1
|
Chang Z, Dang T, Meng X, Chai J. The Role of CCN1 in Esophageal Adenocarcinoma: What We Have Learned From the Lab. Cancer Control 2022; 29:10732748221074734. [PMID: 35291889 PMCID: PMC8935545 DOI: 10.1177/10732748221074734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Esophageal cancer is one of the most common and deadliest cancers in the world, particularly esophageal adenocarcinoma. There has never been a special drug to treat it.Purpose: This article summarizes the work that we have done in our laboratory about the role of CCN1 in esophageal cancer and gives a new perspective of CCN1 biology.Research Design: This is a review article. Study Sample: The work was done using validated cell lines and fixed human tissue slides.Data Collection and Analysis: This is a review article, therefore, no data collection or analysis was involved.Results: CCN1 is a matricellular protein supporting adhesion, migration, and survival in normal cells, but in the esophageal cancer cells, it induces TRAIL-mediated apoptosis. CCN1 promotes TRAIL and its death receptor expression but downregulates the decoy receptors and survivin in a p53-dependant manner. It was thought that CCN1 relies on TNF to induce apoptosis, but our study found that these two molecules antagonize each other. CCN1 promotes TNFR1 cleavage and uses the soluble product to block TNF signaling, while TNF upregulates PGLYRP1 to overcome this obstacle because PGLYRP1 is a secreted protein that competes with TNF for TNFR1 binding. As a result, when CCN1 and TNF are present together in the vicinity of esophageal tumors, they cancel each other out.Conclusions: Based on our laboratory study, CCN1 has much potential to be a candidate for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Zhiheng Chang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China.,Laboratory of Gastrointestinal Injury and Cancer, VA Long Beach Healthcare System, Long Beach, CA, USA.,College of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Teng Z, Yao J, Zhu L, Zhao L, Chen G. ZNF655 is involved in development and progression of non-small-cell lung cancer. Life Sci 2021; 280:119727. [PMID: 34144060 DOI: 10.1016/j.lfs.2021.119727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
AIMS Non-small cell lung cancer (NSCLC) is a malignant tumor with high mortality, which seriously endangers human health. The clinical significance, biological function and potential mechanism of Zinc finger protein 655 (ZNF655) in NSCLC are discussed in this study. MATERIALS AND METHODS The expression level of ZNF655 in NSCLC was clarified by immunohistochemical (IHC) staining. Subsequently, lentivirus-mediated shRNA was used to construct ZNF655 knock down NSCLC cells NCI-H1299 and A549. In vitro and in vivo loss of function assays were used to evaluate the malignant behaviors of the cells. KEY FINDINGS The expression level of ZNF655 was abnormally abundant in NSCLC. The decrease of ZNF655 expression led to the inhibition of the malignant behaviors of NSCLC, which was manifested by weakened proliferation, increased sensitivity to apoptosis, cycle repression at G2 and weakened migration. Consistently, downregulation of ZNF655 reduced tumorigenesis in mouse xenograft model. Moreover, decreased expression of ZNF655 resulted in upregulated expression of Bad, Bax, Fas, p21, p27, Caspase 3 and Caspase 8 in NSCLC cells. NCI-H1299 cells with ZNF655 knockdown resulted in decreased phosphorylation of Akt, downregulation of CDK6 and PIK3CA, and upregulation of MAPK9. Collectively, ZNF655 may regulate apoptosis of NSCLC cells through PI3K/Akt and p53 signaling pathways. SIGNIFICANCE ZNF655 possessed a promoting effect in the progression of NSCLC, which may serve as a promising molecular target for clinical treatment.
Collapse
Affiliation(s)
- Zhihua Teng
- Department of Thoracic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, # 88 Jiefang Road, Hangzhou, 310009 China
| | - Jie Yao
- Department of Thoracic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, # 88 Jiefang Road, Hangzhou, 310009 China
| | - Ling Zhu
- Department of Thoracic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, # 88 Jiefang Road, Hangzhou, 310009 China
| | - Lufeng Zhao
- Department of Thoracic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, # 88 Jiefang Road, Hangzhou, 310009 China
| | - Gang Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, # 88 Jiefang Road, Hangzhou, 310009 China.
| |
Collapse
|
3
|
Dang T, Chai J. Molecular Dynamics in Esophageal Adenocarcinoma: Who's in Control? Curr Cancer Drug Targets 2020; 20:789-801. [PMID: 32691711 DOI: 10.2174/1568009620666200720011341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Abstract
Esophageal adenocarcinoma (EAC) is one of the fastest-growing cancers in the world. It occurs primarily due to the chronic gastroesophageal reflux disease (GERD), during which the esophageal epithelium is frequently exposed to the acidic fluid coming up from the stomach. This triggers gene mutations in the esophageal cells, which may lead to EAC development. While p53 is activated to get rid of the mutated cells, NFκB orchestrates the remaining cells to heal the wound. However, if the mutations happen to TP53 (a common occasion), the mutant product turns to support tumorigenesis. In this case, NFκB goes along with the mutant p53 to facilitate cancer progression. TRAIL is one of the cytokines produced in response to GERD episodes and it can kill cancer cells selectively, but its clinical use has not been as successful as expected, because some highly sophisticated defense mechanisms against TRAIL have developed during the malignancy. To clear the obstacles for TRAIL action, using a second agent to disarm the cancer cells is required. CCN1 appears to be such a molecule. While supporting normal esophageal cell growth, CCN1 suppresses malignant transformation by inhibiting NFκB and kills the EAC cell through TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- Tong Dang
- Inner Mongolia Institute of Digestive Diseases; Inner Mongolia Engineering Research Center for Prevention and
Treatment of Digestive Diseases; The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou, 014030, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases; Inner Mongolia Engineering Research Center for Prevention and
Treatment of Digestive Diseases; The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou, 014030, China,Laboratory of Gastrointestinal Injury and Cancer, VA Long Beach Healthcare System, Long Beach, CA90822, USA,College of Medicine, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Comprehensive expression analysis of TNF-related apoptosis-inducing ligand and its receptors in colorectal cancer: Correlation with MAPK alterations and clinicopathological associations. Pathol Res Pract 2018; 214:826-834. [DOI: 10.1016/j.prp.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
|
5
|
Should We Keep Walking along the Trail for Pancreatic Cancer Treatment? Revisiting TNF-Related Apoptosis-Inducing Ligand for Anticancer Therapy. Cancers (Basel) 2018; 10:cancers10030077. [PMID: 29562636 PMCID: PMC5876652 DOI: 10.3390/cancers10030077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/05/2023] Open
Abstract
Despite recent advances in oncology, diagnosis, and therapy, treatment of pancreatic ductal adenocarcinoma (PDAC) is still exceedingly challenging. PDAC remains the fourth leading cause of cancer-related deaths worldwide. Poor prognosis is due to the aggressive growth behavior with early invasion and distant metastasis, chemoresistance, and a current lack of adequate screening methods for early detection. Consequently, novel therapeutic approaches are urgently needed. Many hopes for cancer treatment have been placed in the death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) since it was reported to induce apoptosis selectively in tumor cells in vitro and in vivo. TRAIL triggers apoptosis through binding of the trans-membrane death receptors TRAIL receptor 1 (TRAIL-R1) also death receptor 4 (DR4) and TRAIL receptor 2 (TRAIL-R2) also death receptor 5 (DR5) thereby inducing the formation of the death-inducing signaling complex (DISC) and activation of the apoptotic cascade. Unlike chemotherapeutics, TRAIL was shown to be able to induce apoptosis in a p53-independent manner, making TRAIL a promising anticancer approach for p53-mutated tumors. These cancer-selective traits of TRAIL led to the development of TRAIL-R agonists, categorized into either recombinant variants of TRAIL or agonistic antibodies against TRAIL-R1 or TRAIL-R2. However, clinical trials making use of these agonists in various tumor entities including pancreatic cancer were disappointing so far. This is thought to be caused by TRAIL resistance of numerous primary tumor cells, an insufficient agonistic activity of the drug candidates tested, and a lack of suitable biomarkers for patient stratification. Nevertheless, recently gained knowledge on the biology of the TRAIL-TRAIL-R system might now provide the chance to overcome intrinsic or acquired resistance against TRAIL and TRAIL-R agonists. In this review, we summarize the status quo of clinical studies involving TRAIL-R agonists for the treatment of pancreatic cancer and critically discuss the suitability of utilizing the TRAIL-TRAIL-R system for successful treatment.
Collapse
|
6
|
CCN1 sensitizes esophageal cancer cells to TRAIL-mediated apoptosis. Exp Cell Res 2017; 361:163-169. [PMID: 29055676 DOI: 10.1016/j.yexcr.2017.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 12/20/2022]
Abstract
TRAIL is one of the best anti-cancer molecules in our body. It kills a variety of cancer cells that are resistant to conventional chemotherapy, without causing much negative impact on normal cells, because its death receptors are almost exclusively found on cancer cells. However, some cancer cells are not sensitive to TRAIL treatment, even though they express its death receptors. A second molecule is needed to help TRAIL to complete its mission. Finding such molecules now becomes a top priority in cancer research. Our study shows that CCN1 is such a molecule. CCN1 was highly expressed in the esophageal epithelium of the patients suffering from gastroesophageal reflux disease, but faded away as the situation worsened towards adenocarcinoma. Treating the tumor cells with CCN1 resulted in apoptosis, while the same treatment to the normal cells only nourished cell growth. It was TRAIL that mediated this process. Apparently, CCN1 altered the expression profile of TRAIL and its receptors in tumor cells, namely, activating TRAIL and its death receptors and shutting down its decoy receptors. CCN1 and TRAIL worked as a team to put the cancer cells to death, as elimination of either one failed apoptosis.
Collapse
|
7
|
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017; 16:718-735. [PMID: 28729727 PMCID: PMC5942225 DOI: 10.1038/nrd.2017.116] [Citation(s) in RCA: 830] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronological age represents the single greatest risk factor for human disease. One plausible explanation for this correlation is that mechanisms that drive ageing might also promote age-related diseases. Cellular senescence, which is a permanent state of cell cycle arrest induced by cellular stress, has recently emerged as a fundamental ageing mechanism that also contributes to diseases of late life, including cancer, atherosclerosis and osteoarthritis. Therapeutic strategies that safely interfere with the detrimental effects of cellular senescence, such as the selective elimination of senescent cells (SNCs) or the disruption of the SNC secretome, are gaining significant attention, with several programmes now nearing human clinical studies.
Collapse
Affiliation(s)
| | | | - Darren J Baker
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| | - Remi-Martin Laberge
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Dan Marquess
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jamie Dananberg
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jan M van Deursen
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
8
|
Mert U, Sanlioglu AD. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci 2017; 74:245-255. [PMID: 27510421 PMCID: PMC11107773 DOI: 10.1007/s00018-016-2321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.
Collapse
Affiliation(s)
- Ufuk Mert
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey.
- Center for Gene and Cell Therapy, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
9
|
Kanatli I, Akkaya B, Uysal H, Kahraman S, Sanlioglu AD. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis. Neuromuscul Disord 2016; 27:128-135. [PMID: 28012741 DOI: 10.1016/j.nmd.2016.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed.
Collapse
Affiliation(s)
- Irem Kanatli
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey
| | - Sevim Kahraman
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey.
| |
Collapse
|
10
|
van Dijk M, Halpin-McCormick A, Sessler T, Samali A, Szegezdi E. Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death Dis 2013; 4:e702. [PMID: 23828565 PMCID: PMC3730397 DOI: 10.1038/cddis.2013.214] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine and a selective inducer of apoptosis in a range of tumour cells, but not in normal, untransformed cells. A large number of chemotherapeutics as well as biological agents are being tested for their potential to sensitise resistant tumour cells to TRAIL as a means to broaden the range of tumours treatable with TRAIL. However, because of the incomplete understanding of the mechanism(s) underlying TRAIL resistance in non-malignant cells, it is unpredictable whether the effect of these sensitisers will be restricted to tumour cells or they would also sensitise non-transformed cells causing unwanted toxicity. In this study, we carried out a systematic analysis of the mechanisms driving TRAIL resistance in non-transformed cells. We found that cellular FLICE-like inhibitory protein, anti-apoptotic B-cell lymphoma 2 proteins, and X-linked inhibitor of apoptosis protein were independently able to provide resistance to TRAIL. Deficiency of only one of these proteins was not sufficient to elicit TRAIL sensitivity, demonstrating that in non-transformed cells multiple pathways control TRAIL resistance and they act in a redundant manner. This is contrary to the resistance mechanisms found in tumour cell types, many of them tend to rely on a single mechanism of resistance. Supporting this notion we found that 76% of TRAIL-resistant cell lines (13 out of 17) expressed only one of the above-identified anti-apoptotic proteins at a high level (≥1.2-fold higher than the mean expression across all cell lines). Furthermore, inhibition or knockdown of the single overexpressed protein in these tumour cells was sufficient to trigger TRAIL sensitivity. Therefore, the redundancy in resistance pathways in non-transformed cells may offer a safe therapeutic window for TRAIL-based combination therapies where selective sensitisation of the tumour to TRAIL can be achieved by targeting the single non-redundant resistance pathway.
Collapse
Affiliation(s)
- M van Dijk
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
11
|
Kahraman S, Dirice E, Hapil FZ, Ertosun MG, Ozturk S, Griffith TS, Sanlioglu S, Sanlioglu AD. Tracing of islet graft survival by way of in vivo fluorescence imaging. Diabetes Metab Res Rev 2011; 27:575-83. [PMID: 21584921 DOI: 10.1002/dmrr.1216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND To increase the success rate in xenogeneic islet transplantation, proper assessment of graft mass is required following transplantation. For this reason, we aimed to develop a suitable fluorescence imaging system to monitor islet xenograft survival in diabetic mice. METHODS Adenovirus vector encoding enhanced green fluorescent protein-transduced rat pancreatic islets were transplanted under the renal capsule of streptozotocin-induced diabetic mice and the fluorescence signal was quantified over time using a cooled charge-coupled device. Non-fasting blood glucose levels were recorded during the same period. Insulin release from transduced and control islets was detected via enzyme-linked immunosorbent assay. RESULTS Adenovirus vector encoding enhanced green fluorescent protein infection did not alter the function or survival of pancreatic islets post transduction. A direct correlation was found between the number of islets (250-750) transplanted under the kidney capsule and the blood glucose recovery. CONCLUSIONS Fluorescence imaging appears to be a useful tool for quantitative assessment of islet cell viability post transplantation and could permit earlier detection of graft rejection.
Collapse
Affiliation(s)
- Sevim Kahraman
- Department of Medical Biology and Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya 07058, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Griffith TS, Kucaba TA, O'Donnell MA, Burns J, Benetatos C, McKinlay MA, Condon S, Chunduru S. Sensitization of human bladder tumor cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis with a small molecule IAP antagonist. Apoptosis 2011; 16:13-26. [PMID: 20734142 DOI: 10.1007/s10495-010-0535-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Urothelial carcinoma of the bladder accounts for approximately 5% of all cancer deaths in humans. The large majority of bladder tumors are non-muscle invasive at diagnosis, but even after local surgical therapy there is a high rate of local tumor recurrence and progression. Current treatments extend time to recurrence but do not significantly alter disease survival. The objective of the present study was to investigate the tumoricidal potential of combining the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) with a small molecule inhibitor of apoptosis proteins (IAP) antagonist to interfere with intracellular regulators of apoptosis in human bladder tumor cells. Our results demonstrate that the IAP antagonist Compound A exhibits high binding affinity to the XIAP BIR3 domain. When Compound A was used at nontoxic concentrations in combination with TRAIL, there was a significant increase in the sensitivity of TRAIL-sensitive and TRAIL-resistant bladder tumor lines to TRAIL-mediated apoptosis. In addition, modulation of TRAIL sensitivity in the TRAIL-resistant bladder tumor cell line T24 with Compound A was reciprocated by XIAP small interfering RNA-mediated suppression of XIAP expression, suggesting the importance of XIAP-mediated resistance to TRAIL in these cells. These results suggest the potential of combining Compound A with TRAIL as an alternative therapy for bladder cancer.
Collapse
Affiliation(s)
- Thomas S Griffith
- Department of Urology, University of Iowa, 375 Newton Road, Iowa City, IA 52242-1089, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yoldas B, Ozer C, Ozen O, Canpolat T, Dogan I, Griffith TS, Sanlioglu S, Ozluoglu LN. Clinical significance of TRAIL and TRAIL receptors in patients with head and neck cancer. Head Neck 2010; 33:1278-84. [PMID: 21837697 DOI: 10.1002/hed.21598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/14/2010] [Accepted: 07/29/2010] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a death ligand currently under clinical trials for cancer. The molecular profile of TRAIL and TRAIL receptors has not yet been mapped for patients with laryngeal squamous cell carcinoma (SCC) or patients with oral cavity squamous cell carcinoma (OCSCC). METHODS Paraffin-embedded tissues from 60 patients with laryngeal SCC and 14 patients with OCSCC were retrospectively analyzed using immunohistochemistry. RESULTS An increase in decoy-R1 (DcR1) but a decrease in decoy-R2 (DcR2) expression were observed in patients with laryngeal SCC and in patients with OCSCC compared with control individuals with benign lesions. Clinical and pathologic grading revealed distinctive TRAIL and TRAIL receptor profiles in patients with squamous cell carcinoma of the head and neck (SCCHN). CONCLUSIONS TRAIL and a TRAIL receptor expression profile might be useful to follow-up disease progression by virtue of its connection with clinical staging and pathologic grading in patients with laryngeal SCC.
Collapse
Affiliation(s)
- Burcak Yoldas
- Human Gene Therapy Division of the Department of Medical Genetics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Aydin C, Sanlioglu AD, Bisgin A, Yoldas B, Dertsiz L, Karacay B, Griffith TS, Sanlioglu S. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL. BMC Cancer 2010; 10:584. [PMID: 20977779 PMCID: PMC2988028 DOI: 10.1186/1471-2407-10-584] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 10/27/2010] [Indexed: 11/18/2022] Open
Abstract
Background Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL) and IKK inhibition (AdIKKβKA) to overcome TRAIL resistance in lung cancer cells. Methods Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Results Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Conclusions Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer.
Collapse
Affiliation(s)
- Cigdem Aydin
- Department of Medical Biology and Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya 07058, Turkiye
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bisgin A, Terzioglu E, Aydin C, Yoldas B, Yazisiz V, Balci N, Bagci H, Gorczynski RM, Akdis CA, Sanlioglu S. TRAIL death receptor-4, decoy receptor-1 and decoy receptor-2 expression on CD8+ T cells correlate with the disease severity in patients with rheumatoid arthritis. BMC Musculoskelet Disord 2010; 11:192. [PMID: 20799941 PMCID: PMC2936350 DOI: 10.1186/1471-2474-11-192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/27/2010] [Indexed: 01/16/2023] Open
Abstract
Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis.
Collapse
Affiliation(s)
- Atil Bisgin
- Department of Medical Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospitals and Clinics, Antalya, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis. Lung Cancer 2010; 68:27-38. [DOI: 10.1016/j.lungcan.2009.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/30/2009] [Accepted: 05/09/2009] [Indexed: 02/07/2023]
|
17
|
TRAIL receptor targeting therapies for non-small cell lung cancer: Current status and perspectives. Drug Resist Updat 2010; 13:2-15. [DOI: 10.1016/j.drup.2009.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 11/25/2009] [Indexed: 12/17/2022]
|
18
|
Holoch PA, Griffith TS. TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 2009; 625:63-72. [PMID: 19836385 PMCID: PMC2783837 DOI: 10.1016/j.ejphar.2009.06.066] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/08/2009] [Accepted: 06/22/2009] [Indexed: 12/31/2022]
Abstract
Since its discovery in 1995, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor super family, has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. Consequently, activation of the apoptotic signaling pathway from the death-inducing TRAIL receptors provides an attractive, biologically-targeted approach to cancer therapy. A great deal of research has focused on deciphering the TRAIL receptor signaling cascade and intracellular regulation of this pathway, as many human tumor cells possess mechanisms of resistance to TRAIL-induced apoptosis. This review focuses on the current state of knowledge regarding TRAIL signaling and resistance, the preclinical development of therapies targeted at TRAIL receptors and modulators of the pathway, and the results of clinical trials for cancer treatment that have emerged from this base of knowledge. TRAIL-based approaches to cancer therapy vary from systemic administration of recombinant, soluble TRAIL protein with or without the combination of traditional chemotherapy, radiation or novel anti-cancer agents to agonistic monoclonal antibodies directed against functional TRAIL receptors to TRAIL gene transfer therapy. A better understanding of TRAIL resistance mechanisms may allow for the development of more effective therapies that exploit this cell-mediated pathway to apoptosis.
Collapse
Affiliation(s)
- Peter A Holoch
- Department of Urology, University of Iowa, 375 Newton Road, Iowa City, IA 52242, USA
| | | |
Collapse
|
19
|
|
20
|
Kahraman S, Dirice E, Sanlioglu AD, Yoldas B, Bagci H, Erkilic M, Griffith TS, Sanlioglu S. In Vivo Fluorescence Imaging is Well-Suited for the Monitoring of Adenovirus Directed Transgene Expression in Living Organisms. Mol Imaging Biol 2009; 12:278-85. [DOI: 10.1007/s11307-009-0260-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/15/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022]
|
21
|
Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Ozdogan M, Suleymanlar I, Balci MK, Griffith TS, Sanlioglu S. High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients. Pancreas 2009; 38:154-160. [PMID: 18981952 DOI: 10.1097/mpa.0b013e31818db9e3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The importance of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in pancreatic carcinoma development is not known. To reveal the putative connection of TRAIL and TRAIL receptor expression profile to this process, we analyzed and compared the expression profile of TRAIL and its receptors in pancreatic tissues of both noncancer patients and patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Thirty-one noncancer patients and 34 PDAC patients were included in the study. TRAIL and TRAIL receptor expression profiles were determined by immunohistochemistry. Annexin V binding revealed the apoptotic index in pancreas. Lastly, the tumor grade, tumor stage, tumor diameter, perineural invasion, and number of lymph node metastasis were used for comparison purposes. RESULTS TRAIL decoy receptor 2 (DcR2) and death receptor 4 expression were up-regulated in PDAC patients compared with noncancer patients, and the ductal cells of PDAC patients displayed significant levels of apoptosis. In addition, acinar cells from PDAC patients had higher DcR2 expression but lower death receptor 4 expression. Increased DcR2 expression was also observed in Langerhans islets of PDAC patients. CONCLUSIONS Differential alteration of TRAIL and TRAIL receptor expression profiles in PDAC patients suggest that the TRAIL/TRAIL receptor system may play a pivotal role during pancreatic carcinoma development.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Human Gene Therapy Unit, Akdeniz University, Antalya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanlioglu AD, Griffith TS, Omer A, Dirice E, Sari R, Altunbas HA, Balci MK, Sanlioglu S. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem 2008; 104:710-20. [PMID: 18247339 DOI: 10.1002/jcb.21677] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 1 diabetes results from the T cell-mediated destruction of pancreatic beta cells. Islet transplantation has recently become a potential therapeutic approach for patients with type 1 diabetes. However, islet-graft failure appears to be a challenging issue to overcome. Thus, complementary gene therapy strategies are needed to improve the islet-graft survival following transplantation. Immune modulation through gene therapy represents a novel way of attacking cytotoxic T cells targeting pancreatic islets. Various death ligands of the TNF family such as FasL, TNF, and TNF-Related Apoptosis-Inducing Ligand (TRAIL) have been studied for this purpose. The over-expression of TNF or FasL in pancreatic islets exacerbates the onset of type 1 diabetes generating lymphocyte infiltrates responsible for the inflammation. Conversely, the lack of TRAIL expression results in higher degree of islet inflammation in the pancreas. In addition, blocking of TRAIL function using soluble TRAIL receptors facilitates the onset of diabetes. These results suggested that contrary to what was observed with TNF or FasL, adenovirus mediated TRAIL gene delivery into pancreatic islets is expected to be therapeutically beneficial in the setting of experimental models of type 1 diabetes. In conclusion; this study mainly reveals the fundamental principles of death ligand-mediated immune evasion in diabetes mellitus.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Human Gene Therapy Unit and the Department of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, 07070 Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Balci MK, Omer A, Griffith TS, Sanlioglu S. High levels of endogenous tumor necrosis factor-related apoptosis-inducing ligand expression correlate with increased cell death in human pancreas. Pancreas 2008; 36:385-393. [PMID: 18437085 DOI: 10.1097/mpa.0b013e318158a4e5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Type 1 diabetes (T1D) has been characterized by the T cell-mediated destruction of pancreatic beta cells. Although various members of the tumor necrosis factor (TNF) family, such as Fas ligand or TNF, have recently been implicated in the development of T1D, the lack of TNF-related apoptosis-inducing ligand (TRAIL) expression or function facilitates the onset of T1D. Thus, the goal of the present study was to investigate the expression profiles of TRAIL and its receptors in human pancreas. METHODS Pancreata of 31 patients were analyzed by immunohistochemistry using antibodies developed against TRAIL and its receptors. Apoptosis was confirmed by Annexin V-fluorescein isothiocyanate binding and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assays. RESULTS Acinar cells displayed high levels of TRAIL and death receptor 4, but only low levels of death receptor 5. In contrast, only TRAIL and TRAIL decoy receptors (DcR1, DcR2) were detected in ductal cells. Similarly, Langerhans islets expressed only TRAIL and TRAIL decoy receptor. High levels of TRAIL expression in pancreas correlated with increased number of apoptotic cells. CONCLUSIONS Although the expression of TRAIL decoy receptors might be necessary for defense from TRAIL-induced apoptosis, high levels of TRAIL may provide protection for Langerhans islets from the immunological attack of cytotoxic T cells.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Human Gene Therapy Unit, Departments of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tumor necrosis factor-related apoptosis inducing ligand-R4 decoy receptor expression is correlated with high Gleason scores, prostate-specific antigen recurrence, and decreased survival in patients with prostate carcinoma. Urol Oncol 2007; 26:158-65. [PMID: 18312935 DOI: 10.1016/j.urolonc.2007.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has recently been investigated because of its ability to selectively kill cancer cells. Despite recent publications mainly focusing on TRAIL resistance in cancer cells, little is known about how TRAIL contributes to the carcinogenesis process. Because the expression patterns of TRAIL and its receptors in patients with prostate carcinoma have recently been reported, this study investigated the significance of TRAIL and TRAIL receptor expression in connection to serum prostate-specific antigen (PSA) and Gleason scoring. MATERIALS AND METHODS A total of 98 patients were included in the study. Gleason scores, PSA, TRAIL, and TRAIL receptor expressions were used for the comparison purposes. The Spearman rho correlation test was administered to reveal the correlations among the variants. The Kruskal Wallis-Mann Whitney U or Friedman-Wilcoxon signed ranks test determined the statistical significance between the pairs. Multinomial and/or multiple binary logistic regression analyses were deployed to test whether TRAIL markers were independent variables to predict the prognosis of prostate cancer. Kaplan-Meier and log-rank tests were used to determine the survival rates. RESULTS High-serum PSA levels were correlated with higher levels of TRAIL and TRAIL receptor expressions. Patients with high Gleason scores had higher levels of TRAIL-R4 decoy receptor expression but lower levels of TRAIL death ligand expression. CONCLUSIONS TRAIL-R4 decoy receptor expression is strongly correlated with PSA recurrence, which is suggestive of poor prognosis. High levels of TRAIL-R4 expression but low levels of TRAIL death ligand expression are connected to decreased survival.
Collapse
|
25
|
Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets 2007; 11:1299-314. [PMID: 17907960 PMCID: PMC2976473 DOI: 10.1517/14728222.11.10.1299] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since its identification in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. In contrast to other members of the TNF superfamily, TRAIL administration in vivo is safe. The relative absence of toxic side effects of this naturally occurring cytokine, in addition to its antitumoural properties, has led to its preclinical evaluation. However, despite intensive investigations, little is known in regards to the mechanisms underlying TRAIL selectivity or efficiency. An appropriate understanding of its physiological relevance, and of the mechanisms controlling cancer cells escape from TRAIL-induced cell death, will be required to optimally use the cytokine in clinics. The present review focuses on recent advances in the understanding of TRAIL signal transduction and discusses the existing and future challenges of TRAIL-based cancer therapy development.
Collapse
|
26
|
Lillehammer T, Engesaeter BO, Prasmickaite L, Maelandsmo GM, Fodstad O, Engebraaten O. Combined treatment with Ad-hTRAIL and DTIC or SAHA is associated with increased mitochondrial-mediated apoptosis in human melanoma cell lines. J Gene Med 2007; 9:440-51. [PMID: 17410615 DOI: 10.1002/jgm.1036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Currently, dacarbazine (DTIC) is the only approved systemic treatment for metastatic malignant melanoma. However, the modest treatment effect encourages studies on novel therapeutic molecules, delivery systems and combination therapies. Full-length TRAIL, delivered from an adenoviral vector (Ad-hTRAIL), was studied in combination with DTIC or the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in human melanoma cell lines. METHODS The cytotoxic potential of the combination treatments was assessed by cell viability measurements and CalcuSyn analysis. Involvement of apoptosis was analyzed by TUNEL staining, mitochondrial membrane potential measurements, and activation and expression levels of caspases and other mediators of apoptosis. RESULTS Ad-hTRAIL in combination with DTIC or SAHA resulted in additive or synergistic growth inhibition compared to each treatment used as single agent. Both combinations augmented apoptosis, which was mediated through the death receptor (DR) pathway by enhanced activation of caspase-8, and through increased loss of mitochondrial integrity. Provoked cleavage of Bid, which bridges the extrinsic and intrinsic apoptosis pathways, and downregulation of the anti-apoptotic mediators Bcl-X(L), Mcl-1 and XIAP (but not Bcl-2) were critical contributing factors. Increased levels of DR4 and DR5 were not a common underlying mechanism as DTIC did not affect the levels of either of the receptors. However, SAHA-induced expression of DR4 may have reduced the TRAIL resistance in the SKMEL-28 cell line. CONCLUSION Administration of Ad-hTRAIL in combination with DTIC or SAHA enhances apoptosis in human melanoma cell lines, and suggests that the therapeutic potential of such treatment strategies should be further evaluated for possible clinical use.
Collapse
Affiliation(s)
- Trine Lillehammer
- Department of Tumor Biology, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
27
|
Sanlioglu AD, Karacay B, Koksal IT, Griffith TS, Sanlioglu S. DcR2 (TRAIL-R4) siRNA and adenovirus delivery of TRAIL (Ad5hTRAIL) break down in vitro tumorigenic potential of prostate carcinoma cells. Cancer Gene Ther 2007; 14:976-84. [PMID: 17853923 DOI: 10.1038/sj.cgt.7701087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High levels of decoy receptor 2 (DcR2; TRAIL-R4) expression are correlated with TRAIL resistance in prostate cancer cells. In addition, upregulation of TRAIL death receptor (DR4 and DR5) expression, either by ionizing radiation or chemotherapy, can sensitize cancer cells to TRAIL. Considering more than half of human cancers are TRAIL resistant, modulation of surface TRAIL receptor expression appears to be an attractive treatment modality to counteract TRAIL resistance. In this study, three siRNA duplexes targeting DcR2 receptor were tested. Ad5hTRAIL infections were performed to overexpress human full-length TRAIL to induce cell death, and the in vitro tumorigenic potential of prostate cancer cells was assessed using colony-forming assays on soft agar. The DU145 and LNCaP prostate cancer cell lines, which express high levels of DcR2, were resistant to Ad5hTRAIL-induced death. Downregulation of surface DcR2 expression by siRNA sensitized these prostate cancer cell lines to Ad5hTRAIL. In addition, DcR2 siRNA-mediated knockdown of DcR2, followed by Ad5hTRAIL infection, dramatically reduced the in vitro tumorigenic potential of prostate cancer cells. Collectively, our results suggest the potential for combining receptor-specific siRNA with TRAIL in the treatment of certain cancers.
Collapse
Affiliation(s)
- A D Sanlioglu
- Human Gene Therapy Unit, Akdeniz University, Faculty of Medicine, Antalya, Turkey
| | | | | | | | | |
Collapse
|
28
|
Sanlioglu AD, Korcum AF, Pestereli E, Erdogan G, Karaveli S, Savas B, Griffith TS, Sanlioglu S. TRAIL death receptor-4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma. Int J Radiat Oncol Biol Phys 2007; 69:716-23. [PMID: 17512128 DOI: 10.1016/j.ijrobp.2007.03.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/23/2007] [Accepted: 03/28/2007] [Indexed: 01/04/2023]
Abstract
PURPOSE Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells, and a number of clinical trials have recently been initiated to test the safety and antitumoral potential of TRAIL in cancer patients. Four different receptors have been identified to interact with TRAIL: two are death-inducing receptors (TRAIL-R1 [DR4] and TRAIL-R2 [DR5]), whereas the other two (TRAIL-R3 [DcR1] and TRAIL-R4 [DcR2]) do not induce death upon ligation and are believed to counteract TRAIL-induced cytotoxicity. Because high levels of DcR2 expression have recently been correlated with carcinogenesis in the prostate and lung, this study investigated the importance of TRAIL and TRAIL receptor expression in breast cancer patients with invasive ductal carcinoma, taking various prognostic markers into consideration. METHODS AND MATERIALS Immunohistochemical analyses were performed on 90 breast cancer patients with invasive ductal carcinoma using TRAIL and TRAIL receptor-specific antibodies. Age, menopausal status, tumor size, lymph node status, tumor grade, lymphovascular invasion, perineural invasion, extracapsular tumor extension, presence of an extensive intraductal component, multicentricity, estrogen and progesterone receptor status, and CerbB2 expression levels were analyzed with respect to TRAIL/TRAIL receptor expression patterns. RESULTS The highest TRAIL receptor expressed in patients with invasive ductal carcinoma was DR4. Although progesterone receptor-positive patients exhibited lower DR5 expression, CerbB2-positive tissues displayed higher levels of both DR5 and TRAIL expressions. CONCLUSIONS DR4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/chemistry
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/chemistry
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Chemotherapy, Adjuvant
- Female
- Humans
- Immunohistochemistry
- Middle Aged
- Neoplasm Proteins/analysis
- Neoplasm Staging
- Radiotherapy, Adjuvant
- Receptor, ErbB-2/analysis
- Receptors, Estrogen/analysis
- Receptors, Progesterone/analysis
- Receptors, TNF-Related Apoptosis-Inducing Ligand/analysis
- Receptors, Tumor Necrosis Factor, Member 10c/analysis
- TNF-Related Apoptosis-Inducing Ligand/analysis
Collapse
Affiliation(s)
- Ahter D Sanlioglu
- Human Gene Therapy Unit, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|