1
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Dogra P, Miller-Kittrell M, Pitt E, Jackson JW, Masi T, Copeland C, Wu S, Miller WE, Sparer T. A little cooperation helps murine cytomegalovirus (MCMV) go a long way: MCMV co-infection rescues a chemokine salivary gland defect. J Gen Virol 2016; 97:2957-2972. [PMID: 27638684 DOI: 10.1099/jgv.0.000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cytomegaloviruses (CMVs) produce chemokines (vCXCLs) that have both sequence and functional homology to host chemokines. Assessment of vCXCL-1's role in CMV infection is limited to in vitro and in silico analysis due to CMVs species specificity. In this study, we used the murine CMV (MCMV) mouse model to evaluate the function of vCXCL-1 in vivo. Recombinant MCMVs expressing chimpanzee CMV vCXCL-1 (vCXCL-1CCMV) or host chemokine, mCXCL1, underwent primary dissemination to the popliteal lymph node, spleen and lung similar to the parental MCMV. However, neither of the recombinants expressing chemokines was recovered from the salivary gland (SG) at any time post-infection although viral DNA was detected. This implies that the virus does not grow in the SG or the overexpressed chemokine induces an immune response that leads to suppressed growth. Pointing to immune suppression of virus replication, recombinant viruses were isolated from the SG following infection of immune-ablated mice [i.e. SCID (severe combined immunodeficiency), NSG (non-obese diabetic SCID gamma) or cyclophosphamide treated]. Depletion of neutrophils or NK cells does not rescue the recovery of chemokine-expressing recombinants in the SG. Surprisingly we found that co-infection of parental virus and chemokine-expressing virus leads to the recovery of the recombinants in the SG. We suggest that parental virus reduces the levels of chemokine expression leading to a decrease in inflammatory monocytes and subsequent SG growth. Therefore, aberrant expression of the chemokines induces cells of the innate and adaptive immune system that curtail the growth and dissemination of the recombinants in the SG.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Elisabeth Pitt
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Tom Masi
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Courtney Copeland
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Shuen Wu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Tim Sparer
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
3
|
Abstract
Although human cytomegalovirus (HCMV) primary infection is generally asymptomatic, in immune-compromised patients HCMV increases morbidity and mortality. As a member of the betaherpesvirus family, in vivo studies of HCMV are limited due to its species specificity. CMVs from other species are often used as surrogates to express HCMV genes/proteins or used as models for inferring HCMV protein function in humans. Using innovative experiments, these animal models have answered important questions about CMV's life cycle, dissemination, pathogenesis, immune evasion, and host immune response. This chapter provides CMV biologists with an overview of the insights gained using these animal models. Subsequent chapters will provide details of the specifics of the experimental methods developed for each of the animal models discussed here.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
4
|
IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 2010; 117:352-61. [PMID: 20930069 DOI: 10.1182/blood-2010-06-291245] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is linked to the acceleration of vascular diseases such as atherosclerosis and transplant vasculopathy. One of the hallmarks of these diseases is angiogenesis (AG) and neovessel formation. Endothelial cells (ECs) are an integral part of AG and are sites of HCMV persistence. AG requires multiple synchronous processes that include EC proliferation, migration, and vessel stabilization. Virus-free supernatant (secretome) from HCMV-infected ECs induces AG. To identify factor(s) involved in this process, we performed a human cytokine array. Several cytokines were significantly induced in the HCMV secretomes including interleukin-6 (IL-6), granulocyte macrophage colony-stimulating factor, and IL-8/CXCL8. Using in vitro AG assays, neutralization of IL-6 significantly reduced neovessel formation. Addition of the HCMV secretome to preformed vessels extended neovessel survival, but this effect was blocked by neutralization of IL-6. In these cells, IL-6 prevented apoptosis by blocking caspase-3 and -7 activation through the induction of survivin. Neutralization of IL-6 receptor on ECs abolished the ability of HCMV secretome to increase survivin expression and activated effector caspases. Moreover, survivin shRNA expression induced rapid regression of tubule capillary networks in ECs stimulated with HCMV secretome and activated effector caspases. These observations may explain how CMV accelerates vascular disease despite limited infection in tissues.
Collapse
|
5
|
Caposio P, Orloff SL, Streblow DN. The role of cytomegalovirus in angiogenesis. Virus Res 2010; 157:204-11. [PMID: 20869406 DOI: 10.1016/j.virusres.2010.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 01/02/2023]
Abstract
Human cytomegalovirus (HCMV) infection has been associated with the acceleration of vascular disease including atherosclerosis and transplant associated vasculopathy in solid organ transplants. HCMV promotes vascular disease at many of the different stages of the disease development. These include the initial injury phase, enhancing the response to injury and inflammation, as well as by increasing SMC hyperplasia and foamy macrophage cell formation. Angiogenesis is a critical process involved in the development of vascular diseases. Recently, HCMV has been shown to induce angiogenesis and this process is thought to contribute to HCMV-accelerated vascular disease and may also be important for HCMV-enhanced tumor formation. This review will highlight the role of HCMV in promoting angiogenesis.
Collapse
Affiliation(s)
- Patrizia Caposio
- Department of Molecular Microbiology & Immunology and The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
6
|
Alcendor DJ, Zong J, Dolan A, Gatherer D, Davison AJ, Hayward GS. Patterns of divergence in the vCXCL and vGPCR gene clusters in primate cytomegalovirus genomes. Virology 2009; 395:21-32. [PMID: 19818982 DOI: 10.1016/j.virol.2009.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 01/04/2023]
Abstract
Primate cytomegalovirus (CMV) genomes contain tandemly repeated gene clusters putatively encoding divergent CXC chemokine ligand-like proteins (vCXCLs) and G protein-coupled receptor-like proteins (vGPCRs). In human, chimpanzee and rhesus CMVs, respectively, the vCXCL cluster contains two, three and six genes, and the vGPCR cluster contains two, two and five genes. We report that (i) green monkey CMV strains fall into two groups, containing either eight and five genes or seven and six genes in the respective clusters, and (ii) owl monkey CMV has two and zero genes. Phylogenetic analysis suggested that the vCXCL cluster evolved from a CXCL chemokine gene (probably GRO-alpha) that was captured in an incompletely spliced form by an ancestor of Old and New World primate CMVs, and that the vGPCR cluster evolved from a GPCR gene captured by an Old World primate CMV. Both clusters appear to have evolved via complex duplication and deletion events.
Collapse
Affiliation(s)
- Donald J Alcendor
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
7
|
Stapler D, Lee ED, Selvaraj SA, Evans AG, Kean LS, Speck SH, Larsen CP, Gangappa S. Expansion of effector memory TCR Vbeta4+ CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance. THE JOURNAL OF IMMUNOLOGY 2008; 180:3190-200. [PMID: 18292543 DOI: 10.4049/jimmunol.180.5.3190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Therapies that control largely T cell-dependent allograft rejection in humans also possess the undesirable effect of impairing T cell function, leaving transplant recipients susceptible to opportunistic viruses. Prime among these opportunists are the ubiquitous herpesviruses. To date, studies are lacking that address the effect of viruses that establish a true latent state on allograft tolerance or the effect of tolerance protocols on the immune control of latent viruses. By using a mixed chimerism-based tolerance-induction protocol, we found that mice undergoing latent infection with gammaHV68, a murine gamma-herpesvirus closely related to human gamma-herpesviruses such as EBV and Kaposi's sarcoma-associated herpesvirus, significantly resist tolerance to allografts. Limiting the degree of virus reactivation or innate immune response did not reconstitute chimerism in latently infected mice. However, gammaHV68-infected mice showed increased frequency of CD8+ T cell alloreactivity and, interestingly, expansion of virus-induced, alloreactive, "effector/effector memory" TCR Vbeta4+CD8+ T cells driven by the gammaHV68-M1 gene was associated with resistance to tolerance induction in studies using gammaHV68-M1 mutant virus. These results define the viral gene and immune cell types involved in latent infection-mediated resistance to allograft tolerance and underscore the influence of latent herpesviruses on allograft survival.
Collapse
Affiliation(s)
- Dale Stapler
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dumortier J, Streblow DN, Moses AV, Jacobs JM, Kreklywich CN, Camp D, Smith RD, Orloff SL, Nelson JA. Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 2008; 82:6524-35. [PMID: 18448536 PMCID: PMC2447085 DOI: 10.1128/jvi.00502-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/21/2008] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.
Collapse
|
9
|
Ricks DM, Kutner R, Zhang XY, Welsh DA, Reiser J. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2008; 17:441-50. [PMID: 18513160 PMCID: PMC2996877 DOI: 10.1089/scd.2007.0194] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 11/06/2007] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted much attention as potential platforms for transgene delivery and cell-based therapy for human disease. MSCs have the capability to self-renew and retain multipotency after extensive expansion in vitro, making them attractive targets for ex vivo modification and autologous transplantation. Viral vectors, including lentiviral vectors, provide an efficient means for transgene delivery into human MSCs. In contrast, mouse MSCs have proven more difficult to transduce with lentiviral vectors than their human counterparts, and because many studies use mouse models of human disease, an improved method of transduction would facilitate studies using ex vivo-modified mouse MSCs. We have worked toward improving the production of human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors and optimizing transduction conditions for mouse MSCs using lentivirus vectors pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-G), the ecotropic murine leukemia virus envelope glycoprotein (MLV-E), and the glycoproteins derived from the Armstrong and WE strains of lymphocytic choriomeningitis virus (LCMV-Arm, LCMV-WE). Mouse MSCs were readily transduced following overnight incubation using a multiplicity of infection of at least 40. Alternatively, mouse MSCs in suspension were readily transduced after a 1-h exposure to lentiviral pseudotypes immediately following trypsin treatment or retrieval from storage in liquid nitrogen. LCMV-WE pseudotypes resulted in efficient transduction of mouse MSCs with less toxicity than VSV-G pseudotypes. In conclusion, our improved production and transduction conditions for lentiviral vectors resulted in efficient transduction of mouse MSCs, and these improvements should facilitate the application of such cells in the context of mouse models of human disease.
Collapse
Affiliation(s)
- David M. Ricks
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
- Pulmonary Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
- The first two authors contributed equally to this work
| | - Robert Kutner
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
- The first two authors contributed equally to this work
| | - Xian-Yang Zhang
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
| | - David A. Welsh
- Pulmonary Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
| | - Jakob Reiser
- Gene Therapy Program, Department of Medicine, LSU Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
10
|
Lüttichau HR. The herpesvirus 8 encoded chemokines vCCL2 (vMIP-II) and vCCL3 (vMIP-III) target the human but not the murine lymphotactin receptor. Virol J 2008; 5:50. [PMID: 18426556 PMCID: PMC2359738 DOI: 10.1186/1743-422x-5-50] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/21/2008] [Indexed: 11/24/2022] Open
Abstract
Background Large DNA-viruses such as herpesvirus and poxvirus encode proteins that target and exploit the chemokine system of their host. The Kaposi sarcoma- associated herpes virus (KSHV) encodes three chemokines. Two of these, vCCL2 and vCCL3, target the human lymphotactin receptor as an antagonist and a selective agonist, respectively. Therefore these virally endcoded chemokines have the potential to be used as tools in the study of lymphotactin receptor pathways in murine models. Results The activities of vCCL2, vCCL3, human lymphotactin (XCL1) and murine lymphotactin (mXCL1) were probed in parallel on the human and murine lymphotactin receptor (XCR1 and mXCR1) using a phosphatidyl-inositol assay. On the human XCR1, vCCL3, mXCL1 and XCL1 acted as agonists. In contrast, only mXCL1 was able to activate the murine lymphotactin receptor. Using the same assay, vCCL2 was able to block the response using any of the three agonists on the humane lymphotactin receptor with IC50s of 2–3 nM. However, vCCL2 was unable to block the response of mXCL1 through the murine lymphotactin receptor. Conclusion This study shows that vCCL2 and vCCL3 cannot be used to investigate lymphotactin receptor pathways in murine models. These results also add vCCL2 and vCCL3 to a growing list of viral chemokines with known human chemokine receptor targets, which do not target the corresponding murine receptors. This fits with the observation that viral and endogenous ligands for the same human chemokine receptor tend to have relatively divergent amino-acid sequences, suggesting that these viruses have fine-tuned the design of their chemokines such that the action of the viral encoded chemokines cannot be expected to cross species barriers.
Collapse
Affiliation(s)
- Hans R Lüttichau
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Panum Institute, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
11
|
Streblow DN, Dumortier J, Moses AV, Orloff SL, Nelson JA. Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol 2008; 325:397-415. [PMID: 18637518 PMCID: PMC2699259 DOI: 10.1007/978-3-540-77349-8_22] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human cytomegalovirus (HCMV) is associated with the acceleration of a number of vascular diseases such as atherosclerosis, restenosis, and transplant vascular sclerosis (TVS). All of these diseases are the result of either mechanical or immune-mediated injury followed by inflammation and subsequent smooth muscle cell (SMC) migration from the vessel media to the intima and proliferation that culminates in vessel narrowing. A number of epidemiological and animal studies have demonstrated that CMV significantly accelerates TVS and chronic rejection (CR) in solid organ allografts. In addition, treatment of human recipients and animals alike with the antiviral drug ganciclovir results in prolonged survival of the allograft, indicating that CMV replication is a requirement for acceleration of disease. However, although virus persists in the allograft throughout the course of disease, the number of directly infected cells does not account for the global effects that the virus has on the acceleration of TVS and CR. Recent investigations of up- and downregulated cellular genes in infected allografts in comparison to native heart has demonstrated that rat CMV (RCMV) upregulates genes involved in wound healing (WH) and angiogenesis (AG). Consistent with this result, we have found that supernatants from HCMV-infected cells (HCMV secretome) induce WH and AG using in vitro models. Taken together, these findings suggest that one mechanism for HCMV acceleration of TVS is mediated through induction of secreted cytokines and growth factors from virus-infected cells that promote WH and AG in the allograft, resulting in the acceleration of TVS. We review here the ability of CMV infection to alter the local environment by producing cellular factors that act in a paracrine fashion to enhance WH and AG processes associated with the development of vascular disease, which accelerates chronic allograft rejection.
Collapse
Affiliation(s)
- D N Streblow
- Vaccine and Gene Therapy Institute and Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
12
|
Streblow DN, Orloff SL, Nelson JA. Acceleration of allograft failure by cytomegalovirus. Curr Opin Immunol 2007; 19:577-82. [PMID: 17716883 PMCID: PMC3509935 DOI: 10.1016/j.coi.2007.07.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 07/08/2007] [Indexed: 10/22/2022]
Abstract
A number of human herpesviruses are important opportunistic pathogens that have been associated with increased morbidity and mortality in transplant recipients including human cytomegalovirus (HCMV), HHV6, HHV7, HHV8 as well as HSV-1, VZV. However, HCMV has been linked both epidemiologically and through the use of animal models to the acceleration of acute and chronic allograft rejection. This review will cover the pathophysiology, epidemiology, and mechanisms of CMV-associated disease in the setting of transplantation.
Collapse
Affiliation(s)
| | - Susan L. Orloff
- Veterans Affairs, Portland VAMC, Portland, OR
- MMI, OHSU, Portland, OR
| | - Jay A. Nelson
- MMI, OHSU, Portland, OR
- Department of Surgery, OHSU, Portland, OR
| |
Collapse
|
13
|
Miller-Kittrell M, Sai J, Penfold M, Richmond A, Sparer TE. Functional characterization of chimpanzee cytomegalovirus chemokine, vCXCL-1(CCMV). Virology 2007; 364:454-65. [PMID: 17433398 PMCID: PMC2665277 DOI: 10.1016/j.virol.2007.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 03/05/2007] [Indexed: 11/27/2022]
Abstract
Human cytomegaloviruses (HCMVs) are important pathogens in immunocompromised patients and newborns. The viral chemokine, vCXCL-1, of the Toledo (Tol) strain of HCMV has been implicated in HCMV virulence. Chimpanzee CMV (CCMV) has several genes with similarity to the vCXCL-1(Tol) gene, UL146. In order to test whether the CCMV viral chemokine, vCXCL-1(CCMV), is similar to vCXCL-1(Tol), we characterized its function in vitro. Receptor binding, activation, chemotaxis, signaling, and apoptosis in neutrophils were compared between vCXCL-1(Tol) and vCXCL-1(CCMV) and host chemokines. Although the homologues had similar activation potentials, chemotactic properties, and signaling, vCXCL-1(CCMV) had a approximately 70-fold lower affinity for CXCR2 and displayed differences in integrin upregulation and neutrophil apoptosis. These data demonstrate that in spite of extensive amino acid variability in vCXCL-1, CCMV may provide a model for assessing the role of vCXCL-1 in CMV pathogenesis in vivo.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, Walters Life Sciences Rm. F417, Knoxville, TN 37996, USA
| | - Jiqing Sai
- Department of Veteran Affairs, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Ann Richmond
- Department of Veteran Affairs, Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Walters Life Sciences Rm. F417, Knoxville, TN 37996, USA
| |
Collapse
|
14
|
Lurain NS, Fox AM, Lichy HM, Bhorade SM, Ware CF, Huang DD, Kwan SP, Garrity ER, Chou S. Analysis of the human cytomegalovirus genomic region from UL146 through UL147A reveals sequence hypervariability, genotypic stability, and overlapping transcripts. Virol J 2006; 3:4. [PMID: 16409621 PMCID: PMC1360065 DOI: 10.1186/1743-422x-3-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 01/12/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the sequence of the human cytomegalovirus (HCMV) genome is generally conserved among unrelated clinical strains, some open reading frames (ORFs) are highly variable. UL146 and UL147, which encode CXC chemokine homologues are among these variable ORFs. RESULTS The region of the HCMV genome from UL146 through UL147A was analyzed in clinical strains for sequence variability, genotypic stability, and transcriptional expression. The UL146 sequences in clinical strains from two geographically distant sites were assigned to 12 sequence groups that differ by over 60% at the amino acid level. The same groups were generated by sequences from the UL146-UL147 intergenic region and the UL147 ORF. In contrast to the high level of sequence variability among unrelated clinical strains, the sequences of UL146 through UL147A from isolates of the same strain were highly stable after repeated passage both in vitro and in vivo. Riboprobes homologous to these ORFs detected multiple overlapping transcripts differing in temporal expression. UL146 sequences are present only on the largest transcript, which also contains all of the downstream ORFs including UL148 and UL132. The sizes and hybridization patterns of the transcripts are consistent with a common 3'-terminus downstream of the UL132 ORF. Early-late expression of the transcripts associated with UL146 and UL147 is compatible with the potential role of CXC chemokines in pathogenesis associated with viral replication. CONCLUSION Clinical isolates from two different geographic sites cluster in the same groups based on the hypervariability of the UL146, UL147, or the intergenic sequences, which provides strong evidence for linkage and no evidence for interstrain recombination within this region. The sequence of individual strains was absolutely stable in vitro and in vivo, which indicates that sequence drift is not a mechanism for the observed sequence hypervariability. There is also no evidence of transcriptional splicing, although multiple overlapping transcripts extending into the adjacent UL148 and UL132 open reading frames were detected using gene-specific probes.
Collapse
Affiliation(s)
- Nell S Lurain
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Andrea M Fox
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Heather M Lichy
- Medical and Research Services, VA Medical Center, Portland, OR, USA
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA
| | - Sangeeta M Bhorade
- Division of Pulmonary and Critical Care, Loyola University Medical Center, Maywood, IL, USA
| | - Carl F Ware
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | - Diana D Huang
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Sau-Ping Kwan
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL, USA
| | - Edward R Garrity
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA
| | - Sunwen Chou
- Medical and Research Services, VA Medical Center, Portland, OR, USA
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
15
|
Noda S, Aguirre SA, Bitmansour A, Brown JM, Sparer TE, Huang J, Mocarski ES. Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood 2005; 107:30-8. [PMID: 16046529 PMCID: PMC1895360 DOI: 10.1182/blood-2005-05-1833] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Murine cytomegalovirus encodes a secreted, pro-inflammatory chemokine-like protein, MCK-2, that recruits leukocytes and facilitates viral dissemination. We have shown that MCK-2-enhanced recruitment of myelomonocytic leukocytes with an immature phenotype occurs early during infection and is associated with efficient viral dissemination. Expression of MCK-2 drives the mobilization of a population of leukocytes from bone marrow that express myeloid marker Mac-1 (CD11b), intermediate levels of Gr-1 (Ly6 G/C), platelet-endothelial-cell adhesion molecule-1 (PECAM-1, CD31), together with heterogeneous levels of stem-cell antigen-1 (Sca-1, Ly-6 A /E). Recombinant MCK-2 mediates recruitment of this population even in the absence of viral infection. Recruitment of this cell population and viral dissemination via the bloodstream to salivary glands proceeds normally in mice that lack CCR2 and MCP-1 (CCL2), suggesting that recruitment of macrophages is not a requisite component of pathogenesis. Thus, a systemic impact of MCK-2 enhances the normal host response and causes a marked increase in myelomonocytic recruitment with an immature phenotype to initial sites of infection. Mobilization influences levels of virus dissemination via the bloodstream to salivary glands and is dependent on a myelomonocytic cell type other than mature macrophages.
Collapse
Affiliation(s)
- Satoshi Noda
- Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild Science Bldg, 299 Campus Dr, Stanford, CA 94305-5124, USA
| | | | | | | | | | | | | |
Collapse
|