Lucey B, Whyte P. The impact of key processing stages and flock variables on the prevalence and levels of Campylobacter on broiler carcasses. Food Microbiol 2020; 95:103688. [PMID: 33397618 DOI: 10.1016/j.fm.2020.103688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 01/01/2023]
Abstract
This study examined the impact of key processing stages and flock variables on the prevalence of Campylobacter on broiler carcasses. Overall, the prevalence of Campylobacter was 62% in caeca, and 68%, 65% and 62% in neck skin samples collected after evisceration, final wash and carcass chilling, respectively. Campylobacter were found in 32% of caeca, and 52%, 40% and 32% of neck skin samples collected after evisceration, final wash and carcass chilling, respectively from first thin broiler batches. Final thin broiler batches were more frequently contaminated with prevalences of 83% found in caeca, 80% in neck skin samples collected after evisceration and 83% found in neck skin samples collected after both final wash and carcass chilling stages (p < 0.05). Thinning status had a significant effect on Campylobacter counts with significantly higher counts observed in samples from final thin batches (p < 0.05). Highest Campylobacter concentrations in neck skin samples were observed at the evisceration stage in both first and final thin samples, with counts ranging from 2.0 to 3.8 log10 CFU/g and 2.3 to 4.8 log10 CFU/g in first and final thin batches, respectively. All first thin samples had counts below the European Union (EU) Process Hygiene Criterion threshold level of 3 log10 CFU/g after chilling while 52% of final thin batches had counts above this limit.
Collapse
Affiliation(s)
- Malgorzata Emanowicz
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joseph Meade
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Olwen Golden
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - Montserrat Gutierrez
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - William Byrne
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - John Egan
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - Helen Lynch
- National Reference Laboratory Campylobacter, Department of Agriculture, Food and the Marine Laboratories, Backweston Campus, Celbridge, Ireland
| | - Lisa O'Connor
- Food Safety Authority of Ireland, IFSC, Dublin 1, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown Campus, Cork, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Rivera-Mendoza D, Martínez-Flores I, Santamaría RI, Lozano L, Bustamante VH, Pérez-Morales D. Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front Microbiol 2020; 11:513070. [PMID: 33042043 PMCID: PMC7518152 DOI: 10.3389/fmicb.2020.513070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
The genus Campylobacter groups 32 Gram-negative bacteria species, several being zoonotic pathogens and a major cause of human gastroenteritis worldwide. Antibiotic resistant Campylobacter is considered by the World Health Organization as a high priority pathogen for research and development of new antibiotics. Genetic elements related to antibiotic resistance in the classical C. coli and C. jejuni species, which infect humans and livestock, have been analyzed in numerous studies, mainly focused on local geographical areas. However, the presence of these resistance determinants in other Campylobacter species, as well as in C. jejuni and C. coli strains distributed globally, remains poorly studied. In this work, we analyzed the occurrence and distribution of antibiotic resistance factors in 237 Campylobacter closed genomes available in NCBI, obtained from isolates collected worldwide, in different dates, from distinct hosts and comprising 22 Campylobacter species. Our data revealed 18 distinct genetic determinants, genes or point mutations in housekeeping genes, associated with resistance to antibiotics from aminoglycosides, β-lactams, fluoroquinolones, lincosamides, macrolides, phenicols or tetracyclines classes, which are differentially distributed among the Campylobacter species tested, on chromosomes or plasmids. Three resistance determinants, the blaOXA–493 and blaOXA–576 genes, putatively related to β-lactams resistance, as well as the lnu(AN2) gene, putatively related to lincosamides resistance, had not been reported in Campylobacter; thus, they represent novel determinants for antibiotic resistance in Campylobacter spp., which expands the insight on the Campylobacter resistome. Interestingly, we found that some of the genetic determinants associated with antibiotic resistance are Campylobacter species-specific; e.g., the blaOXA–493 gene and the T86V mutation in gyrA were found only in the C. lari group, whereas genes associated with aminoglycosides resistance were found only in C. jejuni and C. coli. Additional analyses revealed how are distributed the resistance and multidrug resistance Campylobacter genotypes assessed, with respect to hosts, geographical locations, and collection dates. Thus, our findings further expand the knowledge on the factors that can determine or favor the antibiotic resistance in Campylobacter species distributed globally, which can be useful to choose a suitable antibiotic treatment to control the zoonotic infections by these bacteria.
Collapse
Affiliation(s)
- Daniel Rivera-Mendoza
- Programa de Maestría en Biotecnología, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Irma Martínez-Flores
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa I Santamaría
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Deyanira Pérez-Morales
- CONACYT-Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
17
|
Campylobacter jejuni from Canine and Bovine Cases of Campylobacteriosis Express High Antimicrobial Resistance Rates against (Fluoro)quinolones and Tetracyclines. Pathogens 2020; 9:pathogens9090691. [PMID: 32842457 PMCID: PMC7558055 DOI: 10.3390/pathogens9090691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter (C.) spp. from poultry is the main source of foodborne human campylobacteriosis, but diseased pets and cattle shedding Campylobacter spp. may contribute sporadically as a source of human infection. As fluoroquinolones are one of the drugs of choice for the treatment of severe human campylobacteriosis, the resistance rates of C. jejuni and C. coli from poultry against antibiotics, including fluoroquinolones, are monitored within the European program on antimicrobial resistance (AMR) in livestock. However, much less is published on the AMR rates of C.jejuni and C. coli from pets and cattle. Therefore, C. jejuni and C. coli isolated from diseased animals were tested phenotypically for AMR, and associated AMR genes or mutations were identified by whole genome sequencing. High rates of resistance to (fluoro)quinolones (41%) and tetracyclines (61.1%) were found in C. jejuni (n = 29/66). (Fluoro)quinolone resistance was associated with the known point mutation in the quinolone resistance-determining region (QRDR) of gyrA, and tetracycline resistance was mostly caused by the tet(O) gene. These high rates of resistance, especially to critically important antibiotics in C. jejuni and C. coli, are worrisome not only in veterinary medicine. Efforts to preserve the efficacy of important antimicrobial treatment options in human and veterinary medicine have to be strengthened in the future.
Collapse
|
18
|
Wallace RL, Bulach DM, Jennison AV, Valcanis M, McLure A, Smith JJ, Graham T, Saputra T, Firestone S, Symes S, Waters N, Stylianopoulos A, Kirk MD, Glass K. Molecular characterization of Campylobacter spp. recovered from beef, chicken, lamb and pork products at retail in Australia. PLoS One 2020; 15:e0236889. [PMID: 32730330 PMCID: PMC7392323 DOI: 10.1371/journal.pone.0236889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023] Open
Abstract
Australian rates of campylobacteriosis are among the highest in developed countries, yet only limited work has been done to characterize Campylobacter spp. in Australian retail products. We performed whole genome sequencing (WGS) on 331 C. coli and 285 C. jejuni from retail chicken meat, as well as beef, chicken, lamb and pork offal (organs). Campylobacter isolates were highly diverse, with 113 sequence types (STs) including 38 novel STs, identified from 616 isolates. Genomic analysis suggests very low levels (2.3-15.3%) of resistance to aminoglycoside, beta-lactam, fluoroquinolone, macrolide and tetracycline antibiotics. A majority (>90%) of isolates (52/56) possessing the fluoroquinolone resistance-associated T86I mutation in the gyrA gene belonged to ST860, ST2083 or ST7323. The 44 pork offal isolates were highly diverse, representing 33 STs (11 novel STs) and harboured genes associated with resistance to aminoglycosides, lincosamides and macrolides not generally found in isolates from other sources. Prevalence of multidrug resistant genotypes was very low (<5%), but ten-fold higher in C. coli than C. jejuni. This study highlights that Campylobacter spp. from retail products in Australia are highly genotypically diverse and important differences in antimicrobial resistance exist between Campylobacter species and animal sources.
Collapse
Affiliation(s)
- Rhiannon L. Wallace
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dieter M. Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Amy V. Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, Queensland, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The Peter Doherty Institute, Melbourne, Victoria, Australia
| | - Angus McLure
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - James J. Smith
- Food Safety Standards and Regulation, Health Protection Branch, Queensland Health, Brisbane, Queensland, Australia
| | - Trudy Graham
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, Queensland, Australia
| | - Themy Saputra
- New South Wales Food Authority, NSW Government, Sydney, New South Wales, Australia
| | - Simon Firestone
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sally Symes
- Department of Health and Human Services, Victoria State Government, Melbourne, Victoria, Australia
| | - Natasha Waters
- ACT Government Analytical Laboratory, Australian Capital Territory Health Directorate, Canberra, Australian Capital Territory, Australia
| | - Anastasia Stylianopoulos
- Department of Health and Human Services, Victoria State Government, Melbourne, Victoria, Australia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
19
|
Palma E, Tilocca B, Roncada P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int J Mol Sci 2020; 21:E1914. [PMID: 32168903 PMCID: PMC7139321 DOI: 10.3390/ijms21061914] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial resistance (AMR) represents one of the most important human- and animal health-threatening issues worldwide. Bacterial capability to face antimicrobial compounds is an ancient feature, enabling bacterial survival over time and the dynamic surrounding. Moreover, bacteria make use of their evolutionary machinery to adapt to the selective pressure exerted by antibiotic treatments, resulting in reduced efficacy of the therapeutic intervention against human and animal infections. The mechanisms responsible for both innate and acquired AMR are thoroughly investigated. Commonly, AMR traits are included in mobilizable genetic elements enabling the homogeneous diffusion of the AMR traits pool between the ecosystems of diverse sectors, such as human medicine, veterinary medicine, and the environment. Thus, a coordinated multisectoral approach, such as One-Health, provides a detailed comprehensive picture of the AMR onset and diffusion. Following a general revision of the molecular mechanisms responsible for both innate and acquired AMR, the present manuscript focuses on reviewing the contribution of veterinary medicine to the overall issue of AMR. The main sources of AMR amenable to veterinary medicine are described, driving the attention towards the indissoluble cross-talk existing between the diverse ecosystems and sectors and their cumulative cooperation to this warning phenomenon.
Collapse
Affiliation(s)
| | | | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (E.P.); (B.T.)
| |
Collapse
|
20
|
Nascimento RJ, Frasão BS, Dias TS, Nascimento ER, Tavares LS, Almeida VL, Aquino MHC. Detection of efflux pump CmeABC in enrofloxacin resistant Campylobacter spp. strains isolated from broiler chickens (Gallus gallus domesticus) in the state of Rio de Janeiro, Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Fowls are the main reservoirs of the highly important food-originating pathogen called Campylobacter spp. and broilers’ meat and byproducts are the main vehicles of this microorganism. Increasing of Campylobacter spp. resistant strains to fluorquinolones, an antimicrobial class often employed in poultry farming and in human medicine has become a great concern to poultry breeders. In fact, several studies evaluated increasing bacterial resistance against these antimicrobial agents. The role of CmeABC efflux system has been underscored among the resistance mechanisms in Campylobacter spp. to fluorquinolones. This study investigated the occurrence of CmeABC efflux pump in 81 and 78 enrofloxacin resistant strains of Campylobacter jejuni and C. coli respectively, isolated from broilers collected from six abattoirs situated at São José do Vale do Rio Preto/RJ poultry center and from two commercial abattoirs situated at Metropolitan Region of Rio de Janeiro, from 2013 to 2016. The resistance to enrofloxacin was assessed by agar dilution to determine minimum inhibitory concentration (MIC). The CmeABC efflux system was investigated through the detection of genes genes cmeA, cmeB and cmeC by PCR. The activity of CmeABC efflux pump was investigated in 20 strains by using the efflux pump inhibitor Phenylalanine-Arginine β-Naphthylamide (PAβN). The three genes cmeA, cmeB and cmeC were detected in 94.3% of the strains (C. jejuni = 80 and C. coli = 70), whereas the system was absent or incomplete in 5.7% of strains (C. jejuni = 1 and C. coli = 8). MIC varied between 0.5μg/ml and 64μg/ml, and 88.7% of strains were enrofloxacin resistant and 11.3% featuring intermediate resistance. The inhibition of the efflux pump by PAβN reduced the MIC to enrofloxacin up to eight times in fifteen strains (75%). These results indicate that this system is frequent and active in Campylobacter spp. Resistant strains in the presence of enrofloxacin.
Collapse
|
21
|
Meistere I, Ķibilds J, Eglīte L, Alksne L, Avsejenko J, Cibrovska A, Makarova S, Streikiša M, Grantiņa-Ieviņa L, Bērziņš A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Euro Surveill 2019; 24:1800357. [PMID: 31387670 PMCID: PMC6685098 DOI: 10.2807/1560-7917.es.2019.24.31.1800357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
BackgroundCampylobacter is the main cause of bacterial gastroenteritis worldwide. The main transmission route is through consumption of food contaminated with Campylobacter species or contact with infected animals. In Latvia, the prevalence of campylobacteriosis is reported to be low (4.6 cases per 100,000 population in 2016).AimTo determine prevalence, species spectrum and antimicrobial resistance (AMR) of Campylobacter spp. in Latvia, using data from various livestock and human clinical samples.MethodsWe analysed data of Campylobacter microbiological monitoring and AMR (2008 and 2014-16) in Latvia. Data from broilers, poultry, pigs, calves and humans were used to determine prevalence of Campylobacter. Additionally, 45 different origin isolates (22 human) were sequenced on the Illumina MiSeq platform; for each isolate core genome multilocus sequence typing was used and relevant antimicrobial resistance mechanisms were identified.ResultsOverall, Campylobacter prevalence in was 83.3% in pigs, 50.2% in broilers, 16.1% in calves and 5.3% in humans; C. jejuni was the predominant species in all sources except pigs where C. coli was main species. High level of resistance in Campylobacter were observed against fluoroquinolones, tetracycline and streptomycin, in most of sequenced isolates genetic determinants of relevant AMR profiles were identified.ConclusionsIn Latvia, prevalence of Campylobacter in livestock is high, especially in pigs and broilers; prevalence in poultry and humans were lower than in other European countries. AMR analysis reveals increase of streptomycin and tetracycline resistant broiler origin C. jejuni strains. WGS demonstrates a high compliance between resistance phenotype and genotype for quinolones and tetracyclines.
Collapse
Affiliation(s)
- Irēna Meistere
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Lāsma Eglīte
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Jeļena Avsejenko
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Alla Cibrovska
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Svetlana Makarova
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | - Madara Streikiša
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| | | | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment BIOR, Riga, Latvia
| |
Collapse
|
22
|
Draft Genomic Sequences of Campylobacter coli Isolates from Chicken Carcasses. Microbiol Resour Announc 2019; 8:8/28/e00564-19. [PMID: 31296685 PMCID: PMC6624768 DOI: 10.1128/mra.00564-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter bacteria are one of the leading causes of bacterial foodborne illnesses in the United States. Here, we report the draft genomic sequences of eight Campylobacter coli isolates from chicken carcasses, including virulence factors and antibiotic resistance.
Collapse
|
23
|
Ricke SC, Feye KM, Chaney WE, Shi Z, Pavlidis H, Yang Y. Developments in Rapid Detection Methods for the Detection of Foodborne Campylobacter in the United States. Front Microbiol 2019; 9:3280. [PMID: 30728816 PMCID: PMC6351486 DOI: 10.3389/fmicb.2018.03280] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
The accurate and rapid detection of Campylobacter spp. is critical for optimal surveillance throughout poultry processing in the United States. The further development of highly specific and sensitive assays to detect Campylobacter in poultry matrices has tremendous utility and potential for aiding the reduction of foodborne illness. The introduction and development of molecular methods such as polymerase chain reaction (PCR) have enhanced the diagnostic capabilities of the food industry to identify the presence of foodborne pathogens throughout poultry production. Further innovations in various methodologies, such as immune-based typing and detection as well as high throughput analyses, will provide important epidemiological data such as the identification of unique or region-specific Campylobacter. Comparable to traditional microbiology and enrichment techniques, molecular techniques/methods have the potential to have improved sensitivity and specificity, as well as speed of data acquisition. This review will focus on the development and application of rapid molecular methods for identifying and quantifying Campylobacter in U.S. poultry and the emergence of novel methods that are faster and more precise than traditional microbiological techniques.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Kristina M. Feye
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | - Zhaohao Shi
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
24
|
Rokney A, Valinsky L, Moran-Gilad J, Vranckx K, Agmon V, Weinberger M. Genomic Epidemiology of Campylobacter jejuni Transmission in Israel. Front Microbiol 2018; 9:2432. [PMID: 30386311 PMCID: PMC6198274 DOI: 10.3389/fmicb.2018.02432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Objectives: Campylobacter jejuni is responsible for 80% of Campylobacter infections in Israel, a country with a high incidence reaching 91/100,000 population. We studied the phylogeny, diversity and prevalence of virulence factors using whole genome sequencing (WGS) of a national sample of C. jejuni clinical, food, and animal isolates collected over a 10-year period (2003-2012). Methods: C. jejuni isolates (n = 263) were subject to WGS using Illumina sequencing (PE 250bpx2). Raw reads and de novo assemblies were analyzed with the BioNumerics whole genome MLST (wgMLST) pipeline. Reads were screened for 71 virulence genes by the SRST2 script. Allelic profiles were analyzed to create minimum spanning trees and allelic core distances were investigated to determine a reliable cutoff for strain determination. Results: wgMLST analysis of 263 C. jejuni isolates indicated significant diversity among the prevalent clonal complexes (CCs) with CC-21 and CC-353 being the most diverse, and CC-574 the most clonal. Within CC-21, sequence type (ST)-1359 created a separate clade. Human, poultry and bovine isolates clustered together across the different STs. Forty four percent of studied isolates were assigned to 29 genetic clusters. Temporal and geographical relatedness were found among the minority of clusters, while most phylogenetically associated cases appeared diffuse and unassociated epidemiologically. The majority of virulence factors were highly prevalent across the dataset and not associated with genotype, source of isolation or invasiveness. Conversely, all 13 genes associated with type VI secretion system (T6SS) were lineage-related and identified in only 18% of the isolates. T6SS was detected in 95.2% of ST-1359, a common type in Israel. Conclusions: wgMLST supported the assessment that poultry and cattle are likely food sources of infection in Israel. Substantial genetic clustering among C. jejuni isolates suggested multiple point source and diffuse outbreaks that were previously unreported in Israel. The high prevalence of T6SS among ST-1359 isolates is unique to Israel, and requires further investigation. This study exemplifies the importance of studying foodborne pathogens using advanced genomic approaches across the entire spectrum of One Health.
Collapse
Affiliation(s)
- Assaf Rokney
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Lea Valinsky
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Jacob Moran-Gilad
- Public Health Services, Israel Ministry of Health, Jerusalem, Israel.,Department of Health Policy and Management, Faculty of Health Sciences, School of Public Health, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.,ESCMID Study Group for Genomic and Molecular Diagnostics, Basel, Switzerland
| | | | - Vered Agmon
- Central Government Laboratories, Israel Ministry of Health, Jerusalem, Israel
| | - Miriam Weinberger
- Infectious Diseases Unit, Assaf Harofeh Medical Center, Zerifin, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Iglesias-Torrens Y, Miró E, Guirado P, Llovet T, Muñoz C, Cerdà-Cuéllar M, Madrid C, Balsalobre C, Navarro F. Population Structure, Antimicrobial Resistance, and Virulence-Associated Genes in Campylobacter jejuni Isolated From Three Ecological Niches: Gastroenteritis Patients, Broilers, and Wild Birds. Front Microbiol 2018; 9:1676. [PMID: 30116225 PMCID: PMC6083060 DOI: 10.3389/fmicb.2018.01676] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the causal agent of the food-borne infection with the highest incidence in Europe. Both poultry and wild birds are a major reservoir. To gain insight into the population structure, virulence potential, and antimicrobial resistance (AMR), a collection of 150 isolates from three different ecological niches (broilers, wild birds, and human patients) was studied. Despite the high genetic diversity found, the population structure defined two distinct clusters, one formed mostly by broiler and human isolates and another one by most wild bird isolates. The ST-21 complex exhibits highest prevalence (in humans and broilers), followed by ST-1275 complex (only in wild birds). The ST-48, -45, and -354 complexes were found in all three niches, but represent only 22 out of 150 studied strains. A higher occurrence of AMR and multidrug resistance was detected among broiler and human isolates. Moreover, significant differences were found in the distribution of certain putative virulence genes. Remarkably, many wild bird strains were negative for either cdtA, cdtB, or cdtC from the canonical strain 81-176, whereas all broiler and human strains were positive. These data suggest that the different variants of the cdt genes might be relevant for the efficient colonization of certain hosts by C. jejuni. Our study contributes to the understanding of the role of the diverse Campylobacter reservoirs in the transmission of campylobacteriosis to humans.
Collapse
Affiliation(s)
- Yaidelys Iglesias-Torrens
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Pedro Guirado
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Llovet
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Muñoz
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Cerdà-Cuéllar
- Centre de Recerca en Sanitat Animal (CReSA)-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Madrid
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Navarro
- Hospital de la Santa Creu i Sant Pau, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Affiliation(s)
- E Acke
- Vet Med Labor GmbH, IDEXX Laboratories, Mörikestraβe 28/3, Ludwigsburg 71636, Germany
| |
Collapse
|
27
|
de Vries SPW, Vurayai M, Holmes M, Gupta S, Bateman M, Goldfarb D, Maskell DJ, Matsheka MI, Grant AJ. Phylogenetic analyses and antimicrobial resistance profiles of Campylobacter spp. from diarrhoeal patients and chickens in Botswana. PLoS One 2018; 13:e0194481. [PMID: 29561903 PMCID: PMC5862492 DOI: 10.1371/journal.pone.0194481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/05/2018] [Indexed: 01/22/2023] Open
Abstract
Campylobacter spp. are a leading cause of bacterial enteritis worldwide, including countries in Africa, and have been identified by the World Health Organisation (WHO) as one of the high priority antimicrobial resistant pathogens. However, at present there is little knowledge on the prevalence, molecular epidemiology or antimicrobial susceptibility of Campylobacter spp. isolates in Botswana, both in patients and in the zoonotic context. Some data indicate that ~14% of diarrhoeal disease cases in a paediatric setting can be ascribed to Campylobacter spp., urging the need for the magnitude of Campylobacter-associated diarrhoea to be established. In this survey, we have characterised the genomic diversity of Campylobacter spp. circulating in Botswana isolated from cases of diarrhoeal disease in humans (n = 20) and from those that colonised commercial broiler (n = 35) and free-range (n = 35) chickens. Phylogeny showed that the Campylobacter spp. isolated from the different poultry and human sources were highly related, suggesting that zoonotic transmission has likely occurred. We found that for Campylobacter spp. isolated from humans, broilers and free-range chickens, 52% was positive for tetO, 47% for gyrA-T86I, 72% for blaOXA-61, with 27% carrying all three resistance determinants. No 23S mutations conferring macrolide resistance were detected in this survey. In summary, our study provides insight into Campylobacter spp. in poultry reservoirs and in diarrhoeal patients, and the relevance for treatment regimens in Botswana.
Collapse
Affiliation(s)
- Stefan P. W. de Vries
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Moses Vurayai
- Biological Sciences Department, University of Botswana, Gaborone, Botswana
| | - Mark Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Srishti Gupta
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Bateman
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David Goldfarb
- Biological Sciences Department, University of Botswana, Gaborone, Botswana
- Department of Paediatrics, Division of Infectious Disease, and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|