1
|
Qian Y, Liu Z, Liu Q, Tian X, Mo J, Leng L, Wang C, Xu G, Zhang S, Xie J. Transduction of Lentiviral Vectors and ADORA3 in HEK293T Cells Modulated in Gene Expression and Alternative Splicing. Int J Mol Sci 2025; 26:4431. [PMID: 40362672 DOI: 10.3390/ijms26094431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
For steady transgenic expression, lentiviral vector-mediated gene delivery is a commonly used technique. One question that needs to be explored is how external lentiviral vectors and overexpressed genes perturb cellular homeostasis, potentially altering transcriptional networks. In this study, two Human Embryonic Kidney 293T (HEK293T)-derived cell lines were established via lentiviral transduction, one overexpressing green fluorescent protein (GFP) and the other co-overexpressing GFP and ADORA3 following puromycin selection to ensure stable genomic integration. Genes with differentially transcript utilization (gDTUs) and differentially expressed genes (DEGs) across cell lines were identified after short-read and long-read RNA-seq. Only 31 genes were discovered to have changed in expression when GFP was expressed, although hundreds of genes showed variations in transcript use. In contrast, even when co-overexpression of GFP and ADORA3 alters the expression of more than 1000 genes, there are still less than 1000 gDTUs. Moreover, DEGs linked to ADORA3 overexpression play a major role in RNA splicing, whereas gDTUs are highly linked to a number of malignancies and the molecular mechanisms that underlie them. For the analysis of gene expression data from stable cell lines derived from HEK293T, our findings provide important insights into changes in gene expression and alternative splicing.
Collapse
Affiliation(s)
- Yongqi Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qingqing Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaojuan Tian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Mo
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guoqing Xu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
2
|
Hou R, Zhang X, Wang X, Zhao X, Li S, Guan Z, Cao J, Liu D, Zheng J, Shi M. In vivo manufacture and manipulation of CAR-T cells for better druggability. Cancer Metastasis Rev 2024; 43:1075-1093. [PMID: 38592427 DOI: 10.1007/s10555-024-10185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.
Collapse
Affiliation(s)
- Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxue Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
Eugene-Norbert M, Cuffel A, Riou G, Jean L, Blondel C, Dehayes J, Bisson A, Giverne C, Brotin E, Denoyelle C, Poulain L, Boyer O, Martinet J, Latouche JB. Development of optimized cytotoxicity assays for assessing the antitumor potential of CAR-T cells. J Immunol Methods 2024; 525:113603. [PMID: 38147898 DOI: 10.1016/j.jim.2023.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
CAR-T cells are T cells expressing a chimeric antigen receptor (CAR) rendering them capable of killing tumor cells after recognition of a target antigen. CD19 CAR-T cells have revolutionized the treatment of hematological malignancies. Their function is typically assessed by cytotoxicity assays using human allogeneic cell lines expressing the target antigen CD19 such as Nalm-6. However, an alloreactive reaction is observed with these cells, leading to a CD19-independent killing. To address this issue, we developed a fluorescence microscopy-based potency assay using murine target cells to provide an optimized cytotoxicity assay with enhanced specificity towards CD19. Murine NIH/3T3 (3T3) fibroblast-derived cell line and EL4 T-cell lymphoma-derived cell line were used as targets (no xenoreactivity was observed after coculture with human T cells). 3T3 and EL4 cells were engineered to express eGFP (enhanced Green Fluorescent Protein) and CD19 or CD22 using retroviral vectors. CD19 CAR-T cells and non-transduced (NT) control T cells were produced from several donors. After 4 h or 24 h, alloreactive cytotoxicity against CD19+ Nalm-6-GFP cells and CD19- Jurkat-GFP cells was observed with NT or CAR-T cells. In the same conditions, CAR-T but not NT cells specifically killed CD19+ but not CD19- 3T3-GFP or EL4-GFP cells. Both microscope- and flow cytometry-based assays revealed as sensitive as impedance-based assay. Using flow cytometry, we could further determine that CAR-T cells had mostly a stem cell-like memory phenotype after contact with EL4 target cells. Therefore, CD19+ 3T3-GFP or EL4-GFP cells and fluorescence microscopy- or flow cytometry-based assays provide convenient, sensitive and specific tools to evaluate CAR-T cell function with no alloreactivity.
Collapse
Affiliation(s)
- Misa Eugene-Norbert
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Alexis Cuffel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Gaetan Riou
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Laetitia Jean
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Clara Blondel
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France
| | - Justine Dehayes
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Aurélie Bisson
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Camille Giverne
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Emilie Brotin
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France
| | - Christophe Denoyelle
- Université de Caen Normandie, Unité de Service PLATON, ImpedanCELL Core Facility, Caen F-14000, France; Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Laurent Poulain
- Université de Caen Normandie, Inserm, ANTICIPE UMR (1086), Structure Fédérative 4207 Normandie Oncologie, Normandie Univ, Caen F-14000, France; Comprehensive Cancer Center F. Baclesse, Unicancer, Caen F-14000, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| | - Jérémie Martinet
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France.
| | - Jean-Baptiste Latouche
- Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Rouen F-76000, France; Univ Rouen Normandie, Inserm UMR1234, FOCIS Center of Excellence PAn'THER, Department of Immunology and Biotherapy, Rouen University Hospital, Rouen F-76000, France
| |
Collapse
|
4
|
Gödecke N, Hauser H, Wirth D. Stable Expression by Lentiviral Transduction of Cells. Methods Mol Biol 2024; 2810:147-159. [PMID: 38926278 DOI: 10.1007/978-1-0716-3878-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome, the transgene is stably maintained, and long-term producing cells are established. Here, we describe the current state of the art and give details for lab-scale production of lentiviral vectors as well as for infection and titration of the viral vectors.
Collapse
Affiliation(s)
- Natascha Gödecke
- Helmholtz Centre for Infection Research, Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research, Scientific Strategy, Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany.
| |
Collapse
|
5
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
6
|
Arsenijevic Y, Berger A, Udry F, Kostic C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14081605. [PMID: 36015231 PMCID: PMC9414879 DOI: 10.3390/pharmaceutics14081605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
This review offers the basics of lentiviral vector technologies, their advantages and pitfalls, and an overview of their use in the field of ophthalmology. First, the description of the global challenges encountered to develop safe and efficient lentiviral recombinant vectors for clinical application is provided. The risks and the measures taken to minimize secondary effects as well as new strategies using these vectors are also discussed. This review then focuses on lentiviral vectors specifically designed for ocular therapy and goes over preclinical and clinical studies describing their safety and efficacy. A therapeutic approach using lentiviral vector-mediated gene therapy is currently being developed for many ocular diseases, e.g., aged-related macular degeneration, retinopathy of prematurity, inherited retinal dystrophies (Leber congenital amaurosis type 2, Stargardt disease, Usher syndrome), glaucoma, and corneal fibrosis or engraftment rejection. In summary, this review shows how lentiviral vectors offer an interesting alternative for gene therapy in all ocular compartments.
Collapse
Affiliation(s)
- Yvan Arsenijevic
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
- Correspondence: (Y.A.); (C.K.)
| | - Adeline Berger
- Group Epigenetics of ocular diseases, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Florian Udry
- Unit Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland;
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, 1004 Lausanne, Switzerland
- Correspondence: (Y.A.); (C.K.)
| |
Collapse
|
7
|
Lebrec H, Maier CC, Maki K, Ponce R, Shenton J, Green S. Nonclinical safety assessment of engineered T cell therapies. Regul Toxicol Pharmacol 2021; 127:105064. [PMID: 34656748 DOI: 10.1016/j.yrtph.2021.105064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/11/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Over the last decade, immunotherapy has established itself as an important novel approach in the treatment of cancer, resulting in a growing importance in oncology. Engineered T cell therapies, namely chimeric antigen receptor (CAR) T cells and T cell receptor (TCR) T cell therapies, are platform technologies that have enabled the development of products with remarkable efficacy in several hematological malignancies and are thus the focus of intense research and development activity. While engineered T cell therapies offer promise in addressing currently intractable cancers, they also present unique challenges, including their nonclinical safety assessment. A workshop organized by HESI and the US Food and Drug Administration (FDA) was held to provide an interdisciplinary forum for representatives of industry, academia and regulatory authorities to share information and debate on current practices for the nonclinical safety evaluation of engineered T cell therapies. This manuscript leverages what was discussed at this workshop to provide an overview of the current important nonclinical safety assessment considerations for the development of these therapeutic modalities (cytokine release syndrome, neurotoxicity, on-target/off-tumor toxicities, off-target effects, gene editing or vector integration-associated genomic injury). The manuscript also discusses approaches used for hazard identification or risk assessment and provides a regulatory perspective on such aspects.
Collapse
Affiliation(s)
| | | | | | - Rafael Ponce
- Shape Therapeutics Incorporated, Seattle, WA, United States
| | - Jacintha Shenton
- Janssen Research and Development, Spring House, PA, United States
| | - Shon Green
- Umoja Biopharma Incorporated, Seattle, WA, United States
| |
Collapse
|
8
|
Reference standards for accurate validation and optimization of assays that determine integrated lentiviral vector copy number in transduced cells. Sci Rep 2021; 11:389. [PMID: 33431989 PMCID: PMC7801692 DOI: 10.1038/s41598-020-79698-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 11/14/2022] Open
Abstract
Lentiviral vectors (LV) have emerged as a robust technology for therapeutic gene delivery into human cells as advanced medicinal products. As these products are increasingly commercialized, there are concomitant demands for their characterization to ensure safety, efficacy and consistency. Standards are essential for accurately measuring parameters for such product characterization. A critical parameter is the vector copy number (VCN) which measures the genetic dose of a transgene present in gene-modified cells. Here we describe a set of clonal Jurkat cell lines with defined copy numbers of a reference lentiviral vector integrated into their genomes. Genomic DNA was characterized for copy number, genomic integrity and integration coordinates and showed uniform performance across independent quantitative PCR assays. Stability studies during continuous long-term culture demonstrated sustained renewability of the reference standard source material. DNA from the Jurkat VCN standards would be useful for control of quantitative PCR assays for VCN determination in LV gene-modified cellular products and clinical samples.
Collapse
|
9
|
Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulić B. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med 2020; 11:11/504/eaav5685. [PMID: 31391322 DOI: 10.1126/scitranslmed.aav5685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Adoptive immunotherapy using chimeric antigen receptor-modified T cells (CAR-T) has made substantial contributions to the treatment of certain B cell malignancies. Such treatment modalities could potentially obviate the need for long-term antiretroviral drug therapy in HIV/AIDS. Here, we report the development of HIV-1-based lentiviral vectors that encode CARs targeting multiple highly conserved sites on the HIV-1 envelope glycoprotein using a two-molecule CAR architecture, termed duoCAR. We show that transduction with lentiviral vectors encoding multispecific anti-HIV duoCARs confer primary T cells with the capacity to potently reduce cellular HIV infection by up to 99% in vitro and >97% in vivo. T cells are the targets of HIV infection, but the transduced T cells are protected from genetically diverse HIV-1 strains. The CAR-T cells also potently eliminated PBMCs infected with broadly neutralizing antibody-resistant HIV strains, including VRC01/3BNC117-resistant HIV-1. Furthermore, multispecific anti-HIV duoCAR-T cells demonstrated long-term control of HIV infection in vivo and prevented the loss of CD4+ T cells during HIV infection using a humanized NSG mouse model of intrasplenic HIV infection. These data suggest that multispecific anti-HIV duoCAR-T cells could be an effective approach for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
| | - Ariola Bardhi
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Ray
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nina Flerin
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mengyan Li
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35294, USA
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Andrew Worden
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Harris Goldstein
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
10
|
Wang Y, Li S, Tian Z, Sun J, Liang S, Zhang B, Bai L, Zhang Y, Zhou X, Xiao S, Zhang Q, Zhang L, Zhang C, Zhou D. Generation of a caged lentiviral vector through an unnatural amino acid for photo-switchable transduction. Nucleic Acids Res 2019; 47:e114. [PMID: 31361892 PMCID: PMC6821241 DOI: 10.1093/nar/gkz659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
Application of viral vectors in gene delivery is attracting widespread attention but is hampered by the absence of control over transduction, which may lead to non-selective transduction with adverse side effects. To overcome some of these limitations, we proposed an unnatural amino acid aided caging–uncaging strategy for controlling the transduction capability of a viral vector. In this proof-of-principle study, we first expanded the genetic code of the lentiviral vector to incorporate an azido-containing unnatural amino acid (Nϵ-2-azidoethyloxycarbonyl-l-lysine, NAEK) site specifically within a lentiviral envelope protein. Screening of the resultant vectors indicated that NAEK incorporation at Y77 and Y116 was capable of inactivating viral transduction upon click conjugation with a photo-cleavable chemical molecule (T1). Exposure of the chimeric viral vector (Y77-T1) to UVA light subsequently removed the photo-caging group and restored the transduction capability of lentiviral vector both in vitro and in vivo. Our results indicate that the use of the photo-uncage activation procedure can reverse deactivated lentiviral vectors and thus enable regulation of viral transduction in a switchable manner. The methods presented here may be a general approach for generating various switchable vectors that respond to different stimulations and adapt to different viral vectors.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiaqi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Zhang
- Center for Translational Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueying Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuanling Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Molecular Cloning, Lentiviral Transduction, and Expression of Recombinant ADAMTSL2 and ADAMTSL4. Methods Mol Biol 2019. [PMID: 31463909 DOI: 10.1007/978-1-4939-9698-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lentiviral systems have proven advantageous in the delivery and long-term integration of gene sequences into the genome of several cell types in vitro, in vivo, as well as in clinical trials. Here we detail the protocols involved in the molecular cloning of ADAMTSL2 and ADAMTSL4 into the human immunodeficiency virus (HIV)-derived pCDH lentiviral system. We also describe the lentiviral transduction of ADAMTSL2 and ADAMTSL4 into mammalian HEK293-EBNA cells to create stable cell lines, as well as their recombinant expression.
Collapse
|
12
|
Kaiser RA, Nicolas CT, Allen KL, Chilton JA, Du Z, Hickey RD, Lillegard JB. Hepatotoxicity and Toxicology of In Vivo Lentiviral Vector Administration in Healthy and Liver-Injury Mouse Models. HUM GENE THER CL DEV 2019; 30:57-66. [PMID: 30860398 PMCID: PMC6589498 DOI: 10.1089/humc.2018.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
General safety and toxicology assessments supporting in vivo lentiviral vector-based therapeutic development are sparse. We have previously demonstrated the efficacy of a lentiviral vector expressing fumarylacetoacetate hydrolase (LV-FAH) to cure animal models of hereditary tyrosinemia type 1. Therefore, we performed a complete preclinical toxicological evaluation of LV-FAH, in a large cohort (n = 20/group) of wildtype mice and included matched groups of N-nitrosodiethylamine/carbon tetrachloride (DEN/CCl4)-induced liver injury mice to assess specific toxicity in fibrotic liver tissue. Mice receiving LV-FAH alone (109 TU/mouse) or in combination with DEN/CCl4 presented clinically similar to control animals, with only slight reductions in total body weight gains over the study period (3.2- to 3.7-fold vs. 4.2-fold). There were no indications of toxicity attributed to administration of LV-FAH alone over the duration of this study. The known hepatotoxic combination of DEN/CCl4 induced fibrotic liver injury, and co-administration with LV-FAH was associated with exaggeration of some findings such as an increased liver:body weight ratio and progression to focal hepatocyte necrosis in some animals. Hepatocellular degeneration/regeneration was present in DEN/CCl4-dosed animals regardless of LV-FAH as evaluated by Ki-67 immunohistochemistry and circulating alpha fetoprotein levels, but there were no tumors identified in any tissue in any dose group. These data demonstrate the inherent safety of LV-FAH and support broader clinical development of lentiviral vectors for in vivo administration.
Collapse
Affiliation(s)
- Robert Allen Kaiser
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Kari Lynn Allen
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Zeji Du
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
| | | | - Joseph Benjamin Lillegard
- Midwest Fetal Care Center, Children's Hospital of Minnesota, Minneapolis, Minnesota
- Mayo Clinic, Department of Surgery Research, Rochester, Minnesota
- Pediatric Surgical Associates, Minneapolis, Minnesota
| |
Collapse
|
13
|
孟 凡, 赵 丹, 周 清, 刘 喆. [Construction of EZH2 Knockout Animal Model by CRISPR/Cas9 Technology]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:358-364. [PMID: 29764585 PMCID: PMC5999930 DOI: 10.3779/j.issn.1009-3419.2018.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/26/2018] [Accepted: 03/05/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND It has been proven that CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system was the modern gene-editing technology through the constitutive expression of nucleases Cas9 in the mammalian, which binds to the specific site in the genome mediated by single-guide RNA (sgRNA) at desired genomic loci. The aim of this study is that the animal model of EZH2 gene knockout was constructed using CRISPR/Cas9 technology. METHODS In this study, we designed two single-guide RNAs targeting the Exon3 and Exon4 of EZH2 gene. Then, their gene-targeting efficiency were detected by SURVEYOR assay. The lentivirus was perfused into the lungs of mice by using a bronchial tube and detected by immunohistochemistry and qRT-PCR. RESULTS The experimental results of NIH-3T3 cells verify that the designed sgEZH2 can efficiently effect the cleavage of target DNA by Cas9 in vitro. The immunohistochemistry and qRT-PCR results showed that the EZH2 expression in experimental group was significantly decreased in the mouse lung tissue. CONCLUSIONS The study successfully designed two sgRNA which can play a knock-out EZH2 function. An EZH2 knockout animal model was successfully constructed by CRISPR/Cas9 system, and it will be an effective animal model for studying the functions and mechanisms of EZH2.
Collapse
Affiliation(s)
- 凡荣 孟
- 300052 天津,天津医科大学总医院,天津市肺癌研究所,天津市肺癌转移与肿瘤微环境实验室Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - 丹 赵
- 300070天津,天津医科大学Tianjin Medical University, Tianjin 300070, China
| | - 清华 周
- 300052 天津,天津医科大学总医院,天津市肺癌研究所,天津市肺癌转移与肿瘤微环境实验室Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - 喆 刘
- 300070天津,天津医科大学Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
14
|
夏 颖, 周 雪, 古 文, 赵 岩, 肖 潇, 白 晓, 刘 俊, 李 明. [A method for efficient transduction of miR-483-5p in the kidney of mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:141-147. [PMID: 29502051 PMCID: PMC6743870 DOI: 10.3969/j.issn.1673-4254.2018.02.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To establish a method for gene delivery in murine renal tissue using lentivirus vector encoding miR-483-5p. METHODS Thirty-five C57BL/6J mice were randomly divided into control group, low-dose treatment group (5 µL each kidney) , and high?dose treatment group (20 µL each kidney), and in the latter two groups, the lentivirus vector encoding miR-483-5p were injected in the renal cortex. The tissue samples were collected at 7 and 21 days after the injection. A transgenic mouse model with inducible systemic overexpression of miR-483-5p was established in TG483 mice. The Cre-loxp system was used to create a mouse model with renal tubule-specific expression of miR-483-5p. The levels of BUN in the mice were detected and HE staining and fluorometric TUNEL assay were used to observe the morphological changes of the kidneys; real-time qPCR was used to detect miR-483-5p expression in the renal cortex. RESULTS The mice with overexpression of miR-483-5p had normal renal function without obvious pathological changes or apoptosis in the renal tissue. Renal cortex injection of 20 µL lentivirus resulted in obviously increased level of miR-483-5p at 21 days (1.2∓0.43 vs 8.6∓1.09, P<0.001). miR-483-5p showed a low expression (0.9∓0.09 vs 1.7∓0.19, P<0.05) in TG483 mice and a high expression in the kidney of the transgenic mice established using the Cre-loxp system (1.6∓1.13 vs 12.36∓3.89, P<0.05). CONCLUSION The transgenic mice with renal tubule-specific expression of miR-483-5p show normal renal function, and this model facilitates further study of the role of miR-483-5p in the kidney.
Collapse
Affiliation(s)
- 颖 夏
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - 雪娟 周
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - 文清 古
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - 岩岩 赵
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - 潇 肖
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - 晓春 白
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - 俊 刘
- 广州军区广州总医院泌尿外科,广东 广州 510010Department of Urology, General Hospital of Guangzhou Military Region, Guangzhou 510010, China
| | - 明 李
- 南方医科大学基础医学院细胞生物学教研室,广东 广州 510515Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Abstract
Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome the transgene is stably maintained and long term producing cells are established. Here, we describe the current state of the art and give details for lab scale production of lentiviral vectors as well as for infection and titration of the viral vectors.
Collapse
|
16
|
Abstract
T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.
Collapse
|
17
|
He JS, Xie N, Yang JB, Guan H, Chen WC, Zou C, Ouyang YW, Mao YS, Luo XY, Pan Y, Fu L. BCSG1 siRNA delivered by lentiviral vector suppressed proliferation and migration of MDA-MB-231 cells. Int J Mol Med 2017; 41:1659-1664. [PMID: 29286089 DOI: 10.3892/ijmm.2017.3355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/13/2017] [Indexed: 11/06/2022] Open
Abstract
Breast cancer-specific gene 1 (BCSG1), also referred to as γ-synuclein (SNCG), is highly expressed in human infiltrating breast carcinomas, but not in normal or benign breast tissue. The present study aimed to evaluate the effects of BCSG1 siRNA delivered by lentiviral vector on breast cancer cells and investigate the underlying mechanisms. BCSG1 RNAi lentiviral vector was constructed and transfected into MDA-MB-231 cells. BCSG1 mRNA levels were determined by quantitative polymerase chain reaction analysis. Cell proliferation, migration and apoptosis were evaluated by using the cell counting kit‑8, Transwell assay and flow cytometry, respectively, followed by western blotting to determine the relative levels of AKT, extracellular signal‑regulated kinase (ERK), p-AKT and p-ERK expression. BCSG1 mRNA levels were significantly reduced in MDA-MB‑231 cells following transfection of BCSG1 siRNA delivered by lentiviral vector. Cell migration and proliferation were significantly decreased and the cell cycle was arrested. Western blot analysis indicated that the protein levels of p-AKT and p-ERK were significantly lower in the BCSG1 siRNA-treated groups compared with the control and negative control groups. Therefore, BCSG1 siRNA delivered by lentiviral vector was able to significantly reduce BCSG1 expression, suppress cell migration and proliferation, possibly through the reduction of the protein levels of p-AKT and p-ERK.
Collapse
Affiliation(s)
- Jin-Song He
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Ni Xie
- Biobank, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Jian-Bo Yang
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, MN Twin Cities, MN 55455, USA
| | - Hong Guan
- Department of Pathology, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Wei-Cai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Chang Zou
- Clinical Research Centre, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yi-Wen Ouyang
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - You-Sheng Mao
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Xue-Ying Luo
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Yue Pan
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Second People's Hospital of Shenzhen, Shenzhen, Guangdong 518035, P.R. China
| | - Li Fu
- Cancer Research Centre, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
18
|
Zhu F, Shah N, Xu H, Schneider D, Orentas R, Dropulic B, Hari P, Keever-Taylor CA. Closed-system manufacturing of CD19 and dual-targeted CD20/19 chimeric antigen receptor T cells using the CliniMACS Prodigy device at an academic medical center. Cytotherapy 2017; 20:394-406. [PMID: 29287970 DOI: 10.1016/j.jcyt.2017.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AIMS Multiple steps are required to produce chimeric antigen receptor (CAR)-T cells, involving subset enrichment or depletion, activation, gene transduction and expansion. Open processing steps that increase risk of contamination and production failure are required. This complex process requires skilled personnel and costly clean-room facilities and infrastructure. Simplified, reproducible CAR-T-cell manufacturing with reduced labor intensity within a closed-system is highly desirable for increased availability for patients. METHODS The CliniMACS Prodigy with TCT process software and the TS520 tubing set that allows closed-system processing for cell enrichment, transduction, washing and expansion was used. We used MACS-CD4 and CD8-MicroBeads for enrichment, TransAct CD3/CD28 reagent for activation, lentiviral CD8 TM-41BB-CD3 ζ-cfrag vectors expressing scFv for CD19 or CD20/CD19 antigens for transduction, TexMACS medium-3%-HS-IL2 for culture and phosphate-buffered saline/ethylenediaminetetraacetic acid buffer for washing. Processing time was 13 days. RESULTS Enrichment (N = 7) resulted in CD4/CD8 purity of 98 ± 4.0%, 55 ± 6% recovery and CD3+ T-cell purity of 89 ± 10%. Vectors at multiplicity of infection 5-10 resulted in transduction averaging 37%. An average 30-fold expansion of 108 CD4/CD8-enriched cells resulted in sufficient transduced T cells for clinical use. CAR-T cells were 82-100% CD3+ with a mix of CD4+ and CD8+ cells that primarily expressed an effector-memory or central-memory phenotype. Functional testing demonstrated recognition of B-cells and for the CAR-20/19 T cells, CD19 and CD20 single transfectants were recognized in cytotoxic T lymphocyte and interferon-γ production assays. DISCUSSION The CliniMACS Prodigy device, tubing set TS520 and TCT software allow CAR-T cells to be manufactured in a closed system at the treatment site without need for clean-room facilities and related infrastructure.
Collapse
Affiliation(s)
- Fenlu Zhu
- Medical College of Wisconsin, Department of Medicine, Hematology & Oncology Division, Milwaukee, Wisconsin, USA
| | - Nirav Shah
- Medical College of Wisconsin, Department of Medicine, Hematology & Oncology Division, Milwaukee, Wisconsin, USA
| | - Huiqing Xu
- Medical College of Wisconsin, Department of Medicine, Hematology & Oncology Division, Milwaukee, Wisconsin, USA
| | - Dina Schneider
- Lentigen Technology, Inc., A Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Rimas Orentas
- Lentigen Technology, Inc., A Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Boro Dropulic
- Lentigen Technology, Inc., A Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Parameswaran Hari
- Medical College of Wisconsin, Department of Medicine, Hematology & Oncology Division, Milwaukee, Wisconsin, USA
| | - Carolyn A Keever-Taylor
- Medical College of Wisconsin, Department of Medicine, Hematology & Oncology Division, Milwaukee, Wisconsin, USA.
| |
Collapse
|
19
|
Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res 2017; 6:2153. [PMID: 29333255 PMCID: PMC5749125 DOI: 10.12688/f1000research.11243.1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated virus (AAV) has shown promising therapeutic efficacy with a good safety profile in a wide range of animal models and human clinical trials. With the advent of clustered regulatory interspaced short palindromic repeat (CRISPR)-based genome-editing technologies, AAV provides one of the most suitable viral vectors to package, deliver, and express CRISPR components for targeted gene editing. Recent discoveries of smaller Cas9 orthologues have enabled the packaging of Cas9 nuclease and its chimeric guide RNA into a single AAV delivery vehicle for robust
in vivo genome editing. Here, we discuss how the combined use of small Cas9 orthologues, tissue-specific minimal promoters, AAV serotypes, and different routes of administration has advanced the development of efficient and precise
in vivo genome editing and comprehensively review the various AAV-CRISPR systems that have been effectively used in animals. We then discuss the clinical implications and potential strategies to overcome off-target effects, immunogenicity, and toxicity associated with CRISPR components and AAV delivery vehicles. Finally, we discuss ongoing non-viral-based
ex vivo gene therapy clinical trials to underscore the current challenges and future prospects of CRISPR/Cas9 delivery for human therapeutics.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
20
|
Hu Y, Liu C, Muyldermans S. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Front Immunol 2017; 8:1442. [PMID: 29163515 PMCID: PMC5673844 DOI: 10.3389/fimmu.2017.01442] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023] Open
Abstract
The development of innovative targeted therapeutic approaches are expected to surpass the efficacy of current forms of treatments and cause less damage to healthy cells surrounding the tumor site. Since the first development of targeting agents from hybridoma’s, monoclonal antibodies (mAbs) have been employed to inhibit tumor growth and proliferation directly or to deliver effector molecules to tumor cells. However, the full potential of such a delivery strategy is hampered by the size of mAbs, which will obstruct the targeted delivery system to access the tumor tissue. By serendipity, a new kind of functional homodimeric antibody format was discovered in camelidae, known as heavy-chain antibodies (HCAbs). The cloning of the variable domain of HCAbs produces an attractive minimal-sized alternative for mAbs, referred to as VHH or nanobodies (Nbs). Apart from their dimensions in the single digit nanometer range, the unique characteristics of Nbs combine a high stability and solubility, low immunogenicity and excellent affinity and specificity against all possible targets including tumor markers. This stimulated the development of tumor-targeted therapeutic strategies. Some autonomous Nbs have been shown to act as antagonistic drugs, but more importantly, the targeting capacity of Nbs has been exploited to create drug delivery systems. Obviously, Nb-based targeted cancer therapy is mainly focused toward extracellular tumor markers, since the membrane barrier prevents antibodies to reach the most promising intracellular tumor markers. Potential strategies, such as lentiviral vectors and bacterial type 3 secretion system, are proposed to deliver target-specific Nbs into tumor cells and to block tumor markers intracellularly. Simultaneously, Nbs have also been employed for in vivo molecular imaging to diagnose diseased tissues and to monitor the treatment effects. Here, we review the state of the art and focus on recent developments with Nbs as targeting moieties for drug delivery systems in cancer therapy and cancer imaging.
Collapse
Affiliation(s)
- Yaozhong Hu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Mohanlal R, Qiu Y, Zheng M, Mirkou A, Sridharan K, Keir C. Long-Term Safety Follow-Up of Subjects Previously Treated with Non-Replicating Retroviral Vector-Based Gene Therapies. Mol Diagn Ther 2017; 20:591-602. [PMID: 27435702 PMCID: PMC5107205 DOI: 10.1007/s40291-016-0229-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective Our objective was to evaluate the life-long safety profile of gene therapy using retroviral (non-replicating) vectors (nRCR), or cell products in 127 subjects with hemophilia, human immunodeficiency virus (HIV), or cancer, previously treated with such gene therapy. Methods We assessed the occurrence of serious adverse events (SAEs), deaths and presence of replication competent retrovirus (RCR). Results A total of 23 subjects remained until the data cut-off date of 31 July 2013 and provided safety information of up to 18 years. Of the 104 subjects who discontinued, the primary reason was loss to follow-up (47.2 %; n = 60). The follow-up period for the 60 subjects lost to follow-up was 7–10 years. A total of 41 subjects experienced at least one SAE, and 15 subjects died. We reviewed SAEs and cause of death (none related to the active therapy), but no evidence was found for safety signals related to new malignancy or neurologic, rheumatological, autoimmune, or hematologic disorder. RCR results were negative, indicating no evidence for in vivo vector persistence. Conclusion Despite the loss of follow-up, which is the limiting factor in this long-term safety trial, the findings from this long-term follow-up study are encouraging.
Collapse
Affiliation(s)
- Ramon Mohanlal
- Novartis Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Yuhong Qiu
- Novartis Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Ming Zheng
- Novartis Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Asmae Mirkou
- Novartis Oncology, Novartis Pharma AG, Basel, Switzerland
| | - Kanaka Sridharan
- Cell and Gene Therapies Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Christopher Keir
- Cell and Gene Therapies Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| |
Collapse
|
22
|
Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, Zhao C, Zeng Z, Shu Y, Wu X, Lei J, Li Y, Zhang W, Yang C, Wu K, Wu Y, Ho S, Athiviraham A, Lee MJ, Wolf JM, Reid RR, He TC. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis 2017; 4:43-63. [PMID: 28944281 PMCID: PMC5609467 DOI: 10.1016/j.gendis.2017.04.001] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
With rapid advances in understanding molecular pathogenesis of human diseases in the era of genome sciences and systems biology, it is anticipated that increasing numbers of therapeutic genes or targets will become available for targeted therapies. Despite numerous setbacks, efficacious gene and/or cell-based therapies still hold the great promise to revolutionize the clinical management of human diseases. It is wildly recognized that poor gene delivery is the limiting factor for most in vivo gene therapies. There has been a long-lasting interest in using viral vectors, especially adenoviral vectors, to deliver therapeutic genes for the past two decades. Among all currently available viral vectors, adenovirus is the most efficient gene delivery system in a broad range of cell and tissue types. The applications of adenoviral vectors in gene delivery have greatly increased in number and efficiency since their initial development. In fact, among over 2,000 gene therapy clinical trials approved worldwide since 1989, a significant portion of the trials have utilized adenoviral vectors. This review aims to provide a comprehensive overview on the characteristics of adenoviral vectors, including adenoviral biology, approaches to engineering adenoviral vectors, and their applications in clinical and pre-clinical studies with an emphasis in the areas of cancer treatment, vaccination and regenerative medicine. Current challenges and future directions regarding the use of adenoviral vectors are also discussed. It is expected that the continued improvements in adenoviral vectors should provide great opportunities for cell and gene therapies to live up to its enormous potential in personalized medicine.
Collapse
Affiliation(s)
- Cody S. Lee
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Elliot S. Bishop
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Yu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Evan M. Farina
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Xingye Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jiayan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yasha Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated Yantai Hospital, Binzhou Medical University, Yantai 264100, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Immunology and Microbiology, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Magnani A, Mahlaoui N. Managing Inflammatory Manifestations in Patients with Chronic Granulomatous Disease. Paediatr Drugs 2016; 18:335-45. [PMID: 27299584 DOI: 10.1007/s40272-016-0182-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by lack of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which results in inflammatory dysregulation and increased susceptibility to infections. Patients with CGD may develop severe obstructive disorders of the digestive tract as a result of their dysregulated inflammatory response. Despite a growing focus on inflammatory manifestations in CGD, the literature data on obstructive complications are far less extensive than those on infectious complications. Diagnosis and management of patients with concomitant predispositions to infections and hyperinflammation are particularly challenging. Although the inflammatory and granulomatous manifestations of CGD usually respond rapidly to steroid treatment, second-line therapies (immunosuppressants and biologics) may be required in refractory cases. Indeed, immunosuppressants (such as anti-tumor necrosis factor agents, thalidomide, and anakinra) have shown some efficacy, but the value of this approach is controversial, given the questionable risk-to-benefit ratio and the small numbers of patients treated to date. Significant progress in allogeneic hematopoietic stem cell transplantation (the only curative treatment for CGD) has been made through better supportive care and implementation of improved, reduced-intensity conditioning regimens. Gene therapy may eventually be an option for patients lacking a suitable donor; clinical trials with new, safer vectors are ongoing at a few centers.
Collapse
Affiliation(s)
- Alessandra Magnani
- Biotherapy Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France.
| | - Nizar Mahlaoui
- Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France. .,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. .,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris, France. .,Pediatric Immunohematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
24
|
Diener Y, Bosio A, Bissels U. Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Exp Hematol 2016; 44:991-1001. [PMID: 27576131 DOI: 10.1016/j.exphem.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/01/2016] [Accepted: 08/18/2016] [Indexed: 12/26/2022]
Abstract
Gene modulation of human hematopoietic stem and progenitor cells (HSPCs) harbors great potential for therapeutic application of these cells and presents a versatile tool in basic research to enhance our understanding of HSPC biology. However, stable genetic modification might be adverse, particularly in clinical settings. Here, we review a broad range of approaches to transient, nonviral modulation of protein expression with a focus on RNA-based methods. We compare different delivery methods and describe the usefulness of RNA molecules for overexpression as well as downregulation of proteins in HSPCs.
Collapse
Affiliation(s)
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
25
|
Petersen GF, Strappe PM. Generation of diverse neural cell types through direct conversion. World J Stem Cells 2016; 8:32-46. [PMID: 26981169 PMCID: PMC4766249 DOI: 10.4252/wjsc.v8.i2.32] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/18/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications.
Collapse
|
26
|
Abstract
For the purpose of this work, insect biotechnology, which is also known as yellow biotechnology, is the use of insects as well as insect-derived cells or molecules in medical (red biotechnology), agricultural (green biotechnology), and industrial (white) biotechnology. It is based on the application of biotechnological techniques on insects or their cells to develop products or services for human use. Such products are then applied in agriculture, medicine, and industrial biotechnology. Insect biotechnology has proven to be a useful resource in diverse industries, especially for the production of industrial enzymes including chitinases and cellulases, pharmaceuticals, microbial insecticides, insect genes, and many other substances. Insect cells (ICs), and particularly lepidopteran cells, constitute a competitive strategy to mammalian cells for the manufacturing of biotechnology products. Among the wide range of methods and expression hosts available for the production of biotech products, ICs are ideal for the production of complex proteins requiring extensive posttranslational modification. The progress so far made in insect biotechnology essentially derives from scientific breakthroughs in molecular biology, especially with the advances in techniques that allow genetic manipulation of organisms and cells. Insect biotechnology has grown tremendously in the last 30 years.
Collapse
Affiliation(s)
- Chandrasekar Raman
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas USA
| | - Marian R. Goldsmith
- Biological Sciences Department Center for Biotech. and Life Sciences, University of Rhode Island, Kingston, Rhode Island USA
| | - Tolulope A. Agunbiade
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
27
|
Solovyeva VV, Kiyasov AP, Rizvanov AA. Genetically Engineered Dental Stem Cells for Regenerative Medicine. DENTAL STEM CELLS 2016. [DOI: 10.1007/978-3-319-28947-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Abstract
Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and infectious diseases have provided safety and feasibility data and important information about persistence of engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in engineered T cell therapies.
Collapse
|
29
|
Chu Y, Oum YH, Carrico IS. Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 2015; 487:95-103. [PMID: 26499046 DOI: 10.1016/j.virol.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
As a result of their ability to integrate into the genome of both dividing and non-dividing cells, lentiviruses have emerged as a promising vector for gene delivery. Targeted gene transduction of specific cells and tissues by lentiviral vectors has been a major goal, which has proven difficult to achieve. We report a novel targeting protocol that relies on the chemoselective attachment of cancer specific ligands to unnatural glycans on lentiviral surfaces. This strategy exhibits minimal perturbation on virus physiology and demonstrates remarkable flexibility. It allows for targeting but can be more broadly useful with applications such as vector purification and immunomodulation.
Collapse
Affiliation(s)
- Yanjie Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Yoon Hyeun Oum
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | - Isaac S Carrico
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
30
|
Buchholz CJ, Friedel T, Büning H. Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery. Trends Biotechnol 2015; 33:777-790. [PMID: 26497425 DOI: 10.1016/j.tibtech.2015.09.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022]
Abstract
Recent progress in gene transfer technology enables the delivery of genes precisely to the application-relevant cell type ex vivo on cultivated primary cells or in vivo on local or systemic administration. Gene vectors based on lentiviruses or adeno-associated viruses can be engineered such that they use a cell surface marker of choice for cell entry instead of their natural receptors. Binding to the surface marker is mediated by a targeting ligand displayed on the vector particle surface, which can be a peptide, single-chain antibody, or designed ankyrin repeat protein. Examples include vectors that deliver genes to specialized endothelial cells or lymphocytes, tumor cells, or particular cells of the nervous system with potential applications in gene function studies and molecular medicine.
Collapse
Affiliation(s)
- Christian J Buchholz
- Paul-Ehrlich-Institut, 63225 Langen, Germany; German Cancer Consortium, 69120 Heidelberg, Germany.
| | | | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner sites Bonn-Cologne and Hannover-Braunschweig, Germany
| |
Collapse
|
31
|
Lachmann N, Brennig S, Hillje R, Schermeier H, Phaltane R, Dahlmann J, Gruh I, Heinz N, Schiedlmeier B, Baum C, Moritz T. Tightly regulated 'all-in-one' lentiviral vectors for protection of human hematopoietic cells from anticancer chemotherapy. Gene Ther 2015; 22:883-92. [PMID: 26125609 DOI: 10.1038/gt.2015.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 06/09/2015] [Accepted: 06/18/2015] [Indexed: 01/12/2023]
Abstract
Successful application of gene therapy strategies may require stringently regulated transgene expression. Along this line, we describe a doxycycline (Dox)-inducible 'all-in-one' lentiviral vector design using the pTET-T11 (TII) minimal-promoter and a reverse transactivator protein (rtTA2S-M2) driven by the phosphoglycerate kinase promoter allowing for tight regulation of transgene expression (Lv.TII vectors). Vector design was evaluated in human hematopoietic cells in the context of cytidine deaminase (hCDD)-based myeloprotective gene therapy. Upon Dox administration, a rapid (16-24 h) and dose-dependent (>0.04 μg ml(-1) Dox) onset of transgene expression was detected in Lv.TII.CDD gene-modified K562 cells as well as in primary human CD34(+) hematopoietic cells. Importantly, in both cell models low background transgene expression was observed in the absence of Dox. Functionality of Dox-inducible hCDD expression was demonstrated by >10-fold increase in cytosine arabinoside (1-β-d-arabinofuranosylcytosine, Ara-C) resistance of Lv.TII.CDD-transduced K562 cells. In addition, Lv.TII.CDD-transduced CD34(+)-derived myeloid cells were protected from up to 300 nm Ara-C (control affected from 50 nm onwards). These data clearly demonstrate the suitability of our self-inactivating lentiviral vector to induce robust, tightly regulated transgene expression in human hematopoietic cells with minimal background activity and highlight the potential of our construct in myeloprotective gene therapy strategies.
Collapse
Affiliation(s)
- N Lachmann
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Brennig
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Hillje
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - H Schermeier
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - R Phaltane
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - J Dahlmann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - I Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - N Heinz
- LOEWE-Research Group for (targeted) Gene Modification in Stem Cells, Paul-Ehrlich-Institute, Langen, Germany
| | - B Schiedlmeier
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - C Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - T Moritz
- Reprogramming and Gene Therapy Group, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Kaiser AD, Assenmacher M, Schröder B, Meyer M, Orentas R, Bethke U, Dropulic B. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther 2015; 22:72-8. [PMID: 25613483 PMCID: PMC4356749 DOI: 10.1038/cgt.2014.78] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
The recent successes of adoptive T-cell immunotherapy for the treatment of hematologic malignancies have highlighted the need for manufacturing processes that are robust and scalable for product commercialization. Here we review some of the more outstanding issues surrounding commercial scale manufacturing of personalized-adoptive T-cell medicinal products. These include closed system operations, improving process robustness and simplifying work flows, reducing labor intensity by implementing process automation, scalability and cost, as well as appropriate testing and tracking of products, all while maintaining strict adherence to Current Good Manufacturing Practices and regulatory guidelines. A decentralized manufacturing model is proposed, where in the future patients' cells could be processed at the point-of-care in the hospital.
Collapse
Affiliation(s)
- A D Kaiser
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - B Schröder
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - M Meyer
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - R Orentas
- Lentigen Technology Inc., Gaithersburg, MD, USA
| | - U Bethke
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - B Dropulic
- Lentigen Technology Inc., Gaithersburg, MD, USA
| |
Collapse
|
33
|
Zhou S, Bonner MA, Wang YD, Rapp S, De Ravin SS, Malech HL, Sorrentino BP. Quantitative shearing linear amplification polymerase chain reaction: an improved method for quantifying lentiviral vector insertion sites in transplanted hematopoietic cell systems. Hum Gene Ther Methods 2015; 26:4-12. [PMID: 25545666 DOI: 10.1089/hgtb.2014.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In gene therapy trials targeting blood disorders, it is important to detect dominance of transduced hematopoietic stem cell (HSC) clones arising from vector insertion site (VIS) effects. Current methods for VIS analysis often do not have defined levels of quantitative accuracy and therefore can fail to detect early clonal dominance. We have developed a rapid and inexpensive method for measuring clone size based on random shearing of genomic DNA, minimal exponential PCR amplification, and shear site counts as a quantitative endpoint. This quantitative shearing linear amplification PCR (qsLAM PCR) assay utilizes an internal control sample containing 19 lentiviral insertion sites per cell that is mixed with polyclonal samples derived from transduced human CD34+ cells. Samples were analyzed from transplanted pigtail macaques and from a participant in our X-linked severe combined immunodeficiency (XSCID) lentiviral vector trial and yielded controlled and quantitative results in all cases. One case of early clonal dominance was detected in a monkey transplanted with limiting numbers of transduced HSCs, while the clinical samples from the XSCID trial participant showed highly diverse clonal representation. These studies demonstrate that qsLAM PCR is a facile and quantitative assay for measuring clonal repertoires in subjects enrolled in human gene therapy trials using lentiviral-transduced HSCs.
Collapse
Affiliation(s)
- Sheng Zhou
- 1 Division of Experimental Hematology, Department of Hematology, St. Jude Children's Research Hospital , Memphis, TN 38120
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu J, Chen W, Zhao Z, Xu HH. Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement. Acta Biomater 2014; 10:5128-5138. [PMID: 25220281 DOI: 10.1016/j.actbio.2014.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) are a promising source of patient-specific stem cells with great regenerative potential. There has been no report on NEL-like protein 1 (NELL1) gene modification of iPSC-MSCs. The objectives of this study were to genetically modify iPSC-MSCs with NELL1 overexpression for bone tissue engineering, and investigate the osteogenic differentiation of NELL1 gene-modified iPSC-MSCs seeded on Arg-Gly-Asp (RGD)-grafted calcium phosphate cement (CPC) scaffold. Cells were transduced with red fluorescence protein (RFP-iPSC-MSCs) or NELL1 (NELL1-iPSC-MSCs) by a lentiviral vector. Cell proliferation on RGD-grafted CPC scaffold, osteogenic differentiation and bone mineral synthesis were evaluated. RFP-iPSC-MSCs stably expressed high levels of RFP. Both the NELL1 gene and NELL1 protein levels were confirmed higher in NELL1-iPSC-MSCs than in RFP-iPSC-MSCs using RT-PCR and Western blot (P<0.05). Alkaline phosphatase activity was increased by 130% by NELL1 overexpression at 14days (P<0.05), indicating that NELL1 promoted iPSC-MSC osteogenic differentiation. When seeded on RGD-grafted CPC, NELL1-iPSC-MSCs attached and expanded similarly well to RFP-iPSC-MSCs. At 14days, the runt-related transcription factor 2 (RUNX2) gene level of NELL1-iPSC-MSCs was 2.0-fold that of RFP-iPSC-MSCs. The osteocalcin (OC) level of NELL1-iPSC-MSCs was 3.1-fold that of RFP-iPSC-MSCs (P<0.05). The collagen type I alpha 1 (COL1A1) gene level of NELL1-iPSC-MSCs was 1.7-fold that of RFP-iPSC-MSCs at 7days (P<0.05). Mineral synthesis was increased by 81% in NELL1-iPSC-MSCs at 21days. In conclusion, NELL1 overexpression greatly enhanced the osteogenic differentiation and mineral synthesis of iPSC-MSCs on RGD-grafted CPC scaffold for the first time. The novel NELL1-iPSC-MSC seeded RGD-CPC construct is promising for enhancing bone engineering.
Collapse
|
35
|
Hong SH, Park SJ, Lee S, Cho CS, Cho MH. Aerosol gene delivery using viral vectors and cationic carriers forin vivolung cancer therapy. Expert Opin Drug Deliv 2014; 12:977-91. [DOI: 10.1517/17425247.2015.986454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Petersen GF, Hilbert B, Trope G, Kalle W, Strappe P. Efficient transduction of equine adipose-derived mesenchymal stem cells by VSV-G pseudotyped lentiviral vectors. Res Vet Sci 2014; 97:616-22. [PMID: 25443656 DOI: 10.1016/j.rvsc.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Abstract
Equine adipose-derived mesenchymal stem cells (EADMSC) provide a unique cell-based approach for treatment of a variety of equine musculoskeletal injuries, via regeneration of diseased or damaged tissue, or the secretion of immunomodulatory molecules. These capabilities can be further enhanced by genetic modification using lentiviral vectors, which provide a safe and efficient method of gene delivery. We investigated the suitability of lentiviral vector technology for gene delivery into EADMSC, using GFP expressing lentiviral vectors pseudotyped with the G glycoprotein from the vesicular stomatitis virus (V-GFP) or, for the first time, the baculovirus gp64 envelope protein (G-GFP). In this study, we produced similarly high titre V-GFP and G-GFP lentiviral vectors. Flow cytometric analysis showed efficient transduction using V-GFP; however G-GFP exhibited a poor ability to transduce EADMSC. Transduction resulted in sustained GFP expression over four passages, with minimal effects on cell viability and doubling time, and an unaltered chondrogenic differentiation potential.
Collapse
Affiliation(s)
- Gayle F Petersen
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Bryan Hilbert
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Gareth Trope
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Wouter Kalle
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Padraig Strappe
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
37
|
Tian Z, Fan J, Zhao Y, Bi S, Si L, Liu Q. Estrogen receptor beta treats Alzheimer's disease. Neural Regen Res 2014; 8:420-6. [PMID: 25206683 PMCID: PMC4146138 DOI: 10.3969/j.issn.1673-5374.2013.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
In vitro studies have shown that estrogen receptor β can attenuate the cytotoxic effect of amyloid β protein on PC12 cells through the Akt pathway without estrogen stimulation. In this study, we aimed to observe the effect of estrogen receptor β in Alzheimer's disease rat models established by intraventricular injection of amyloid β protein. Estrogen receptor β lentiviral particles delivered via intraventricular injection increased Akt content in the hippocampus, decreased interleukin-1β mRNA, tumor necrosis factor α mRNA and amyloid β protein levels in the hippocampus, and improved the learning and memory capacities in Alzheimer's disease rats. Estrogen receptor β short hairpin RNA lentiviral particles delivered via intraventricular injection had none of the above impacts on Alzheimer's disease rats. These experimental findings indicate that estrogen receptor β, independent from estrogen, can reduce inflammatory reactions and amyloid β deposition in the hippocampus of Alzheimer's disease rats, and improve learning and memory capacities. This effect may be mediated through activation of the Akt pathway.
Collapse
Affiliation(s)
- Zhu Tian
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jia Fan
- Department of Neurology, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Yang Zhao
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Sheng Bi
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lihui Si
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Qun Liu
- Department of Neurology, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
38
|
Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis. Transgenic Res 2014; 24:31-41. [PMID: 25048992 DOI: 10.1007/s11248-014-9816-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Abstract
Lentiviral technology has been recently proposed to generate transgenic farm animals more efficiently and easier than traditional techniques. The objective was to evaluate several parameters of lambs obtained by lentiviral transgenesis in comparison with non-transgenic counterparts. In vitro produced embryos were microinjected (TG group) at two-cell stage with a lentiviral construct containing enhanced green fluorescent protein (eGFP) gene, while embryos produced by in vitro fertilization (IVF group) or intrauterine insemination (IUI group) were not microinjected. Microinjection technique efficiently generated eight-cell transgenic embryos (97.4%; 114/117). Development rate on day 5 after fertilization was similar for TG (39.3%, 46/117) and IVF embryos (39.6%, 44/111). Pregnancy rate was detected in 50.0% (6/12) of recipient ewes with TG embryos, in 46.7% (7/15) with IVF embryos, and in 65.0% (13/20) of IUI ewes (P = NS). Nine lambs were born in TG group, six lambs in IVF group, and 16 lambs in IUI group. All TG lambs (9/9) were GFP positive to real-time PCR and eight (88.9%) showed a strong and evident GFP expression in mucosae, eyes and keratin tissues. Fetal growth monitored every 15 day by ultrasonography did not show significant differences. Transgenic lambs neither differ in morphometric variables in comparison with non transgenic IVF lambs within 3 months after birth. Transmission of the transgene to the progeny was observed in green fluorescent embryos produced by IVF using semen from the TG founder lambs. In conclusion, this study demonstrates the high efficiency of lentiviral technology to produce transgenic sheep, with no clinic differences in comparison with non transgenic lambs.
Collapse
|
39
|
Wang Q, Wang X, Zhang CB. Lentivirus mediated GOLPH3 shRNA inhibits growth and metastasis of esophageal squamous cancer. Asian Pac J Cancer Prev 2014; 14:5391-6. [PMID: 24175832 DOI: 10.7314/apjcp.2013.14.9.5391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM To investigate the role of Golgi phosphoprotein 3 (GOLPH3) in tumour growth and metastasis of esophageal squamous cancer. METHODS A lentiviral shRNA-vector was utilized to stably knockdown GOLPH3 in Eca-109 esophageal squamous cancer cells. mRNA transcription and protein expression of GOLPH3 were examined by real-time quantitative PCR and Western blotting, respectively. Cell proliferation activity was assessed by MTT assay and invasion and migration potentials by matrigel invasion and transwell motility assays. RESULTS Stable knockdown in the GOLPH3 cell line was established. PD-A gene expression was significantly suppressed by lentivirus-mediated RNAi, which resulted in reducing the capacity for cell proliferation, migration, invasion and adhesion in vitro. In vivo, GOLPH3 depletion resulted in inhibition of tumour growth, with stable decrease in the expression of GOLPH3 in tumor xenografts. CONCLUSIONS Our findings suggest that lentivirus mediated silencing of the GOLPH3 gene has a significant anti-tumour effect on esophageal squamous cancer in vitro and in vivo. In addition, the results indicate that GOLPH3 might be an effective molecular target for gene therapy in esophageal squamous cancer.
Collapse
Affiliation(s)
- Qiang Wang
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China E-mail :
| | | | | |
Collapse
|
40
|
Li J, Han S, Qian Z, Su X, Fan S, Fu J, Liu Y, Yin X, Gao Z, Zhang J, Yu DH, Ji Q. Genetic amplification of PPME1 in gastric and lung cancer and its potential as a novel therapeutic target. Cancer Biol Ther 2014; 15:128-34. [PMID: 24253382 PMCID: PMC3938515 DOI: 10.4161/cbt.27146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/22/2013] [Accepted: 11/10/2013] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase methylesterase 1 (PPME1) is a protein phosphatase 2A (PP2A)-specific methyl esterase that negatively regulates PP2A through demethylation at its carboxy terminal leucine 309 residue. Emerging evidence shows that the upregulation of PPME1 is associated with poor prognosis in glioblastoma patients. By performing an array comparative genomic hybridization analysis to detect copy number changes, we have been the first to identify PPME1 gene amplification in 3.8% (5/131) of Chinese gastric cancer (GC) samples and 3.1% (4/124) of Chinese lung cancer (LC) samples. This PPME1 gene amplification was confirmed by fluorescence in situ hybridization analysis and is correlated with elevated protein expression, as determined by immunohistochemistry analysis. To further investigate the role of PPME1 amplification in tumor growth, short-hairpin RNA-mediated gene silencing was employed. A knockdown of PPME1 expression resulted in a significant inhibition of cell proliferation and induction of cell apoptosis in PPME1-amplified human cancer cell lines SNU668 (GC) and Oka-C1 (LC), but not in nonamplified MKN1 (GC) and HCC95 (LC) cells. The PPME1 gene knockdown also led to a consistent decrease in PP2A demethylation at leucine 309, which was correlated with the downregulation of cellular Erk and AKT phosphorylation. Our data indicate that PPME1 could be an attractive therapeutic target for a subset of GCs and LCs.
Collapse
Affiliation(s)
- Jing Li
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Sufang Han
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Ziliang Qian
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Xinying Su
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Shuqiong Fan
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Jiangang Fu
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Yuanjie Liu
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Xiaolu Yin
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Zeren Gao
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Jingchuan Zhang
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - De-Hua Yu
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Qunsheng Ji
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| |
Collapse
|
41
|
Pelascini LPL, Gonçalves MAFV. Lentiviral vectors encoding zinc-finger nucleases specific for the model target locus HPRT1. Methods Mol Biol 2014; 1114:181-99. [PMID: 24557904 DOI: 10.1007/978-1-62703-761-7_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zinc-finger nucleases (ZFNs) are artificial proteins designed to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. These site-specific genomic lesions facilitate the study of translocations and cellular DNA repair processes and serve as powerful stimuli for the editing of complex genomes. The delivery of ZFNs into a wide range of cell types is of utmost importance for the broad evaluation and deployment of the technology. Lentiviral vectors (LVs) are versatile gene delivery vehicles that transduce alike transformed and primary cells regardless of their division rate. In this chapter, we describe the generation of conventional and integrase-defective LVs encoding ZFNs targeting the human hypoxanthine phosphoribosyltransferase 1 (HPRT1) locus. Furthermore, we introduce a general LV titration method based on a cost-effective quantitative PCR protocol and implement a rapid and simple restriction enzyme site polymorphism assay to detected DSB formation at the HPRT1 target sequence. Owing in part to the small molecule-based clone selection schemes conferred by HPRT1 allelic knockouts, this X-linked gene has become a "classical" target model locus in mammalian cells. The reagents and techniques detailed herein yield LV preparations that induce HPRT1-specific DSBs. As a result, they should constitute a valuable resource to increase the robustness and decrease the timelines of the various protocols based on HPRT1 gene disruption and targeting.
Collapse
Affiliation(s)
- Laetitia P L Pelascini
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
42
|
Baranyi L, Doering CB, Denning G, Gautney RE, Harris KT, Spencer HT, Roy A, Zayed H, Dropulic B. Rapid Generation of Stable Cell Lines Expressing High Levels of Erythropoietin, Factor VIII, and an Antihuman CD20 Antibody Using Lentiviral Vectors. Hum Gene Ther Methods 2013; 24:214-27. [DOI: 10.1089/hgtb.2013.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | | | | | | | | | - H. Trent Spencer
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322
| | - Andre Roy
- Lentigen Corporation, Gaithersburg, MD 20878
| | - Hatem Zayed
- Lentigen Corporation, Gaithersburg, MD 20878
| | | |
Collapse
|
43
|
Robert MA, Zeng Y, Raymond B, Desfossé L, Mairey E, Tremblay JP, Massie B, Gilbert R. Efficacy and site-specificity of adenoviral vector integration mediated by the phage φC31 integrase. Hum Gene Ther Methods 2013. [PMID: 23194172 DOI: 10.1089/hgtb.2012.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviral vectors deleted of all their viral genes (helper-dependent [HD]) are efficient gene-transfer vehicles. Because transgene expression is rapidly lost in actively dividing cells, we investigated the feasibility of using phage φC31 integrase (φC31-Int) to integrate an HD carrying an attB site and the puromycin resistance gene into human cells (HeLa) and murine myoblasts (C2C12) by co-infection with a second HD-expressing φC31-Int. Because the HD genome is linear, we also investigated whether its circularization, through expression of Cre using a third HD, affects integration. Efficacy and specificity were determined by scoring the number of puromycin-resistant colonies and by sequencing integration sites. Unexpectedly, circularization of HD was unnecessary and it even reduced the integration efficacy. The maximum integration efficacy achieved was 0.5% in HeLa cells and 0.1% in C2C12 myoblasts. Up to 76% of the integration events occurred at pseudo attP sites and previously characterized hotspots were found. A small (two- to three-fold) increase in the number of γ-H2AX positive foci, accompanied by no noticeable change in γ-H2AX expression, indicated the low genotoxicity of φC31-Int. In conclusion, integration of HD mediated by φC31-Int is an attractive alternative to engineer cells, because it permits site-specific integration of large DNA fragments with low genotoxicity.
Collapse
Affiliation(s)
- Marc-André Robert
- Biotechnology Research Institute, National Research Council Canada, Montréal, Canada, H4P 2R2
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Song A, Ye J, Zhang K, Sun L, Zhao Y, Yu H. Lentiviral vector-mediated siRNA knockdown of c-MYC: cell growth inhibition and cell cycle arrest at G2/M phase in Jijoye cells. Biochem Genet 2013; 51:603-17. [PMID: 23657834 DOI: 10.1007/s10528-013-9590-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 10/16/2012] [Indexed: 12/25/2022]
Abstract
Inhibition of c-MYC has been considered as a potential therapy for lymphoma treatment. We explored a lentiviral vector-mediated small interfering RNA (siRNA) expression vector to stably reduce c-MYC expression in B cell line Jijoye cells and investigated the effects of c-MYC downregulation on cell growth, cell cycle, and apoptosis in vitro. The expression of c-MYC mRNA and protein levels were inhibited significantly by c-MYC siRNA. The c-MYC downregulation resulted in the inhibition of cell proliferation and cell cycle arrest at G2/M phase, which was associated with decreased expression of cyclin B and cyclin-dependent kinase 1 (CDK1) and increased expression of CDK inhibitor p21 proteins. In addition, downregulation of c-MYC induced cell apoptosis characterized by DNA fragmentation and caspase-3 activation. Taken together, these results suggest that lentiviral vector-mediated siRNA for c-MYC may be a promising approach for targeting c-MYC in the treatment of Burkitt lymphoma.
Collapse
Affiliation(s)
- Aiqin Song
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University Medical College, 16 Jiangsu Road, Qingdao, 266001 Shandong, China.
| | | | | | | | | | | |
Collapse
|
45
|
Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther 2013; 13:987-1011. [PMID: 23590247 DOI: 10.1517/14712598.2013.779249] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lentiviruses are a very potent class of viral vectors for which there is presently a rapidly growing interest for a number of gene therapy. However, their construction, production and purification need to be performed according to state-of-the-art techniques in order to obtain sufficient quantities of high purity material of any usefulness and safety. AREAS COVERED The recent advances in the field of recombinant lentivirus vector design, production and purification will be reviewed with an eye toward its utilization for gene therapy. Such a review should be helpful for the potential user of this technology. EXPERT OPINION The principal hurdles toward the use of recombinant lentivirus as a gene therapy vector are the low titer at which it is produced as well as the difficulty to purify it at an acceptable level without degrading it. The recent advances in the bioproduction of this vector suggest these issues are about to be resolved, making the retrovirus gene therapy a mature technology.
Collapse
Affiliation(s)
- Maria Mercedes Segura
- Chemical Engineering Department, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès (08193), Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Digiusto DL, Kiem HP. Current translational and clinical practices in hematopoietic cell and gene therapy. Cytotherapy 2013; 14:775-90. [PMID: 22799276 DOI: 10.3109/14653249.2012.694420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Clinical trials over the last 15 years have demonstrated that cell and gene therapies for cancer, monogenic and infectious disease are feasible and can lead to long-term benefit for patients. However, these trials have been limited to proof-of-principle and were conducted on modest numbers of patients or over long periods of time. In order for these studies to move towards standard practice and commercialization, scalable technologies for the isolation, ex vivo manipulation and delivery of these cells to patients must be developed. Additionally, regulatory strategies and clinical protocols for the collection, creation and delivery of cell products must be generated. In this article we review recent progress in hematopoietic cell and gene therapy, describe some of the current issues facing the field and discuss clinical, technical and regulatory approaches used to navigate the road to product development.
Collapse
Affiliation(s)
- David L Digiusto
- Department of Virology and Laboratory for Cellular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
| | | |
Collapse
|
47
|
Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Ylä-Herttuala S. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013; 21:739-49. [PMID: 23439502 PMCID: PMC3616530 DOI: 10.1038/mt.2012.286] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/11/2012] [Indexed: 01/23/2023] Open
Abstract
Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Thomas A Kost
- Biological Reagents and Assay Development, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, USA
| | - Richard H Smith
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert M Kotin
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
48
|
|
49
|
Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MAFV. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 2012; 41:e63. [PMID: 23275534 PMCID: PMC3597656 DOI: 10.1093/nar/gks1446] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 ‘safe harbor’ locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.
Collapse
Affiliation(s)
- Maarten Holkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Eithovenweg 20, 2333 ZC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gelfand Y, Kaplitt MG. Gene therapy for psychiatric disorders. World Neurosurg 2012; 80:S32.e11-8. [PMID: 23268195 DOI: 10.1016/j.wneu.2012.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/28/2022]
Abstract
Gene therapy has become of increasing interest in clinical neurosurgery with the completion of numerous clinical trials for Parkinson disease, Alzheimer disease, and pediatric genetic disorders. With improved understanding of the dysfunctional circuitry mediating various psychiatric disorders, deep brain stimulation for refractory psychiatric diseases is being increasingly explored in human patients. These factors are likely to facilitate development of gene therapy for psychiatric diseases. Because delivery of gene therapy agents would require the same surgical techniques currently being employed for deep brain stimulation, neurosurgeons are likely to lead the development of this field, as has occurred in other areas of clinical gene therapy for neurologic disorders. We review the current state of gene therapy for psychiatric disorders and focus specifically on particular areas of promising research that may translate into human trials for depression, drug addiction, obsessive-compulsive disorder, and schizophrenia. Issues that are relatively unique to psychiatric gene therapy are also discussed.
Collapse
Affiliation(s)
- Yaroslav Gelfand
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA
| | | |
Collapse
|