1
|
Yuan X, Feng Y, Wan J, Zhang S, Bao Q, Liu X, Shen Y, Deng Y, Chen X, Jiang X, Li H, Liu Q, Zeng J, Zhang Y. Effect of nebulised inhalation of antibiotics on preventing ventilator-associated pneumonia in critically ill patients: a systematic review and meta-analysis. BMJ Open 2025; 15:e093868. [PMID: 40449947 DOI: 10.1136/bmjopen-2024-093868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2025] Open
Abstract
OBJECTIVE To investigate whether prophylactic nebulised antibiotic inhalation reduces the incidence of ventilator-associated pneumonia (VAP) in critically ill adults undergoing mechanical ventilation. STUDY DESIGN Systematic review and meta-analysis of randomised controlled trials. DATA SOURCES PubMed, Embase and the Cochrane Central Register of Controlled Trials were searched from inception to 1 January 2024 without language restrictions. ELIGIBILITY CRITERIA FOR SELECTING STUDIES We included randomised controlled trials comparing prophylactic nebulised antibiotics with placebo or no treatment in mechanically ventilated adult intensive care unit (ICU) patients. Two independent reviewers conducted data extraction and assessed risk of bias. A meta-analysis was performed using random-effects models to calculate relative risks (RRs) for VAP and secondary outcomes. RESULTS Of the 2663 studies screened, four were deemed suitable for analysis, involving a total of 1160 patients (574 receiving prophylactic antibiotics via nebulised inhalation). Nebulised antibiotics reduced the incidence of VAP compared with control (RR 0.70, 95% CI 0.52 to 0.93, I²=38%, low-certainty). There were no statistically significant differences in ICU mortality (RR 0.89, 95% CI 0.73 to 1.09, I²=0%, low-certainty, moderate-certainty) or hospital mortality (RR 0.93, 95% CI 0.78 to 1.11, I²=0%, moderate-certainty). Risk of bias varied across studies, with one trial assessed as high risk, one with some concerns and two with low risk. CONCLUSIONS Nebulised prophylactic antibiotics may reduce the incidence of VAP in critically ill patients receiving mechanical ventilation, though secondary outcomes did not differ between the intervention and control groups. The findings should be interpreted with caution due to the small number of included trials and low certainty of evidence. PROSPERO REGISTRATION NUMBER CRD42024496276.
Collapse
Affiliation(s)
- Xiang Yuan
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yuning Feng
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Jun Wan
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Sen Zhang
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Qingyu Bao
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xin Liu
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yihong Shen
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yongjie Deng
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xian Chen
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xinyi Jiang
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Huixuan Li
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Qian Liu
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Jingyao Zeng
- Northeast Normal University, Changchun, Jilin, China
| | - Yu Zhang
- Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Pan J, Khan AA, Yu W, Rui L. "Nebulized lidocaine for intractable cough in hospice care: a comprehensive review of efficacy, safety, and future perspectives". BMC Palliat Care 2025; 24:123. [PMID: 40307800 PMCID: PMC12044790 DOI: 10.1186/s12904-025-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Intractable cough, affecting 10-50% of terminally ill patients, significantly impairs quality of life. Conventional therapies often fail due to dose-limiting side effects or inadequate efficacy, necessitating alternative treatments. This review evaluates the efficacy, safety, and clinical applicability of nebulized lidocaine for managing intractable cough in hospice care. METHODS A systematic literature search (1973-2023) across PubMed, MEDLINE, Embase, and Cochrane Library identified studies on nebulized lidocaine in hospice or palliative populations. Inclusion criteria the Cochrane Risk of Bias Tool and Newcastle-Ottawa Scale. Data on cough reduction, side effects, and dosing were synthesized thematically. RESULTS Among 265 screened studies, 58 met inclusion criteria. Nebulized lidocaine (1-4%) demonstrated rapid cough suppression (within 15 min) in 70% of cancer patients, with effects lasting 2-4 h. Mild side effects, including oropharyngeal numbness (15%) and bitter taste (10%), were transient. However, 25% of asthmatic patients experienced bronchoconstriction (forced expiratory volume in 1 s FEV1FEV1 decline ≥ 15%), resolving with bronchodilators. Lidocaine reduced opioid reliance and improved comfort in 80% of cases. Variability in efficacy was noted, with limited benefits in severe chronic obstructive pulmonary disease (COPD) with acute respiratory failure. CONCLUSION Nebulized lidocaine offers a safe, non-invasive option for intractable cough in hospice care, minimizing systemic side effects. Its rapid action and compatibility with opioid-sparing regimens enhance palliative outcomes. However, cautious use is warranted in asthma and (COPD) due to bronchoconstriction risks. Future research should prioritize standardized dosing, long-term safety, and Randomized controlled trials(RCTs in diverse hospice populations.
Collapse
Affiliation(s)
- Jumei Pan
- Department of Hospice Care of Linfen Road Community Health Care Center, Jing An District, Shanghai, 200435, China.
| | - Akhtar Ali Khan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wenkai Yu
- Department of Hospice Care of Linfen Road Community Health Care Center, Jing An District, Shanghai, 200435, China
| | - Lei Rui
- Department of Hospice Care of Linfen Road Community Health Care Center, Jing An District, Shanghai, 200435, China
| |
Collapse
|
3
|
Ehrmann S, Barbier F, Li J. Aerosolized Antibiotic Therapy in Mechanically Ventilated Patients. Am J Respir Crit Care Med 2024; 210:730-736. [PMID: 38984938 DOI: 10.1164/rccm.202402-0437cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Delivering antibiotics directly to the respiratory tract through inhalation to address lung infections has garnered clinical and scientific interest for decades, given the potential favorable pharmacokinetic profile of this administration route. Among critically ill patients, the burden of healthcare-associated pulmonary infections particularly drove continued interest in delivering inhaled antibiotics to intubated patients. We present a concise overview of the existing rationale and evidence and provide guidance for implementing inhaled antibiotics among ventilated critically ill patients, emphasizing insights from recent literature.
Collapse
Affiliation(s)
- Stephan Ehrmann
- Médecine Intensive Réanimation, Centre d'Investigation Clinique de Tours, Institut national de la santé et de la recherche médicale 1415, CRICS-TriggerSEP French Clinical Research Infrastructure Network, Centre Hospitalier Régional Universitaire de Tours, Tours, France
- Centre d'étude des pathologies respiratoires, Institut national de la santé et de la recherche médicale U1100, Tours, France
| | - François Barbier
- Centre d'étude des pathologies respiratoires, Institut national de la santé et de la recherche médicale U1100, Tours, France
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Orléans, Orleans, France; and
| | - Jie Li
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University, Chicago, Illinois
| |
Collapse
|
4
|
Karukappadath RM, Sirbu D, Zaky A. Drug-resistant bacteria in the critically ill: patterns and mechanisms of resistance and potential remedies. FRONTIERS IN ANTIBIOTICS 2023; 2:1145190. [PMID: 39816646 PMCID: PMC11732010 DOI: 10.3389/frabi.2023.1145190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/06/2023] [Indexed: 01/18/2025]
Abstract
Antimicrobial resistance in the intensive care unit is an ongoing global healthcare concern associated with high mortality and morbidity rates and high healthcare costs. Select groups of bacterial pathogens express different mechanisms of antimicrobial resistance. Clinicians face challenges in managing patients with multidrug-resistant bacteria in the form of a limited pool of available antibiotics, slow and potentially inaccurate conventional diagnostic microbial modalities, mimicry of non-infective conditions with infective syndromes, and the confounding of the clinical picture of organ dysfunction associated with sepsis with postoperative surgical complications such as hemorrhage and fluid shifts. Potential remedies for antimicrobial resistance include specific surveillance, adequate and systematic antibiotic stewardship, use of pharmacokinetic and pharmacodynamic techniques of therapy, and antimicrobial monitoring and adequate employment of infection control policies. Novel techniques of combating antimicrobial resistance include the use of aerosolized antibiotics for lung infections, the restoration of gut microflora using fecal transplantation, and orally administered probiotics. Newer antibiotics are urgently needed as part of the armamentarium against multidrug-resistant bacteria. In this review we discuss mechanisms and patterns of microbial resistance in a select group of drug-resistant bacteria, and preventive and remedial measures for combating antibiotic resistance in the critically ill.
Collapse
Affiliation(s)
- Riaz M. Karukappadath
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dumitru Sirbu
- Department of Pharmacology, Ascension St. Vincent’s, Birmingham, AL, United States
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
How to Use Nebulized Antibiotics in Severe Respiratory Infections. Antibiotics (Basel) 2023; 12:antibiotics12020267. [PMID: 36830177 PMCID: PMC9952454 DOI: 10.3390/antibiotics12020267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Difficult-to-treat pulmonary infections caused by multidrug-resistant (MDR) pathogens are of great concern because their incidence continues to increase worldwide and they are associated with high morbidity and mortality. Nebulized antibiotics are increasingly being used in this context. The advantages of the administration of a nebulized antibiotic in respiratory tract infections due to MDR include the potential to deliver higher drug concentrations to the site of infection, thus minimizing the systemic adverse effects observed with the use of parenteral or oral antibiotic agents. However, there is an inconsistency between the large amount of experimental evidence supporting the administration of nebulized antibiotics and the paucity of clinical studies confirming the efficacy and safety of these drugs. In this narrative review, we describe the current evidence on the use of nebulized antibiotics for the treatment of severe respiratory infections.
Collapse
|
6
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Palmer LB, Smaldone GC. The Unfulfilled Promise of Inhaled Therapy in Ventilator-Associated Infections: Where Do We Go from Here? J Aerosol Med Pulm Drug Deliv 2022; 35:11-24. [PMID: 35099284 PMCID: PMC8867107 DOI: 10.1089/jamp.2021.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory infection is common in intubated/tracheotomized patients and systemic antibiotic therapy is often unrewarding. In 1967, the difficulty in treating Gram-negative respiratory infections led to the use of inhaled gentamicin, targeting therapy directly to the lungs. Fifty-three years later, the effects of topical therapy in the intubated patient remain undefined. Clinical failures with intravenous antibiotics persist and instrumented patients are now infected by many more multidrug-resistant Gram-negative species as well as methicillin-resistant Staphylococcus aureus. Multiple systematic reviews and meta-analyses suggest that there may be a role for inhaled delivery but “more research is needed.” Yet there is still no Food and Drug Administration (FDA) approved inhaled antibiotic for the treatment of ventilator-associated infection, the hallmark of which is the foreign body in the upper airway. Current pulmonary and infectious disease guidelines suggest using aerosols only in the setting of Gram-negative infections that are resistant to all systemic antibiotics or not to use them at all. Recently two seemingly well-designed large randomized placebo-controlled Phase 2 and Phase 3 clinical trials of adjunctive inhaled therapy for the treatment of ventilator-associated pneumonia failed to show more rapid resolution of pneumonia symptoms or effect on mortality. Despite evolving technology of delivery devices and more detailed understanding of the factors affecting delivery, treatment effects were no better than placebo. What is wrong with our approach to ventilator- associated infection? Is there a message from the large meta-analyses and these two large recent multisite trials? This review will suggest why current therapies are unpredictable and have not fulfilled the promise of better outcomes. Data suggest that future studies of inhaled therapy, in the milieu of worsening bacterial resistance, require new approaches with completely different indications and endpoints to determine whether inhaled therapy indeed has an important role in the treatment of ventilated patients.
Collapse
Affiliation(s)
- Lucy B Palmer
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gerald C Smaldone
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
8
|
Comparison of Inhaled Colistin with Inhaled Amikacin-Fosfomycin in the Treatment of Ventilator-Associated Pneumonia Caused by Extensively Drug-Resistant (XDR) Acinetobacter: A Clinical Trial. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: This study aimed to compare the effects of inhaled colistin and inhaled amikacin-fosfomycin combination in the treatment of ventilator-associated pneumonia (VAP) caused by extensively drug-resistant (XDR) Acinetobacter. This clinical trial is the first study to evaluate the effect of inhaled fosfomycin on VAP in Iran. Methods: In this clinical trial, 60 patients with Acinetobacter VAP were divided into two groups of 30 patients. The empirical regimen changed to meropenem plus intravenous colistin in both groups. Inhaled colistin in the first group and inhaled amikacin-fosfomycin in the second group were added to the intravenous therapy. Next, the mortality rate, if any, duration of treatment success, and patient withdrawal from VAP were evaluated in the two groups. Results: Although the mean clinical pulmonary infection score (CPIS) before treatment was not significantly different between the two groups, the mean score of the amikacin-fosfomycin group was significantly lower at 72 hours and seven days after the onset of treatment and at the end of treatment. Based on the intra-group assessments, the CPIS in both groups was significantly reduced (P < 0.001). Also, in the inter-group assessments, the mean CPIS changes were significantly different between the two groups, and in the amikacin-fosfomycin group, a greater reduction in the CPIS was observed (P = 0.007). Conclusions: The findings of the present study showed that the use of amikacin-fosfomycin nebulization could lead to increased recovery and reduced treatment duration in patients with VAP, caused by drug-resistant Acinetobacter baumannii.
Collapse
|
9
|
Yan Q, Sun W, Zhang L, Wang H, Zhang J. Effects of Vibration Characteristics on the Atomization Performance in the Medical Piezoelectric Atomization Device Induced by Intra-Hole Fluctuation. CHINESE JOURNAL OF MECHANICAL ENGINEERING 2021; 34:123. [PMCID: PMC8642757 DOI: 10.1186/s10033-021-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Oral inhalation of aerosolized drugs has be widely applied in healing the affected body organs including lesions of the throat and lungs and it is more efficient than those conventional therapies, such as intravenous drip, intramuscular injection and external topical administration in the aspects of the dosage reduction and side effects of drugs. Nevertheless, the traditional atomization devices always exhibit many drawbacks. For example, non-uniformed atomization particle distribution, the instability of transient atomization quantity and difficulties in precise energy control would seriously restrict an extensive use of atomization inhalation therapy. In this study, the principle of intra-hole fluctuation phenomenon occurred in the hole is fully explained, and the produced volume change is also estimated. Additionally, the mathematical expression of the atomization rate of the atomizing device is well established. The mechanism of the micro-pump is further clarified, and the influence of the vibration characteristics of the atomizing film on the atomization behavior is analyzed theoretically. The curves of sweep frequency against the velocity and amplitude of the piezoelectric vibrator are obtained by the Doppler laser vibrometer, and the corresponding mode shapes of the resonance point are achieved. The influence of vibration characteristics on atomization rate, atomization height and atomization particle size are also verified by experiments, respectively. Both the experimental results and theoretical calculation are expected to provide a guidance for the design of this kind of atomization device in the future.
Collapse
Affiliation(s)
- Qiufeng Yan
- School of Electrical Engineering, Nantong University, Nantong, 226019 China
| | - Wanting Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
| | - Lei Zhang
- School of Electrical Engineering, Nantong University, Nantong, 226019 China
| | - Hongmei Wang
- School of Electrical Engineering, Nantong University, Nantong, 226019 China
| | - Jianhui Zhang
- College of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
10
|
Máiz Carro L, Blanco-Aparicio M. Nuevos antibióticos inhalados y formas de administración. OPEN RESPIRATORY ARCHIVES 2020. [DOI: 10.1016/j.opresp.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Nebulized Amikacin and Fosfomycin for Severe Pseudomonas aeruginosa Pneumonia: An Experimental Study. Crit Care Med 2020; 47:e470-e477. [PMID: 30882478 DOI: 10.1097/ccm.0000000000003724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Latest trials failed to confirm merits of nebulized amikacin for critically ill patients with nosocomial pneumonia. We studied various nebulized and IV antibiotic regimens in a porcine model of severe Pseudomonas aeruginosa pneumonia, resistant to amikacin, fosfomycin, and susceptible to meropenem. DESIGN Prospective randomized animal study. SETTING Animal Research, University of Barcelona, Spain. SUBJECTS Thirty female pigs. INTERVENTIONS The animals were randomized to receive nebulized saline solution (CONTROL); nebulized amikacin every 6 hours; nebulized fosfomycin every 6 hours; IV meropenem alone every 8 hours; nebulized amikacin and fosfomycin every 6 hours; amikacin and fosfomycin every 6 hours, with IV meropenem every 8 hours. Nebulization was performed through a vibrating mesh nebulizer. The primary outcome was lung tissue bacterial concentration. Secondary outcomes were tracheal secretions P. aeruginosa concentration, clinical variables, lung histology, and development of meropenem resistance. MEASUREMENTS AND MAIN RESULTS We included five animals into each group. Lung P. aeruginosa burden varied among groups (p < 0.001). In particular, IV meropenem and amikacin and fosfomycin + IV meropenem groups presented lower P. aeruginosa concentrations versus amikacin and fosfomycin, amikacin, CONTROL, and fosfomycin groups (p < 0.05), without significant difference between these two groups undergoing IV meropenem treatment. The sole use of nebulized antibiotics resulted in dense P. aeruginosa accumulation at the edges of the interlobular septa. Amikacin, amikacin and fosfomycin, and amikacin and fosfomycin + IV meropenem effectively reduced P. aeruginosa in tracheal secretions (p < 0.001). Pathognomonic clinical variables of respiratory infection did not differ among groups. Resistance to meropenem increased in IV meropenem group versus amikacin and fosfomycin + meropenem (p = 0.004). CONCLUSIONS Our findings corroborate that amikacin and fosfomycin alone efficiently reduced P. aeruginosa in tracheal secretions, with negligible effects in pulmonary tissue. Combination of amikacin and fosfomycin with IV meropenem does not increase antipseudomonal pulmonary tissue activity, but it does reduce development of meropenem-resistant P. aeruginosa, in comparison with the sole use of IV meropenem. Our findings imply potential merits for preemptive use of nebulized antibiotics in order to reduce resistance to IV meropenem.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Ventilator-associated pneumonia (VAP) caused by multidrug-resistant (MDR) bacteria represents a global emerging problem. Delayed prescription of an adequate treatment for VAP has been associated with higher morbidity and mortality. New molecules have been developed to face the need of compounds that are active against resistant Gram-positive and Gram-negative pathogens. The aim of this review is to summarize the current scenario of new therapeutic options for the treatment of VAP. RECENT FINDINGS A number of new antibiotics with activity against MDR have been recently approved for the treatment of VAP, and other agents are under investigation. In this review, the authors summarize the current therapeutic options for the treatment of VAP that showed promising implications for clinical practice, including new compounds belonging to old antibiotic classes (e.g., ceftolozane/tazobactam, ceftazidime/avibactam meropenem/vaborbactam, imipenem/relebactam, tedizolid, cefiderocol, eravacycline, and plazomicin) and novel chemical classes, such as murepavadin. Nebulized antibiotics that are currently in development for the treatment of pneumonia in mechanically ventilated patients are also presented. SUMMARY Newly approved and investigational drugs for the treatment of VAP are expected to offer many advantages for the management of patients with respiratory infections caused by MDR. Promising characteristics of new compounds include high activity against both methicillin-resistant Staphylococcus aureus and MDR Gram-negative bacteria and a favorable safety profile.
Collapse
|
13
|
Abstract
Pneumonia, including community-acquired bacterial pneumonia, hospital-acquired bacterial pneumonia, and ventilator-acquired bacterial pneumonia, carries unacceptably high morbidity and mortality. Despite advances in antimicrobial therapy, emergence of multidrug resistance and high rates of treatment failure have made optimization of antibiotic efficacy a priority. This review focuses on pharmacokinetic and pharmacodynamic approaches to antibacterial optimization within the lung environment and in the setting of critical illness. Strategies for including these approaches in drug development programs as well as clinical practice are described and reviewed.
Collapse
Affiliation(s)
- Ana Motos
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; Division of Animal Experimentation, Department of Pulmonary and Critical Care, Hospital Clinic, 170 Villarroel Street, Barcelona 08036, Spain
| | - James M Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; Division of Infectious Diseases, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA.
| |
Collapse
|
14
|
Ling J, Mangal S, Park H, Wang S, Cavallaro A, Zhou QT. Simultaneous Particle Size Reduction and Homogeneous Mixing to Produce Combinational Powder Formulations for Inhalation by the Single-Step Co-Jet Milling. J Pharm Sci 2019; 108:3146-3151. [PMID: 31112716 DOI: 10.1016/j.xphs.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 01/12/2023]
Abstract
Homogeneous mixing of 2 cohesive jet-milled drug powders is a challenge for pharmaceutical manufacturing on account of their cohesive nature resulting in the formation of strong and random agglomerates. In this study, colistin and ciprofloxacin were co-jet milled to develop combinational antibiotic dry powder formulations for inhalation. The properties of particle size, morphology, content uniformity, and in vitro aerosolization were evaluated. The distribution of 2 drugs in the co-jet milled powders was assessed using time-of-flight-secondary ion mass spectrometry. The co-jet milled powders demonstrated an acceptable content uniformity indicating homogeneity. In general, time-of-flight-secondary ion mass spectrometry images showed relatively homogeneous distributions of ciprofloxacin and colistin in the co-milled formulations. Importantly, the 2 drugs generally had the similar fine particle fraction and deposition behavior in each combinational formulation supporting that the particle mixtures were relatively homogenous and could maximize the antimicrobial synergy. In conclusion, co-jet milling could be a viable technique to produce the combination powders for inhalation.
Collapse
Affiliation(s)
- Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhuoshan 316022, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | - Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | - Shaoning Wang
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907; Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907.
| |
Collapse
|
15
|
Heffernan AJ, Sime FB, Lipman J, Dhanani J, Andrews K, Ellwood D, Grimwood K, Roberts JA. Intrapulmonary pharmacokinetics of antibiotics used to treat nosocomial pneumonia caused by Gram-negative bacilli: A systematic review. Int J Antimicrob Agents 2019; 53:234-245. [DOI: 10.1016/j.ijantimicag.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/09/2018] [Accepted: 11/17/2018] [Indexed: 01/31/2023]
|
16
|
Torres A, Motos A, Battaglini D, Li Bassi G. Inhaled amikacin for severe Gram-negative pulmonary infections in the intensive care unit: current status and future prospects. Crit Care 2018; 22:343. [PMID: 30558658 PMCID: PMC6297966 DOI: 10.1186/s13054-018-1958-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
Recently, the use of nebulized antibiotics in the intensive care unit, in particular amikacin, has been the subject of much discussion, owing to unconvincing results from the latest randomized clinical trials. Here, we examine and reappraise the evidence in favor and against this therapeutic strategy; we then discuss the potential factors that might have played a role in the negative findings of recent clinical trials. Also, we call attention to several factors that are seldom considered by study developers and regulatory agencies, to promote translational research in this field and improve the design of future randomized clinical trials.
Collapse
Affiliation(s)
- Antoni Torres
- Department of Pulmonary and Critical Care Medicine, Hospital Clinic, Calle Villarroel 170, Barcelona, 08036, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain. .,University of Barcelona, Barcelona, Spain.
| | - Anna Motos
- Department of Pulmonary and Critical Care Medicine, Hospital Clinic, Calle Villarroel 170, Barcelona, 08036, Spain
| | - Denise Battaglini
- Department of Pulmonary and Critical Care Medicine, Hospital Clinic, Calle Villarroel 170, Barcelona, 08036, Spain.,University of Genoa, Genoa, Italy
| | - Gianluigi Li Bassi
- Department of Pulmonary and Critical Care Medicine, Hospital Clinic, Calle Villarroel 170, Barcelona, 08036, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Mangal S, Park H, Zeng L, Yu HH, Lin YW, Velkov T, Denman JA, Zemlyanov D, Li J, Zhou QT. Composite particle formulations of colistin and meropenem with improved in-vitro bacterial killing and aerosolization for inhalation. Int J Pharm 2018; 548:443-453. [PMID: 30008433 PMCID: PMC6086597 DOI: 10.1016/j.ijpharm.2018.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Antibiotic combination therapy is promising for the treatment of lower respiratory tract infections caused by multi-drug resistant Gram-negative pathogens. Inhaled antibiotic therapy offers the advantage of direct delivery of the drugs to the site of infection, as compared to the parenteral administrations. In this study, we developed composite particle formulations of colistin and meropenem. The formulations were characterized for particle size, morphology, specific surface area, surface chemical composition, in-vitro aerosolization performance and in-vitro antibacterial activity. The combinations demonstrated enhanced antibacterial activity against clinical isolates of Acinetobacter baumannii N16870 and Pseudomonas aeruginosa 19147, when compared with antibiotic monotherapy. Spray-dried meropenem alone showed a poor aerosolization performance as indicated by a low fine particle fraction (FPF) of 32.5 ± 3.3%. Co-spraying with colistin improved the aerosolization of meropenem with up to a two-fold increase in the FPF. Such improvements in aerosolization can be attributed to the enrichment of colistin on the surface of composite particles as indicated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), and the increases in particle porosity. Intermolecular interactions between colistin and meropenem were observed for the combination formulations as measured by FT-IR. In conclusion, our results show that co-spray drying with colistin improves the antibacterial activity and aerosol performance of meropenem and produces a formulation with synergistic bacterial killing.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heejun Park
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Lingfei Zeng
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Heidi H Yu
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John A Denman
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
18
|
Yu W, Luo Q, Shi Q, Huang C, Yu X, Niu T, Zhou K, Zhang J, Xiao Y. In vitro antibacterial effect of fosfomycin combination therapy against colistin-resistant Klebsiella pneumoniae. Infect Drug Resist 2018; 11:577-585. [PMID: 29731646 PMCID: PMC5926077 DOI: 10.2147/idr.s160474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objectives Colistin is still a “last-resort” antibiotic used to manage human infections due to multidrug-resistant (MDR) Klebsiella pneumoniae. However, colistin-resistant K. pneumoniae (CR-Kp) isolates emerged a decade ago and had a worldwide distribution. The purpose of this study was to evaluate the genetic data of CR-Kp and identify the antibacterial activity of fosfomycin (FM) alone and in combination with amikacin (AMK) or colistin (COL) against CR-Kp in vitro. Methods Three clinical CR-Kp isolates from three patients were collected. Whole-genome sequencing and bioinformatics analysis were performed. The Pharmacokinetics Auto Simulation System 400, by simulating human pharmacokinetics in vitro, was employed to simulate FM, AMK, and COL alone and in combination. Different pharmacodynamic parameters were calculated for determining the antimicrobial effect. Results Whole-genome sequencing revealed that none of the three isolates contain mcr gene and that no insertion was found in pmrAB, phoPQ, or mgrB genes. We found the antibacterial activity of AMK alone was more efficient than FM or COL against CR-Kp. The area between the control growth and antibacterial killing curves of FM (8 g every 8 hours) combined with AMK (15 mg/kg once daily) was higher than 170 LogCFU/mL·h−1. In addition, the area between the control growth and antibacterial killing curves of FM (8 g every 8 hours) combined with COL (75,000 IU/kg every12 hours) was higher than that of monotherapies (>100 LogCFU/mL·h−1 vs <80 LogCFU/mL·h−1). Conclusion FM (8 g every 8 hours) combined with AMK (15 mg/kg once daily) was effective at maximizing bacterial killing against CR-Kp.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingyi Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chen Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tianshui Niu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiajie Zhang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Heffernan AJ, Sime FB, Lipman J, Roberts JA. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2018; 78:621-641. [PMID: 29569104 DOI: 10.1007/s40265-018-0891-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scourge of antibiotic resistance threatens modern healthcare delivery. A contributing factor to this significant issue may be antibiotic dosing, whereby standard antibiotic regimens are unable to suppress the emergence of antibiotic resistance. This article aims to review the role of pharmacokinetic and pharmacodynamic (PK/PD) measures for optimising antibiotic therapy to minimise resistance emergence. It also seeks to describe the utility of combination antibiotic therapy for suppression of resistance and summarise the role of biomarkers in individualising antibiotic therapy. Scientific journals indexed in PubMed and Web of Science were searched to identify relevant articles and summarise existing evidence. Studies suggest that optimising antibiotic dosing to attain defined PK/PD ratios may limit the emergence of resistance. A maximum aminoglycoside concentration to minimum inhibitory concentration (MIC) ratio of > 20, a fluoroquinolone area under the concentration-time curve to MIC ratio of > 285 and a β-lactam trough concentration of > 6 × MIC are likely required for resistance suppression. In vitro studies demonstrate a clear advantage for some antibiotic combinations. However, clinical evidence is limited, suggesting that the use of combination regimens should be assessed on an individual patient basis. Biomarkers, such as procalcitonin, may help to individualise and reduce the duration of antibiotic treatment, which may minimise antibiotic resistance emergence during therapy. Future studies should translate laboratory-based studies into clinical trials and validate the appropriate clinical PK/PD predictors required for resistance suppression in vivo. Other adjunct strategies, such as biomarker-guided therapy or the use of antibiotic combinations require further investigation.
Collapse
Affiliation(s)
- A J Heffernan
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - F B Sime
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
| | - J Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - J A Roberts
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Liu C, Zhang YT, Peng ZY, Zhou Q, Hu B, Zhou H, Li JG. Aerosolized Amikacin as Adjunctive Therapy of Ventilator-associated Pneumonia Caused by Multidrug-resistant Gram-negative Bacteria: A Single-center Randomized Controlled Trial. Chin Med J (Engl) 2018; 130:1196-1201. [PMID: 28485320 PMCID: PMC5443026 DOI: 10.4103/0366-6999.205846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Aerosolized amikacin (AA) is a current option for the management of ventilator-associated pneumonia (VAP) caused by multidrug-resistant Gram-negative bacteria (MDR-GNB), as it is reported that AA could increase the alveolar level of the drug without increasing systemic toxicity. This study aimed to evaluate the efficacy and safety of AA as an adjunctive therapy for VAP caused by MDR-GNB. Methods: In this single-center, double-blind study conducted in a 36-bed general Intensive Care Unit (ICU) in a tertiary hospital from June 2014 to June 2016, 52 ICU patients with confirmed MDR-GNB VAP were randomized to two groups (AA group, n = 27 and placebo group, n = 25). Amikacin (400 mg, q8h) or saline placebo (4 ml, q8h) was aerosolized for 7 days. The attending physician determined the administration of systemic antibiotics for VAP. Patients were followed up for 28 days. Bacteriological eradication, clinical pulmonary infection score (CPIS), and serum creatinine were assessed on day 7 of therapy. New resistance to amikacin, cure rate of VAP, weaning rate, and mortality were assessed on day 28. Results: The baseline characteristics of patients in both groups were similar. At the end of the treatment, 13 of the 32 initially detected bacterial isolates were eradicated in AA group, compared to 4 of 28 in placebo group (41% vs. 14%, P = 0.024). As for patients, 11 of 27 patients treated with AA and 4 of 25 patients treated with placebo have eradication (41% vs. 16%, P = 0.049). The adjunction of AA reduced CPIS (4.2 ± 1.6 vs. 5.8 ± 2.1, P = 0.007). New drug resistance to amikacin and the change in serum creatinine were not detected in AA group. No significant differences in the clinical cure rate in survivors (48% vs. 35%, P = 0.444), weaning rate (48% vs. 32%, P = 0.236), and mortality (22% vs. 32%, P = 0.427) were detected between the two groups on day 28. Conclusions: As an adjunctive therapy of MDR-GNB VAP, AA successfully eradicated existing MDR organisms without inducing new resistance to amikacin or change in serum creatinine. However, the improvement of mortality was not found.
Collapse
Affiliation(s)
- Chang Liu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yu-Ting Zhang
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zhi-Yong Peng
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qing Zhou
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Bo Hu
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hui Zhou
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Jian-Guo Li
- Department of Intensive Care Unit, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
21
|
Antimicrobial molecules in the lung: formulation challenges and future directions for innovation. Future Med Chem 2018; 10:575-604. [PMID: 29473765 DOI: 10.4155/fmc-2017-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhaled antimicrobials have been extremely beneficial in treating respiratory infections, particularly chronic infections in a lung with cystic fibrosis. The pulmonary delivery of antibiotics has been demonstrated to improve treatment efficacy, reduce systemic side effects and, critically, reduce drug exposure to commensal bacteria compared with systemic administration, reducing selective pressure for antimicrobial resistance. This review will explore the specific challenges of pulmonary delivery of a number of differing antimicrobial molecules, and the formulation and technological approaches that have been used to overcome these difficulties. It will also explore the future challenges being faced in the development of inhaled products and respiratory infection treatment, and identify future directions of innovation, with a particular focus on respiratory infections caused by multiple drug-resistant pathogens.
Collapse
|
22
|
Kidd JM, Kuti JL, Nicolau DP. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria. Expert Opin Pharmacother 2018; 19:397-408. [DOI: 10.1080/14656566.2018.1438408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- James M. Kidd
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Joseph L. Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
23
|
Nebulized Versus IV Amikacin as Adjunctive Antibiotic for Hospital and Ventilator-Acquired Pneumonia Postcardiac Surgeries: A Randomized Controlled Trial. Crit Care Med 2017; 46:45-52. [PMID: 28857848 DOI: 10.1097/ccm.0000000000002695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Nebulized antibiotics offer high efficacy due to significant local concentrations and safety with minimal blood levels. This study evaluates the efficacy and nephrotoxicity of nebulized versus IV amikacin in postcardiothoracic surgical patients with nosocomial pneumonia caused by multidrug-resistant Gram- negative bacilli. DESIGN Prospective, randomized, controlled study on surgical patients divided into two groups. SETTING Postcardiac surgery ICU. INTERVENTIONS The first gtroup was administered IV amikacin 20 mg/kg once daily. The second group was prescribed amikacin nebulizer 400 mg twice daily. Both groups were co-administered IV piperacillin/tazobactam empirically. PATIENTS Recruited patients were diagnosed by either hospital-acquired pneumonia or ventilator-associated pneumonia where 56 (42.1%) patients were diagnosed with hospital-acquired pneumonia, 51 (38.34%) patients were diagnosed with early ventilator-associated pneumonia, and 26 (19.54%) patients with late ventilator-associated pneumonia. MEASUREMENTS AND MAIN RESULTS Clinical cure in both groups assessed on day 7 of treatment was the primary outcome. Efficacy was additionally evaluated through assessing the length of hospital stay, ICU stay, days on amikacin, days on mechanical ventilator, mechanical ventilator-free days, days to reach clinical cure, and mortality rate. Lower nephrotoxicity in the nebulized group was observed through significant preservation of kidney function (p < 0.001). Although both groups were comparable regarding length of hospital stay, nebulizer group showed shorter ICU stay (p = 0.010), lower number of days to reach complete clinical cure (p = 0.001), fewer days on mechanical ventilator (p = 0.035), and fewer days on amikacin treatment (p = 0.022). CONCLUSION Nebulized amikacin showed better clinical cure rates, less ICU stay, and fewer days to reach complete recovery compared to IV amikacin for surgical patients with nosocomial pneumonia. It is also a less nephrotoxic option associated with less deterioration in kidney function.
Collapse
|
24
|
In vitro evaluation of aerosol delivery of aztreonam lysine (AZLI): an adult mechanical ventilation model. Expert Opin Drug Deliv 2017; 14:1447-1453. [PMID: 29041861 DOI: 10.1080/17425247.2017.1393411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The delivery profile of Aztreonam lysine (AZLI) during mechanical ventilation (MV) is unknown. We evaluated the amount of AZLI drug delivered using an in vitro model of adult MV. METHODS An adult lung model designed to mimic current clinical practice was used. Both nebulizers were placed before a Y-piece and 4 settings were tested: A) Aeroneb solo® [AS] with a t-piece; B) AS with the spacer; C) M-Neb® [MN] with a t-piece and D) MN with the spacer. Performance was evaluated in terms of: 1) Mass median aerodynamic diameter (MMAD); 2) Geometric standard deviation (GSD), 3) Fine particle dose (FPD), 4) Fine particle fraction (FPF), 5) Inhalable mass (IM), and 6) Recovery rate (RR). RESULTS Both devices showed an adequate delivery of AZLI during MV, with MMAD between 2.4-2.5 µm and 87% of FPF. The FPD (38.8 and 31.7), IM (44.8 and 36.1) and RR (30 and 24) were similar for AS and MN respectively. Nebulizer aerosol delivery increased (50 and 70% respectively) for both nebulizers when using the spacer. CONCLUSION Both AS and MN showed a good aerosol delivery profile for AZLI during in vitro mechanical ventilation. Better aerosol delivery performance was obtained using the spacer.
Collapse
|
25
|
Dugernier J, Ehrmann S, Sottiaux T, Roeseler J, Wittebole X, Dugernier T, Jamar F, Laterre PF, Reychler G. Aerosol delivery during invasive mechanical ventilation: a systematic review. Crit Care 2017; 21:264. [PMID: 29058607 PMCID: PMC5651640 DOI: 10.1186/s13054-017-1844-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models. Whole lung and regional deposition and the impact of the ventilator circuit, the artificial airways and the administration technique for aerosol delivery were analyzed. METHODS In vivo studies assessing lung deposition during invasive mechanical ventilation were selected based on a systematic search among four databases. Two investigators independently assessed the eligibility and the risk of bias. RESULTS Twenty-six clinical and ten experimental studies were included. Between 30% and 43% of nominal drug dose was lost to the circuit in ventilated patients. Whole lung deposition of up to 16% and 38% of nominal dose (proportion of drug charged in the device) were reported with nebulizers and metered-dose inhalers, respectively. A penetration index inferior to 1 observed in scintigraphic studies indicated major proximal deposition. However, substantial concentrations of antibiotics were measured in the epithelial lining fluid (887 (406-12,819) μg/mL of amikacin) of infected patients and in sub-pleural specimens (e.g., 197 μg/g of amikacin) dissected from infected piglets, suggesting a significant distal deposition. The administration technique varied among studies and may explain a degree of the variability of deposition that was observed. CONCLUSIONS Lung deposition was lower than 20% of nominal dose delivered with nebulizers and mostly occurred in proximal airways. Further studies are needed to link substantial concentrations of antibiotics in infected pulmonary fluids to pulmonary deposition. The administration technique with nebulizers should be improved in ventilated patients in order to ensure an efficient but safe, feasible and reproducible technique.
Collapse
Affiliation(s)
- Jonathan Dugernier
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Stephan Ehrmann
- Université François Rabelais, UMR 1100, F-37032, Tours, France.,INSERM, Centre d'étude des Pathologies Respiratoires, UMR 1100, F-37032, Tours, France.,CHRU de Tours, Réanimation polyvalente, F-37044, Tours, France
| | - Thierry Sottiaux
- Soins Intensifs, Clinique Notre-Dame de Grace, Chaussée de Nivelles 212, 6041, Charleroi, Belgium
| | - Jean Roeseler
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Xavier Wittebole
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Thierry Dugernier
- Soins Intensifs, Clinique Saint-Pierre, Avenue Reine Fabiola 9, 1340, Ottignies, Belgium
| | - François Jamar
- Médecine Nucléaire, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Pierre-François Laterre
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Pneumologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
26
|
Kaku N, Morinaga Y, Takeda K, Kosai K, Uno N, Hasegawa H, Miyazaki T, Izumikawa K, Mukae H, Yanagihara K. Efficacy and pharmacokinetics of ME1100, a novel optimized formulation of arbekacin for inhalation, compared with amikacin in a murine model of ventilator-associated pneumonia caused by Pseudomonas aeruginosa. J Antimicrob Chemother 2017; 72:1123-1128. [PMID: 27999047 DOI: 10.1093/jac/dkw517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background Arbekacin is an aminoglycoside that shows strong antimicrobial activity against Gram-positive bacteria, including MRSA, as well as Pseudomonas aeruginosa . The therapeutic effectiveness of arbekacin is directly related to C max at the infection site. To maximize drug delivery to the respiratory tract and minimize the systemic toxicity, arbekacin optimized for inhalation, ME1100, is under development. In this study, we investigated the efficacy and pharmacokinetics of ME1100 in a murine model of ventilator-associated pneumonia caused by P. aeruginosa by using a customized investigational nebulizer system. Methods The mice were treated for 5 min, once daily, with placebo, 3, 10 or 30 mg/mL ME1100 or 30 mg/mL amikacin. Results In the survival study, the survival rate was significantly improved in the 10 and 30 mg/mL ME1100 treatment groups compared with that in the placebo group. The number of bacteria in the lungs was significantly lower in the 30 mg/mL ME1100 treatment group at 6 h after the initial treatment, compared with all other groups. In the pharmacokinetic study, the C max in the 30 mg/mL ME1100 treatment group in the epithelial lining fluid (ELF) and plasma was 31.1 and 1.2 mg/L, respectively. Furthermore, we compared the efficacy of ME1100 with that of amikacin. Although there were no significant differences in ELF and plasma concentrations between 30 mg/mL of ME1100 and 30 mg/mL of amikacin, ME1100 significantly improved the survival rate compared with amikacin. Conclusions The results of our study demonstrated the in vivo effectiveness of ME1100 and its superiority to amikacin.
Collapse
Affiliation(s)
- Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan.,Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Taiga Miyazaki
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Hiroshi Mukae
- Second Department of Internal Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki city, Nagasaki, Japan
| |
Collapse
|
27
|
Póvoa FCC, Cardinal-Fernandez P, Maia IS, Reboredo MM, Pinheiro BV. Effect of antibiotics administered via the respiratory tract in the prevention of ventilator-associated pneumonia: A systematic review and meta-analysis. J Crit Care 2017; 43:240-245. [PMID: 28942198 DOI: 10.1016/j.jcrc.2017.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE We evaluated the effect of antibiotics administered via the respiratory tract to prevent the ventilator-associated pneumonia (VAP) in mechanically ventilated (MV) patients. METHODS We searched relevant articles for trials that evaluated the impact of prophylactic antibiotics administered through the respiratory tract on the occurrence of VAP. The end-point was the occurrence of VAP in MV patients. RESULTS We included 6 comparative trials involving 1158 patients (632 received prophylactic antibiotic). Our meta-analysis revealed that prophylactic antibiotics administered through the respiratory tract reduced the occurrence of VAP when compared to placebo or no treatment (OR 0.53; 95% CI 0.34-0.84). This effect was seen when the antibiotics were given by nebulization (OR 0.46; 95% CI 0.22-0.97), but not when they were administered by intratracheal instillation (OR 0.57; 95% CI 0.28-1.15). We did not find a significant difference between the compared groups in the intensive care unit (ICU) mortality (OR 0.89; 95% CI 0.64-1.25). Antibiotic prophylaxis did not impact occurrence of VAP due to multidrug resistant (MDR) pathogens (OR 0.67; 95% CI 0.17-2.62). CONCLUSIONS Prophylactic antibiotics administered through the respiratory tract by nebulization reduce the occurrence of VAP, without a significant effect on either the ICU mortality or occurrence of VAP due to MDR pathogens.
Collapse
Affiliation(s)
- Frederico Castro Costa Póvoa
- Pulmonary and Critical Care Division, University Hospital of Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pablo Cardinal-Fernandez
- Emergency Department, Hospital Universitario HM Sanchinarro, Madrid, Spain; HM Research Foundation, Spain
| | - Israel Silva Maia
- General Medicine Department, Health Sciences Center, Hospital Universitário da Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Maycon Moura Reboredo
- Pulmonary and Critical Care Division, University Hospital of Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Bruno Valle Pinheiro
- Pulmonary and Critical Care Division, University Hospital of Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil.
| |
Collapse
|
28
|
Poulakou G, Matthaiou DK, Nicolau DP, Siakallis G, Dimopoulos G. Inhaled Antimicrobials for Ventilator-Associated Pneumonia: Practical Aspects. Drugs 2017; 77:1399-1412. [PMID: 28741229 DOI: 10.1007/s40265-017-0787-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Positive experience with inhaled antibiotics in pulmonary infections of patients with cystic fibrosis has paved the way for their utilization in mechanically ventilated, critically ill patients with lower respiratory tract infections. A successful antibiotic delivery depends upon the size of the generated particle and the elimination of drug impaction in the large airways and the ventilator circuit. Generated droplet size is mainly affected by the type of the nebulizer employed. Currently, jet, ultrasonic, and vibrating mesh nebulizers are marketed; the latter can deliver optimal antibiotic particle size. Promising novel drug-device combinations are able to release drug concentrations of 25- to 300-fold the minimum inhibitory concentration of the targeted pathogens into the pulmonary alveoli. The most important practical steps of nebulization include pre-assessment and preparation of the patient (suctioning, sedation, possible bronchodilation, adjustment of necessary ventilator settings); adherence to the procedure (drug preparation, avoidance of unnecessary tubing connections, interruption of heated humidification, removal of heat-moisture exchanger); inspection of the procedure (check for residual in drug chamber, change of expiratory filter, return sedation, and ventilator settings to previous status); and surveillance of the patient for adverse events (close monitoring of the patient and particularly of peak airway pressure and bronchoconstriction). Practical aspects of nebulization are very important to ensure optimal drug delivery and safe procedure for the patient. Therefore, the development of an operational checklist is a priority for every department adopting this modality.
Collapse
Affiliation(s)
- Garyphallia Poulakou
- Fourth Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, 1 Rimini St, 12462, Athens, Greece.
| | - Dimitrios K Matthaiou
- Department of Critical Care, University Hospital Attikon, Faculty of Medicine, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA
| | - Georgios Siakallis
- Fourth Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, 1 Rimini St, 12462, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Faculty of Medicine, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| |
Collapse
|
29
|
Nebulized antibiotics in mechanically ventilated patients: a challenge for translational research from technology to clinical care. Ann Intensive Care 2017; 7:78. [PMID: 28766281 PMCID: PMC5539056 DOI: 10.1186/s13613-017-0301-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Nebulized antibiotic therapy directly targets airways and lung parenchyma resulting in high local concentrations and potentially lower systemic toxicities. Experimental and clinical studies have provided evidence for elevated lung concentrations and rapid bacterial killing following the administration of nebulized antibiotics during mechanical ventilation. Delivery of high concentrations of antibiotics to infected lung regions is the key to achieving efficient nebulized antibiotic therapy. However, current non-standardized clinical practice, the difficulties with implementing optimal nebulization techniques and the lack of robust clinical data have limited its widespread adoption. The present review summarizes the techniques and clinical constraints for optimal delivery of nebulized antibiotics to lung parenchyma during invasive mechanical ventilation. Pulmonary pharmacokinetics and pharmacodynamics of nebulized antibiotic therapy to treat ventilator-associated pneumonia are discussed and put into perspective. Experimental and clinical pharmacokinetics and pharmacodynamics support the use of nebulized antibiotics. However, its clinical benefits compared to intravenous therapy remain to be proved. Future investigations should focus on continuous improvement of nebulization practices and techniques. Before expanding its clinical use, careful design of large phase III randomized trials implementing adequate therapeutic strategies in targeted populations is required to demonstrate the clinical effectiveness of nebulized antibiotics in terms of patient outcomes and reduction in the emergence of antibiotic resistance.
Collapse
|
30
|
Yu W, Shen P, Bao Z, Zhou K, Zheng B, Ji J, Guo L, Huang C, Xiao Y. In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. Int J Antimicrob Agents 2017. [PMID: 28648647 DOI: 10.1016/j.ijantimicag.2017.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The increasing prevalence of KPC-producing Klebsiella pneumoniae (KPC-Kp) strains poses a serious threat to patients. Therapeutic options are limited to colistin, fosfomycin, tigecycline and selected aminoglycosides. Although the combination of fosfomycin with other antimicrobials is recommended, data regarding possible synergistic activity in vitro and in vivo appear inconsistent. Here we report that five drug combinations (fosfomycin combined with imipenem, ertapenem, tigecycline, colistin or amikacin) had a significant additive effect against 136 KPC-Kp strains in an in vitro chequerboard assay. In addition, time-kill assays revealed that fosfomycin enhanced the bactericidal activity of the five other antimicrobial agents. Moreover, owing to its persistent bactericidal effect, the combination of fosfomycin plus amikacin is an effective therapeutic candidate for infections by KPC-producing organisms.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihua Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Kollef MH, Ricard JD, Roux D, Francois B, Ischaki E, Rozgonyi Z, Boulain T, Ivanyi Z, János G, Garot D, Koura F, Zakynthinos E, Dimopoulos G, Torres A, Danker W, Montgomery AB. A Randomized Trial of the Amikacin Fosfomycin Inhalation System for the Adjunctive Therapy of Gram-Negative Ventilator-Associated Pneumonia. Chest 2017; 151:1239-1246. [DOI: 10.1016/j.chest.2016.11.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/06/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022] Open
|
32
|
Rello J, Rouby JJ, Sole-Lleonart C, Chastre J, Blot S, Luyt CE, Riera J, Vos MC, Monsel A, Dhanani J, Roberts JA. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients. Clin Microbiol Infect 2017; 23:640-646. [PMID: 28347790 DOI: 10.1016/j.cmi.2017.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
Abstract
Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H2O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia.
Collapse
Affiliation(s)
- J Rello
- European Study Group for Infections in Critically Ill Patients (ESGCIP), Barcelona, Spain.
| | - J J Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière hospital, Assistance Publique Hôpitaux de Paris, University Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | | | - J Chastre
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - S Blot
- Department of Internal Medicine, Faculty of Medicine & Health Science, Ghent University, European Study Group for Infections in Critically Ill Patients (ESGCIP), Ghent, Belgium
| | - C E Luyt
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - J Riera
- Critical Care Department, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Vall d'Hebron Institut of Research, Barcelona, Spain
| | - M C Vos
- Department of Medical Microbiology and Infectious Diseases, European Study Group of Nosocomial Infections (ESGNI), Rotterdam, The Netherlands
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière hospital, Assistance Publique Hôpitaux de Paris, University Pierre et Marie Curie (UPMC) of Paris 6, Paris, France
| | - J Dhanani
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia
| | - J A Roberts
- Burns Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Poulakou G, Siakallis G, Tsiodras S, Arfaras-Melainis A, Dimopoulos G. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges. Expert Rev Anti Infect Ther 2017; 15:211-229. [DOI: 10.1080/14787210.2017.1268052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- G Poulakou
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - G Siakallis
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - S Tsiodras
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - A Arfaras-Melainis
- 4th Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, Athens, Greece
| | - G Dimopoulos
- Department of Critical Care, University Hospital ATTIKON, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
34
|
Amábile-Cuevas CF. Selection of Amikacin Hyper-Resistant Pseudomonas aeruginosa After Stepwise Exposure to High Amikacin Concentrations. Microb Drug Resist 2017; 23:32-36. [DOI: 10.1089/mdr.2015.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Sime FB, Johnson A, Whalley S, Santoyo-Castelazo A, Montgomery AB, Walters KA, Lipman J, Hope WW, Roberts JA. Pharmacodynamics of Aerosolized Fosfomycin and Amikacin against Resistant Clinical Isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae in a Hollow-Fiber Infection Model: Experimental Basis for Combination Therapy. Antimicrob Agents Chemother 2017; 61:e01763-16. [PMID: 27795380 PMCID: PMC5192115 DOI: 10.1128/aac.01763-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/09/2016] [Indexed: 01/24/2023] Open
Abstract
There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 108 CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 108 to 109 CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates.
Collapse
Affiliation(s)
- Fekade Bruck Sime
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Adam Johnson
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Sarah Whalley
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Anahi Santoyo-Castelazo
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | | | | | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - William W Hope
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| | - Jason A Roberts
- Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
36
|
Ali H. Study of ventilator-associated tracheobronchitis in respiratory ICU patients and the impact of aerosolized antibiotics on their outcome. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2016. [DOI: 10.4103/1687-8426.193628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Schreiber MP, Shorr AF. Challenges and opportunities in the treatment of ventilator-associated pneumonia. Expert Rev Anti Infect Ther 2016; 15:23-32. [DOI: 10.1080/14787210.2017.1250625] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Petitcollin A, Dequin PF, Darrouzain F, Vecellio L, Boulain T, Garot D, Paintaud G, Ternant D, Ehrmann S. Pharmacokinetics of high-dose nebulized amikacin in ventilated critically ill patients. J Antimicrob Chemother 2016; 71:3482-3486. [DOI: 10.1093/jac/dkw313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/07/2023] Open
|
39
|
Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled Antibiotics for Gram-Negative Respiratory Infections. Clin Microbiol Rev 2016; 29:581-632. [PMID: 27226088 PMCID: PMC4978611 DOI: 10.1128/cmr.00101-15] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena.
Collapse
Affiliation(s)
- Eric Wenzler
- University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois, USA
| | - Dustin R Fraidenburg
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tonya Scardina
- Loyola University Medical Center, Chicago, Illinois, USA
| | - Larry H Danziger
- University of Illinois at Chicago, College of Pharmacy, Chicago, Illinois, USA University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Nicolau DP, Dimopoulos G, Welte T, Luyt CE. Can we improve clinical outcomes in patients with pneumonia treated with antibiotics in the intensive care unit? Expert Rev Respir Med 2016; 10:907-18. [PMID: 27181707 DOI: 10.1080/17476348.2016.1190277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Pneumonia in the intensive care unit (ICU) is associated with high morbidity, mortality and healthcare costs. However, treatment outcomes with conventional intravenous (IV) antibiotics remain suboptimal, and there is an urgent need for improved therapy options. AREAS COVERED We review how clinical outcomes in patients with pneumonia treated in the ICU could be improved; we discuss the importance of choosing appropriate outcome measures in clinical trials, highlight the current suboptimal outcomes in patients with pneumonia, and outline potential solutions. We have included key studies and papers based on our clinical expertise, therefore a systematic literature review was not conducted. Expert commentary: Reasons for poor outcomes in patients with nosocomial pneumonia in the ICU include inappropriate initial therapy, increasing bacterial resistance and the complexities of IV dosing in critically ill patients. Robust clinical trial endpoints are needed to enable an accurate assessment of the success of new treatment approaches, but progress in this field has been slow. In addition, only very few new antimicrobials are currently in development for nosocomial pneumonia; two potential alternative solutions to improve outcomes could therefore include the optimization of pharmacokinetic/pharmacodynamics (PK/PD) and dosing of existing therapies, and the refinement of antimicrobial delivery by inhalation.
Collapse
Affiliation(s)
- David P Nicolau
- a Center for Anti-infective Research and Development , Hartford Hospital , Hartford , CT , USA
| | - George Dimopoulos
- b Department of Critical Care Medicine, Medical School , University of Athens , Athens , Greece
| | - Tobias Welte
- c Department of Respiratory Medicine , Hannover Medical School , Hannover , Germany
| | - Charles-Edouard Luyt
- d Service de Réanimation, Institut de Cardiologie , Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris , Paris , France.,e UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition , Sorbonne Universités , Paris , France
| |
Collapse
|
41
|
Bassetti M, Luyt CE, Nicolau DP, Pugin J. Characteristics of an ideal nebulized antibiotic for the treatment of pneumonia in the intubated patient. Ann Intensive Care 2016; 6:35. [PMID: 27090532 PMCID: PMC4835402 DOI: 10.1186/s13613-016-0140-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023] Open
Abstract
Gram-negative pneumonia in patients who are intubated and mechanically ventilated is associated with increased morbidity and mortality as well as higher healthcare costs compared with those who do not have the disease. Intravenous antibiotics are currently the standard of care for pneumonia; however, increasing rates of multidrug resistance and limited penetration of some classes of antimicrobials into the lungs reduce the effectiveness of this treatment option, and current clinical cure rates are variable, while recurrence rates remain high. Inhaled antibiotics may have the potential to improve outcomes in this patient population, but their use is currently restricted by a lack of specifically formulated solutions for inhalation and a limited number of devices designed for the nebulization of antibiotics. In this article, we review the challenges clinicians face in the treatment of pneumonia and discuss the characteristics that would constitute an ideal inhaled drug/device combination. We also review inhaled antibiotic options currently in development for the treatment of pneumonia in patients who are intubated and mechanically ventilated.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Santa Maria Misericordia University Hospital, Udine, Italy.
| | - Charles-Edouard Luyt
- Service de Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, USA
| | - Jérôme Pugin
- Service des Soins Intensifs, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Kollef MH. How I diagnose and manage ventilator-associated tracheobronchitis. Med Intensiva 2016; 40:176-8. [PMID: 26948681 DOI: 10.1016/j.medin.2015.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Affiliation(s)
- M H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
43
|
Bassetti M, Welte T, Wunderink RG. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:19. [PMID: 26821535 PMCID: PMC4731981 DOI: 10.1186/s13054-016-1197-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Beta-lactam antibiotics form the backbone of treatment for Gram-negative pneumonia in mechanically ventilated patients in the intensive care unit. However, this beta-lactam antibiotic backbone is increasingly under pressure from emerging resistance across all geographical regions, and health-care professionals in many countries are rapidly running out of effective treatment options. Even in regions that currently have only low levels of resistance, the effects of globalization are likely to increase local pressures on the beta-lactam antibiotic backbone in the near future. Therefore, clinicians are increasingly faced with a difficult balancing act: the need to prescribe adequate and appropriate antibiotic therapy while reducing the emergence of resistance and the overuse of antibiotics. In this review, we explore the burden of Gram-negative pneumonia in the critical care setting and the pressure that antibiotic resistance places on current empiric therapy regimens (and the beta-lactam antibiotic backbone) in this patient population. New treatment approaches, such as systemic and inhaled antibiotic alternatives, are on the horizon and are likely to help tackle the rising levels of beta-lactam antibiotic resistance. In the meantime, it is imperative that the beta-lactam antibiotic backbone of currently available antibiotics be supported through stringent antibiotic stewardship programs.
Collapse
Affiliation(s)
- Matteo Bassetti
- Santa Maria Misericordia University Hospital, Piazzale S. Maria Misericordia 15, 33100, Udine, Italy.
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Richard G Wunderink
- Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-015, Chicago, IL, 60611, USA
| |
Collapse
|
44
|
Monogue ML, Kuti JL, Nicolau DP. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance. Expert Rev Clin Pharmacol 2016; 9:459-76. [DOI: 10.1586/17512433.2016.1133286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Lei Y, Hudcova J, Rashid J, Sarwar A, Gillespie W, Finn C, Goggin M, Omran MB, Boroda E, Craven DE. Natural History, Outcomes and Antibiotic Treatment for Ventilator-Associated Tracheobronchitis in Critical Ill Patients. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/mri.2016.51001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Kollef MH, Micek ST. Editorial Commentary: Antimicrobial De-escalation: What's in a Name? Clin Infect Dis 2015; 62:1018-20. [PMID: 26703859 DOI: 10.1093/cid/civ1201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Affiliation(s)
- Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine
| | | |
Collapse
|
47
|
Antibiotic therapy for ventilator-associated tracheobronchitis: a standard of care to reduce pneumonia, morbidity and costs? Curr Opin Pulm Med 2015; 21:250-9. [PMID: 25784245 DOI: 10.1097/mcp.0000000000000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The present review draws our attention to ventilator-associated tracheobronchitis (VAT) as a distinct clinical entity that has been associated with progression to ventilator-associated pneumonia (VAP) and worse patient outcomes. In contrast to VAP, which has been extensively investigated for over the past 30 years, most VAT studies have been conducted in the past decade. There are ample data which demonstrate that VAT may progress to VAP, have more ventilator days, and have longer ICU stay that may translate into higher healthcare costs. RECENT FINDINGS The article focuses on the diagnostic criteria for VAT, causative agents, and studies analyzing associations between VAT and patient outcomes in relation to early, appropriate intravenous, and/or aerosolized antibiotic therapy. Aerosolized antibiotic treatment delivered by improved device technology is a novel approach that has proved to be effective for the treatment and eradication of multidrug-resistant bacterial pathogens. Aerosolized antibiotics are effective in decreasing the use of systemic antibiotics, reducing bacterial resistance, and may also facilitate clinical resolution of infection. SUMMARY Evidence presented in this review supports treatment of VAT with early and appropriate antibiotic therapy as a standard of care to reduce VAP, ventilator days, and duration of ICU stay in high-risk patient population.
Collapse
|
48
|
Inhaled antimicrobial therapy – Barriers to effective treatment. Adv Drug Deliv Rev 2015; 85:24-43. [DOI: 10.1016/j.addr.2014.08.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 02/08/2023]
|
49
|
Stockmann C, Roberts JK, Yellepeddi VK, Sherwin CMT. Clinical pharmacokinetics of inhaled antimicrobials. Clin Pharmacokinet 2015; 54:473-92. [PMID: 25735634 DOI: 10.1007/s40262-015-0250-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Administration of inhaled antimicrobials affords the ability to achieve targeted drug delivery into the respiratory tract, rapid entry into the systemic circulation, high bioavailability and minimal metabolism. These unique pharmacokinetic characteristics make inhaled antimicrobial delivery attractive for the treatment of many pulmonary diseases. This review examines recent pharmacokinetic trials with inhaled antibacterials, antivirals and antifungals, with an emphasis on the clinical implications of these studies. The majority of these studies revealed evidence of high antimicrobial concentrations in the airway with limited systemic exposure, thereby reducing the risk of toxicity. Sputum pharmacokinetics varied widely, which makes it challenging to interpret the result of sputum pharmacokinetic studies. Many no vel inhaled antimicrobial therapies are currently under investigation that will require detailed pharmacokinetic studies, including combination inhaled antimicrobial therapies, inhaled nanoparticle formulations of several antibacterials, inhaled non-antimicrobial adjuvants, inhaled antiviral recombinant protein therapies and semi-synthetic inhaled antifungal agents. Additionally, the development of new inhaled delivery devices, particularly for mechanically ventilated patients, will result in a pressing need for additional pharmacokinetic studies to identify optimal dosing regimens.
Collapse
Affiliation(s)
- Chris Stockmann
- Division of Clinical Pharmacology, Department of Paediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | | | | | | |
Collapse
|
50
|
Antoniu S. Novel inhaled combined antibiotic formulations in the treatment of Pseudomonas aeruginosa airways infections in cystic fibrosis. Expert Rev Anti Infect Ther 2015; 13:897-905. [PMID: 25921312 DOI: 10.1586/14787210.2015.1041925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In cystic fibrosis, chronic airways infection caused by Pseudomonas aeruginosa can be treated with inhaled antibiotics such as inhaled tobramycin, aztreonam or colistin. However, biofilm formation induced by this bacterium can reduce the effectiveness of such therapies and can contribute to antibiotic resistance. Inhaled antibiotic combination might represent an optimal antibiofilm strategy in this setting. This review discusses the rationale for combining the antibiotics as well as some emerging or existing combinations. Most of the combinations except for fosfomycin/tobramycin are at an early stage of development. The latter combination was found to be effective in Phase II clinical studies and is planned to be tested in Phase III trials. The clinical data on long-term efficacy are currently missing, but the existing evidence as well as the unmet therapeutic need can prompt the further evaluation of such compounds.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department of Interdisciplinary - Palliative Care Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Romania, 16 Universităţii Str, Iasi, 700115
| |
Collapse
|