1
|
Moghaddami R, Mahdipour M, Ahmadpour E. Inflammatory pathways of Toxoplasmagondii infection in pregnancy. Travel Med Infect Dis 2024; 62:102760. [PMID: 39293589 DOI: 10.1016/j.tmaid.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular parasite, is considered as an opportunistic infection and causes toxoplasmosis in humans and animals. Congenital toxoplasmosis can influence pregnancy and cause mild to severe consequences for the fetal and neonatal. During early T. gondii infection, neutrophils as the most abundant white blood cells provide a front line of defense mechanism against infection. The activated dendritic cells are then responsible for initiating an inflammatory response via T-helper 1 (Th1) cells. As part of its robust immune response, the infected host cells produce interferon (IFN-γ). IFN-γ inhibits T. gondii replication and promotes its transformation from an active form to tissue cysts. Although anti- T. gondii antibodies play an important role in infection control, T-helper 2 (Th2) immune response, can facilitate the growth and proliferation of T. gondii in the host cell. In pregnant women infected with T. gondii, the expression of cytokines may vary and in response diverse outcomes are expected. Cytokine profiles serve as valuable indicators for estimating the patho-immunological effects of T. gondii infection. This demonstrates the intricate relationship between pro-inflammatory and anti-inflammatory cytokines, as well as their influence on the various pregnancy outcomes in T. gondii infection.
Collapse
Affiliation(s)
- Reyhaneh Moghaddami
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Aghajanpour S, Mehraein F, Amjadi F, Zandieh Z, Ghaffari F, Aflatoonian K, Hosseini E, Bakhtiyari M, Aflatoonian R. Endometrial scratching in unexplained repeated implantation failure causes two competing forces, angiogenesis and anti-angiogenesis: An RCT study. Int J Reprod Biomed 2024; 22:253-268. [PMID: 39035633 PMCID: PMC11255460 DOI: 10.18502/ijrm.v22i4.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 07/23/2024] Open
Abstract
Background A significant association between endometrial vascularity and pregnancy has been shown in previous research, while poor vascularization was attributed to repeated implantation failure (RIF). One possible approach to enhance angiogenesis for successful implantation is endometrial scratching (ES). Objective The purpose was to investigate endometrial responses to scratching by profiling angiogenesis-related gene expression in unexplained RIF participants. Materials and Methods In this randomized controlled trial study, 20 infertile women with unexplained RIF were assigned to 2 groups by the balanced block randomization method (n = 10/each group): the intervention group (group A) (who received ES in the follicular phase) and the control group (group B). Endometrial biopsy was performed in the secretory phase. Gene expression profiling was performed using a polymerase chain reaction-array kit for human-angiogenic growth factors. The implantation and clinical pregnancy rates were also assessed. Results Among the angiogenesis-promoting genes, FGF1, FGF13, FGF2, TGFA, ANG, ANGPT1, and VEGFA were significantly upregulated (p < 0.05). IL12A (an angiogenesis-inhibiting cytokine) was significantly upregulated (p < 0.01). In contrast, 15 genes with angiogenesis-related functions, including CXCL11, CXCL13, CXCL3, CXCL5, CXCL6, EREG, FIGF, FST, IL10, LEP, PPBP, PROK1, RHOB, TNF, and TYMP, were downregulated after ES. No significant differences were observed between the intervention (group A) and control (group B) groups in terms of implantation (43.75% vs. 28.57%) or clinical pregnancy rates (75% vs. 57.1%). Conclusion ES induced significant alterations in the expression of angiogenesis-related genes, with notable up/downregulation of key angiogenic/antiangiogenic factors. These findings enhance our understanding of the molecular responses triggered by ES, underscoring the potential influence of ES on the complex processes of angiogenesis crucial for implantation.
Collapse
Affiliation(s)
- Samaneh Aghajanpour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehraein
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Firouzeh Ghaffari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Elham Hosseini
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Bakhtiyari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Luque EM, Díaz-Luján CM, Paira DA, de Loredo N, Torres PJ, Cantarelli VI, Fretes R, Motrich RD, Martini AC. Ghrelin misbalance affects mice embryo implantation and pregnancy success by uterine immune dysregulation and nitrosative stress. Front Endocrinol (Lausanne) 2023; 14:1288779. [PMID: 38107518 PMCID: PMC10722256 DOI: 10.3389/fendo.2023.1288779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction In a previous study we found that ghrelin (Ghrl) misbalance during the peri-implantation period significantly impaired fetus development. In this study we aimed to evaluate the putative mechanisms underlying these effects, including embryo implantation success, uterine nitric oxide synthase (NOS) activity, nitric oxide synthesis and the inflammatory/immune uterine profile. Methods Ghrelin misbalance was induced by injecting 4nmol/animal/day of Ghrl (hyperghrelinemia) or 6nmol/animal/day of a Ghrl antagonist (Ant: (D-Lys3)GHRP-6) from day 3 to 8 of pregnancy. Control animals (C) were injected with de vehicle. Females were euthanized at pregnancy day 8 and their uteri excised in order to evaluate: the percentage of reabsorbed embryos (microscopically), eNOS, iNOS and nytrotirosine expression (by immunohistochemistry), nitrite synthesis (by Griess technique), VEGF, IL-10, IL-17, IL-6, MMP9 and GM-CSF expression (by qPCR) and leukocyte infiltration by flow cytometry (evaluating T cells, NK cells, granulocytes, dendritic cells and macrophages). Results Ant-treatment significantly increased the percentage of reabsorbed embryos and the uterine expression of eNOS, iNOS and nytrotirosine. (D-Lys3)GHRP-6-treatment increased also the expression of the inflammatory cytokines IL-6, IL-17 and MMP9, and decreased that of IL-10 (anti-inflammatory). Moreover, Ant-treatment increased also the NK cells population and that of CD11b+ dendritic cells; and decreased T cells percentages. Similarly, hyperghrelinemia showed a significant increase vs. C on eNOS, iNOS and nytrotirosineuterine expression and a decrease in T cells percentages. Conclusion Ghrl misbalance during the peri-implantation period induces pro-inflammatory changes and nitrosative stress in the gravid uterus, impairing significantly embryo implantation and/or development.
Collapse
Affiliation(s)
- Eugenia Mercedes Luque
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Cintia María Díaz-Luján
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela Andrea Paira
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Nicolás de Loredo
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro Javier Torres
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Verónica Inés Cantarelli
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ricardo Fretes
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Biología Celular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rubén Darío Motrich
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Ana Carolina Martini
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)/Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
4
|
Li W, Liu M, Zhou M, Zhou X, Zhang D, Duan J, Zhang A, Xu B. Downregulation of SEPTIN11 inhibits endometrial epithelial cell adhesive function in patients with elevated peripheral blood natural killer cell counts. Reprod Biomed Online 2023; 47:103203. [PMID: 37349244 DOI: 10.1016/j.rbmo.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
RESEARCH QUESTION What is the underlying mechanism of IVF and embryo transfer (IVF-ET) failure in patients with elevated peripheral blood natural killer cell (pNK) counts? DESIGN Patients undergoing IVF-ET cycles for tubal obstruction or pelvic adhesion (n = 486) were assigned to three groups: high (CD56+CD16+pNK >30% [n = 49]); medium (15< CD56+CD16+pNK ≤30% [n = 211]); and normal pNK groups (5≤ CD56+CD16+pNK ≤15% [n = 226]). Their general condition, previous pregnancy history and IVF outcomes were compared. Uterine fluid and endometrial tissue from patients in the high and normal pNK groups were collected during the mid-secretory phase and studied to elucidate the molecular mechanism underlying impaired endometrial receptivity. RESULTS The highest incidence of IVF-ET cycles (P < 0.0001) and biochemical pregnancy losses (P < 0.0001), and lowest implantation and clinical pregnancy rates (both P < 0.0001), were observed in patients with pNK over 30%. No significant difference was found in the number of previous miscarriages and rate of spontaneous miscarriage in IVF outcomes. Lower Septin11 (SEPT11) expression in the uterine fluid and endometrial epithelial cells (EEC), and higher endometrial IFN-γ, was observed in patients with high pNK. Ishikawa cell and human endometrial epithelial cell (HEEC) adhesion was inhibited after SEPT11 knock-down. Elevated IFN-γ decreased the SEPT11 protein levels in Ishikawa cells and HEECs. CONCLUSIONS CD56+CD16+pNK above 30% may be a threshold for adverse IVF-ET outcomes. Low SEPT11 expression in EEC inhibits cell adhesion, which may cause impaired endometrial receptivity in patients with elevated pNK. The level of SEPT11 in mid-secretory uterine fluid could serve as a non-invasive marker to assess endometrial receptivity in these patients.
Collapse
Affiliation(s)
- Wenzhu Li
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingjuan Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Bufang Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
5
|
Arrighi F, Granese A, Chimenti P, Guglielmi P. Novel therapeutic opportunities for Toxoplasma gondii, Trichomonas vaginalis and Giardia intestinalis infections. Expert Opin Ther Pat 2023; 33:211-245. [PMID: 37099697 DOI: 10.1080/13543776.2023.2206017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
INTRODUCTION Toxoplasma gondii, Trichomonas vaginalis and Giardia intestinalis are the causative agents of Toxoplasmosis, Trichomoniasis and Giardiasis, three important infections threatening human health and affecting millions of people worldwide. Although drugs and treatment are available to fight these protozoan parasites, side-effects and increasing drug resistance, require continuous efforts for the development of novel effective drugs. AREAS COVERED The patents search was carried out in September/October 2022 with four official scientific databases (Espacenet, Scifinder, Reaxys, Google Patents). Treatments for Toxoplasmosis, Trichomoniasis and Giardiasis (2015-2022) have been grouped according to their chemotypes. In particular, novel chemical entities have been reported and investigated for their structure-activity relationship, when accessible. On the other hand, drug repurposing, extensively exploited to obtain novel anti-protozoal treatment, has been in-depth described. Finally, natural metabolites and extracts have also been reported. EXPERT OPINION T. gondii, T. vaginalis and G. intestinalis are protozoan infections usually controlled by immune system in immunocompetent patients; however, they could represent a threatening health for immunocompromised people. The needs of novel effective drugs, endowed with new mechanisms of actions arises from the increasing drug resistance affecting antibiotic as well as antiprotozoal therapies. In this review different therapeutic approaches to treat protozoan infections have been reported.
Collapse
Affiliation(s)
- Francesca Arrighi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Arianna Granese
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol 2023; 19:257-270. [PMID: 36635411 PMCID: PMC10038936 DOI: 10.1038/s41581-022-00670-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 01/14/2023]
Abstract
Preeclampsia is a hypertensive disorder of major concern in pregnancy than can lead to intrauterine growth restriction, placental abruption and stillbirth. The pathophysiology of preeclampsia is multifactorial, including not only kidney dysfunction but also endothelial dysfunction, as the maternal endothelium becomes exposed to placental factors that are released into the circulation and increase systemic levels of vasoconstrictors, oxidative stress, anti-angiogenic factors and inflammatory mediators. Importantly, inflammation can lead to insufficient placental perfusion and low birthweight in offspring. Various innate and adaptive immune cells and mediators have been implicated in the development of preeclampsia, in which oxidative stress is associated with activation of the maternal inflammatory response. Immune cells such as regulatory T cells, macrophages, natural killer cells, and neutrophils are known to have major causative roles in the pathology of preeclampsia, but the contributions of additional immune cells such as B cells, inflammatory cytokines and anti-angiotensin II type 1 receptor autoantibodies are also now recognized. Immunological interventions, therefore, have therapeutic potential in this disease. Here, we provide an overview of the immune responses that are involved in the pathogenesis of preeclampsia, including the role of innate and adaptive immune cells and mediators.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Owen Herrock
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nathan Campbell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Denise Cornelius
- Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sarah Fitzgerald
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lorena M Amaral
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Babbette LaMarca
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
7
|
Herki̇loglu D, Gokce S, Cevi̇k O. Relationship of interferon regulator factor 5 and interferon‑γ with missed abortion. Exp Ther Med 2022; 23:356. [PMID: 35493426 PMCID: PMC9019773 DOI: 10.3892/etm.2022.11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of the present study was to reveal the association of missed abortion, a process integrated with the immune system, with interferon regulatory factor 5 (IRF5) and interferon-γ (IFN-γ), and to demonstrate the function of these molecules by examining their levels in decidual tissue. This prospective cohort study included 13 patients with no additional systemic disease, between 6 and 10 weeks of gestation with negative fetal heartbeat, and 11 patients between 6 and 10 weeks of gestation with positive heartbeat who presented for voluntary termination of pregnancy. In the fresh decidual tissue materials recovered after therapeutic curettage, IFN-γ and IRF5 protein levels were determined by ELISA method and IFN-γ and IRF5 gene expression levels by qPCR method. The mean IFN-γ (86.5 vs. 27.3 pg/mg protein; P<0.001) and IRF5 (2.0 vs. 1.5 ng/mg protein; P<0.001) levels were significantly higher in pregnant women who had missed abortion compared to the voluntary abortion group. The increases in the mean IFN-γ/GAPDH (3.5 vs. 1.5-fold increase; P<0.001) and IRF5/GAPDH (3.9 vs. 1.4-fold increase; P<0.001) gene expression levels were significantly higher in the tissues of pregnant women with missed abortion than in the voluntary abortion group. A threshold value of 45.2 pg/mg protein for IFN-γ had a sensitivity of 100% and specificity of 100% in determination of missed abortion. The findings of present study revealed, to the best of our knowledge for the first time in the literature, that IFN-γ and IRF5 may be associated with missed abortion, and that IFN-γ and IRF5 protein levels and gene expression levels were significantly increased in the case of missed abortion. According to our findings, IFN-γ and IRF5 play an important role in placental invasion and pregnancy and can be used as markers for endometrial implantation.
Collapse
Affiliation(s)
- Di̇lsad Herki̇loglu
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyl University, İstanbul 34245, Turkey
| | - Sefi̇k Gokce
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyl University, İstanbul 34245, Turkey
| | - Ozge Cevi̇k
- Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
8
|
Yeganeh Kazemi N, Fedyshyn B, Sutor S, Fedyshyn Y, Markovic S, Enninga EAL. Maternal Monocytes Respond to Cell-Free Fetal DNA and Initiate Key Processes of Human Parturition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2433-2444. [PMID: 34663619 PMCID: PMC8578468 DOI: 10.4049/jimmunol.2100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022]
Abstract
Throughout gestation, the maternal immune system is tightly modulated to allow growth of a semiallogeneic fetus. During the third trimester, the maternal immune system shifts to a proinflammatory phenotype in preparation for labor. What induces this shift remains unclear. Cell-free fetal DNA (cffDNA) is shed by the placenta and enters maternal circulation throughout pregnancy. Levels of cffDNA are increased as gestation progresses and peak before labor, coinciding with a shift to proinflammatory maternal immunity. Furthermore, cffDNA is abnormally elevated in plasma from women with complications of pregnancy, including preterm labor. Given the changes in maternal immunity at the end of pregnancy and the role of sterile inflammation in the pathophysiology of spontaneous preterm birth, we hypothesized that cffDNA can act as a damage-associated molecular pattern inducing an inflammatory cytokine response that promotes hallmarks of parturition. To test this hypothesis, we stimulated human maternal leukocytes with cffDNA from primary term cytotrophoblasts or maternal plasma and observed significant IL-1β and CXCL10 secretion, which coincides with phosphorylation of IFN regulatory factor 3 and caspase-1 cleavage. We then show that human maternal monocytes are crucial for the immune response to cffDNA and can activate bystander T cells to secrete proinflammatory IFN-γ and granzyme B. Lastly, we find that the monocyte response to cffDNA leads to vascular endothelium activation, induction of myometrial contractility, and PGE2 release in vitro. Our results suggest that the immune response to cffDNA can promote key features of the parturition cascade, which has physiologic consequences relevant to the timing of labor.
Collapse
Affiliation(s)
| | - Bohdana Fedyshyn
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| | - Shari Sutor
- Department of Immunology, Mayo Clinic, Rochester, MN
| | - Yaroslav Fedyshyn
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN; and
| | - Svetomir Markovic
- Department of Immunology, Mayo Clinic, Rochester, MN;,Department of Oncology, Mayo Clinic, Rochester, MN
| | - Elizabeth Ann L. Enninga
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN;,Department of Immunology, Mayo Clinic, Rochester, MN
| |
Collapse
|
9
|
Travis OK, Tardo GA, Giachelli C, Siddiq S, Nguyen HT, Crosby MT, Johnson TD, Brown AK, Booz GW, Smith AN, Williams JM, Cornelius DC. Interferon γ neutralization reduces blood pressure, uterine artery resistance index, and placental oxidative stress in placental ischemic rats. Am J Physiol Regul Integr Comp Physiol 2021; 321:R112-R124. [PMID: 34075808 PMCID: PMC8409917 DOI: 10.1152/ajpregu.00349.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, intrauterine growth restriction, and increased cytolytic natural killer cells (cNKs), which secrete interferon γ (IFNγ). However, the precise role of IFNγ in contributing to PE pathophysiology remains unclear. Using the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia, we tested the hypothesis that neutralization of IFNγ in RUPPs will decrease placental reactive oxygen species (ROS) and improve vascular function resulting in decreased MAP and improved fetal growth. On gestation day (GD) 14, the RUPP procedure was performed and on GDs 15 and 18, a subset of normal pregnant rats (NP) and RUPP rats were injected with 10 μg/kg of an anti-rat IFNγ monoclonal antibody. On GD 18, uterine artery resistance index (UARI) was measured via Doppler ultrasound and on GD 19, mean arterial pressure (MAP) was measured, animals were euthanized, and blood and tissues were collected for analysis. Increased MAP was observed in RUPP rats compared with NP and was reduced in RUPP + anti-IFNγ. Placental ROS was also increased in RUPP rats compared with NP rats and was normalized in RUPP + anti-IFNγ. Fetal and placental weights were reduced in RUPP rats, but were not improved following anti-IFNγ treatment. However, UARI was elevated in RUPP compared with NP rats and was reduced in RUPP + anti-IFNγ. In conclusion, we observed that IFNγ neutralization reduced MAP, UARI, and placental ROS in RUPP recipients. These data suggest that IFNγ is a potential mechanism by which cNKs contribute to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes in PE.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Geilda A Tardo
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Chelsea Giachelli
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shani Siddiq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Henry T Nguyen
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Madison T Crosby
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tyler D Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea K Brown
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alex N Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan Michael Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Travis OK, Baik C, Tardo GA, Amaral L, Jackson C, Greer M, Giachelli C, Ibrahim T, Herrock OT, Williams JM, Cornelius DC. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats. Am J Reprod Immunol 2021; 85:e13386. [PMID: 33315281 PMCID: PMC8131208 DOI: 10.1111/aji.13386] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The Reduced Uterine Perfusion Pressure (RUPP) rat model of placental ischemia recapitulates many characteristics of preeclampsia including maternal hypertension, intrauterine growth restriction (IUGR), and increased cytolytic natural killer cells (cNKs). While we have previously shown a 5-fold higher cytotoxicity of RUPP NKs versus normal pregnant NKs, their role in RUPP pathophysiology remains unclear. In this study, we tested the hypotheses that (1) adoptive transfer of RUPP-stimulated NKs will induce maternal hypertension and IUGR in normal pregnant control (Sham) rats and (2) adoptive transfer of Sham NKs will attenuate maternal hypertension and IUGR in RUPP rats. METHOD OF STUDY On gestation day (GD)14, vehicle or 5 × 106 RUPP NKs were infused i.v. into a subset of Sham rats (Sham+RUPP NK), and vehicle or 5 × 106 Sham NKs were infused i.v. into a subset of RUPP rats (RUPP+Sham NK; n = 12/group). On GD18, Uterine Artery Resistance Index (UARI) was measured. On GD19, mean arterial pressure (MAP) was measured, animals were sacrificed, and blood and tissues were collected for analysis. RESULTS Adoptive transfer of RUPP NKs into Sham rats resulted in elevated NK activation, UARI, placental oxidative stress, and preproendothelin expression as well as reduced circulating nitrate/nitrite. This led to maternal hypertension and IUGR. RUPP recipients of Sham NKs demonstrated normalized NK activation, sFlt-1, circulating and placental VEGF, and UARI, which led to improved maternal blood pressure and normal fetal growth. CONCLUSION These data suggest a direct role for cNKs in causing preeclampsia pathophysiology and a role for normal NKs to improve maternal outcomes and IUGR during late gestation.
Collapse
Affiliation(s)
- Olivia K Travis
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Cedar Baik
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Geilda A Tardo
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Lorena Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Carmilya Jackson
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Mallory Greer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Chelsea Giachelli
- Department of Emergency Medicine University of Mississippi Medical Center
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Owen T. Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center
- Department of Emergency Medicine University of Mississippi Medical Center
| |
Collapse
|
11
|
Santi D, Spaggiari G, Greco C, Lazzaretti C, Paradiso E, Casarini L, Potì F, Brigante G, Simoni M. The "Hitchhiker's Guide to the Galaxy" of Endothelial Dysfunction Markers in Human Fertility. Int J Mol Sci 2021; 22:2584. [PMID: 33806677 PMCID: PMC7961823 DOI: 10.3390/ijms22052584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction is an early event in the pathogenesis of atherosclerosis and represents the first step in the pathogenesis of cardiovascular diseases. The evaluation of endothelial health is fundamental in clinical practice and several direct and indirect markers have been suggested so far to identify any alterations in endothelial homeostasis. Alongside the known endothelial role on vascular health, several pieces of evidence have demonstrated that proper endothelial functioning plays a key role in human fertility and reproduction. Therefore, this state-of-the-art review updates the endothelial health markers discriminating between those available for clinical practice or for research purposes and their application in human fertility. Moreover, new molecules potentially helpful to clarify the link between endothelial and reproductive health are evaluated herein.
Collapse
Affiliation(s)
- Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Carla Greco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Clara Lazzaretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Elia Paradiso
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Livio Casarini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, 43121 Parma, Italy;
| | - Giulia Brigante
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
| | - Manuela Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 42121 Modena, Italy; (C.G.); (C.L.); (E.P.); (L.C.); (G.B.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy;
- Center for Genomic Research, University of Modena and Reggio Emilia, 42121 Modena, Italy
| |
Collapse
|
12
|
Nikolaeva M, Arefieva A, Babayan A, Chagovets V, Kitsilovskaya N, Starodubtseva N, Frankevich V, Kalinina E, Krechetova L, Sukhikh G. Immunoendocrine Markers of Stress in Seminal Plasma at IVF/ICSI Failure: a Preliminary Study. Reprod Sci 2020; 28:144-158. [PMID: 32638280 DOI: 10.1007/s43032-020-00253-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
We have previously shown that high level of seminal interleukin (IL)-18 is positively associated with a greater risk of pregnancy failure in women exposed to their partners' seminal plasma (SP) during the in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Since IL-18 and IL-1β considered to be the key immune markers of stress, here we ask whether their increase in SP may be due to the stress experienced by men engaged in the IVF programs. Therefore, we correlated seminal IL-18 with IL-1β and both cytokines with the seminal steroids, whose increase indicates the activation of neuroendocrine stress response systems. Retrospective analysis of stored seminal samples was performed. Based on previously identified cutoff level for content of IL-18 per ejaculate, samples with high IL-18 content from IVF failure group (n = 9), as well as samples with low IL-18 content from IVF success group (n = 7), were included in the study. Seminal cytokines were evaluated using FlowCytomix™ technology. A set of 16 biologically active steroids in SP was quantified by liquid chromatography coupled with mass spectrometry. Concentrations and total amounts per ejaculate of cytokines and steroids were determined. A positive significant correlation was found between the levels of IL-18 and IL-1β. There was also a positive correlation between IL-18 or IL-1β and 17-α-hydroxypregnenolone, 17-α-hydroxyprogesterone, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione, testosterone, dihydrotestosterone, progesterone, corticosterone, 11-deoxycorticosterone, and the ratio of DHEAS/cortisol. We suggested that stress-related overexpression of immune and hormonal factors in SP may be the key link between male stress and embryo implantation failure.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Vitaliy Chagovets
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Kitsilovskaya
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Starodubtseva
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, Russia, 141701
| | - Vladimir Frankevich
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, Russia, 119991
| |
Collapse
|
13
|
Amini L, Namavari M, Khodakaram-Tafti A, Divar MR, Hosseini SMH. The evaluation of attenuated Neospora caninum by long-term passages on murine macrophage cell line in prevention of vertical transmission in mice. Vet Parasitol 2020; 283:109171. [PMID: 32623187 DOI: 10.1016/j.vetpar.2020.109171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
To date, there is no effective vaccine to prevent abortion or vertical transmission associated with neosporosis in cattle. In the present study, the efficacy of a live experimental vaccine of Neospora caninum attenuated (NCa) by long-term serial passages on a murine macrophage cell line was evaluated in the prevention of vertical transmission and abortion in the mouse model. Forty non-pregnant mice were randomly divided into four equal groups including non-immunized/challenged (injected with PBS); positive control (inoculated with un-attenuated NC-1 tachyzoites); immunized/challenged (inoculated with NCa attenuated strain) and immunized/non-challenged or vaccinated (inoculated with NCa) groups. Following pregnancy synchronization, both the immunized and control mice were challenged with virulent live NC-1 tachyzoites (2.5 × 106) in the mid-pregnancy stage. The number of abortions and post-natal pup mortalities was recorded. Serological, molecular, and histopathologic examinations were employed to evaluate the efficacy of the vaccine and the vertical transmission rates. Results indicated that the live attenuated N. caninum strain (NCa) could significantly reduce the risk of abnormal parturitions and fetal mortality in the vaccinated group (20 %) compared to the non-immunized/challenged group (80 %). Also, the NCa strain reduced the lesion score in the brain of the offspring (0.3 vs 1.9) compared to the non-immunized/challenged group (P < 0.05). The molecular assay showed a decrease in the parasite DNA detection rates from 83 % and 77 % in the non-immunized/challenged group to 27 % and 0 % in the vaccine group in the brain and liver tissues, respectively. While in the immunized/non-challenged group no parasite DNA was detected in the brain tissue samples of the pups. Serological analyses showed that NCa strain was able to stimulate the humoral immunity and create effective protection against neosporosis with a moderate systemic IFN-γ response. In conclusion, the NCa strain could significantly (P < 0.05) reduce the risk of vertical transmission and proved to be a safe vaccine while conferring significant levels of protection in the laboratory mice.
Collapse
Affiliation(s)
- Laleh Amini
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Namavari
- Shiraz Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | | | - Mohammad Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Hossein Hosseini
- Shiraz Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| |
Collapse
|
14
|
Jiménez-Pelayo L, García-Sánchez M, Collantes-Fernández E, Regidor-Cerrillo J, Horcajo P, Gutiérrez-Expósito D, Espinosa J, Benavides J, Osoro K, Pfarrer C, Ortega-Mora LM. Crosstalk between Neospora caninum and the bovine host at the maternal-foetal interface determines the outcome of infection. Vet Res 2020; 51:83. [PMID: 32552750 PMCID: PMC7302351 DOI: 10.1186/s13567-020-00803-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Neospora caninum is an apicomplexan cyst-forming parasite that is considered one of the main causes of abortion. The pathogenic mechanisms associated with parasite virulence at the maternal-foetal interface that are responsible for the outcome of infection are largely unknown. Here, utilizing placentomes from cattle experimentally infected with high-virulence (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates, we studied key elements of the innate and adaptive immune responses, as well as components of the extracellular matrix (ECM), at 10 and 20 days post-infection (dpi). The low-virulence isolate elicited a robust immune response characterized by upregulation of genes involved in pathogen recognition, chemokines and pro-inflammatory cytokines, crucial for its adequate control. In addition, Nc-Spain1H triggered the expression of anti-inflammatory cytokines and other mechanisms implicated in the maintenance of ECM integrity to ensure foetal survival. In contrast, local immune responses were initially (10 dpi) impaired by Nc-Spain7, allowing parasite multiplication. Subsequently (20 dpi), a predominantly pro-inflammatory Th1-based response and an increase in leucocyte infiltration were observed. Moreover, Nc-Spain7-infected placentomes from animals carrying non-viable foetuses exhibited higher expression of the IL-8, TNF-α, iNOS and SERP-1 genes and lower expression of the metalloproteases and their inhibitors than Nc-Spain7-infected placentomes from animals carrying viable foetuses. In addition, profound placental damage characterized by an alteration in the ECM organization in necrotic foci, which could contribute to foetal death, was found. Two different host-parasite interaction patterns were observed at the bovine placenta as representative examples of different evolutionary strategies used by this parasite for transmission to offspring.
Collapse
Affiliation(s)
- Laura Jiménez-Pelayo
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Marta García-Sánchez
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Esther Collantes-Fernández
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Regidor-Cerrillo
- Faculty of Veterinary Sciences, SALUVET-innova, Complutense University of Madrid, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
| | - Pilar Horcajo
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | - José Espinosa
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 León, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 León, Spain
| | - Koldo Osoro
- Regional Service for Research and Agri-Food Development (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Luis Miguel Ortega-Mora
- Animal Health Department, Faculty of Veterinary Sciences, SALUVET, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
15
|
Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M, Amit I, Schwartz M. Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol Psychiatry 2020; 25:1050-1067. [PMID: 31772304 PMCID: PMC7192855 DOI: 10.1038/s41380-019-0604-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Viral infection during pregnancy is often associated with neuropsychiatric conditions. In mice, exposure of pregnant dams to the viral mimetic poly(I:C), serves as a model that simulates such pathology in the offspring, through a process known as Maternal Immune Activation (MIA). To investigate the mechanism of such effect, we hypothesized that maternal upregulation of Type-I interferon (IFN-I), as part of the dam's antiviral response, might contribute to the damage imposed on the offspring. Using mRNA sequencing and flow cytometry analyses we found that poly(I:C) treatment during pregnancy caused reduced expression of genes related to proliferation and cell cycle in the offspring's microglia relative to controls. This was found to be associated with an IFN-I signature in the embryonic yolk sac, the origin of microglia in development. Neutralizing IFN-I signaling in dams attenuated the effect of MIA on the newborn's microglia, while systemic maternal administration of IFNβ was sufficient to mimic the effect of poly(I:C), and led to increased vulnerability of offspring's microglia to subsequent stress. Furthermore, maternal elevation of IFNβ resulted in behavioral manifestations reminiscent of neuropsychiatric disorders. In addition, by adopting a "two-hit" experimental paradigm, we show a higher sensitivity of the offspring to postnatal stress subsequent to the maternal IFNβ elevation, demonstrated by behavioral irregularities. Our results suggest that maternal upregulation of IFN-I, in response to MIA, interferes with the offspring's programmed microglial developmental cascade, increases their susceptibility to postnatal stress, and leads to behavioral abnormalities.
Collapse
Affiliation(s)
- Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Matcovitch-Natan
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Kertser
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Spinrad
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Liu N, Chen J, He Y, Jia H, Jiang D, Li S, Yang Y, Dai Z, Wu Z, Wu G. Effects of maternal L-proline supplementation on inflammatory cytokines at the placenta and fetus interface of mice. Amino Acids 2020; 52:587-596. [PMID: 32170468 DOI: 10.1007/s00726-020-02837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Dietary L-proline (proline) supplementation during gestation enhances fetal survival and placental development in mice. The objective of the present study was to test the hypothesis that this beneficial effect of proline was associated with alterations in inflammatory response at the placenta and fetus interface. Populations of immune cells present in peripheral blood mononuclear cells (PBMC) were determined by flow cytometry analysis. The concentrations of immunoglobulins in plasma, and the concentrations of cytokines in plasma, uterus, placenta, and amniotic fluid were measured using a bead-based immunoassay. The data showed that proline supplementation led to higher (P < 0.05) populations of B lymphocytes (CD3-CD19+), natural killer (NK) cells (CD3-NK1.1+), and dendritic cells (DCs, CD11c+MHCII+) in peripheral blood, as compared with the controls. Conversely, mice fed a proline-supplemented diet had a lower population of neutrophils (CD11b+F4/80-). Further study showed that proline supplementation decreased (P < 0.05) the concentrations of (1) interleukin (IL)-23, IL-1α, and IL-6 in plasma; (2) IL-6 in the uterus; and (3) tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein (MCP)-1, and IL-17 in the placenta; and (4) interferon (IFN)-γ in amniotic fluid, compared with controls. Conversely, proline supplementation resulted in higher (P < 0.05) concentrations of (1) IL-10, IL-17 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in plasma; (2) IL-10 and IL-1α in the uterus; and (3) IL-1α, IL-1β, IL-10, IL-27, and IFN-β in amniotic fluid, compared with controls. Moreover, concentrations of immunoglobulin (Ig) G2b and IgM were enhanced (P < 0.05) by proline administration. Taken together, our results reveal a regulatory effect of proline in the immunological response at the maternal-fetal interface, which is critical for embryonic development and fetal survival.
Collapse
Affiliation(s)
- Ning Liu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingqing Chen
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yu He
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Da Jiang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Shuai Li
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Guoyao Wu
- Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Vázquez P, Osoro K, Fernández M, Román-Trufero A, Regidor-Cerrillo J, Jiménez-Pelayo L, García-Sánchez M, Rojo-Montejo S, Benavides J, Horcajo P, Ortega-Mora LM. Effects of challenge dose and inoculation route of the virulent Neospora caninum Nc-Spain7 isolate in pregnant cattle at mid-gestation. Vet Res 2019; 50:68. [PMID: 31547877 PMCID: PMC6755697 DOI: 10.1186/s13567-019-0686-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
Parameters such as pathogen dose and inoculation route are paramount in animal models when studying disease pathogenesis. Here, clinical findings, including foetal mortality, parasite transmission rates and lesion severity, and immune responses were evaluated in Asturiana pregnant heifers at day 110 of gestation challenged with a virulent (Nc-Spain7) Neospora caninum isolate. Four different doses of parasite tachyzoites were inoculated intravenously (IV1, 107 parasites, n = 6; IV2, 105, n = 6; IV3, 103, n = 6; and IV4, 102, n = 5), and the subcutaneous (SC) inoculation route was also assessed for the dose of 105 tachyzoites (SC, n = 6). In addition, a control group (n = 4 pregnant heifers) was evaluated. Foetal death was observed in all infected groups from 25 to 62 days post-infection, varying with the dose (IV1:4/6, IV2:3/6; IV4:2/5, IV3:1/6), and was three times less frequently associated with the SC route than IV inoculation (1/6 vs. 3/6). A dose-dependent effect for parasite loads in placental and foetal brain tissues was also detected. After SC challenge, a reduced number of tachyzoites were able to reach foetal brain tissues, and no lesions were observed. In calves, specific IgG responses in precolostral sera were mainly associated with high-dose groups (IV1 [100.0%] and IV2 [66.7%]), and cerebral parasite DNA detection was scarce (3/18). In dams, IFN-γ production and the dynamics of anti-N. caninum IgG antibodies varied with the dose, and the cell-mediated immune response was also found to be route-dependent. Our results confirm the influence of parasite dose and inoculation route on the outcome and dynamics of bovine neosporosis at mid-gestation.
Collapse
Affiliation(s)
- Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Koldo Osoro
- Regional Service for Research and Agri-Food Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Miguel Fernández
- Mountain Livestock Institute, Animal Health Department, University of León CSIC-ULE, 24346, Grulleros, León, Spain
| | - Alicia Román-Trufero
- Regional Service for Research and Agri-Food Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Javier Regidor-Cerrillo
- SALUVET-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Laura Jiménez-Pelayo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Marta García-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Silvia Rojo-Montejo
- Regional Service for Research and Agri-Food Development (SERIDA), 33300, Villaviciosa, Asturias, Spain
| | - Julio Benavides
- Mountain Livestock Institute, Animal Health Department, University of León CSIC-ULE, 24346, Grulleros, León, Spain
| | - Pilar Horcajo
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Sharkey DJ, Glynn DJ, Schjenken JE, Tremellen KP, Robertson SA. Interferon-gamma inhibits seminal plasma induction of colony-stimulating factor 2 in mouse and human reproductive tract epithelial cells. Biol Reprod 2019; 99:514-526. [PMID: 29596569 DOI: 10.1093/biolre/ioy071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Seminal fluid interacts with the female reproductive tract to initiate a permissive immune response that facilitates embryo implantation and pregnancy success. The immune-regulatory cytokine interferon-γ (IFNG), which can be elevated in seminal plasma, is associated with reduced fertility. Here, we investigated how IFNG influences the female immune response to seminal fluid. In human Ect1 cervical epithelial cells, IFNG added at physiologically relevant concentrations substantially impaired seminal plasma-induced synthesis of key cytokines colony-stimulating factor 2 (CSF2) and interleukin-6 (IL6). Seminal fluid-induced CSF2 synthesis was also suppressed in the uterus of mice in vivo, when IFNG was delivered transcervically 12 h after mating. Transforming growth factor B1 (TGFB1) is the major seminal fluid signaling factor which elicits CSF2 induction, and IFNG exhibited potent dose-dependent suppression of CSF2 synthesis induced by TGFB1 in murine uterine epithelial cells in vitro. Similarly, IFNG suppressed TGFB1-mediated CSF2 induction in Ect1 cells and human primary cervical epithelial cells; however, IL6 regulation by IFNG was independent of TGFB1. Quantitative PCR confirmed that CSF2 regulation by IFNG in Ect1 cells occurs at the gene transcription level, secondary to IFNG suppression of TGFBR2 encoding TGFB receptor 2. Conversely, TGFB1 suppressed IFNG receptor 1 and 2 genes IFNGR1 and IFNGR2. These data identify IFNG as a potent inhibitor of the TGFB-mediated seminal fluid interaction with relevant reproductive tract epithelia in mice and human. These findings raise the prospect that IFNG in the male partner's seminal fluid impairs immune adaptation for pregnancy following coitus in women.
Collapse
Affiliation(s)
- David J Sharkey
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Danielle J Glynn
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelton P Tremellen
- Repromed Pty Ltd, Dulwich, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Lu H, Huang Y, Xin H, Hao C, Cui Y. The expression of cytokines IFN-γ, IL-4, IL-17A, and TGF-β1 in peripheral blood and follicular fluid of patients testing positive for anti-thyroid autoantibodies and its influence on in vitro fertilization and embryo transfer pregnancy outcomes. Gynecol Endocrinol 2018; 34:933-939. [PMID: 29996685 DOI: 10.1080/09513590.2018.1459546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The aim of this work was to study the expression of the cytokines IFN-γ, IL-4, IL-17 A, and TGF-β1 in peripheral blood and follicular fluid (FF) of patients positive for antithyroid autoantibodies (ATA+) with normal thyroid gland function and the influence of these autoantibodies on in vitro fertilization and embryo transfer (IVF-ET) pregnancy outcomes. Nineteen patients were in the ATA+ group, and 27 patients tested negative for anti-thyroid autoantibody (ATA-). Blood samples were drawn from the two groups of patients on the oocyte retrieval day and the 5th and 14th days of transplantation; in addition, FF was extracted on the oocyte retrieval day from both groups of patients and tested through enzyme-linked immunosorbent assay (ELISA) for IFN-γ, IL-4, IL-17 A, and TGF-β1. For the ATA+ group, the concentration of IFN-γ increased whereas the concentration of TGF-β1 decreased in peripheral blood on the oocyte retrieval day (p < .05); the concentration of IL-4 decreased in peripheral blood on the 5th and 14th days of transplantation for the ATA+ group (p < .05); further, the concentration of IL-17 A increased whereas that of TGF-β1 decreased in FF (p < .05). The ratio of IL-17 A/TGF-β1 in the ATA+ group significantly increased in FF and peripheral blood on the oocyte retrieval day and the 14th day of transplantation (p < .05). The ratio of IL-17 A/TGF-β1 in FF of the pregnant patients was significantly lower than in the non-pregnant patients (p < .05). The findings suggested that the ratio between pro-inflammatory and anti-inflammatory cytokines was adversely affected; therefore, adverse pregnancy outcomes of patients with ATA+ undergoing IVF-ET treatment may be attributed to immunological mechanisms.
Collapse
Affiliation(s)
- Hongyan Lu
- a Qingdao University, Qingdao, Shandong, China
- b Reproductive Medicine Center of Zibo Maternal and Child Health Hospital , Zibo , Shandong , China
| | - Yuhui Huang
- a Qingdao University, Qingdao, Shandong, China
- b Reproductive Medicine Center of Zibo Maternal and Child Health Hospital , Zibo , Shandong , China
| | - Huang Xin
- c Reproductive Medicine Center in Qingdao University Affiliated Yantai Yuhuangding Hospital , Yantai , Shandong , China
| | - Cuifang Hao
- c Reproductive Medicine Center in Qingdao University Affiliated Yantai Yuhuangding Hospital , Yantai , Shandong , China
| | - Yanguo Cui
- b Reproductive Medicine Center of Zibo Maternal and Child Health Hospital , Zibo , Shandong , China
| |
Collapse
|
20
|
Nikolaeva M, Babayan A, Stepanova E, Arefieva A, Dontsova T, Smolnikova V, Kalinina E, Krechetova L, Pavlovich S, Sukhikh G. The Link Between Seminal Cytokine Interleukin 18, Female Circulating Regulatory T Cells, and IVF/ICSI Success. Reprod Sci 2018; 26:1034-1044. [DOI: 10.1177/1933719118804404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Seminal plasma (SP) is thought to be a crucial factor which affects the expansion of regulatory T cells (Tregs) in female reproductive tract during embryo implantation. We propose that seminal transforming growth factor (TGF) β1 is responsible for local accumulation of circulating Tregs, which manifests as changes in Treg frequency in peripheral blood, whereas seminal interleukin (IL) 18 interferes with TGF-β1-dependent cellular reactions. The purpose of the present study is to determine whether the frequency of circulating Tregs is associated with the levels of seminal cytokines and pregnancy establishment in women exposed to partner’s SP during in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Twenty-nine women were exposed to SP via timed intercourse before the day of ovum pickup (day-OPU) and also subjected to intravaginal SP application just after OPU. Measurements of seminal TGF-β1 and IL-18 were made by FlowCytomix technology. The percentage of CD4+CD25+CD127low+/ – Tregs among total circulating CD4+ T cells was determined by flow cytometry and the difference between Treg values on the day of embryo transfer and day-OPU was calculated. The percentage of Tregs on the day-OPU, identified as a predictive factor of clinical pregnancy after IVF/ICSI, showed a positive correlation with IL-18 concentration and content of this cytokine per ejaculate ( P < .001 and P < .004, respectively) and negative correlation with the TGF-β1/IL-18 ratio ( P < .014).These findings indicate that the adverse effect of seminal IL-18 excess on implantation may be realized by the prevention of postcoital TGF-β1-related migration of circulating Tregs, which clearly manifests as elevated level of Treg frequency in peripheral blood.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Stepanova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Tatiana Dontsova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronika Smolnikova
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Stanislav Pavlovich
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
21
|
Kaminski VDL, Ellwanger JH, Matte MCC, Savaris RF, Vianna P, Chies JAB. IL-17 blood levels increase in healthy pregnancy but not in spontaneous abortion. Mol Biol Rep 2018; 45:1565-1568. [DOI: 10.1007/s11033-018-4268-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 01/27/2023]
|
22
|
The pathogenesis of microcephaly resulting from congenital infections: why is my baby’s head so small? Eur J Clin Microbiol Infect Dis 2017; 37:209-226. [DOI: 10.1007/s10096-017-3111-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023]
|
23
|
Monastra G, De Grazia S, Cilaker Micili S, Goker A, Unfer V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin Drug Deliv 2016; 13:1695-1708. [DOI: 10.1080/17425247.2016.1200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Monastra
- Department of Experimental Medicine, University la Sapienza, Rome, Italy
| | - Sara De Grazia
- Department of Research and Development, LO.LI. Pharma, Rome, Italy
| | | | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University, Manisa, Turkey
| | - Vittorio Unfer
- Department of Medical Sciences, UNIIPUS – Private Swiss University Institute, Chiasso, Switzerland
| |
Collapse
|
24
|
Nakagawa K, Kwak-Kim J, Ota K, Kuroda K, Hisano M, Sugiyama R, Yamaguchi K. Immunosuppression with Tacrolimus Improved Reproductive Outcome of Women with Repeated Implantation Failure and Elevated Peripheral Blood Th1/Th2 Cell Ratios. Am J Reprod Immunol 2014; 73:353-61. [DOI: 10.1111/aji.12338] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/03/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Koji Nakagawa
- Division of Reproductive Medicine; Sugiyama Clinic; Tokyo Japan
| | - Joanne Kwak-Kim
- Reproductive Medicine; Department of Obstetrics and Gynecology; Chicago Medical School at Rosalind Franklin University of Medicine and Science; Vernon Hills IL USA
| | - Kuniaki Ota
- Department of Obstetrics and Gynecology; Keio University; Tokyo Japan
| | - Keiji Kuroda
- Department of Obstetrics and Gynecology; Faculty of Medicine; Juntendo University; Tokyo Japan
| | - Michi Hisano
- Department of Maternal-Fetal Biology; National Center for Child Health and Development; Tokyo Japan
| | | | - Koushi Yamaguchi
- Department of Maternal-Fetal Biology; National Center for Child Health and Development; Tokyo Japan
| |
Collapse
|
25
|
Ruocco MG, Chaouat G, Florez L, Bensussan A, Klatzmann D. Regulatory T-cells in pregnancy: historical perspective, state of the art, and burning questions. Front Immunol 2014; 5:389. [PMID: 25191324 PMCID: PMC4139600 DOI: 10.3389/fimmu.2014.00389] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/30/2014] [Indexed: 01/04/2023] Open
Abstract
In this review, we first revisit the original concept of "suppressor T-cells" in pregnancy, put it in a historical perspective, and then highlight the main data that licensed its resurrection and revision into the concept of "regulatory T-cells" (Tregs) in pregnancy. We review the evidence for a major role of Tregs in murine and human pregnancy and discuss Treg interactions with dendritic and uterine natural killer cells, other players of maternal-fetal tolerance. Finally, we highlight what we consider as the most important questions in the field.
Collapse
Affiliation(s)
- Maria Grazia Ruocco
- Sorbonne Université, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | | | - Laura Florez
- Sorbonne Université, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
| | | | - David Klatzmann
- Sorbonne Université, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France
- AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| |
Collapse
|