1
|
Park J, Kim D, Lee M, Han S, Jun W, Jung HM, Koo YK, Na GH, Han SH, Han J, Kim OK. Enzyme-Treated Caviar Prevents UVB Irradiation-Induced Skin Photoaging. Mar Drugs 2022; 20:685. [PMID: 36355008 PMCID: PMC9696482 DOI: 10.3390/md20110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 03/08/2024] Open
Abstract
For this research article, we investigated the protective effects of enzyme-treated caviar powder extract (CV) in ultraviolet B (UVB)-irradiated hairless mice and keratinocytes by confirming moisturizing-related factors and elasticity-related factors. UVB irradiation induced wrinkle formation, dehydration, oxidative stress, and inflammation in the dorsal skin of mice; however, these were suppressed in the CV-supplemented groups in UVB-irradiated hairless mice. Furthermore, in UVB-irradiated keratinocytes, CV treatment increased the antioxidant enzyme activities and the levels of sphingomyelin and hyaluronic acid and decreased the production of pro-inflammatory cytokines and the expression of IkB-α and p65 phosphorylation. These findings indicate that CV can directly protect keratinocytes against UVB irradiation-induced oxidative stress and inflammation. Therefore, we suggest that CV can protect against UVB-induced skin photoaging. Therefore, we suggest that caviar is effective for skin health by preventing UVB-induced skin photoaging.
Collapse
Affiliation(s)
- Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Sangshin Han
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Korea
| | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| | | | | | | | | | - Jehee Han
- Almas Caviar, Hwaseong-si 18553, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
2
|
Wu Q, Song J, Gao Y, Zou Y, Guo J, Zhang X, Liu D, Guo D, Bi H. Epigallocatechin gallate enhances human lens epithelial cell survival after UVB irradiation via the mitochondrial signaling pathway. Mol Med Rep 2022; 25:87. [PMID: 35039875 PMCID: PMC8809122 DOI: 10.3892/mmr.2022.12603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
The aim of the present study was to explore the mechanism underlying the ultraviolet B (UVB) irradiation-induced apoptosis of human lens epithelial cells (HLECs), and to investigate the protective effect of epigallocatechin gallate (EGCG) against the UVB-induced apoptosis of HLECs. HLECs were exposed to different concentrations of EGCG plus UVB (30 mJ/cm2). Cell viability was determined using the MTT assay. Furthermore, mitochondrial membrane potential (Δψm) and apoptosis were assessed by flow cytometry with JC-1 and Annexin V/PI staining, respectively. Moreover, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as the levels of GSH, hydrogen peroxide (H2O2) and hydroxyl free radicals were determined using biochemical assay techniques. Reverse transcription-quantitative PCR and western blotting were used to detect the mRNA and protein expression levels of Bcl-2, Bax, cytochrome c, caspase-9 and caspase-3, respectively. The results revealed that UVB irradiation reduced the Δψm of HLECs and induced apoptosis. Notably, EGCG significantly attenuated the generation of H2O2 and hydroxyl free radicals caused by UVB irradiation in HLECs, and significantly increased CAT, SOD and GSH-Px activities, however, the GSH levels were not significantly increased. EGCG also reduced UVB-stimulated Bax, cytochrome c, caspase-9 and caspase-3 expression, and elevated Bcl-2 expression, suggesting that EGCG may possess free radical-scavenging properties, thus increasing cell viability. In conclusion, EGCG may be able to protect against UVB-induced HLECs apoptosis through the mitochondria-mediated apoptotic signaling pathway, indicating its potential application in clinical practice.
Collapse
Affiliation(s)
- Qiuxin Wu
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Jike Song
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Yan'e Gao
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Yingying Zou
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Junguo Guo
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Xiuyan Zhang
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Dongmei Liu
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| | - Dadong Guo
- College of Ophthalmology and Optometry, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Jinan, Shandong 250002, P.R. China
| | - Hongsheng Bi
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
3
|
Kim D, Lee KR, Kim NR, Park SJ, Lee M, Kim OK. Combination of Bifidobacterium longum and Galacto-Oligosaccharide Protects the Skin from Photoaging. J Med Food 2021; 24:606-616. [PMID: 34077675 DOI: 10.1089/jmf.2021.k.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Overexposure to ultraviolet B (UVB) irradiation induces photoaging that is characterized by the formation of wrinkles and loss of skin elasticity. To understand the mechanism of action of probiotics and prebiotics in skin protection against photoaging, we investigated the effects of dietary supplementation with the probiotic, Bifidobacterium longum, and prebiotic, galacto-oligosaccharide, on UVB-induced photoaging in hairless mice. We measured short chain fatty acid (SCFA) levels, antioxidant enzyme activity, and inflammatory signaling protein levels to elucidate the possible mechanisms underlying the effects of the dietary supplements B. longum and galacto-oligosaccharide. We observed that dietary supplementation with B. longum and galacto-oligosaccharide, individually and in combination, exerted protective effects against UVB-induced photoaging, showing anti-inflammatory and antioxidative effects. In particular, supplementation with the combination of B. longum and galacto-oligosaccharide showed stronger protective effects than supplementation with the probiotic or prebiotic alone. In addition, the serum levels of SCFAs and acetate were increased following dietary supplementation with B. longum and galacto-oligosaccharide, especially in combination. Therefore, we suggest that the combination of B. longum and galacto-oligosaccharide may potentially be used as a functional food to protect UVB-induced photoaging.
Collapse
Affiliation(s)
- Dakyung Kim
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Kyu Ri Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Korea
| | | | - Soo-Jeung Park
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Minhee Lee
- Research Institute of Clinical Nutrition, Kyung Hee University, Seoul, Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Korea
| |
Collapse
|
4
|
Shi X, Shang F, Zhang Y, Wang R, Jia Y, Li K. Persimmon oligomeric proanthocyanidins alleviate ultraviolet B-induced skin damage by regulating oxidative stress and inflammatory responses. Free Radic Res 2020; 54:765-776. [PMID: 33108915 DOI: 10.1080/10715762.2020.1843651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin damage can be induced by excessive ultraviolet B (UV-B) irradiation. This study aimed to investigate the potential protective activity of persimmon oligo-proanthocyanidins (P-OPC) against UV-B induced human keratinocyte cells (HaCaT cells) and skin damage and its underlying mechanisms in vitro and in vivo. P-OPC was shown to inhibit the production of intracellular reactive oxygen species (ROS) induced by UVB radiation in both HaCaT cells and mouse skin tissues by increasing the activity of the antioxidant enzyme system [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH)]. Furthermore, P-OPC was found to suppress cell apoptosis and the production of inflammatory cytokines, TNF-α, and IL-6. Overall, P-OPC could protect skin tissues from UV-B-induced damage by suppressing oxidant stress, acute inflammation, and cell apoptosis via regulating MAPK and NF-κB signalling pathways. These results indicate the potential of P-OPC as a photochemo-protective agent against UV-B induced skin damage.
Collapse
Affiliation(s)
- Xin Shi
- Institute of Food Science and Engineering, Hezhou University, Hezhou, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feifei Shang
- Institute of Food Science and Engineering, Hezhou University, Hezhou, China
| | - Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Ministry of Education, Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
5
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
6
|
Mintie CA, Singh CK, Ahmad N. Whole Fruit Phytochemicals Combating Skin Damage and Carcinogenesis. Transl Oncol 2020; 13:146-156. [PMID: 31865177 PMCID: PMC6926315 DOI: 10.1016/j.tranon.2019.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Skin is arguably the largest organ of the body and is continuously subjected to intrinsic, extrinsic, and environmental stresses. Therefore, skin developed elaborate mechanisms to maintain homeostasis, including antioxidant, antiinflammatory, and DNA damage repair capabilities. However, repeated and excessive stresses can overwhelm these systems, causing serious cutaneous damages, including skin carcinogenesis. Phytonutrients present in the diet possess a myriad of health-promoting effects by protecting skin from damaging free radicals as well as by other mechanisms. Although many chemoprotective phytonutrients have been shown to be efficacious individually, a combination of multiple agents could have synergistic response in curtailing or preventing cutaneous damages. Here, we discuss the benefits of natural amalgamation of phytonutrients in select fruits against skin damage including carcinogenesis. However, a majority of these studies have been done in preclinical models. Therefore, clinical studies are needed to determine the human relevance of the available preclinical data, especially in the human population who are at higher risk for skin cancers (e.g., organ transplant patients). In addition, detailed well-structured preclinical animal studies in the models of high-risk skin carcinogenesis could also be useful toward informing the design for human trials.
Collapse
Affiliation(s)
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Medical Center, Madison, WI, USA.
| |
Collapse
|
7
|
A Novel Thiazolyl Schiff Base: Antibacterial and Antifungal Effects and In Vitro Oxidative Stress Modulation on Human Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607903. [PMID: 31687075 PMCID: PMC6811784 DOI: 10.1155/2019/1607903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/13/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Schiff bases (SBs) are chemical compounds displaying a significant pharmacological potential. They are able to modulate the activity of many enzymes involved in metabolism and are found among antibacterial, antifungal, anti-inflammatory, antioxidant, and antiproliferative drugs. A new thiazolyl-triazole SB was obtained and characterized by elemental and spectral analysis. The antibacterial and antifungal ability of the SB was evaluated against Gram-positive and Gram-negative bacteria and against three Candida strains. SB showed good antibacterial activity against L. monocytogenes and P. aeruginosa; it was two times more active than ciprofloxacin. Anti-Candida activity was twofold higher compared with that of fluconazole. The effect of the SB on cell viability was evaluated by colorimetric measurement on cell cultures exposed to various SB concentrations. The ability of the SB to modulate oxidative stress was assessed by measuring MDA, TNF-α, SOD1, COX2, and NOS2 levels in vitro, using human endothelial cell cultures exposed to a glucose-enriched medium. SB did not change the morphology of the cells. Experimental findings indicate that the newly synthetized Schiff base has antibacterial activity, especially on the Gram-negative P. aeruginosa, and antifungal activity. SB also showed antioxidant and anti-inflammatory activities.
Collapse
|
8
|
Liu C, Guo H, DaSilva NA, Li D, Zhang K, Wan Y, Gao XH, Chen HD, Seeram NP, Ma H. Pomegranate ( Punica granatum) Phenolics Ameliorate Hydrogen Peroxide-Induced Oxidative Stress and Cytotoxicity in Human Keratinocytes. J Funct Foods 2019; 54:559-567. [PMID: 34079588 DOI: 10.1016/j.jff.2019.02.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pomegranate phenolics have been reported to exert skin beneficial effects but their mechanisms of action remain unclear. Herein, we investigated a standardized commercial pomegranate extract (PE; Pomella®) and its phenolics including punicalagin (PA), ellagic acid (EA), and urolithin A (UA) for their protective effects against hydrogen peroxide (H2O2)-induced oxidative stress and cytotoxicity in human keratinocyte HaCaT cells. PE, PA, and EA reduced the production of H2O2-induced ROS in HaCaT cells by 1.03-, 1.37-, and 2.67-fold, respectively. PE, PA, and UA increased the viability of H2O2-stimulated HaCaT cells by 89.9, 94.9, and 90.0%, respectively. PE, PA, and UA reduced apoptotic cell populations by 3.39, 7.11, and 8.26%, respectively. In addition, PE, PA and UA decreased H2O2-stimulated caspase-3 level by 2.31-, 2.06-, and 2.68-fold, respectively. The ameliorative effects of this PE and its phenolics against the H2O2-induced oxidative stress and cytotoxicity in keratinocytes support their utilization as natural cosmeceuticals for skin health.
.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hao Guo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.,Department of Dermatology, Key Laboratory of Immunodermatology, No.1 Hospital of China Medical University, Shenyang 110001, China.,Department of Biology, Providence College, Providence, RI 02918, USA
| | - Nicholas A DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Xing-Hua Gao
- Department of Dermatology, Key Laboratory of Immunodermatology, No.1 Hospital of China Medical University, Shenyang 110001, China
| | - Hong-Duo Chen
- Department of Dermatology, Key Laboratory of Immunodermatology, No.1 Hospital of China Medical University, Shenyang 110001, China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
9
|
Anti-invasive effect of Cyclamen pseudibericum extract on A549 non-small cell lung carcinoma cells via inhibition of ZEB1 mediated by miR-200c. J Nat Med 2018; 72:686-693. [PMID: 29557087 DOI: 10.1007/s11418-018-1204-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Scientists are increasingly focusing attention on natural products of plant origin for use as agents in cancer protection and treatment. Cyclamen L. tuber extracts contain saponin glycosides that have been shown to have anti-cancer and other biological activities. The epithelial-to-mesenchymal transition (EMT) is thought to enhance malignant tumour progress. The transcriptional repressor zinc-finger E-box binding homeobox 1 (ZEB1) is an important inducer of EMT in different human tumours and has recently been shown to boost invasion by tumour cells. In this study, we investigated the effects of endemic Cyclamen pseudibericum (CP) saponin-rich tuber extract on the capacity of non-small cell lung cancer line A549 cells to proliferate, invade and migrate and also examined the expression levels of several invasion-migration-related microRNAs (miRNAs) to identify those which directly targeted ZEB1. The cytotoxicity effect of the CP extract on the A549 cancer cells was determined by the luminometric method. The half-minimal (50%) inhibitory concentration dose in the A549 cells was determined to be 41.64 ± 2.35 µg/mL. Using the Matrigel invasion chamber system and the wound healing assay we observed that the CP extract suppressed the invasion and migration capacity of A549 cells, respectively. The expression of miRNAs in A549 cells was evaluated by real-time PCR. Our data showed that overexpression of miRNA miR-200c hindered the EMT by increasing the expression of E-cadherin and decreasing the expression of both N-cadherin and vimentin through the direct targeting of ZEB1. These findings suggest that the saponin-rich tuber extract of CP may have considerable anti-cancer properties in lung cancer. Further studies are required to examine in detail the molecular-based mechanism involved in the EMT process of the extract along with isolation and identification of active saponin components.
Collapse
|
10
|
Tudor D, Nenu I, Filip GA, Olteanu D, Cenariu M, Tabaran F, Ion RM, Gligor L, Baldea I. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. PLoS One 2017; 12:e0173241. [PMID: 28278159 PMCID: PMC5344368 DOI: 10.1371/journal.pone.0173241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. METHODS Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. RESULTS GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. CONCLUSIONS Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. GENERAL SIGNIFICANCE Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.
Collapse
Affiliation(s)
- Diana Tudor
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Diana Olteanu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Department of Pathology University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Rodica Mariana Ion
- Nanomedicine Research Group, National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania
| | - Lucian Gligor
- OSRAM Opto Semiconductors, OSRAM Romania, Global City Business Park, Voluntari, Ilfov, Romania
| | - Ioana Baldea
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Moldovan B, David L, Achim M, Clichici S, Filip GA. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Guo Y, Sun J, Ye J, Ma W, Yan H, Wang G. Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones reduce oxidative damage in ultraviolet B-irradiated HaCaT cells via a p38MAPK-independent mechanism. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:389-403. [PMID: 26855564 PMCID: PMC4725635 DOI: 10.2147/dddt.s96581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate whether Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones exert apoptosis-inhibiting effects in ultraviolet B (UVB)-irradiated HaCaT cells. METHODS We divided HaCaT cells into low radiation UVB and high radiation UVB groups. Low radiation UVB and high radiation UVB groups were further divided into a control group, UVB radiation group (UVB group), S. tridactyla Sch. Bip.-derived polysaccharides and flavones low-dose group, and S. tridactyla Sch. Bip.-derived polysaccharides and flavones high-dose group. Cell viability and morphology were assayed by MTT and trypan blue staining. Superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity test kits were used to detect superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity, respectively. Cell apoptosis, intracellular Ca(2+) levels, and mitochondrial membrane potential (Δψ) were detected by flow cytometry. Protein levels were analyzed by Western blotting and immunofluorescence. RESULTS S. tridactyla Sch. Bip.-derived polysaccharides and flavones were found to increase the absorbance of MTT, decrease cell death, alleviate the degree of cell edema, restore the cell morphology, reduce cell death fragments and chip phenomenon, increase superoxide dismutase activity, glutathione content, and catalase activity while decreasing the content of malondialdehyde, lowering the population of apoptotic cells, reducing the intracellular Ca(2+) fluorescence, increasing the mitochondrial membrane potential (Δψ), increasing the expressions of p-38, p-53, Bcl-2, and decreasing the expressions of Bax and active-caspase-3. CONCLUSION S. tridactyla Sch. Bip.-derived polysaccharides and flavones can reduce cell apoptosis to protect HaCaT cells from oxidative damage after UVB irradiation; however, this effect does not occur via the p38MAPK pathway.
Collapse
Affiliation(s)
- Yan Guo
- Department of Dermatology and Venereology, Affiliated Hospital of Qinghai University, Xining, People's Republic of China
| | - Juan Sun
- Department of Anatomy, Qinghai University Medical College, Xining, People's Republic of China
| | - Juan Ye
- Department of Dermatology and Venereology, Affiliated Hospital of Qinghai University, Xining, People's Republic of China
| | - Wenyu Ma
- Department of Dermatology and Venereology, Affiliated Hospital of Qinghai University, Xining, People's Republic of China
| | - Hualing Yan
- Department of Dermatology and Venereology, Affiliated Hospital of Qinghai University, Xining, People's Republic of China
| | - Gang Wang
- Department of Dermatology and Venereology, Affiliated Hospital of Qinghai University, Xining, People's Republic of China
| |
Collapse
|
13
|
Decean H, Fischer-Fodor E, Tatomir C, Perde-Schrepler M, Somfelean L, Burz C, Hodor T, Orasan R, Virag P. Vitis vinifera seeds extract for the modulation of cytosolic factors BAX-α and NF-kB involved in UVB-induced oxidative stress and apoptosis of human skin cells. ACTA ACUST UNITED AC 2016; 89:72-81. [PMID: 27004028 PMCID: PMC4777472 DOI: 10.15386/cjmed-508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/06/2015] [Accepted: 09/08/2015] [Indexed: 11/23/2022]
Abstract
Background and aims The depletion of the ozone layer allows overexposure of the skin to UV radiation, which is prolonged due to the increasing life expectancy, together with inappropriate life habits contribute to the increasing incidence of cutaneous malignancies. Plant extracts with antioxidant capacities are frequently employed as a means to protect skin against ultraviolet (UV) radiations, thus preventing skin cancers. In the present study we assessed a red grape seed extract (GSE) potential capacities to reduce ultraviolet B (UVB) radiation-induced reactive oxygen species (ROS) and subsequent apoptosis in a human keratinocytes cell line (HaCaT). We identified molecules and pathways modulated by the GSE through which this may exert its photoprotective effect. Methods The GSE was standardized according to its polyphenolic content and the most important biologically active compounds, such as epigallocatechin and epicatechin, catechin hydrate, procyanidin B and gallic acid were evidenced by high-performance liquid chromatography. According to the plant extract cytotoxicity on the HaCaT cell line, two concentrations were selected for testing from the non-toxic range: GSE1 (37.5 μgEqGA/ml) and GSE2 (75 μgEqGA/ml). The level of ROS was evaluated with CM-H2DCFDA assay, while apoptosis, Bax-α and NF-kβ p65 proteins with ELISA and confirmed by western-blot. Results Both concentrations of the extract decreased the level of ROS in UVB-irradiated keratinocytes (p<0.001), whereas apoptosis and Bax-α pro-apoptotic protein were only reduced by the higher concentration (GSE2). The NF-kB p65 protein level registered increasing values in time after UVB exposure of the cells, while the tested plant extract re-established its level when its smaller concentration was used (GSE1). Conclusion These results encourage further studies on this extract in order to identify other molecules and pathways through which this extract might exert its beneficial effects and also recommend its use as a potential photoprotective agent.
Collapse
Affiliation(s)
- Hana Decean
- Department of Physiology/Functional Sciences, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Emergency Military Hospital, Cluj-Napoca, Romania
| | | | - Corina Tatomir
- Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania
| | | | | | - Claudia Burz
- Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania; Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Tudor Hodor
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Orasan
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Dermatology Clinical Hospital, Cluj-Napoca, Romania
| | - Piroska Virag
- Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol 2015; 8:79-90. [PMID: 26765101 PMCID: PMC4712325 DOI: 10.1016/j.redox.2015.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. Depletion of Nrf2 could stimulate melanogenesis under UVA-mediated oxidative stress. UVA caused time-course changes of Nrf2 activity and its target antioxidants. Phenolics could inhibit UVA-induced melanogenesis through modulation of Nrf2 pathway.
Collapse
|
15
|
Lim JY, Kim OK, Lee J, Lee MJ, Kang N, Hwang JK. Protective effect of the standardized green tea seed extract on UVB-induced skin photoaging in hairless mice. Nutr Res Pract 2014; 8:398-403. [PMID: 25110559 PMCID: PMC4122711 DOI: 10.4162/nrp.2014.8.4.398] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Ultraviolet B (UVB) irradiation on skin can induce production of reactive oxygen species (ROS), which cause expression of matrix metalloproteinases (MMPs) and collagen degradation. Thus, chronic exposure of skin to UVB irradiation leads to histological changes consistent with aging, such as wrinkling, abnormal pigmentation, and loss of elasticity. We investigated the protective effect of the standardized green tea seed extract (GSE) on UVB-induced skin photoaging in hairless mice. MATERIALS/METHODS Skin photoaging was induced by UVB irradiation on the back of Skh-1 hairless mice three times per week and UVB irradiation was performed for 10 weeks. Mice were divided into six groups; normal control, UVB irradiated control group, positive control (UVB + dietary supplement of vitamin C 100 mg/kg), GSE 10 mg/kg (UVB + dietary supplement of GSE 10 mg/kg), GSE 100 mg/kg (UVB + dietary supplement of GSE 100 mg/kg), and GSE 200 mg/kg (UVB + dietary supplement of GSE 200 mg/kg). RESULTS The dietary supplement GSE attenuated UVB irradiation-induced wrinkle formation and the decrease in density of dermal collagen fiber. In addition, results of the antioxidant analysis showed that GSE induced a significant increase in antioxidant enzyme activity compared with the UVB irradiation control group. Dietary supplementation with GSE 200 mg/kg resulted in a significant decrease in expression of MMP-1, MMP-3, and MMP-9 and an increase in expression of TIMP and type-1 collagen. CONCLUSIONS Findings of this study suggest that dietary supplement GSE could be useful in attenuation of UVB irradiation-induced skin photoaging and wrinkle formation due to regulation of antioxidant defense systems and MMPs expression.
Collapse
Affiliation(s)
- Jae-Youn Lim
- Department of Biomaterials Science and Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| | - Ok-Kyung Kim
- Department of Medical Nutrition, Graduate School of East-West Science, Kyung Hee University, Yongin, Gyeonggi 446-701, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Graduate School of East-West Science, Kyung Hee University, Yongin, Gyeonggi 446-701, Korea
| | | | | | - Jae-Kwan Hwang
- Department of Biomaterials Science and Technology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea
| |
Collapse
|
16
|
Jawad A, Balayeshwanth RV, Rami A, Waleed R, Hatem S, Nathan WL. The influence of extraction solvents on the anticancer activities of Palestinian medicinal plants. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/jmpr2013.5044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin. Arch Dermatol Res 2013; 306:447-54. [PMID: 24362512 DOI: 10.1007/s00403-013-1433-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 12/22/2022]
Abstract
RTA 408 is a member of the synthetic oleanane triterpenoid class of compounds known to potently activate the cytoprotective transcription factor Nrf2. Because skin is constantly exposed to external oxidative stress, such as that from ultraviolet radiation, from chemical exposure, during improper wound healing, and throughout the course of cancer radiation therapy, it may benefit from activation of Nrf2. This study was conducted to evaluate the transdermal penetration properties and Nrf2 activation potential of RTA 408 in normal rat skin. RTA 408 (0.1, 1.0, or 3.0%) was applied topically to the shaved skin of male Sprague-Dawley rats twice daily for 4 days and once on Day 5. Topical application of RTA 408 resulted in transdermal penetration, with low but dose-dependent plasma exposure with AUC(0-24 h) values of 3.6, 26.0, and 41.1 h ng/mL for the 0.1, 1.0, and 3.0% doses, respectively. Further, topical application of RTA 408 resulted in increased translocation of Nrf2 to the nucleus, dose-dependent mRNA induction of Nrf2 target genes (e.g. Nqo1, Srxn1, Gclc, and Gclm), and induction of the protein expression of the prototypical Nrf2 target gene Nqo1 and increased total glutathione (GSH) in normal rat skin. Immunohistochemistry demonstrated that increased staining for Nqo1 and total GSH of structures in both the epidermis and dermis was consistent with the full transdermal penetration of RTA 408. Finally, topically administered RTA 408 was well tolerated with no adverse in-life observations and normal skin histology. Thus, the data support the further development of RTA 408 for the potential treatment of skin diseases.
Collapse
|
18
|
Filip GA, Postescu ID, Bolfa P, Catoi C, Muresan A, Clichici S. Inhibition of UVB-induced skin phototoxicity by a grape seed extract as modulator of nitrosative stress, ERK/NF-kB signaling pathway and apoptosis, in SKH-1 mice. Food Chem Toxicol 2013; 57:296-306. [DOI: 10.1016/j.fct.2013.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/10/2013] [Accepted: 03/17/2013] [Indexed: 01/07/2023]
|
19
|
Salucci S, Burattini S, Battistelli M, Baldassarri V, Maltarello MC, Falcieri E. Ultraviolet B (UVB) irradiation-induced apoptosis in various cell lineages in vitro. Int J Mol Sci 2012; 14:532-46. [PMID: 23271369 PMCID: PMC3565280 DOI: 10.3390/ijms14010532] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB) radiation acts as a strong apoptotic trigger in many cell types, in tumor and normal cells. Several studies have demonstrated that UVB-induced cell death occurs through the generation of reactive oxygen species. The consequent oxidative stress includes the impairment of cellular antioxidants, the induction of DNA damage and the occurrence of apoptosis. In this review, we investigated UVB apoptotic action in various cell models by using ultrastructural, molecular and cytofluorimetric techniques. Myeloid leukemia HL-60, T-lymphoblastoid Molt-4 and myelomonocytic U937 human cells, generally affected by apoptotic stimuli, were studied. Human chondrocytes and C2C12 skeletal muscle cells, known to be more resistant to damage, were also considered. All of them, when exposed to UVB radiation, revealed a number of characteristic apoptotic markers. Membrane blebbing, cytoplasm shrinkage and chromatin condensation were detected by means of electron microscopy. DNA cleavage, investigated by using agarose gel electrophoresis and TUNEL reaction, was observed in suspended cells. Differently, in chondrocytes and in skeletal muscle cells, oligonucleosomic DNA fragmentation did not appear, even if a certain TUNEL positivity was detected. These findings demonstrate that UVB radiation appears to be an ideal tool to study the apoptotic behavior.
Collapse
Affiliation(s)
- Sara Salucci
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Sabrina Burattini
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Michela Battistelli
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Valentina Baldassarri
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
| | - Maria Cristina Maltarello
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopaedic Institute, Bologna 40136, Italy; E-Mail:
| | - Elisabetta Falcieri
- DiSTeVA, University of Urbino “Carlo Bo”, Urbino 61029, Italy; E-Mails: (S.S.); (S.B.); (M.B.); (V.B.)
- IGM, CNR, Rizzoli Orthopaedic Institute, Bologna 40136, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0722304284; Fax: +39-0722304244
| |
Collapse
|
20
|
Piao MJ, Lee NH, Chae S, Hyun JW. Eckol inhibits ultraviolet B-induced cell damage in human keratinocytes via a decrease in oxidative stress. Biol Pharm Bull 2012; 35:873-80. [PMID: 22687478 DOI: 10.1248/bpb.35.873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous reports, the antioxidant effects of eckol were shown to protect cells against hydrogen peroxide- and gamma ray-induced oxidative stress. In this study, the role of eckol in protecting human skin keratinocytes (HaCaT) against UVB-induced oxidative cell damage was investigated. Also, triphlorethol-A, one of the chemical components in Ecklonia cava, and quercetin a well known antioxidant, were compared with eckol in terms of antioxidant activity based on chemical structure. Eckol decreased UVB-induced intracellular reactive oxygen species (ROS), decreased injury to cellular components resulting from UVB-induced oxidative stress, and restored cell viability. In addition, eckol reduced UVB-induced apoptosis by inhibiting the disruption of mitochondrial membranes. These results suggest that eckol protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS, thereby lessening injury to cellular components.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine and Veterinary Medical Research Institute, Jeju National University, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Postescu ID, Chereches G, Tatomir C, Daicoviciu D, Filip GA. Modulation of Doxorubicin-Induced Oxidative Stress by a Grape (Vitis viniferaL.) Seed Extract in Normal and Tumor Cells. J Med Food 2012; 15:639-45. [DOI: 10.1089/jmf.2011.0291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ion Dan Postescu
- Department of Radiobiology and Tumor Biology, “Prof. Dr. I. Chiricuta” Oncologic Institute, Cluj-Napoca, Romania
| | - Gabriela Chereches
- Department of Radiobiology and Tumor Biology, “Prof. Dr. I. Chiricuta” Oncologic Institute, Cluj-Napoca, Romania
| | - Corina Tatomir
- Department of Radiobiology and Tumor Biology, “Prof. Dr. I. Chiricuta” Oncologic Institute, Cluj-Napoca, Romania
| | - Doina Daicoviciu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Piao MJ, Zhang R, Lee NH, Hyun JW. Phloroglucinol Attenuates Ultraviolet B Radiation-Induced Matrix Metalloproteinase-1 Production in Human Keratinocytes via Inhibitory Actions against Mitogen-Activated Protein Kinases and Activator Protein-1. Photochem Photobiol 2012; 88:381-8. [DOI: 10.1111/j.1751-1097.2012.01074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Piao MJ, Yoon WJ, Kang HK, Yoo ES, Koh YS, Kim DS, Lee NH, Hyun JW. Protective effect of the ethyl acetate fraction of Sargassum muticum against ultraviolet B-irradiated damage in human keratinocytes. Int J Mol Sci 2011; 12:8146-60. [PMID: 22174656 PMCID: PMC3233462 DOI: 10.3390/ijms12118146] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/08/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the cytoprotective properties of the ethyl acetate fraction of Sargassum muticum (SME) against ultraviolet B (UVB)-induced cell damage in human keratinocytes (HaCaT cells). SME exhibited scavenging activity toward the 1,1-diphenyl-2-picrylhydrazyl radicals and hydrogen peroxide (H(2)O(2)) and UVB-induced intracellular reactive oxygen species (ROS). SME also scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO(4) + H(2)O(2)), which was detected using electron spin resonance spectrometry. In addition, SME decreased the level of lipid peroxidation that was increased by UVB radiation, and restored the level of protein expression and the activities of antioxidant enzymes that were decreased by UVB radiation. Furthermore, SME reduced UVB-induced apoptosis as shown by decreased DNA fragmentation and numbers of apoptotic bodies. These results suggest that SME protects human keratinocytes against UVB-induced oxidative stress by enhancing antioxidant activity in cells, thereby inhibiting apoptosis.
Collapse
Affiliation(s)
- Mei Jing Piao
- School of Medicine, Jeju National University, Jeju 690-756, South Korea; E-Mails: (M.J.P.); (H.K.K.); (E.S.Y.); (Y.S.K.)
| | - Weon Jong Yoon
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 699-943, South Korea; E-Mails: (W.J.Y.); (D.S.K.)
| | - Hee Kyoung Kang
- School of Medicine, Jeju National University, Jeju 690-756, South Korea; E-Mails: (M.J.P.); (H.K.K.); (E.S.Y.); (Y.S.K.)
| | - Eun Sook Yoo
- School of Medicine, Jeju National University, Jeju 690-756, South Korea; E-Mails: (M.J.P.); (H.K.K.); (E.S.Y.); (Y.S.K.)
| | - Young Sang Koh
- School of Medicine, Jeju National University, Jeju 690-756, South Korea; E-Mails: (M.J.P.); (H.K.K.); (E.S.Y.); (Y.S.K.)
| | - Dong Sam Kim
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 699-943, South Korea; E-Mails: (W.J.Y.); (D.S.K.)
| | - Nam Ho Lee
- Department of Chemistry, College of Natural Sciences, Jeju National University, Jeju 690-756, South Korea; E-Mail:
| | - Jin Won Hyun
- School of Medicine, Jeju National University, Jeju 690-756, South Korea; E-Mails: (M.J.P.); (H.K.K.); (E.S.Y.); (Y.S.K.)
| |
Collapse
|
24
|
Wu F, Sun H, Kluz T, Clancy HA, Kiok K, Costa M. Epigallocatechin-3-gallate (EGCG) protects against chromate-induced toxicity in vitro. Toxicol Appl Pharmacol 2011; 258:166-75. [PMID: 22079256 DOI: 10.1016/j.taap.2011.10.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/20/2011] [Accepted: 10/27/2011] [Indexed: 12/11/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a human carcinogen that results in the generation of reactive oxygen species (ROS) and a variety of DNA lesions leading to cell death. Epigallocatechin-3-gallate (EGCG), the major polyphenol present in green tea, possesses potent antioxidative activity capable of protecting normal cells from various stimuli-induced oxidative stress and cell death. Here we demonstrated that co-treatment with EGCG protected human normal bronchial epithelial BEAS-2B cells from Cr(VI)-induced cell death in a dose-dependent manner. Cr(VI) induces apoptosis as the primary mode of cell death. Co-treatment of BEAS-2B cells with EGCG dose-dependently suppressed Cr(VI)-induced apoptosis. Fluorescence microscopic analyses and quantitative measurement revealed that EGCG significantly decreased intracellular levels of ROS induced by Cr(VI) exposure. Using a well-established K(+)/SDS precipitation assay, we further showed that EGCG was able to dose-dependently reduce DNA-protein cross-links (DPC), lesions that could be partially attributed to Cr(VI)-induced oxidative stress. Finally, analyses of Affymetrix microarray containing 28,869 well-annotated genes revealed that, among the 3412 genes changed more than 1.5-fold by Cr(VI) treatment, changes of 2404 genes (70%) were inhibited by pretreatment of EGCG. Real-time PCR confirmed the induction of 3 genes involved in cell death and apoptosis by Cr(VI), which was eliminated by EGCG. In contrast, Cr(VI) reduced the expression of 3 genes related to cellular defense, and this reduction was inhibited by EGCG. Our results indicate that EGCG protects BEAS-2B cells from Cr(VI)-induced cytotoxicity presumably by scavenging ROS and modulating a subset of genes. EGCG, therefore, might serve as a potential chemopreventive agent against Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Fen Wu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | | | | | | | | | | |
Collapse
|
25
|
Filip A, Daicoviciu D, Clichici S, Bolfa P, Catoi C, Baldea I, Bolojan L, Olteanu D, Muresan A, Postescu ID. The effects of grape seeds polyphenols on SKH-1 mice skin irradiated with multiple doses of UV-B. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:133-42. [PMID: 21925895 DOI: 10.1016/j.jphotobiol.2011.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 08/01/2011] [Accepted: 08/06/2011] [Indexed: 10/17/2022]
Abstract
The study investigated the protective activity of red grape seeds (Vitis vinifera L, Burgund Mare variety) (BM) extracts in vivo on multiple doses of ultraviolet radiation (UV)-B-induced deleterious effects in SKH-1 mice skin. Eighty 8-weeks-old female SKH-1 mice were divided into 8 groups: control, vehicle, UV-B irradiated, vehicle+UV-B irradiated, BM 2.5mg polyphenols (PF)/cm(2)+UV-B irradiated, BM 4 mg PF/cm(2)+UV-B irradiated, UV-B+BM 2.5mg PF/cm(2), UV-B+BM 4 mg PF/cm(2). The extract was applied topically before or after each UV-B exposure (240 mJ/cm(2)), for 10 days consecutively. The antioxidant activity of BM extract is higher than gallic acid (k(BM)=0.017, k(gallic acid)=0.013). Multiple doses of UV-B generated the formation of cyclobutane pyrimidine dimers (CPDs) and sunburn cells, increased glutathione peroxidase (GPx) and catalase (CAT) activities respectively glutathione (GSH) and IL-1β levels in skin. In group treated with 2.5mg PF/cm(2) before UV-B irradiation BM extract inhibited UV-B-induced sunburn cells, restored the superoxide dismutase (MnSOD) activity, increased insignificantly CAT and GPx activities and reduced IL-1β level. The BM 4.0 mg PF/cm(2) treatment decreased GSH level and reduced the percentage of CPDs positive cells in skin. Both doses of BM extract administered after UV-B irradiation increased the MnSOD and GPx activities and reduced the formation of sunburn cells in skin. Our results suggest that BM extract might be a potential chemo-preventive candidate in reducing the oxidative stress and apoptosis induced by multiple doses of UV-B in skin.
Collapse
Affiliation(s)
- Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 1-3 Clinicilor Str., 400012 Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|