1
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Huang X, Zhou X, Zhang F, Wang X, Duan X, Liu K. DDX58 variant triggers IFN-β-induced autophagy in trabecular meshwork and influences intraocular pressure. FASEB J 2024; 38:e23651. [PMID: 38752537 DOI: 10.1096/fj.202302265rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 07/16/2024]
Abstract
Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-β-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-β on TM cells. Our study is the first to demonstrate that IFN-β significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-β remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-β-induced autophagy in TM cells, we performed microarray analysis in IFN-β-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-β-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-β. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-β, which elevates IOP by modulating autophagy through RSAD2 in TM cells.
Collapse
Affiliation(s)
- Xinting Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoyu Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Feng Zhang
- The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaobo Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuanchu Duan
- Glaucoma Institute, Changsha Aier Eye Hospital, Changsha, Hunan, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Sung MS, Kim SY, Eom GH, Park SW. High VEGF Concentrations Accelerate Human Trabecular Meshwork Fibrosis in a TAZ-Dependent Manner. Int J Mol Sci 2023; 24:ijms24119625. [PMID: 37298577 DOI: 10.3390/ijms24119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 μM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
4
|
Fu H, Siggs OM, Knight LS, Staffieri SE, Ruddle JB, Birsner AE, Collantes ER, Craig JE, Wiggs JL, D’Amato RJ. Thrombospondin 1 missense alleles induce extracellular matrix protein aggregation and TM dysfunction in congenital glaucoma. J Clin Invest 2022; 132:e156967. [PMID: 36453543 PMCID: PMC9711877 DOI: 10.1172/jci156967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Glaucoma is a highly heritable disease that is a leading cause of blindness worldwide. Here, we identified heterozygous thrombospondin 1 (THBS1) missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma, a severe form of glaucoma affecting children. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Extracellular matrix (ECM) proteins, especially fibronectin, which bind to THBS1, also accumulated within THBS1 deposits. These results show that missense variants altering THBS1 p.Arg1034 can cause elevated IOP through a mechanism involving impaired TM fluid outflow in association with accumulation of aggregated THBS1 in the ECM of juxtacanalicular meshwork with altered morphology.
Collapse
Affiliation(s)
- Haojie Fu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lachlan S.W. Knight
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Ophthalmology, University of Melbourne, Department of Surgery, Parkville, Victoria, Australia
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jonathan B. Ruddle
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Amy E. Birsner
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
6
|
Chen H, Zheng G, Chen H, Li L, Xu Z, Xu L. Evaluations of aqueous humor protein markers in different types of glaucoma. Medicine (Baltimore) 2022; 101:e31048. [PMID: 36254076 PMCID: PMC9575751 DOI: 10.1097/md.0000000000031048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To compare the concentrations of protein markers in aqueous humor (AH) of patients with primary open-angle glaucoma (POAG), chronic angle-closure glaucoma (CACG), acute primary angle closure (APAC), and cataract without glaucoma as the control group. AH samples were collected at the beginning of surgery from 82 eyes of 82 patients who were divided into POAG (n = 23), CACG (n = 21), APAC (n = 19), and cataract groups (n = 19). The expression levels of interferon-gamma (IFN-γ), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17A (IL-17A), lymphotoxin-alpha (LT-α), monocyte chemotactic protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2), brain derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF), platelet-derived growth factor-AA (PDGF-AA), vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinases-1 (TIMP-1), and tumor necrosis factor-alpha (TNF-α) in AH were detected using a microsphere-based immunoassay. The AH levels of TNF-α, MMP-2, MCP-1, IFN-γ, and TIMP-1 in the APAC and CACG groups were significantly higher than those in control eyes. Additionally, the AH levels of interleukin-6 (IL-6) and VEGF in the APAC group were significantly higher than those in the control group (CG). The interleukin-8 (IL-8) levels in patients with POAG were significantly higher than those in control eyes, whereas the LT-α levels were significantly lower than those in control eyes. IL-6 levels were significantly correlated with the coefficient of variation (CV), whereas IL-6 levels were significantly negatively correlated with the frequency of hexagonal cells (HEX) and corneal endothelial cell density (CD). The levels of TNF-α, MMP-2, MCP-1, IFN-γ, TIMP-1, IL-6, IL-8, VEGF, and LT-α were different among the three types of glaucoma. These different types of glaucoma may be caused by various pathogeneses, which opens avenues for further investigation into the pathogenesis of glaucoma and discoveries new targets and pathways for the treatment of glaucoma.
Collapse
Affiliation(s)
- Haiyan Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Gang Zheng
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Huijie Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Li
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Zhuojun Xu
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| | - Li Xu
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
- *Correspondence: Li Xu, Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, 570311, Hainan Province, China (e-mail: )
| |
Collapse
|
7
|
Qian T, Fu M, Ye L, Du J, Xu X, Zhang Z. Aqueous Humor Growth Factor Levels and Trabeculectomy Outcomes in Primary Open-Angle Glaucoma Patients: A 2-Year Prospective Study. Transl Vis Sci Technol 2022; 11:2. [PMID: 36180030 PMCID: PMC9547364 DOI: 10.1167/tvst.11.10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Maintenance of a filtering bleb is essential for long-term intraocular pressure control after trabeculectomy. Surgical site fibrosis and excessive extracellular matrix production are common causes of trabeculectomy failure, mediated by several growth factors. We aimed to evaluate the levels of five growth factors and their correlation with trabeculectomy outcomes in patients with primary open-angle glaucoma (POAG). Methods We collected aqueous humor samples intraoperatively from patients with POAG who underwent trabeculectomy and measured the concentrations of transforming growth factor-β (TGF-β), acidic fibroblast growth factor (aFGF), insulin-like growth factor-1, vascular endothelial growth factor, and platelet-derived growth factor using multiplexed immunoassay kits. Intraocular pressure was measured with Goldmann applanation tonometry at 1 week and at 1, 3, 6, 12, 18, and 24 months after trabeculectomy. We allocated the eyes based on surgical outcome into a success or failure group. Results Significantly high levels of aFGF and TGF-β were observed in the failure group (both P < 0.0001) and were significant risk factors for trabeculectomy outcomes. Higher success rates were observed over the 24-month follow-up period in eyes with low aFGF and TGF-β levels compared to eyes with high levels (P = 0.0031 and P = 0.0007, respectively). The levels of TGF-β were significantly positively correlated with aFGF. Conclusions In POAG patients, high aFGF and TGF-β levels were significant risk factors for trabeculectomy failure. Translational Relevance Modulation of aFGF and TGF-β expression may have potential clinical applications after filtration surgery.
Collapse
Affiliation(s)
- Tianwei Qian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Mingshui Fu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Luyao Ye
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Jingxiao Du
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| | - Zhihua Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China
| |
Collapse
|
8
|
Transgenic Overexpression of Myocilin Leads to Variable Ocular Anterior Segment and Retinal Alterations Associated with Extracellular Matrix Abnormalities in Adult Zebrafish. Int J Mol Sci 2022; 23:ijms23179989. [PMID: 36077382 PMCID: PMC9456529 DOI: 10.3390/ijms23179989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Myocilin is an enigmatic glaucoma-associated glycoprotein whose biological role remains incompletely understood. To gain novel insight into its normal function, we used transposon-mediated transgenesis to generate the first zebrafish line stably overexpressing myocilin [Tg(actb1:myoc-2A-mCherry)]. qPCR showed an approximately four-fold increased myocilin expression in transgenic zebrafish embryos (144 hpf). Adult (13 months old) transgenic animals displayed variable and age-dependent ocular anterior segment alterations. Almost 60% of two-year-old male, but not female, transgenic zebrafish developed enlarged eyes with severe asymmetrical and variable abnormalities in the anterior segment, characterized by corneal limbus hypertrophy, and thickening of the cornea, iris, annular ligament and lens capsule. The most severe phenotype presented small or absent ocular anterior chamber and pupils, due to iris overgrowth along with dysplastic retinal growth and optic nerve hypertrophy. Immunohistochemistry revealed increased presence of myocilin in most altered ocular tissues of adult transgenic animals, as well as signs of retinal gliosis and expanded ganglion cells and nerve fibers. The preliminary results indicate that these cells contributed to retinal dysplasia. Visual impairment was demonstrated in all old male transgenic zebrafish. Transcriptomic analysis of the abnormal transgenic eyes identified disrupted expression of genes involved in lens, muscular and extracellular matrix activities, among other processes. In summary, the developed transgenic zebrafish provides a new tool to investigate this puzzling protein and provides evidence for the role of zebrafish myocilin in ocular anterior segment and retinal biology, through the influence of extracellular matrix organization and cellular proliferation.
Collapse
|
9
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
10
|
Fan X, Bilir EK, Kingston OA, Oldershaw RA, Kearns VR, Willoughby CE, Sheridan CM. Replacement of the Trabecular Meshwork Cells-A Way Ahead in IOP Control? Biomolecules 2021; 11:biom11091371. [PMID: 34572584 PMCID: PMC8464777 DOI: 10.3390/biom11091371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is one of the leading causes of vision loss worldwide, characterised with irreversible optic nerve damage and progressive vision loss. Primary open-angle glaucoma (POAG) is a subset of glaucoma, characterised by normal anterior chamber angle and raised intraocular pressure (IOP). Reducing IOP is the main modifiable factor in the treatment of POAG, and the trabecular meshwork (TM) is the primary site of aqueous humour outflow (AH) and the resistance to outflow. The structure and the composition of the TM are key to its function in regulating AH outflow. Dysfunction and loss of the TM cells found in the natural ageing process and more so in POAG can cause abnormal extracellular matrix (ECM) accumulation, increased TM stiffness, and increased IOP. Therefore, repair or regeneration of TM's structure and function is considered as a potential treatment for POAG. Cell transplantation is an attractive option to repopulate the TM cells in POAG, but to develop a cell replacement approach, various challenges are still to be addressed. The choice of cell replacement covers autologous or allogenic approaches, which led to investigations into TM progenitor cells, induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) as potential stem cell source candidates. However, the potential plasticity and the lack of definitive cell markers for the progenitor and the TM cell population compound the biological challenge. Morphological and differential gene expression of TM cells located within different regions of the TM may give rise to different cell replacement or regenerative approaches. As such, this review describes the different approaches taken to date investigating different cell sources and their differing cell isolation and differentiation methodologies. In addition, we highlighted how these approaches were evaluated in different animal and ex vivo model systems and the potential of these methods in future POAG treatment.
Collapse
Affiliation(s)
- Xiaochen Fan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK; (X.F.); (E.K.B.); (O.A.K.); (V.R.K.)
| | - Emine K. Bilir
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK; (X.F.); (E.K.B.); (O.A.K.); (V.R.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK; (X.F.); (E.K.B.); (O.A.K.); (V.R.K.)
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Victoria R. Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK; (X.F.); (E.K.B.); (O.A.K.); (V.R.K.)
| | - Colin E. Willoughby
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK; (X.F.); (E.K.B.); (O.A.K.); (V.R.K.)
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK
- Correspondence: (C.E.W.); (C.M.S.); Tel.: +44-(28)-701-2338 (C.E.W.); +44-(151)-794-9031 (C.M.S.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK; (X.F.); (E.K.B.); (O.A.K.); (V.R.K.)
- Correspondence: (C.E.W.); (C.M.S.); Tel.: +44-(28)-701-2338 (C.E.W.); +44-(151)-794-9031 (C.M.S.)
| |
Collapse
|
11
|
Sharma R, Grover A. Myocilin-associated Glaucoma: A Historical Perspective and Recent Research Progress. Mol Vis 2021; 27:480-493. [PMID: 34497454 PMCID: PMC8403517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/18/2021] [Indexed: 10/29/2022] Open
Abstract
Glaucoma a debilitating disease, is globally the second most common kind of permanent blindness. Primary open-angle glaucoma (POAG) is its most prevalent form and is often linked with alterations in the myocilin gene (MYOC). MYOC encodes the myocilin protein, which is expressed throughout the body, but primarily in trabecular meshwork (TM) tissue in the eyes. TM is principally involved in regulating intraocular pressure (IOP), and elevated IOP is the main risk factor associated with glaucoma. The myocilin protein's function remains unknown; however, mutations compromise its folding and processing inside TM cells, contributing to the glaucoma phenotype. While glaucoma is a complex disease with various molecules and factors as contributing causes, the role played by myocilin has been the most widely studied. The current review describes the present understanding of myocilin and its association with glaucoma and aims to shift the focus toward developing targeted therapies for treating glaucoma patients with variations in MYOC.
Collapse
|
12
|
Nair KS, Srivastava C, Brown RV, Koli S, Choquet H, Kang HS, Kuo YM, Grimm SA, Sutherland C, Badea A, Johnson GA, Zhao Y, Yin J, Okamoto K, Clark G, Borrás T, Zode G, Kizhatil K, Chakrabarti S, John SWM, Jorgenson E, Jetten AM. GLIS1 regulates trabecular meshwork function and intraocular pressure and is associated with glaucoma in humans. Nat Commun 2021; 12:4877. [PMID: 34385434 PMCID: PMC8361148 DOI: 10.1038/s41467-021-25181-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.
Collapse
Affiliation(s)
- K Saidas Nair
- Department of Ophthalmology and Department of Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chitrangda Srivastava
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Robert V Brown
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Swanand Koli
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California, Division of Research, Oakland, CA, USA
| | - Hong Soon Kang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Caleb Sutherland
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - Yin Zhao
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jie Yin
- Kaiser Permanente Northern California, Division of Research, Oakland, CA, USA
| | - Kyoko Okamoto
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Terete Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, USA
- Howard Hughes Medical Institute, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
13
|
Li S, Yang Q, Zhou Z, Fu M, Yang X, Hao K, Liu Y. SNHG3 cooperates with ELAVL2 to modulate cell apoptosis and extracellular matrix accumulation by stabilizing SNAI2 in human trabecular meshwork cells under oxidative stress. ENVIRONMENTAL TOXICOLOGY 2021; 36:1070-1079. [PMID: 33522089 DOI: 10.1002/tox.23106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/05/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Glaucoma is the main reason for irreversible blindness, and pathological increased intraocular pressure is the leading risk factor for glaucoma. It is reported that trabecular meshwork cell injury is closely associated with the elevated intraocular pressure. The current study aimed to investigate the role of small nucleolar RNA host gene 3 (SNHG3) in human trabecular meshwork (HTM) cells under oxidative stress. A series of experiments including real-time quantitative polymerase chain reaction, subcellular fractionation assay, western blot analysis, cell counting kit-8 assay, RNA pull down, flow cytometry analysis, and RNA immunoprecipitation assay were used to explore the biological function and regulatory mechanism of SNHG3 in HTM cells under oxidative stress. First, we observed that H2 O2 induced SNHG3 upregulation in HTM cells. Then, we found that SNHG3 silencing alleviated H2 O2 -induced oxidative damage in HTM cells. Moreover, snail family transcriptional repressor 2 (SNAI2) knockdown alleviated the oxidative damage induced by H2 O2 in HTM cells. Mechanistically, SNHG3 bound with ELAV like RNA binding protein 2 (ELAVL2) to stabilize SNAI2. Finally, SNAI2 overexpression counteracted the effect of SNHG3 silencing on H2 O2 -treated HTM cells. In conclusion, our results demonstrated that SNHG3 cooperated with ELAVL2 to modulate cell apoptosis and extracellular matrix accumulation by stabilizing SNAI2 in HTM cells under oxidative stress.
Collapse
Affiliation(s)
- Sizhen Li
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Qingsong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Zixiu Zhou
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Min Fu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Xiaodong Yang
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Kuanxiao Hao
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| | - Yating Liu
- Department of Nanjing Tongren Eye Center, Nanjing Tongren Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Kravchik MV, Novikov IA, Petrov SY, Avetisov SE. Bioinorganic chemistry of open-angle glaucoma: A review. J Trace Elem Med Biol 2020; 62:126652. [PMID: 32987352 DOI: 10.1016/j.jtemb.2020.126652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
At present, physical methods of chemical analysis are constantly improving providing large amount of data on elemental composition of organs and tissues. However, only few works describe the correlation (or the potential connection) between the general or local bioelemental imbalances and specific biochemical reactions that are involved in pathogenesis of certain diseases. This review describes primary open-angle glaucoma (POAG) - one of the most common ophthalmic diseases - in terms of elemental chemistry. The authors look into the impact that various subgroups of elements have on passive and active processes of homeostasis regulation and hydrodynamic balance in the eye. Alkaline metals and their analogues (K, Na, Li, Rb, Cs) influence hydrostatics and hydrodynamics by means of both K-Na pumps and osmosis. Alkaline-earth elements and their analogues (Ca, Mg, Sr, Ba, Be) are involved in biomineralization and intercellular interaction in the drainage areas. Chalcophile metals and their analogues (Zn, Cu, Hg, Co, Ni, Cd, Pb, Mo, Sb) regulate redox reactions. They are the cofactors of enzymes that support structural homeostasis of the drainage area. Siderophile metals (Fe, Mn, Cr, Rh) regulate oxidation-reduction reactions, including those associated with limited nutrition of tissues in glaucoma. The role of amphoteric metals and nonmetals (Al, Si, Ga, V, TI, Sn, Ge, Zr, W) in POAG has not been described properly, but they were noted to participate in mineralization. Structure-forming non-metals and their analogues (N, S, Se, As) are directly involved in the formation of protein and non-protein aggregates that prevent aqueous humor outflow. The specific role of phosphorus in the pathogenesis of glaucoma has not been described previously. The authors analyze the involvement of phosphorus in energy-dependent processes of cellular activity, which are aimed at the reprocessing of aggregates that cause aqueous humor retention.
Collapse
Affiliation(s)
- M V Kravchik
- Scientific Research Institute of Eye Diseases, 11A Rossolimo st., Moscow, 119021, Russian Federation.
| | - I A Novikov
- Scientific Research Institute of Eye Diseases, 11A Rossolimo st., Moscow, 119021, Russian Federation
| | - S Yu Petrov
- Scientific Research Institute of Eye Diseases, 11A Rossolimo st., Moscow, 119021, Russian Federation
| | - S E Avetisov
- Scientific Research Institute of Eye Diseases, 11A Rossolimo st., Moscow, 119021, Russian Federation
| |
Collapse
|
15
|
Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC. Neuroinflammation in Primary Open-Angle Glaucoma. J Clin Med 2020; 9:E3172. [PMID: 33007927 PMCID: PMC7601106 DOI: 10.3390/jcm9103172] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increasing evidence suggests oxidative damage and immune response defects are key factors contributing to glaucoma onset. Indeed, both the failure of the trabecular meshwork tissue in the conventional outflow pathway and the neuroinflammation process, which drives the neurodegeneration, seem to be linked to the age-related over-production of free radicals (i.e., mitochondrial dysfunction) and to oxidative stress-linked immunostimulatory signaling. Several previous studies have described a wide range of oxidative stress-related makers which are found in glaucomatous patients, including low levels of antioxidant defences, dysfunction/activation of glial cells, the activation of the NF-κB pathway and the up-regulation of pro-inflammatory cytokines, and so on. However, the intraocular pressure is still currently the only risk factor modifiable by medication or glaucoma surgery. This present review aims to summarize the multiple cellular processes, which promote different risk factors in glaucoma including aging, oxidative stress, trabecular meshwork defects, glial activation response, neurodegenerative insults, and the altered regulation of immune response.
Collapse
Affiliation(s)
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, DiNOGMI, University of Genoa, 16132 Genoa, Italy;
- Ophthalmology Unit, IRCCS-Polyclinic San Martino Hospital, 16132 Genoa, Italy;
| | | |
Collapse
|
16
|
Luis J, Eastlake K, Khaw PT, Limb GA. Galectins and their involvement in ocular disease and development. Exp Eye Res 2020; 197:108120. [PMID: 32565112 DOI: 10.1016/j.exer.2020.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
Galectins are carbohydrate binding proteins with high affinity to ß-galactoside containing glycoconjugates. Understanding of the functions of galectins has grown steadily over the past decade, as a result of substantial advancements in the field of glycobiology. Galectins have been shown to be versatile molecules that participate in a range of important biological systems, including inflammation, neovascularisation and fibrosis. These processes are of particular importance in ocular tissues, where a major theme of recent research has been to divert diseases away from pathways which result in loss of function into pathways of repair and regeneration. This review summarises our current understanding of galectins in the context important ocular diseases, followed by an update on current clinical studies and future directions.
Collapse
Affiliation(s)
- Joshua Luis
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.
| | - Karen Eastlake
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - G Astrid Limb
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
17
|
Qian T, Fu M, Hu C, Zhang Z, Xu X, Zou H. Imbalance of Matrix Metalloproteinases and Their Inhibitors Is Correlated With Trabeculectomy Outcomes in Acute Primary Angle Closure. Am J Ophthalmol 2020; 212:144-152. [PMID: 31887279 DOI: 10.1016/j.ajo.2019.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 01/20/2023]
Abstract
PURPOSE To analyze matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and their molar ratios in the aqueous humor in previous acute primary angle closure (APAC) patients and their correlations with trabeculectomy outcomes. DESIGN Prospective cohort study. METHODS Aqueous humor samples were collected from a total of 78 eyes, including 52 previous APAC eyes and 26 cataract eyes. TIMP-1, 2, 3, and 4 and MMP-1, 2, 3, 7, 8, 9, 12, and 13 analyte concentrations were measured using multiplexed immunoassay kits. Patient follow-up occurred at 1 week and 1, 3, 6, 12, and 18 months. RESULTS In the previous APAC group, 11 MMP/TIMP molar ratios were significantly lower. APAC eyes were then followed for up to 18 months after trabeculectomy and divided into success (37 eyes) and failure (15 eyes) groups. Five out of the 11 molar ratios were significantly lower in the failure group than in the success group. In multiple logistic regression analysis, failed filtration surgery was more likely in APAC eyes with lower MMP-2/TIMP-2 (P = .040, odds ratio = 44.499) and MMP-13/TIMP-1 (P = .034, odds ratio = 37.947) ratios. Previous APAC eyes were divided according to MMP-2/TIMP-2 and MMP-13/TIMP-1 ratios. Compared to eyes with high ratios, eyes with low MMP-2/TIMP-2 and MMP-13/TIMP-1 ratios had significantly higher failure rates. CONCLUSIONS In previous APAC eyes, changes in MMP and TIMP levels resulted in MMP and TIMP imbalance. Lower MMP-2/TIMP-2 and MMP-13/TIMP-1 ratios in aqueous humor are risk factors for trabeculectomy failure. Modulating specific MMP/TIMP ratios may have potential clinical applications for filtration surgery.
Collapse
|
18
|
Multiple cytokine analyses of aqueous humor from the patients with retinitis pigmentosa. Cytokine 2019; 127:154943. [PMID: 31810025 DOI: 10.1016/j.cyto.2019.154943] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Cataracts are the most common eye complications of retinitis pigmentosa (RP). This study aimed to investigate the cytokine profiles of the aqueous humor of RP with cataracts. METHODS The aqueous humor was collected from RP eyes with cataract (RP group, n = 20) and age-related cataract eyes (ARC group, n = 20) during cataract surgery. The levels of 37 mediators were measured with multiplex fluorescent bead-based immunoassay and compared across groups. The correlation among chemokines, growth factors, and cytokines was analyzed with Spearman's rank correlation coefficient. RESULTS Twelve cytokines (IL-1α, IL-1β, IL-4, IL-10, TNF-α, IFN-γ, EGF, GM-CSF, PDGF-AB/BB, TGF-α, BMP-9, and E-selection) were below the limit of detection, and the detection rate of IL-6 was significantly higher in RP group than in the ARC group (P < 0.01). Compared with those in the control group, the aqueous humor levels of monocyte chemoattractant protein-1 (MCP-1), interleukin-(IL-)8, interferon gamma-induced protein (IP)-10, hepatocyte growth factor (HGF), platelet-derived growth factor AA (PDGF-AA), matrix metalloproteinase-2 (MMP-2), MMP3, MMP-7, MMP-8, plasminogen activator inhibitor-1 (PAI-1), and thrombospondin-2 (TSP-2) in the RP group increased significantly (P < 0.01). A lower level of BMP-4 in the aqueous humor was observed in the RP patients than in the controls (P < 0.05). CONCLUSIONS Significantly increased levels of PDGF-AA, MMP2, MMP3, MMP-7, MMP-8, PAI-1, and TSP-2 and lower levels of BMP-4 were found in the aqueous humor of RP patients. This result indicates a disturbance of the extracellular matrix (ECM) and cytokines in RP patients and suggests a possible role of these cytokines in the pathogenesis of capsular contraction syndrome (CCS) in RP patients.
Collapse
|
19
|
Zhang Z, Miao Y, Wang J, Zhou M, Fu M, Wang Y. Matricellular Protein Levels in Aqueous Humor and Surgical Outcomes of Trabeculectomy. Invest Ophthalmol Vis Sci 2019; 59:3906-3910. [PMID: 30073351 DOI: 10.1167/iovs.18-24534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to quantify levels of three matricellular proteins in the aqueous humor in patients with previous acute primary angle closure (APAC) and investigate their correlation with bleb morphology and surgical outcomes of trabeculectomy. Methods In this prospective study, aqueous humor samples were collected from 40 previous APAC eyes. Concentrations of three matricellular proteins-secreted protein acidic and rich in cysteine (SPARC), thrombospondin-2, and osteopontin-were measured using multiplexed immunoassays kits. Intraocular pressure was measured using Goldmann application tonometry. Bleb morphology was assessed using anterior segment optical coherence tomography, and bleb score was calculated according to bleb size and reflectivity. Results When previous APAC eyes were divided according to surgical outcome 18 months after trabeculectomy, SPARC protein was significantly higher in aqueous humor in the failure group (P = 0.009). When previous APAC eyes were divided according to SPARC level, eyes with low SPARC levels had significantly higher overall success rate compared with eyes with high SPARC levels (P = 0.005 for complete success and P = 0.018 for qualified success). Multiple logistic regression analyses showed that eyes with higher levels of SPARC were more likely to have a failed filtration surgery than were eyes with lower levels of SPARC. For complete success, P = 0.006 and odds ratio (OR) = 6.458; for qualified success, P = 0.033 and OR = 2.608. The level of SPARC was found to have a positive correlation with bleb score (P < 0.001, R2 = 0.471). Conclusions In previous APAC patients, the SPARC level in aqueous humor is a prognostic factor for surgical results of trabeculectomy. Modulation of SPARC expression may have potential clinical applications after filtration surgery.
Collapse
Affiliation(s)
- Zhihua Zhang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuyu Miao
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jing Wang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Minwen Zhou
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mingshui Fu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
20
|
Swaminathan SS, Monsalve P, Zhou XY, Enriquez-Algeciras M, Bhattacharya SK, Dubovy SR, Junk AK. Histologic Analysis of Trabecular Meshwork Obtained From Kahook Dual Blade Goniotomy. Am J Ophthalmol 2018; 192:198-205. [PMID: 29883587 DOI: 10.1016/j.ajo.2018.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine whether there are identifiable, reproducible findings in the trabecular meshwork (TM) of patients with primary open-angle glaucoma (POAG) who underwent Kahook Dual Blade (KDB) goniotomy. DESIGN Noncomparative retrospective case series. METHODS Tertiary academic referral center, Veterans Affairs Medical Center. Thirteen patients (14 eyes) with POAG (100%) were treated with KDB goniotomy from May to December 2017. Isolated TM tissue was collected from 9 patients (10 eyes) and submitted for histologic analysis. Hematoxylin-eosin, periodic acid-Schiff, and elastin Van Gieson stains were completed, in addition to immunohistochemistry for collagen IV. RESULTS Mean age of patients was 74.2 ± 6.7 years. Trabecular beams were identified in all 10 specimens, although distorted in 4 samples, of which 3 had a history of laser trabeculoplasty. Collagen IV staining was present in 10 of 10 samples, coating the trabecular beams. Elastin was present in 8 of 10 samples along the trabecular beams. Intraocular pressure and number of glaucoma medications decreased significantly in all cases postoperatively (P < .0001, P = .035, respectively). CONCLUSIONS This pilot study demonstrates that tissue obtained during KDB goniotomy has a high yield of containing TM compared to reported yield of TM in specimens collected from traditional ab externo trabeculectomy (71% vs 20%, respectively). These goniotomy specimens possess sufficient anatomic preservation to be studied histologically. Trabecular meshwork obtained with this procedure may provide a novel modality to study TM dysfunction in open-angle glaucomas.
Collapse
Affiliation(s)
- Swarup S Swaminathan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Pedro Monsalve
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiao Yi Zhou
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mabel Enriquez-Algeciras
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sander R Dubovy
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Florida Lions Ocular Pathology Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anna K Junk
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Miami Veterans Affairs Healthcare System, Miami, Florida, USA.
| |
Collapse
|
21
|
Vranka JA, Staverosky JA, Reddy AP, Wilmarth PA, David LL, Acott TS, Russell P, Raghunathan VK. Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Invest Ophthalmol Vis Sci 2018; 59:246-259. [PMID: 29340639 PMCID: PMC5770183 DOI: 10.1167/iovs.17-22759] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose The extracellular matrix (ECM) of the trabecular meshwork (TM) modulates resistance to aqueous humor outflow, thereby regulating IOP. Glaucoma, a leading cause of irreversible blindness worldwide, is associated with changes in the ECM of the TM. The elastic modulus of glaucomatous TM is larger than age-matched normal TM; however, the biomechanical properties of segmental low (LF) and high flow (HF) TM regions and their response to elevated pressure, are unknown. Methods We perfused human anterior segments at two pressures using an ex vivo organ culture system. After extraction, we measured the elastic modulus of HF and LF TM regions by atomic force microscopy and quantitated protein differences by proteomics analyses. Results The elastic modulus of LF regions was 2.3-fold larger than HF regions at physiological (1×) pressure, and 7.4-fold or 3.5-fold larger than HF regions at elevated (2×) pressure after 24 or 72 hours, respectively. Using quantitative proteomics, comparisons were made between HF and LF regions at 1× or 2× pressure. Significant ECM protein differences were observed between LF and HF regions perfused at 2×, and between HF regions at 1× compared to 2× pressures. Decorin, TGF-β–induced protein, keratocan, lumican, dermatopontin, and thrombospondin 4 were common differential candidates in both comparisons. Conclusions These data show changes in biomechanical properties of segmental regions within the TM in response to elevated pressure, and levels of specific ECM proteins. Further studies are needed to determine whether these ECM proteins are specifically involved in outflow resistance and IOP homeostasis.
Collapse
Affiliation(s)
- Janice A Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Julia A Staverosky
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ashok P Reddy
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, United States
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, United States.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Larry L David
- Proteomics Shared Resources, Oregon Health & Science University, Portland, Oregon, United States.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.,Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, United States
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, United States
| |
Collapse
|
22
|
Wang J, Fu M, Liu K, Wang N, Zhang Z, Zhou M, Xu X. Matricellular Proteins Play a Potential Role in Acute Primary Angle Closure. Curr Eye Res 2018; 43:771-777. [PMID: 29558210 DOI: 10.1080/02713683.2018.1449222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To quantify levels of matricellular proteins in aqueous humor samples from acute primary angle closure (APAC) and non-glaucomatous cataract eyes and investigate their correlation with intraocular pressure (IOP) fluctuation. MATERIALS AND METHODS Aqueous humor samples were collected from 63 eyes including 29 current APAC eyes, 12 previous APAC eyes, and 22 cataract eyes. Concentrations of four main matricellular proteins (SPARC, tenascin-C, thrombospondin-2, and osteopontin) were measured using multiplexed immunoassay kits. Correlations between matricellular proteins and age, sex, and IOP were then detected using Spearman's rank correlation coefficient. RESULTS The levels of SPARC, thrombospondin-2, and osteopontin were significantly elevated in the APAC group as compared to the cataract group (p < 0.001, p < 0.001, and p = 0.009, respectively). Further separation of the APAC group into current and previous APAC groups showed that only the differences of SPARC and thrombospondin-2 between the current APAC and cataract groups were significant (both p < 0.001). All four matricellular proteins were found to have a positive correlation with IOP in the current APAC group but no correlation was found in the previous APAC or cataract groups. CONCLUSIONS The levels of matricellular proteins were significantly elevated in the current APAC eyes and positively correlated to IOP. Further studies are necessary to investigate the molecular mechanisms and histological evidence of pathogenesis in matricellular proteins in APAC.
Collapse
Affiliation(s)
- Jing Wang
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| | - Mingshui Fu
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| | - Kun Liu
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| | - Ning Wang
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| | - Zhihua Zhang
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| | - Minwen Zhou
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| | - Xun Xu
- a Department of Ophthalmology , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China.,b Shanghai Key Laboratory of Fundus Disease , Shanghai , China
| |
Collapse
|
23
|
Raghunathan V, Eaton JS, Christian BJ, Morgan JT, Ver Hoeve JN, Yang CYC, Gong H, Rasmussen CA, Miller PE, Russell P, Nork TM, Murphy CJ. Biomechanical, ultrastructural, and electrophysiological characterization of the non-human primate experimental glaucoma model. Sci Rep 2017; 7:14329. [PMID: 29085025 PMCID: PMC5662689 DOI: 10.1038/s41598-017-14720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/13/2017] [Indexed: 11/08/2022] Open
Abstract
Laser-induced experimental glaucoma (ExGl) in non-human primates (NHPs) is a common animal model for ocular drug development. While many features of human hypertensive glaucoma are replicated in this model, structural and functional changes in the unlasered portions of trabecular meshwork (TM) of laser-treated primate eyes are understudied. We studied NHPs with ExGl of several years duration. As expected, ExGl eyes exhibited selective reductions of the retinal nerve fiber layer that correlate with electrophysiologic measures documenting a link between morphologic and elctrophysiologic endpoints. Softening of unlasered TM in ExGl eyes compared to untreated controls was observed. The degree of TM softening was consistent, regardless of pre-mortem clinical findings including severity of IOP elevation, retinal nerve fiber layer thinning, or electrodiagnostic findings. Importantly, this softening is contrary to TM stiffening reported in glaucomatous human eyes. Furthermore, microscopic analysis of unlasered TM from eyes with ExGl demonstrated TM thinning with collapse of Schlemm's canal; and proteomic analysis confirmed downregulation of metabolic and structural proteins. These data demonstrate unexpected and compensatory changes involving the TM in the NHP model of ExGl. The data suggest that compensatory mechanisms exist in normal animals and respond to elevated IOP through softening of the meshwork to increase outflow.
Collapse
Affiliation(s)
- VijayKrishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- The Ocular Surface Institute, Department of Basic Sciences, College of Optometry, University of Houston, Houston, Texas, 77204, United States of America
| | - J Seth Eaton
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
| | - Brian J Christian
- Covance Laboratories, Inc., Madison, Wisconsin, 53704, United States of America
| | - Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
| | - James N Ver Hoeve
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53792, United States of America
| | - Chen-Yuan Charlie Yang
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
- Department of Ophthalmology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
| | - Haiyan Gong
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
- Department of Ophthalmology, School of Medicine, Boston University, Boston, Massachusetts, 02118, United States of America
| | - Carol A Rasmussen
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53792, United States of America
| | - Paul E Miller
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, 53706, United States of America
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America
| | - T Michael Nork
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America.
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, Wisconsin, 53792, United States of America.
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, California, 95616, United States of America.
- Ocular Services On Demand (OSOD), Madison, Wisconsin, 53719, United States of America.
- Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Sacramento, California, 95817, United States of America.
| |
Collapse
|
24
|
Matušková V, Balcar VJ, Khan NA, Bonczek O, Ewerlingová L, Zeman T, Kolář P, Vysloužilová D, Vlková E, Šerý O. CD36 gene is associated with intraocular pressure elevation after intravitreal application of anti-VEGF agents in patients with age-related macular degeneration: Implications for the safety of the therapy. Ophthalmic Genet 2017; 39:4-10. [DOI: 10.1080/13816810.2017.1326508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Veronika Matušková
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Vladimir J. Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Naim A. Khan
- Physiologie de la Nutrition et Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| | - Ondřej Bonczek
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Laura Ewerlingová
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Kolář
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Daniela Vysloužilová
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Eva Vlková
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
25
|
Al-Dabbagh N, Al-Shahrani H, Al-Dohayan N, Mustafa M, Arfin M, Al-Asmari AK. The SPARC-related modular calcium binding protein 2 ( SMOC2) gene polymorphism in primary glaucoma: a case-control study. Clin Ophthalmol 2017; 11:549-555. [PMID: 28356709 PMCID: PMC5367611 DOI: 10.2147/opth.s126459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Primary glaucomas are among the most common eye diseases that may potentially result in bilateral blindness. Both genetics and environmental factors are reported to be involved in the etiology of primary glaucomas. Secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding protein 2 (SMOC2) is a matricellular glycoprotein encoded by the SMOC2 gene and known to regulate the expression of extracellular matrix (ECM) proteins and matrix metalloproteinases (MMPs), which play an important role in the pathogenesis of primary glaucomas. The frequencies of alleles and genotypes of SMOC2 variants were examined in 406 Saudi subjects, including primary open angle glaucoma (POAG, n=140) and primary angle closure glaucoma (PACG, n=64) patients and 202 matched healthy controls using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Genotyping of SMOC2 polymorphism (rs13208776) revealed a significantly higher frequency of the heterozygous genotype GA (P<0.01) and a lower frequency of wild type GG genotype (P=0.05) in glaucoma patients compared to the controls. Upon stratification of the patients on the basis of types of glaucoma, PACG patients had a significantly higher frequency of GA genotype as compared to the controls (P<0.01), whereas there was no significant difference between the POAG patient and control groups in frequencies of SMOC2 alleles and genotypes. Further, there was no significant difference in frequency distribution of alleles and genotypes between male and female patients. This study indicates that the GA genotype of SMOC2 (G>A) polymorphism is significantly associated with PACG and may be a risk factor. However, further large-scale studies in the Saudi population as well as in other ethnic populations are needed to confirm this association.
Collapse
Affiliation(s)
| | | | | | - Md Mustafa
- Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Misbahul Arfin
- Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | |
Collapse
|
26
|
Bermudez JY, Webber HC, Brown B, Braun TA, Clark AF, Mao W. A Comparison of Gene Expression Profiles between Glucocorticoid Responder and Non-Responder Bovine Trabecular Meshwork Cells Using RNA Sequencing. PLoS One 2017; 12:e0169671. [PMID: 28068412 PMCID: PMC5222504 DOI: 10.1371/journal.pone.0169671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/20/2016] [Indexed: 11/23/2022] Open
Abstract
The most common ocular side effect of glucocorticoid (GC) therapy is GC-induced ocular hypertension (OHT) and GC-induced glaucoma (GIG). GC-induced OHT occurs in about 40% of the general population, while the other 60% are resistant. This study aims to determine the genes and pathways involved in differential GC responsiveness in the trabecular meshwork (TM). Using paired bovine eyes, one eye was perfusion-cultured with 100nM dexamethasone (DEX), while the fellow eye was used to establish a bovine TM (BTM) cell strain. Based on maximum IOP change in the perfused eye, the BTM cell strain was identified as a DEX-responder or non-responder strain. Three responder and three non-responder BTM cell strains were cultured, treated with 0.1% ethanol or 100nM DEX for 7 days. RNA and proteins were extracted for RNA sequencing (RNAseq), qPCR, and Western immunoblotting (WB), respectively. Data were analyzed using the human and bovine genome databases as well as Tophat2 software. Genes were grouped and compared using Student’s t-test. We found that DEX induced fibronectin expression in responder BTM cells but not in non-responder cells using WB. RNAseq showed between 93 and 606 differentially expressed genes in different expression groups between responder and non-responder BTM cells. The data generated by RNAseq were validated using qPCR. Pathway analyses showed 35 pathways associated with differentially expressed genes. These genes and pathways may play important roles in GC-induced OHT and will help us to better understand differential ocular responsiveness to GCs.
Collapse
Affiliation(s)
- Jaclyn Y. Bermudez
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
| | - Hannah C. Webber
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
| | - Bartley Brown
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, United States of America
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Terry A. Braun
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
- Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA, United States of America
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Abbot F. Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
| | - Weiming Mao
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd. Fort Worth, TX, United States of America
- * E-mail:
| |
Collapse
|
27
|
Takayama I, Tanabe H, Nishiyama T, Ito H, Amizuka N, Li M, Katsube KI, Kii I, Kudo A. Periostin is required for matricellular localization of CCN3 in periodontal ligament of mice. J Cell Commun Signal 2016; 11:5-13. [PMID: 28013443 DOI: 10.1007/s12079-016-0371-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/14/2016] [Indexed: 01/08/2023] Open
Abstract
CCN3 is a matricellular protein that belongs to the CCN family. CCN3 consists of 4 domains: insulin-like growth factor-binding protein-like domain (IGFBP), von Willebrand type C-like domain (VWC), thrombospondin type 1-like domain (TSP1), and the C-terminal domain (CT) having a cysteine knot motif. Periostin is a secretory protein that binds to extracellular matrix proteins such as fibronectin and collagen. In this study, we found that CCN3 interacted with periostin. Immunoprecipitation analysis revealed that the TSP1-CT interacted with the 4 repeats of the Fas 1 domain of periostin. Immunofluorescence analysis showed co-localization of CCN3 and periostin in the periodontal ligament of mice. In addition, targeted disruption of the periostin gene in mice decreased the matricellular localization of CCN3 in the periodontal ligament. Thus, these results indicate that periostin was required for the matricellular localization of CCN3 in the periodontal ligament, suggesting that periostin mediated an interaction between CCN3 and the extracellular matrix.
Collapse
Affiliation(s)
- Issei Takayama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Hideyuki Tanabe
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Takashi Nishiyama
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke-Shi, Tochigi, Japan
| | - Harumi Ito
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Norio Amizuka
- Division of Oral Health Science, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Minqi Li
- Division of Oral Health Science, Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Department of Bone Metabolism, School of Stomatology, Shandong University, Wenhua West Road 44-1, Jinan, 250012, China
| | - Ken-Ichi Katsube
- Department of Molecular Pathology, Graduate School of Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.,Department of Nursing Science, Faculty of Human Care, Tohto College of Health Sciences, Saitama, Japan
| | - Isao Kii
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Akira Kudo
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-33, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
28
|
Carnes MU, Allingham RR, Ashley-Koch A, Hauser MA. Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing. Exp Eye Res 2016; 167:91-99. [PMID: 27914989 DOI: 10.1016/j.exer.2016.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE To characterize the transcriptional landscape of human adult and fetal trabecular meshwork (TM), cornea, and ciliary body (CB) tissues, and to evaluate the expression level of candidate genes selected from genetic association studies of primary-open angle glaucoma, central corneal thickness, intraocular pressure, vertical cup to disc ratio, and optic nerve parameters. METHODS Deep RNA sequencing was performed on the selected human tissues. Transcriptome analyses were performed to 1) characterize the total number of expressed genes, 2) identify the most highly expressed genes, 3) estimate the number of novel transcripts, and 4) evaluate the expression of candidate genes in each tissue. Finally, a differential gene expression analysis was conducted to compare the adult and fetal ocular tissues. RESULTS There was an average of 12,362 protein coding genes and 3725 novel transcripts expressed in each tissue. The top most expressed genes in each tissue included SPARC (fetal cornea and TM), APOD (adult TM), CLU (adult cornea), and PTGDS (adult and fetal CB). Twenty-nine candidate genes selected from genetic association studies primarily showed high expression levels in the trabecular meshwork and cornea. Comparison of adult and fetal samples identified 2012 and 1261 differentially expressed protein-coding genes within the cornea and trabecular meshwork, respectively. CONCLUSIONS This study has provided an unbiased glimpse into the transcriptome of three essential anterior ocular tissues, resulting in the development of several novel hypotheses. These data can be used in the future to better guide ocular research questions.
Collapse
Affiliation(s)
- Megan Ulmer Carnes
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - R Rand Allingham
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Allison Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, USA; Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Michael A Hauser
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA; Duke Molecular Physiology Institute, Durham, NC, USA
| |
Collapse
|
29
|
Paula JS, O'Brien C, Stamer WD. Life under pressure: The role of ocular cribriform cells in preventing glaucoma. Exp Eye Res 2016; 151:150-9. [PMID: 27567558 DOI: 10.1016/j.exer.2016.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 02/08/2023]
Abstract
Primary open-angle glaucoma is a multifactorial blinding disease often impacting the two pressure-sensitive regions of the eye: the conventional outflow pathway and the optic nerve head (ONH). The connective tissues that span these two openings in the globe are the trabecular meshwork of the conventional outflow pathway and the lamina cribrosa of the ONH. Resident cribiform cells of these two regions are responsible for actively remodeling and maintaining their connective tissues. In glaucoma, aberrant maintenance of the juxtacanalicular tissues (JCT) of the conventional outflow pathway results in ocular hypertension and pathological remodeling of the lamina cribrosa results in ONH cupping, damaging retinal ganglion cell axons. Interestingly, cells cultured from the lamina cribrosa and the JCT of the trabecular meshwork have similarities regarding gene expression, protein production, plus cellular responses to growth factors and mechanical stimuli. This review compares and contrasts the current knowledge of these two cell types, whose health is critical for protecting the eye from glaucomatous changes. In response to pressure gradients across their respective cribiform tissues, the goal is to better understand and differentiate healthy from pathological behavior of these two cell types.
Collapse
Affiliation(s)
- Jayter S Paula
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Colm O'Brien
- Ophthalmology, UCD School of Medicine, Mater Hospital, Dublin, Ireland
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
30
|
Yang Q, Lu H, Song X, Li S, Wei W. iTRAQ-Based Proteomics Investigation of Aqueous Humor from Patients with Coats' Disease. PLoS One 2016; 11:e0158611. [PMID: 27416065 PMCID: PMC4944970 DOI: 10.1371/journal.pone.0158611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Coats' disease is an uncommon form of retinal telangiectasis, and the identification of novel proteins that contribute to the development of Coats' disease is useful for improving treatment efficacy. Proteomic techniques have been used to study many eye diseases; however, few studies have used proteomics to study the development of Coats' disease. Methods Isobaric tagging for relative and absolute protein quantification (iTRAQ) was employed to screen differentially expressed proteins (DEPs) in the aqueous humor (AH) between stage 3A patients (n = 8), stage 3B patients (n = 14), stage 4 patients (n = 2) and control patients (n = 20). Differentially co-expressed proteins (DCPs) were present in all three stages of Coats' disease and were considered disease-specific proteins. These proteins were further analyzed using Gene Ontology (GO) functional annotations. Results A total of 819 proteins were identified in the AH, 222 of which were significantly differentially expressed (fold change > 2 and P < 0.05) in the samples from at least one stage of Coats' disease. Of the DEPs, 46 were found among all three stages of Coats' disease and the controls; therefore, they were considered Coats' disease-specific proteins (DCPs). A GO classification analysis indicated that the DCPs were closely related to structural molecule activity, cell adhesion molecule binding and receptor binding. Western blotting confirmed the expression levels of haptoglobin and apolipoprotein C-I were significantly up-regulated in Coats’ disease. Conclusions The 46 Coats' disease-specific proteins may provide additional insights into the mechanism of Coats' disease and represent potential biomarkers for identifying individuals with Coats' disease.
Collapse
Affiliation(s)
- Qiong Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Hai Lu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Xudong Song
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Songfeng Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology and Visual Science Key Lab, Beijing, 100730, China
- * E-mail:
| |
Collapse
|
31
|
Vranka JA, Acott TS. Pressure-induced expression changes in segmental flow regions of the human trabecular meshwork. Exp Eye Res 2016; 158:67-72. [PMID: 27334250 DOI: 10.1016/j.exer.2016.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/11/2016] [Accepted: 06/16/2016] [Indexed: 10/24/2022]
Abstract
Elevated intraocular pressure (IOP) is thought to create distortion or stretching of the juxtacanalicular and Schlemm's canal cells and their extracellular matrix (ECM) leading to a cascade of events that restore IOP to normal levels, a process termed IOP homeostasis. The ECM of the trabecular meshwork (TM) is intricately involved in the regulation of outflow resistance and IOP homeostasis, as matrix metalloproteinase (MMP)-initiated ECM turnover in the TM is necessary to maintain outflow facility. Previous studies have shown ECM gene expression and mRNA splice form differences in TM cells in response to sustained stretch, implicating their involvement in the dynamic process of IOP homeostasis. The observation that outflow is segmental around the circumference of the eye adds another layer of complexity to understanding the molecular events necessary to maintaining proper outflow facility. The aim of this work was to identify molecular expression differences between segmental flow regions of the TM from anterior segments perfused at either physiological or elevated pressure. Human anterior segments were perfused in an ex vivo model system, TM tissues were extracted and quantitative PCR arrays were performed. Comparisons were made between high flow and low flow regions of the TM from anterior segments perfused either at normal (8.8 mmHg) or at elevated (17.6 mmHg) perfusion pressure for 48 h. The results are presented here as independent sets: 1) fold change gene expression between segmental flow regions at a single perfusion pressure, and 2) fold change gene expression in response to elevated perfusion pressure in a single flow region. Multiple genes from the following functional families were found to be differentially expressed in segmental regions and in response to elevated pressure: collagens, ECM glycoproteins including matricellular proteins, ECM receptors such as integrins and adhesion molecules and ECM regulators, such as matrix metalloproteinases. In general, under normal perfusion pressure, more ECM genes were enriched in the high flow regions than in the low flow regions of the TM, whereas more ECM genes were found to be enriched in low flow regions of the TM in response to elevated perfusion pressure. Thus it appears that a limited subset of ECM genes is differentially regulated in both high and low flow regions and in response to elevated pressure. Some of these same ECM genes have previously been shown to be involved in the pressure response of stretched TM cells supporting their central role in IOP homeostasis. In general, different ECM gene family members are called upon to produce the response to elevated pressure in different segmental regions of the TM.
Collapse
Affiliation(s)
- Janice A Vranka
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Ted S Acott
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
32
|
The exit strategy: Pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage. Eur J Pharmacol 2016; 787:32-42. [PMID: 27112663 DOI: 10.1016/j.ejphar.2016.04.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/28/2023]
Abstract
Primary open angle glaucoma (POAG) is an optic neuropathy and an irreversible blinding disease. The etiology of glaucoma is not known but numerous risk factors are associated with this disease including aging, elevated intraocular pressure (IOP), race, myopia, family history and use of steroids. In POAG, the resistance to the aqueous humor drainage is increased leading to elevated IOP. Lowering the resistance and ultimately the IOP has been the only way to slow disease progression and prevent vision loss. The primary drainage pathway comprising of the trabecular meshwork (TM) is made up of relatively large porous beams surrounded by extracellular matrix (ECM). Its juxtacanalicular tissue (JCT) or the cribriform meshwork is made up of cells embedded in dense ECM. The JCT is considered to offer the major resistance to the aqueous humor outflow. This layer is adjacent to the endothelial cells forming Schlemm's canal, which provides approximately 10% of the outflow resistance. The ECM in the TM and the JCT undergoes continual remodeling to maintain normal resistance to aqueous humor outflow. It is believed that the TM is a major contributor of ECM proteins and evidence points towards increased ECM deposition in the outflow pathway in POAG. It is not clear how and from where the ECM components emerge to hinder the normal aqueous humor drainage. This review focuses on the involvement of the ECM in ocular hypertension and glaucoma and the mechanisms by which various ocular hypotensive drugs, both current and emerging, target ECM production, remodeling, and deposition.
Collapse
|
33
|
Wiggs JL. Glaucoma Genes and Mechanisms. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:315-42. [PMID: 26310163 DOI: 10.1016/bs.pmbts.2015.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies have yielded important genes contributing to both early-onset and adult-onset forms of glaucoma. The proteins encoded by the current collection of glaucoma genes participate in a broad range of cellular processes and biological systems. Approximately half the glaucoma-related genes function in the extracellular matrix, however proteins involved in cytokine signaling, lipid metabolism, membrane biology, regulation of cell division, autophagy, and ocular development also contribute to the disease pathogenesis. While the function of these proteins in health and disease are not completely understood, recent studies are providing insight into underlying disease mechanisms, a critical step toward the development of gene-based therapies. In this review, genes known to cause early-onset glaucoma or contribute to adult-onset glaucoma are organized according to the cell processes or biological systems that are impacted by the function of the disease-related protein product.
Collapse
Affiliation(s)
- Janey L Wiggs
- Harvard Medical School, and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.
| |
Collapse
|
34
|
Scavelli K, Chatterjee A, Rhee DJ. Secreted Protein Acidic and Rich in Cysteine in Ocular Tissue. J Ocul Pharmacol Ther 2015; 31:396-405. [PMID: 26167673 DOI: 10.1089/jop.2015.0057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also known as osteonectin or BM-40, is the prototypical matricellular protein. Matricellular proteins are nonstructural secreted proteins that provide an integration between cells and their surrounding extracellular matrix (ECM). Regulation of the ECM is important in maintaining the physiologic function of tissues. Elevated levels of SPARC have been identified in a variety of diseases involving pathologic tissue remodeling, such as hepatic fibrosis, systemic sclerosis, and certain carcinomas. Within the eye, SPARC has been identified in the trabecular meshwork, lens, and retina. Studies have begun to show the role of SPARC in these tissues and its possible role, specifically in primary open-angle glaucoma, cataracts, and proliferative vitreoretinopathy. SPARC may, therefore, be a therapeutic target in the treatment of certain ocular diseases. Further investigation into the mechanism of action of SPARC will be necessary in the development of SPARC-targeted therapy.
Collapse
Affiliation(s)
- Kurt Scavelli
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | - Ayan Chatterjee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| | - Douglas J Rhee
- Department of Ophthalmology and Visual Sciences, University Hospitals Eye Institute, Case Western Reserve University School of Medicine , Cleveland, Ohio
| |
Collapse
|
35
|
Murphy-Ullrich JE, Downs JC. The Thrombospondin1-TGF-β Pathway and Glaucoma. J Ocul Pharmacol Ther 2015; 31:371-5. [PMID: 26352161 DOI: 10.1089/jop.2015.0016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glaucoma is characterized by abnormal remodeling of the extracellular matrix (ECM) in the trabecular meshwork and in the connective tissue beams of the lamina cribrosa (LC) at the optic nerve head (ONH), which is associated with axonal damage. Mechanical strain can stimulate ECM remodeling and increased expression of matricellular proteins. Thrombospondins 1 and 2 are induced by cyclic mechanical strain in the eye in both the trabecular meshwork and in the LC region of the ONH. TGF-betas 1 and 2 are increased in glaucoma and play a role in the pathologic remodeling of the ECM in the eye in glaucoma. In this study, we address the role of thrombospondin1 as a regulator of latent TGF-beta activation and discuss the potential therapeutic use of antagonists of the thrombospondin1-TGF-beta pathway for treatment of glaucoma.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- 1 Department of Pathology, University of Alabama at Birmingham , Birmingham, Alabama.,2 Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama.,3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama
| | - J Crawford Downs
- 3 Department of Ophthalmology, University of Alabama at Birmingham , Birmingham, Alabama.,4 Department of Biomedical Engineering, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
36
|
Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 2015; 133:112-25. [PMID: 25819459 DOI: 10.1016/j.exer.2014.07.014] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 12/30/2022]
Abstract
The trabecular meshwork (TM) is located in the anterior segment of the eye and is responsible for regulating the outflow of aqueous humor. Increased resistance to aqueous outflow causes intraocular pressure to increase, which is the primary risk factor for glaucoma. TM cells reside on a series of fenestrated beams and sheets through which the aqueous humor flows to exit the anterior chamber via Schlemm's canal. The outer trabecular cells are phagocytic and are thought to function as a pre-filter. However, most of the outflow resistance is thought to be from the extracellular matrix (ECM) of the juxtacanalicular region, the deepest portion of the TM, and from the inner wall basement membrane of Schlemm's canal. It is becoming increasingly evident that the extracellular milieu is important in maintaining the integrity of the TM. In glaucoma, not only have ultrastructural changes been observed in the ECM of the TM, and a significant number of mutations in ECM genes been noted, but the stiffness of glaucomatous TM appears to be greater than that of normal tissue. Additionally, TGFβ2 has been found to be elevated in the aqueous humor of glaucoma patients and is assumed to be involved in ECM changes deep with the juxtacanalicular region of the TM. This review summarizes the current literature on trabecular ECM as well as the development and function of the TM. Animal models and organ culture models targeting specific ECM molecules to investigate the mechanisms of glaucoma are described. Finally, the growing number of mutations that have been identified in ECM genes and genes that modulate ECM in humans with glaucoma are documented.
Collapse
Affiliation(s)
- Janice A Vranka
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J Kelley
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ted S Acott
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|