1
|
Thattil SJ, Dhanaraj S, Ajith TA. Molecular Characteristics of Cephalosporin Resistant Escherichia coli and
Klebsiella pneumoniae Isolated from Children in a Tertiary Care Centre of
Central Kerala, India. ANTI-INFECTIVE AGENTS 2024; 22. [DOI: 10.2174/0122113525296665240304071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 07/31/2024]
Abstract
Aims:
The study was aimed to determine the molecular characteristics of extended-spectrum beta-lactamases (ESBL) producing cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolated from children below ten years of age.
Background:
Geographically diverse variations in the prevalence of ESBL genes were reported. No data were available on the prevalence of ESBL genes in central Kerala, India, among children below 10 years of age.
Methods:
A cross-sectional study was performed to analyze ESBL genes in cephalosporin-re-sistant E. coli and K. pneumoniae strains isolated from samples received in the Microbiology la-boratory of a tertiary care centre during the period between May 2021 and July 2022. The strains showed that ESBL + cephalosporin resistance was subjected to PCR-based genotyping for the genes such as bla (beta-lactamase) CTX-M-1, blaCTX-M-15, blaCTX-M-U, blaTEM, blaPER and SHV.
Results:
Among the total 228 samples analyzed, 136 (60%) had no growth. Ninety-two (40 %) samples showed growth of E. coli and K. pneumoniae. Among the isolates that showed growth, 39 (42%) were sensitive, and the remaining 53 (57%) were resistant to third-generation cephalospor-ins. Among the isolates showed resistance, 22 (42%) were ESBL positive and 31 (58%) were ESBL negative. Among the positive ESBL, nine E. coli strains (60%) were positive for CTX-M-15 and CTX-M-1. CTX-M-15 and CTX-M-U were present in six (85%) K. pneumoniae with ESBL +.
Conclusion:
E. coli and K. pneumoniae isolated from specimens of children below ten years of age showed 41-42% ESBL producers. Prevalent ESBL-producing genes in E. coli were CTX-M-15 and CTX-M-1. CTX-M-15 and CTX-M-U were prevalent in ESBL-producing K. pneumoniae.
Collapse
Affiliation(s)
- Santhosh J Thattil
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, 600117,
Tamil Nadu, India
- Department of Microbiology, Nyle Hospital, Kaiparambu, Thrissur, 680546, Kerala, India
| | - Suresh Dhanaraj
- Department of Microbiology, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai, 600117,
Tamil Nadu, India
| | - Thekkuttuparambil A Ajith
- Department
of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, 680555, Kerala, India
| |
Collapse
|
2
|
da Silva SKSM, Fuentes-Castillo DA, Ewbank AC, Sacristán C, Catão-Dias JL, Sevá AP, Lincopan N, Deem SL, Feitosa LCS, Catenacci LS. ESBL-Producing Enterobacterales at the Human-Domestic Animal-Wildlife Interface: A One Health Approach to Antimicrobial Resistance in Piauí, Northeastern Brazil. Vet Sci 2024; 11:195. [PMID: 38787167 PMCID: PMC11125940 DOI: 10.3390/vetsci11050195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The use, misuse, and overuse of antimicrobials is one of the main public health threats of the 21st century. We investigated the risk factor of the presence of extended-spectrum, cephalosporin-resistant Enterobacterales in feces of non-domestic and domestic birds and other domestic animals in Piauí State, northeast Brazil. We collected a total of 387 cloacal and rectal swab samples of free-living birds, domestic birds, and domestic mammals in five municipalities: Amarante, Água Branca, Lagoa Alegre, Parnaíba, and Teresina. A total of 59/387 (15.2%) of these samples harbored extended spectrum beta-lactamase (ESBL)-producing Enterobacterales. Using the MALDI-TOF technique, we identified fifty-seven samples as Escherichia coli and two samples as Klebsiella pneumoniae. Teresina and Parnaíba had the highest prevalence of animals with resistant bacteria (32.1% and 27.1%, respectively) and highest exposure risk factor (OR of 16.06 and 8.58, respectively, and p < 0.001 for all). Multidrug-resistant, ESBL-producing Enterobacterales were observed in 72.8% of the samples (43/59). For the free-living birds, the positive samples belonged to a great kiskadee (Pitangus sulphuratus) and a semipalmated sandpiper (Calidris pusilla) in migratory and resident species, respectively. For domestic animals, the swine samples showed the highest prevalence of antimicrobial resistance. The lack of access to veterinary care and information regarding antimicrobial therapy, along with the easy access to antimicrobials without medical prescription, favors the inadequate use of antimicrobials in Piauí.
Collapse
Affiliation(s)
- Sandy Kelly S. M. da Silva
- Programa de Pós-Graduação Saúde Animal na Amazônia, Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil
| | - Danny A. Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción (UDEC), Concepción 4070409, Chile;
| | - Ana Carolina Ewbank
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28130 Valdeolmos, Spain; (A.C.E.)
| | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), Consejo Superior de Investigaciones Científicas (CSIC), 28130 Valdeolmos, Spain; (A.C.E.)
| | - José L. Catão-Dias
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo (USP), São Paulo 05508-270, Brazil
| | - Anaiá P. Sevá
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz (UESC), Bahia 45662-900, Brazil
| | - Nilton Lincopan
- Laboratório de Resistência Bacteriana e Alternativas Terapêuticas, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-220, Brazil
| | - Sharon L. Deem
- Saint Loius Zoo, Institute for Conservation Medicine, St. Louis, MO 63110, USA
| | - Lauro C. S. Feitosa
- Centro de Inteligência em Agravos Tropicais Emergentes e Negligenciados (CIATEN) e Centro de Ciências Agrárias (CCA), Universidade Federal do Piauí (UFPI), Piauí 64049-550, Brazil;
| | - Lilian S. Catenacci
- Programa de Pós-Graduação Saúde Animal na Amazônia, Universidade Federal do Pará (UFPA), Belém 66075-110, Brazil
- Saint Loius Zoo, Institute for Conservation Medicine, St. Louis, MO 63110, USA
- Centro de Inteligência em Agravos Tropicais Emergentes e Negligenciados (CIATEN) e Centro de Ciências Agrárias (CCA), Universidade Federal do Piauí (UFPI), Piauí 64049-550, Brazil;
| |
Collapse
|
3
|
Araújo L, Papa-Ezdra R, Ávila P, Iribarnegaray V, Bado I, Telechea H, Garcia-Fulgueiras V, Vignoli R. Great Plasticity in a Great Pathogen: Capsular Types, Virulence Factors and Biofilm Formation in ESBL-Producing Klebsiella pneumoniae from Pediatric Infections in Uruguay. Antibiotics (Basel) 2024; 13:170. [PMID: 38391556 PMCID: PMC10886282 DOI: 10.3390/antibiotics13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Klebsiella pneumoniae is widely recognized as an opportunistic hospital and community pathogen. It is one of the priority microorganisms included in the ESKAPE group, and its antibiotic resistance related to extended-spectrum β-lactamases (ESBL) is a global public health concern. The multi-drug resistance (MDR) phenotype, in combination with pathogenicity factors, could enhance the ability of this pathogen to cause clinical infections. The aim of this study was to characterize pathogenicity factors and biofilm formation in ESBL-producing K. pneumoniae from pediatric clinical infections. Capsular types, virulence factors, and sequence types were characterized by PCR. Biofilm formation was determined by a semiquantitative microtiter technique. MDR phenotype and statistical analysis were performed. The K24 capsular type (27%), virulence factors related to iron uptake fyuA (35%) and kfuBC (27%), and sequence types ST14 (18%) and ST45 (18%) were the most frequently detected. Most of the strains were biofilm producers: weak (22%), moderate (22%), or strong (12%). In 62% of the strains, an MDR phenotype was detected. Strains with K24 capsular type showed an association with ST45 and the presence of fyuA; strains with kfuBC showed an association with moderate or strong biofilm production and belonging to ST14. Weak or no biofilm producers were associated with the absence of kfuBC. The MDR phenotype was associated with the main ESBL gene, blaCTX-M-15. The high plasticity of K. pneumoniae to acquire an MDR phenotype, in combination with the factors exposed in this report, could make it even more difficult to achieve a good clinical outcome with the available therapeutics.
Collapse
Affiliation(s)
- Lucía Araújo
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Romina Papa-Ezdra
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Pablo Ávila
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Victoria Iribarnegaray
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Departamento de Patobiología, Facultad de Veterinaria, Universidad de la República, Montevideo 12100, Uruguay
| | - Inés Bado
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Hector Telechea
- Unidad Cuidados Intensivos Pediátricos, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Virginia Garcia-Fulgueiras
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Rafael Vignoli
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
4
|
Wang W, Wei X, Zhu Z, Wu L, Zhu Q, Arbab S, Wang C, Bai Y, Wang Q, Zhang J. Tn3-like structures co-harboring of bla CTX-M-65, bla TEM-1 and bla OXA-10 in the plasmids of two Escherichia coli ST1508 strains originating from dairy cattle in China. BMC Vet Res 2023; 19:279. [PMID: 38110972 PMCID: PMC10729465 DOI: 10.1186/s12917-023-03847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
The purpose of this study was to determine the level of horizontal transmission of the blaCTX-M-65 gene and the role of its associated mobile genetic elements (MGEs) in the bovine-derived Escherichia coli. After PCR identification, two plasmids carrying blaCTX-M-65 were successfully transferred to the recipient E. coli J53 Azr through conjugation assays and subsequently selected for Whole-Genome sequencing (WGS) analysis. The resistance profiles of these two positive strains and their transconjugants were also determined through antimicrobial susceptibility tests. Whole genome data were acquired using both the PacBio sequencing platform and the Illumina data platform. The annotated results were then submitted to the Genbank database for accession number recording. For comparison, the genetic environment of plasmids carrying the resistance gene blaCTX-M-65 was mapped using the Easyfig software. WGS analysis revealed Tn3-like composite transposons bearing blaCTX-M-65, blaTEM-1, and blaOXA-10 in the IncHI2-type plasmids of these two E. coli ST1508 strains. A phylogenetic tree was generated from all 48 assembled E. coli isolates blaCTX-M-65, blaTEM-1, and blaOXA-10 from the NCBI Pathogen Detection database with our two isolates, showing the relationships and the contribution of SNPs to the diversity between genetic samples. This study suggests that the transmissibility of blaCTX-M-65 on Tn3-like composite transposons contributes to an increased risk of its transmission in E. coli derived from dairy cattle.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
| | - Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, People's Republic of China
| | - Lingyu Wu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
| | - Qiqi Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, People's Republic of China
| | - Safia Arbab
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
| | - Chengye Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, 056038, People's Republic of China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
| | - Qing Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China
- College of Veterinary Medicines, Gansu Agriculture University, Lanzhou, Gansu Province, 730070, People's Republic of China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, 730050, People's Republic of China.
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China.
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Jiangouyan, Qilihe District, Lanzhou, Gansu Province, 730050, People's Republic of China.
| |
Collapse
|
5
|
Guidone GHM, Cardozo JG, Silva LC, Sanches MS, Galhardi LCF, Kobayashi RKT, Vespero EC, Rocha SPD. Epidemiology and characterization of Providencia stuartii isolated from hospitalized patients in southern Brazil: a possible emerging pathogen. Access Microbiol 2023; 5:000652.v4. [PMID: 37970084 PMCID: PMC10634494 DOI: 10.1099/acmi.0.000652.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/08/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to characterize the virulence factors and antimicrobial resistance of Providencia stuartii , an opportunistic pathogen that causes human infections. We examined 45 isolates of P. stuartii both genotypically and phenotypically by studying their adherence to HeLa cells, biofilm formation, cytotoxicity and antimicrobial resistance, and analysed their genomes for putative virulence and resistance genes. This study found that most isolates possessed multiple virulence genes, including fimA, mrkA, fptA, iutA, ireA and hlyA, and were cytotoxic to Vero cells. All the isolates were resistant to amoxicillin plus clavulanic acid, levofloxacin and sulfamethoxazole plus trimethoprim, and most were resistant to ceftriaxone and cefepime. All isolates harboured extended-spectrum beta-lactamase coding genes such as bla CTX-M-2 and 23/45(51.11 %) of them also harboured bla CTX-M-9. The gene KPC-2 (carbapenemase) was detected in 8/45(17.77 %) isolates. This study also found clonality among the isolates, indicating the possible spread of the pathogen among patients at the hospital. These results have significant clinical and epidemiological implications and emphasize the importance of a continued understanding of the virulence and antimicrobial resistance of this pathogen for the prevention and treatment of future infections.
Collapse
Affiliation(s)
| | - Jennifer Germiniani Cardozo
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Matheus Silva Sanches
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Ligia Carla Faccin Galhardi
- Virology Laboratory, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical and Toxicological Analysis, Health Sciences Center, University Hospital of Londrina, State University of Londrina, Paraná, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
6
|
Kon H, Lurie-Weinberger M, Cohen A, Metsamber L, Keren-Paz A, Schwartz D, Carmeli Y, Schechner V. Occurrence, Typing, and Resistance Genes of ESBL/AmpC-Producing Enterobacterales in Fresh Vegetables Purchased in Central Israel. Antibiotics (Basel) 2023; 12:1528. [PMID: 37887229 PMCID: PMC10604292 DOI: 10.3390/antibiotics12101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Beta-lactam resistance can lead to increased mortality, higher healthcare expenses, and limited therapeutic options. The primary mechanism of beta-lactam resistance is the production of extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases. The spread of beta-lactamase-producing Enterobacterales via the food chain may create a resistance reservoir. The aims of this study were to determine the prevalence of ESBL/AmpC-producing Enterobacterales in vegetables, to examine the association between EBSL/AmpC-producing bacteria and types of vegetables, packaging, and markets, and to investigate the genetic features of ESBL-producing isolates. The antibiotic susceptibilities were determined using VITEK. Phenotypic ESBL/AmpC production was confirmed using disk diffusion. ESBL-producing isolates were subjected to Fourier-transform infrared (FT-IR) spectroscopy and to whole genome sequencing using Oxford Nanopore sequencing technology. Of the 301 vegetable samples, 20 (6.6%) were positive for ESBL producers (16 Klebsiella pneumoniae and 4 Escherichia coli), and 63 (20.9%) were positive for AmpC producers (56 Enterobacter cloacae complex, 4 Enterobacter aerogenes/cancerogenus, and 3 Pantoea spp., Aeromonas hydrophila, and Citrobacter braakii). The blaCTX-M and blaSHV genes were most common among ESBL-producing isolates. The beta-lactamase genes of the ESBL producers were mainly carried on plasmids. Multilocus sequence typing and FT-IR typing revealed high diversity among the ESBL producers. AmpC producers were significantly more common in leafy greens and ESBL producers were significantly less common in climbing vegetables. The presence of ESBL/AmpC-producing Enterobacterales in raw vegetables may contribute to the dissemination of resistance genes in the community.
Collapse
Affiliation(s)
- Hadas Kon
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Mor Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Adi Cohen
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Liat Metsamber
- School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Alona Keren-Paz
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Vered Schechner
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel-Aviv 6423906, Israel; (H.K.); (M.L.-W.); (A.C.); (A.K.-P.); (D.S.); (Y.C.)
- School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| |
Collapse
|
7
|
Vázquez-López R, Hernández-Martínez T, Larios-Fernández SI, Piña-Leyva C, Lara-Lozano M, Guerrero-González T, Martínez-Bautista J, Gómez-Conde E, González-Barrios JA. Characterization of Beta-Lactam Resistome of Escherichia coli Causing Nosocomial Infections. Antibiotics (Basel) 2023; 12:1355. [PMID: 37760652 PMCID: PMC10525731 DOI: 10.3390/antibiotics12091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nosocomial infections caused by Escherichia coli pose significant therapeutic challenges due to the high expression of genes encoding antimicrobial drug resistance. In this study, we investigated the conformation of the beta-lactam resistome responsible for the specific pattern of resistance against beta-lactam antibiotics. A total of 218 Escherichia coli strains were isolated from in-hospital patients diagnosed with nosocomial infections, obtained from various sources such as urine (n = 49, 22.48%), vaginal discharge (n = 46, 21.10%), catheter tips (n = 14, 6.42%), blood (n = 13, 5.96%), feces (n = 12, 5.50%), sputum (n = 11, 5.05%), biopsies (n = 8, 3.67%), cerebrospinal fluid (n = 2, 0.92%) and other unspecified discharges (n = 63, 28.90%). To characterize the beta-lactam resistome, all strains were subjected to antibiotic dilution tests and grown in beta-lactam antibiotics supplemented with Luria culture medium. Subsequently, multiplex PCR and next-generation sequencing were conducted. The results show a multi-drug-resistance phenotype, particularly against beta-lactam drugs. The primary determinant of this resistance was the expression of the blaTEM gene family, with 209 positive strains (95.87%) expressing it as a single gene (n = 47, 21.6%) or in combination with other genes. Common combinations included blaTEM + blaCTX (n = 42, 19.3%), blaTEM + blaCTX + blaSHV (n = 13, 6%) and blaTEM + blaCTX + blaBIL (n = 12, 5.5%), among others. The beta-lactam resistome of nosocomial Escherichia coli strains isolated from inpatients at the "October first" Regional Hospital of ISSSTE was predominantly composed of members of the blaTEM gene family, expressed in various configurations along with different members of other beta-lactamase gene families.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
| | - Tanya Hernández-Martínez
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Selene Ivonne Larios-Fernández
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Celia Piña-Leyva
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Manuel Lara-Lozano
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Tayde Guerrero-González
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Javier Martínez-Bautista
- Laboratorio de Microbiología, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico;
| | - Eduardo Gómez-Conde
- Departamento de Inmunobiología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72420, Mexico;
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| |
Collapse
|
8
|
Liao M, Wu J, Li Y, Lu X, Tan H, Chen S, Huang W, Lian X, Sun J, Liao X, Liu Y, Feng S, Zhang R. Prevalence and Persistence of Ceftiofur-Resistant Escherichia coli in A Chicken Layer Breeding Program. Animals (Basel) 2022; 13:ani13010090. [PMID: 36611699 PMCID: PMC9817529 DOI: 10.3390/ani13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
We determined the longitudinal persistence of ceftiofur-resistant Escherichia coli from a chicken breeding farm in China. A total of 150 samples were collected from 5 breeding periods in a flock of layer hens, and the prevalence of ceftiofur-resistant E. coli fluctuated across the 5 chicken breeding stages: eggs, 3.33%; growing period, 100%; early laying period, 36.7%; peak laying period, 66.7% and late laying period, 80%. The most prevalent ceftiofur resistance genes were blaCTX-M-55, blaCMY and blaNDM, and ST101 was the most prevalent and persistent sequence type across the breeding periods. Our results indicated that this breeder flock was heavily contaminated by ST101 ceftiofur-resistant E. coli and that its presence should be intensively monitored on chicken farms.
Collapse
Affiliation(s)
- Meina Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaoqing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Huizhen Tan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Wenqing Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xinlei Lian
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Yahong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.F.); (R.Z.)
| | - Rongmin Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (S.F.); (R.Z.)
| |
Collapse
|
9
|
Ewbank AC, Fuentes-Castillo D, Sacristán C, Esposito F, Fuga B, Cardoso B, Godoy SN, Zamana RR, Gattamorta MA, Catão-Dias JL, Lincopan N. World Health Organization critical priority Escherichia coli clone ST648 in magnificent frigatebird (Fregata magnificens) of an uninhabited insular environment. Front Microbiol 2022; 13:940600. [PMID: 36033868 PMCID: PMC9410367 DOI: 10.3389/fmicb.2022.940600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance is an ancient natural phenomenon increasingly pressured by anthropogenic activities. Escherichia coli has been used as markers of environmental contamination and human-related activity. Seabirds may be bioindicators of clinically relevant bacterial pathogens and their antimicrobial resistance genes, including extended-spectrum-beta-lactamase (ESBL) and/or plasmid-encoded AmpC (pAmpC), in anthropized and remote areas. We evaluated cloacal swabs of 20 wild magnificent frigatebirds (Fregata magnificens) of the Alcatrazes Archipelago, the biggest breeding colony of magnificent frigatebirds in the southern Atlantic and a natural protected area with no history of human occupation, located in the anthropized southeastern Brazilian coast. We characterized a highly virulent multidrug-resistant ST648 (O153:H9) pandemic clone, harboring blaCTX–M–2, blaCMY–2, qnrB, tetB, sul1, sul2, aadA1, aac(3)-VIa and mdfA, and virulence genes characteristic of avian pathogenic (APEC) (hlyF, iroN, iss, iutA, and ompT) and other extraintestinal E. coli (ExPEC) (chuA, kpsMII, and papC). To our knowledge, this is the first report of ST648 E. coli co-producing ESBL and pAmpC in wild birds inhabiting insular environments. We suggest this potentially zoonotic and pathogenic lineage was likely acquired through indirect anthropogenic contamination of the marine environment, ingestion of contaminated seafood, or by intra and/or interspecific contact. Our findings reinforce the role of wild birds as anthropization sentinels in insular environments and the importance of wildlife surveillance studies on pathogens of critical priority classified by the World Health Organization.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana Carolina Ewbank,
| | - Danny Fuentes-Castillo
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
| | - Carlos Sacristán
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos-Alalpardo, Spain
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Silvia Neri Godoy
- Refúgio de Vida Silvestre do Arquipélago de Alcatrazes – Instituto Chico Mendes de Conservação da Biodiversidade, São Paulo, Brazil
| | - Roberta Ramblas Zamana
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Marco Aurélio Gattamorta
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Kumari N, Kumar M, Katiyar A, Kumar A, Priya P, Kumar B, Biswas NR, Kaur P. Genome-wide identification of carbapenem-resistant Gram-negative bacterial (CR-GNB) isolates retrieved from hospitalized patients in Bihar, India. Sci Rep 2022; 12:8477. [PMID: 35590022 PMCID: PMC9120164 DOI: 10.1038/s41598-022-12471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Carbapenemase-producing clinical isolates are becoming more common over the world, posing a severe public health danger, particularly in developing nations like India. Carbapenem-resistant Gram-negative bacterial (CR-GNB) infection has become a fast-expanding global threat with limited antibiotic choice and significant mortality. This study aimed to highlight the carbapenem-resistance among clinical isolates of hospital admitted patients in Bihar, India. A cross-sectional study was conducted with 101 clinical isolates of Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. All GNB isolates were tested for their antimicrobial susceptibility using Kirby-Bauer disc diffusion method. Double disc synergy test / modified Hodge test (DDST/MHT) were used to detect carbapenemase production by these isolates. Subsequently, these isolates were evaluated for carbapenem-resistance genes using whole-genome sequencing method. The overall percentage of carbapenem-resistance among GNB was (17/101) 16.8%. The genomic analysis of antimicrobial-resistance (AMR) demonstrates a significantly high prevalence of blaCTX-M followed by blaSHV, blaTEM, blaOXA, and blaNDM β-lactam or carbapenem resistance genes among clinical isolates of GNB. Co-occurrence of blaNDM with other beta-lactamase-encoding genes was found in 70.6% of carbapenemase-producing isolates. Our study highlights the mechanism of carbapenem-resistance to curb the overwhelming threat posed by the emergence of drug-resistance in India.
Collapse
Affiliation(s)
- Namrata Kumari
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India.
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Abhay Kumar
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India
| | - Pallavi Priya
- Department of Microbiology, Mahavir Cancer Sansthan, Patna, 801505, Bihar, India
| | - Bablu Kumar
- Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India
| | - Nihar Ranjan Biswas
- Department of Pharmacology, Indira Gandhi Institute of Medical Sciences, Patna, 800014, Bihar, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
11
|
Ghenea AE, Zlatian OM, Cristea OM, Ungureanu A, Mititelu RR, Balasoiu AT, Vasile CM, Salan AI, Iliuta D, Popescu M, Udriștoiu AL, Balasoiu M. TEM,CTX-M,SHV Genes in ESBL-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples in a County Clinical Emergency Hospital Romania-Predominance of CTX-M-15. Antibiotics (Basel) 2022; 11:antibiotics11040503. [PMID: 35453254 PMCID: PMC9028254 DOI: 10.3390/antibiotics11040503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Background: CTX-M betalactamases have shown a rapid spread in the recent years among Enterobacteriaceae and have become the most prevalent Extended Spectrum Beta-Lactamases (ESBLs) in many parts of the world. The introduction and dissemination of antibiotic-resistant genes limits options for treatment, increases mortality and morbidity in patients, and leads to longer hospitalization and expensive costs. We aimed to identify the beta-lactamases circulating encoded by the genes blaCTX-M-15, blaSHV-1 and blaTEM-1 in Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) strains. Furthermore, we established the associated resistance phenotypes among patients hospitalized in the Intensive Care Unit (ICU) from County Clinical Emergency Hospital of Craiova, Romania. Methods: A total of 46 non-duplicated bacterial strains (14 strains of E. coli and 32 strains of K. pneumoniae), which were resistant to ceftazidime (CAZ) and cefotaxime (CTX) by Kirby–Bauer disk diffusion method, were identified using the automated VITEK2 system. Detection of ESBL-encoding genes and other resistance genes was carried out by PCR. Results. E. coli strains were resistant to 3rd generation cephalosporins and moderately resistant to quinolones, whereas K. pneumoniae strains were resistant to penicillins, cephalosporins, and sulfamides, and moderately resistant to quinolones and carbapenems. Most E. coli strains harbored blaCTX-M-15 gene (13/14 strains), a single strain had the blaSHV-1 gene, but 11 strains harbored blaTEM-1 gene. The mcr-1 gene was not detected. We detected tet(A) gene in six strains and tet(B) in one strain. In K. pneumoniae strains we detected blaCTX-M-15 in 23 strains, blaSHV-1 in all strains and blaTEM-1 in 14 strains. The colistin resistance gene mcr-1 was not detected. The tetracycline gene tet(A) was detected in 11 strains, but the gene tet(B) was not detected in any strains. Conclusions. The development in antibiotic resistance highlights the importance of establishing policies to reduce antibiotic use and improving the national resistance surveillance system in order to create local antibiotic therapy guidelines.
Collapse
Affiliation(s)
- Alice Elena Ghenea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Ovidiu Mircea Zlatian
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Oana Mariana Cristea
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
- Correspondence: (O.M.C.); (C.M.V.)
| | - Anca Ungureanu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Radu Razvan Mititelu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| | - Andrei Theodor Balasoiu
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Corina Maria Vasile
- Department of Paediatrics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (O.M.C.); (C.M.V.)
| | - Alex-Ioan Salan
- Department of Oral and Maxillofacial Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Daniel Iliuta
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca-Loredana Udriștoiu
- Faculty of Automation, Computers and Electronics, University of Craiova, 200776 Craiova, Romania;
| | - Maria Balasoiu
- Department of Bacteriology-Virology-Parasitology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.E.G.); (O.M.Z.); (A.U.); (R.R.M.); (M.B.)
| |
Collapse
|
12
|
Ewbank AC, Fuentes-Castillo D, Sacristán C, Cardoso B, Esposito F, Fuga B, de Macedo EC, Lincopan N, Catão-Dias JL. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli survey in wild seabirds at a pristine atoll in the southern Atlantic Ocean, Brazil: First report of the O25b-ST131 clone harboring bla CTX-M-8. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150539. [PMID: 34852430 DOI: 10.1016/j.scitotenv.2021.150539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance is among the most serious public health threats of the 21st century, with great impact in terms of One Health. Among antimicrobial resistant bacteria (ARB), extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) represent major challenges to human healthcare. Wild birds have been commonly used as environmental bioindicators of ESBL-EC. Remote locations represent a unique opportunity to evaluate the occurrence, dissemination and epidemiology of ARB in the environment. Herein we surveyed ESBL-EC in 204 cloacal swabs from six nonsynanthropic seabird species at the pristine Rocas Atoll, Brazil. We identified ESBL-EC isolates in 2.4% (5/204) of the tested seabirds, all in magnificent frigatebirds (Fregata magnificens). We isolated strains of O25b-ST131-fimH22 harboring gene blaCTX-M-8 (3 clones), ST117 harboring gene blaSHV-12, and a novel ST11350 (clonal complex 349) harboring genes blaCTX-M-55 and fosA3. All the isolates presented Extraintestinal pathogenic E. coli (ExPEC) virulence profiles. We suggest that magnificent frigatebirds may act as "flying bridges", transporting ESBL-EC and ARGs from an anthropogenically-impacted archipelago geographically close to our pristine and remote study site. The characteristics of our isolates suggest zoonotic potential and, despite the apparent good health of all the evaluated birds, may represent a hypothetical potential threat to the avian population using the atoll. To our knowledge, this is the first description of: (1) the pandemic and public health relevant ST131-O25b harboring blaCTX-M-8 worldwide; (2) ST131-fimH22 in wild birds; and (3); fosA3 in wildlife. Our findings expand the current epidemiological knowledge regarding host and geographical distribution of ESBL-EC and ARGs in wild birds, and emphasize the disseminating characteristics and adaptability of ST131 and ST117 strains within the human-animal-interface. Herein we discuss the involvement of nonsynanthropic wild birds in the epidemiology of antimicrobial resistance and their potential as sentinels of ESBL E. coli in insular environments.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Danny Fuentes-Castillo
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| | - Brenda Cardoso
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Bruna Fuga
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - Eduardo Cavalcante de Macedo
- Chico Mendes Institute for Biodiversity Conservation (ICMBio) - Brazilian Ministry of the Environment, Rocas Atol Biological Reserve, Rio Grande do Norte, Brazil.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil.; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.
| | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Masui T, Nakano R, Nakano A, Saito K, Suzuki Y, Kakuta N, Horiuchi S, Tsubaki K, Kitahara T, Yano H. Predominance of CTX-M-9 Group Among ESBL-Producing Escherichia coli Isolated from Healthy Individuals in Japan. Microb Drug Resist 2022; 28:355-360. [PMID: 34990283 DOI: 10.1089/mdr.2021.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The detection rate of extended-spectrum β-lactamase (ESBL)-producing Enterobacterales, microorganisms associated with health care settings, has significantly increased worldwide. Moreover, their community incidence has increased in several countries. In this study, we investigated the prevalence and genetic diversity of ESBL-producing Escherichia coli isolated from 547 nonduplicated stool specimens from healthy Japanese individuals, between 2015 and 2019. E. coli were isolated on deoxycholate-hydrogen sulfide-lactose (DHL) agar and identified by MALDI-TOF MS, ESBL were screened through disk diffusion method (cefotaxime with or without clavulanate), and genetic detection and genotyping were performed by PCR and DNA sequencing. Clonal similarities between ESBL-producing and nonproducing isolates were assessed by multilocus sequence typing (MLST). The prevalence of ESBL-producing E. coli was 9.7% (53/547). These bacteria harbored CTX-M genes, from which CTX-M-9 (31/53, 58.5%) and CTX-M-1 (13/53, 24.5%) groups were the predominant. The MLST analysis revealed that ST131 genotype prevailed within ESBL-producing E. coli (15/53), whereas ST95 (10/53) and ST73 (8/53) prevailed among non-ESBL producers, with ST131 being present in only four isolates. Overall, a high prevalence rate of CTX-M-type ESBL-producing E. coli was detected. CTX-M-9 group-producing ST131 predominated among healthy Japanese individuals, similar to that observed in hospital isolates. CTX-M-type ESBL may disseminate clonally among hospital patients and subsequently, within the community.
Collapse
Affiliation(s)
- Takashi Masui
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan.,Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Kai Saito
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Naoki Kakuta
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Kousuke Tsubaki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| |
Collapse
|
14
|
Sereia AFR, Christoff AP, Cruz GNF, da Cunha PA, da Cruz GCK, Tartari DC, Zamparette CP, Klein TCR, Masukawa II, Silva CI, E Vieira MLV, Scheffer MC, de Oliveira LFV, Sincero TCM, Grisard EC. Healthcare-Associated Infections-Related Bacteriome and Antimicrobial Resistance Profiling: Assessing Contamination Hotspots in a Developing Country Public Hospital. Front Microbiol 2021; 12:711471. [PMID: 34484149 PMCID: PMC8415557 DOI: 10.3389/fmicb.2021.711471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Hospital-built environment colonization by healthcare-associated infections-related bacteria (HAIrB) and the interaction with their occupants have been studied to support more effective tools for HAI control. To investigate HAIrB dynamics and antimicrobial resistance (AMR) profile we carried out a 6-month surveillance program in a developing country public hospital, targeting patients, hospital environment, and healthcare workers, using culture-dependent and culture-independent 16S rRNA gene sequencing methods. The bacterial abundance in both approaches shows that the HAIrB group has important representativeness, with the taxa Enterobacteriaceae, Pseudomonas, Staphylococcus, E. coli, and A. baumannii widely dispersed and abundant over the time at the five different hospital units included in the survey. We observed a high abundance of HAIrB in the patient rectum, hands, and nasal sites. In the healthcare workers, the HAIrB distribution was similar for the hands, protective clothing, and mobile phones. In the hospital environment, the healthcare workers resting areas, bathrooms, and bed equipment presented a wide distribution of HAIrB and AMR, being classified as contamination hotspots. AMR is highest in patients, followed by the environment and healthcare workers. The most frequently detected beta-lactamases genes were, blaSHV–like, blaOXA–23–like, blaOXA–51–like, blaKPC–like, blaCTX–M–1, blaCTX–M–8, and blaCTX–M–9 groups. Our results demonstrate that there is a wide spread of antimicrobial resistance due to HAIrB in the hospital environment, circulating among patients and healthcare workers. The contamination hotspots identified proved to be constant over time. In the fight for patient safety, these findings can reorient practices and help to set up new guidelines for HAI control.
Collapse
Affiliation(s)
- Aline Fernanda Rodrigues Sereia
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil.,BiomeHub, Florianópolis, Brazil
| | | | | | - Patrícia Amorim da Cunha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Caetana Paes Zamparette
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Brazil
| | - Taise Costa Ribeiro Klein
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Ivete Ioshiko Masukawa
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clarice Iomara Silva
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Maria Luiza Vieira E Vieira
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mara Cristina Scheffer
- Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Edmundo Carlos Grisard
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
15
|
Monteiro ADSS, Oliveira EGD, Santos DBD, Cordeiro SM, Couto RD, Couto FD. Sickle cell disease children's gut colonization by extended-spectrum β-lactamase (ESBL)-producing Enterobacterales: an antibiotic prophylaxis effect? J Med Microbiol 2021; 70. [PMID: 34477545 DOI: 10.1099/jmm.0.001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Sickle cell disease (SCD) children have a high susceptibility to pneumococcal infection. For this reason, they are routinely immunized with pneumococcal vaccines and use antibiotic prophylaxis (AP).Hypothesis/Gap Statement. Yet, little is known about SCD children's gut microbiota. If antibiotic-resistant Enterobacterales may colonize people on AP, we hypothesized that SCD children on AP are colonized by resistant enterobacteria species.Objective. To evaluate the effect of continuous AP on Enterobacterales gut colonization from children with SCD.Methodology. We analysed 30 faecal swabs from SCD children on AP and 21 swabs from children without the same condition. Enterobacterales was isolated on MacConkey agar plates and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) (bioMérieux, Marcy l'Etoile, France). We performed the antibiogram by Vitek 2 system (bioMérieux, Marcy l'Etoile, France), and the resistance genes were identified by multiplex PCR.Results. We found four different species with resistance to one or more different antibiotic types in the AP-SCD children's group: Escherichia coli, Klebsiella pneumoniae, Citrobacter freundii, and Citrobacter farmeri. Colonization by resistant E. coli was associated with AP (prevalence ratio 2.69, 95 % confidence interval [CI], 1.98-3.67, P<0.001). Strains producing extended-spectrum β-lactamases (ESBL) were identified only in SCD children, E. coli, 4/30 (13 %), and K. pneumoniae, 2/30 (7 %). The ESBL-producing Enterobacterales were associated with penicillin G benzathine use (95 % CI, 22.91-86.71, P<0.001). CTX-M-1 was the most prevalent among ESBL-producers (3/6, 50 %), followed by CTX-M-9 (2/6, 33 %), and CTX-M-2 (1/6, 17 %).Conclusion. Resistant enterobacteria colonize SCD children on AP, and this therapy raises the chance of ESBL-producing Enterobacterales colonization. Future studies should focus on prophylactic vaccines as exclusive therapy against pneumococcal infections.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Graduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil.,Present address: Postgraduate Course in Biotechnology in Health and Investigative Medicine, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | | | | | - Fábio David Couto
- Center of Agricultural, Environmental, and Biological Sciences, Federal University of Reconcavo of Bahia, Cruz das Almas, Bahia, Brazil
| |
Collapse
|
16
|
Endophytic Lifestyle of Global Clones of Extended-Spectrum β-Lactamase-Producing Priority Pathogens in Fresh Vegetables: a Trojan Horse Strategy Favoring Human Colonization? mSystems 2021; 6:6/1/e01125-20. [PMID: 33563779 PMCID: PMC7883542 DOI: 10.1128/msystems.01125-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The global spread of antibiotic-resistant bacteria and their resistance genes is a critical issue that is no longer restricted to hospital settings, but also represents a growing problem involving environmental and food safety. In this study, we have performed a microbiological and genomic investigation of critical priority pathogens resistant to broad-spectrum cephalosporins and showing endophytic lifestyles in fresh vegetables sold in a country with high endemicity of extended-spectrum β-lactamases (ESBLs). We report the isolation of international high-risk clones of CTX-M-15-producing Escherichia coli, belonging to clonal complexes CC38 and CC648, and Klebsiella pneumoniae of complex CC307 from macerated tissue of surface-sterilized leaves of spinach, cabbage, arugula, and lettuce. Regardless of species, all ESBL-positive isolates were able to endophytically colonize common bean (Phaseolus vulgaris) seedlings, showed resistance to acid pH, and had a multidrug-resistant (MDR) profile to clinically relevant antibiotics (i.e., broad-spectrum cephalosporins, aminoglycosides, and fluoroquinolones). Genomic analysis of CTX-M-producing endophytic Enterobacterales revealed a wide resistome (antibiotics, biocides, disinfectants, and pesticides) and virulome, and genes for endophytic fitness and for withstanding acidic conditions. Transferable IncFIB and IncHI2A plasmids carried bla CTX-M-15 genes and, additionally, an IncFIB plasmid (named pKP301cro) also harbored genes encoding resistance to heavy metals. These data support the hypothesis that fresh vegetables marketed for consumption can act as a figurative Trojan horse for the hidden spread of international clones of critical WHO priority pathogens producing ESBLs, and/or their resistance genes, to humans and other animals, which is a critical issue within a food safety and broader public and environmental health perspective.IMPORTANCE Extended-spectrum β-lactamases (ESBL)-producing Enterobacterales are a leading cause of human and animal infections, being classified as critical priority pathogens by the World Health Organization. Epidemiological studies have shown that spread of ESBL-producing bacteria is not a problem restricted to hospitals, but also represents a growing problem involving environmental and food safety. In this regard, CTX-M-type β-lactamases have become the most widely distributed and clinically relevant ESBLs worldwide. Here, we have investigated the occurrence and genomic features of ESBL-producing Enterobacterales in surface-sterilized fresh vegetables. We have uncovered that international high-risk clones of CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae harboring a wide resistome and virulome, carry additional genes for endophytic fitness and resistance to acidic conditions. Furthermore, we have demonstrated that these CTX-M-15-positive isolates are able to endophytically colonize plant tissues. Therefore, we believe that fresh vegetables can act as a figurative Trojan horse for the hidden spread of critical priority pathogens exhibiting endophytic lifestyles.
Collapse
|
17
|
Gozi KS, Deus Ajude LPT, Barroso MDV, Silva CRD, Peiró JR, Mendes LCN, Nogueira MCL, Casella T. Potentially Pathogenic Multidrug-Resistant Escherichia coli in Lamb Meat. Microb Drug Resist 2021; 27:1071-1078. [PMID: 33417827 DOI: 10.1089/mdr.2020.0488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extended-spectrum cephalosporin (ESC) resistance remains a threat since ESC are important antimicrobials used to treat infections in humans and animals. Escherichia coli is an important source of ESC-resistance genes, such as those encoding extended-spectrum β-lactamases (ESBLs). E. coli is a common commensal of lambs. Reports that contaminated food can be a source of ESC-resistant bacteria in humans and that ESBL-producing E. coli are found in sheep in Brazil led us to survey their presence in retail lamb meat. Twenty-five samples intended for human consumption were screened for ESC-resistant E. coli, and the isolates were characterized. IncI1-blaCTX-M-8 and IncHI2-blaCTX-M-2 were the main plasmids responsible for ESC resistance. The plasmids harbored common ESBL genes in Enterobacteriaceae from food-producing animals in Brazil. IncI1-blaCTX-M-14 and IncF-blaCTX-M-55 plasmids, associated with human infections, were also detected. Few CTX-M-producing E. coli have been clustered by typing methods, and some may be genetically pathogenic. The findings indicate the presence of diverse strains of E. coli, harboring important ESBL genes, in lamb meat in Brazil. Surveillance of ESC-resistant bacteria could reduce the spread of antimicrobial resistance through the food chain.
Collapse
Affiliation(s)
- Katia Suemi Gozi
- Centro de Investigação de Microrganismos, FAMERP, São José do Rio Preto, Brazil
| | | | | | | | - Juliana Regina Peiró
- Faculdade de Medicina Veterinária, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | | | - Tiago Casella
- Centro de Investigação de Microrganismos, FAMERP, São José do Rio Preto, Brazil.,Hospital de Base de São José do Rio Preto, São José do Rio Preto, Brazil
| |
Collapse
|
18
|
de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis 2020; 67:1804-1815. [PMID: 32239649 PMCID: PMC7540485 DOI: 10.1111/tbed.13558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried blaCTX-M -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.
Collapse
Affiliation(s)
| | - Miriam R. Fernandes
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Fábio P. Sellera
- Department of Internal MedicineSchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Ralf Lopes
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Daniel F. Monte
- Department of Food and Experimental NutritionFaculty of Pharmaceutical SciencesFood Research CenterUniversity of São PauloSão PauloBrazil
| | - Alícia G. Hippólito
- Department of Veterinary Surgery and AnesthesiologySchool of Veterinary Medicine and Animal ScienceUniversidade Estadual Paulista (UNESP)BotucatuBrazil
| | - Liliane Milanelo
- Reception Center for WildlifeEcological Park TietêSão PauloBrazil
| | - Tânia F. Raso
- Department of PathologySchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Nilton Lincopan
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
19
|
Christoff AP, Sereia AFR, Cruz GNF, de Bastiani DC, Silva VL, Hernandes C, Nascente APM, dos Reis AA, Viessi RG, Marques ADSP, Braga BS, Raduan TPL, Martino MDV, de Menezes FG, de Oliveira LFV. One year cross-sectional study in adult and neonatal intensive care units reveals the bacterial and antimicrobial resistance genes profiles in patients and hospital surfaces. PLoS One 2020; 15:e0234127. [PMID: 32492060 PMCID: PMC7269242 DOI: 10.1371/journal.pone.0234127] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 01/10/2023] Open
Abstract
Several studies have shown the ubiquitous presence of bacteria in hospital surfaces, staff, and patients. Frequently, these bacteria are related to HAI (healthcare-associated infections) and carry antimicrobial resistance (AMR). These HAI-related bacteria contribute to a major public health issue by increasing patient morbidity and mortality during or after hospital stay. Bacterial high-throughput amplicon gene sequencing along with identification of AMR genes, as well as whole genome sequencing (WGS), are biotechnological tools that allow multiple-sample screening for a diversity of bacteria. In this paper, we used these methods to perform a one-year cross sectional profiling of bacteria and AMR genes in adult and neonatal intensive care units (ICU and NICU) in a Brazilian public, tertiary hospital. Our results showed high abundances of HAI-related bacteria such as S. epidermidis, S. aureus, K. pneumoniae, A. baumannii complex, E. coli, E. faecalis, and P. aeruginosa in patients and hospital surfaces. Most abundant AMR genes detected throughout ICU and NICU were mecA, blaCTX-M-1 group, blaSHV-like, and blaKPC-like. We found that NICU environment and patients were more widely contaminated with pathogenic bacteria than ICU. Patient samples, despite the higher bacterial load, have lower bacterial diversity than environmental samples in both units. Finally, we also identified contamination hotspots in the hospital environment showing constant frequencies of bacterial and AMR contamination throughout the year. Whole genome sequencing (WGS), 16S rRNA oligotypes, and AMR identification allowed a high-resolution characterization of the hospital microbiome profile.
Collapse
MESH Headings
- Adult
- Anti-Bacterial Agents/pharmacology
- Anti-Infective Agents/pharmacology
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacterial Load
- Brazil
- Cross Infection/microbiology
- Cross Infection/pathology
- Cross-Sectional Studies
- Drug Resistance, Bacterial/drug effects
- Drug Resistance, Bacterial/genetics
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/isolation & purification
- Humans
- Infant, Newborn
- Intensive Care Units
- Intensive Care Units, Neonatal
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/genetics
- Staphylococcus aureus/isolation & purification
- Tertiary Care Centers
- Whole Genome Sequencing
Collapse
|
20
|
Zagui GS, de Andrade LN, Moreira NC, Silva TV, Machado GP, da Costa Darini AL, Segura-Muñoz SI. Gram-negative bacteria carrying β-lactamase encoding genes in hospital and urban wastewater in Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:376. [PMID: 32417981 DOI: 10.1007/s10661-020-08319-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Multidrug resistance mediated by β-lactamase in Gram-negative bacilli is a serious public health problem. Sewers are considered reservoirs of multiresistant bacteria due to presence of antibiotics that select them and favor their dissemination. The present study evaluated the antibiotic resistance profile and β-lactamases production in Gram-negative bacilli isolates from hospital sewage and urban wastewater treatment plants (UWWTP) in Brazil. Bacteria were isolated and identified with biochemical tests. Antibiotic susceptibility testing was performed by the disk-diffusion method and detection of extended-spectrum β-lactamase and carbapenemases by enzymatic inhibitor and conventional PCR. Differences in resistance to amoxicillin clavulanic, aztreonam, cefepime, and cefotaxime were observed in hospital sewage compared with urban sewage (p < 0.05). The multidrug-resistant phenotype was observed in 33.3% of hospital sewage isolates (p = 0.0025). β-lactamases genes were found in 35.6% of isolates, with the most frequent being blaKPC and blaTEM (17.8%), and blaSHV and blaCTX-M (13.3% and 8.9%, respectively). The data obtained are relevant, since the bacteria detected are on the priority pathogens list from the World Health Organization and hospital sewage could be released untreated into the municipal collection system, which may favor the spread of resistance. Changes in hospital sewage discharge practices, as well as additional technologies regarding effluent disinfection in the UWWTP, can prevent the spread of these bacteria into the environment and negative impact on water resources.
Collapse
Affiliation(s)
| | | | | | - Thaís Vilela Silva
- College of Nursing of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - Susana Inés Segura-Muñoz
- College of Nursing of Ribeirao Preto, University of São Paulo, São Paulo, Brazil.
- Laboratory of Ecotoxicology and Environmental Parasitology, Department of Maternal-Infant Nursing and Public Health, College of Nursing of Ribeirao Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Wang Y, Luo C, Du P, Hu J, Zhao X, Mo D, Du X, Xu X, Li M, Lu H, Zhou Z, Cui Z, Zhou H. Genomic Epidemiology of an Outbreak of Klebsiella pneumoniae ST471 Producing Extended-Spectrum β-Lactamases in a Neonatal Intensive Care Unit. Infect Drug Resist 2020; 13:1081-1090. [PMID: 32346299 PMCID: PMC7167269 DOI: 10.2147/idr.s236212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/11/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Klebsiella pneumoniae producing extended-spectrum β-lactamases (ESBLs) causes nosocomial infections worldwide. The present study aimed to determine the molecular subtyping characteristics and antibiotic resistance mechanisms of ESBL-producing K. pneumoniae strains collected during an outbreak. Moreover, we attempted to reveal the fine transmission route of the strains within this outbreak using whole-genome sequencing (WGS). Methods Collecting cases and strain information were carried out. Outbreak-related strains were identified using pulsed-field gel electrophoresis (PFGE). The antibiotic susceptibility, drug-resistant genes, and molecular subtype characteristics of ESBL-producing K. pneumoniae were analyzed. The fine transmission route of the strains within this outbreak was revealed using WGS and minimum core genome (MCG) sequence typing. Results In mid-January, 2015, five cases of neonatal pneumonia caused by ESBL-producing K. pneumoniae were observed in the neonatal intensive care unit (NICU) of the Affiliated Hospital of Chifeng University, China. Eight ESBL-producing K. pneumoniae were isolated from these five cases, and two additional strains from another two cases were identified using PFGE. All ten isolates harbored bla CTX-M-15, bla TEM-1, bla SHV-108, and bla OXA-1 genes, and belonged to the sequence type 471 (ST471) clone. A putative transmission map was constructed via comprehensive consideration of genomic and epidemiological information. WGS identified the initial case and the "superspreader". The genomic epidemiological investigation revealed that the outbreak was caused by the introduction of the bacteria one month before the first case appeared. Conclusion As far as we know, this is the first report to describe the characteristics of an ST471 ESBL-producing K. pneumoniae outbreak. The data showed that epidemiological inferences could be greatly improved by interpretation in the context of WGS and that K. pneumoniae strains isolated from the same outbreak contain sufficient genomic differences to refine epidemiological linkages on the basis of genetic lineage. These findings suggested that integration of genomic and epidemiological data can help us to have a clearer understanding of when and how outbreaks occur, so as to better control nosocomial transmission.
Collapse
Affiliation(s)
- Yuan Wang
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Chunyu Luo
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, People's Republic of China
| | - Jinrui Hu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xiaowei Zhao
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Dianjun Mo
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Xiaoli Du
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xin Xu
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Man Li
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Hong Lu
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Zhiqiang Zhou
- Affiliated Hospital of Chifeng University, Chifeng 024005, People's Republic of China
| | - Zhigang Cui
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| |
Collapse
|
22
|
Dias RCB, Vieira MA, Moro AC, Ribolli DFM, Monteiro ACM, Camargo CH, Tiba-Casas MR, Soares FB, Dos Santos LF, Montelli AC, da Cunha MDLRDS, Barretti P, Hernandes RT. Characterization of Escherichia coli obtained from patients undergoing peritoneal dialysis and diagnosed with peritonitis in a Brazilian centre. J Med Microbiol 2019; 68:1330-1340. [PMID: 31347999 DOI: 10.1099/jmm.0.001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose. This study aimed to characterize 27 Escherichia coli isolates obtained from peritoneal dialysis (PD)-related peritonitis that occurred at the University Hospital of Botucatu Medical School, Brazil, between 1997 and 2015.Methodology. These isolates were characterized regarding the occurrence of 22 virulence factor-encoding genes, antimicrobial resistance and biofilm production. We then evaluated whether these factors influenced the clinical outcome.Results. Over an 18-year period, 726 episodes of PD-related peritonitis were diagnosed, with 27 of them (3.7 %) being due to E. coli. The majority of the isolates were classified in phylogroups B1 (33.3 %), B2 (30.0 %) or F (18.0 %). fimH (100.0 %), ompT (66.7 %) and irp2 (51.9 %) were the most prevalent genes, while papA, papC, iha, sat, irp2, iucD, ireA, ibe10, ompT and kpsMTII were significantly more prevalent among isolates belonging to phylogroups B2 and F (P<0.05). Non-susceptibility to quinolones was detected in six isolates, which harboured chromosomal and/or plasmid-mediated quinolone resistance determinants, while two CTX-M extended-spectrum β-lactamase-producing E. coli were identified. Virulence factor-encoding genes (alone or in combination) and antimicrobial resistance were not associated with non-resolution outcomes. However, there was a trend for the ability to produce biofilm to be associated with treatment failure, although this association was not statistically significant.Conclusion. The E. coli isolates were heterogeneous in terms of the features investigated, and were susceptible to most of the antimicrobial drugs tested, despite the unsuccessful treatment observed in more than 50.0 % of the patients. Studies including more cases could help to clarify if biofilm production can influence the outcome in patients with PD-related peritonitis.
Collapse
Affiliation(s)
- Regiane C B Dias
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Melissa A Vieira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Ana C Moro
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Danilo F M Ribolli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Aydir C M Monteiro
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Carlos H Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | | | - Flávia B Soares
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Luis F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Augusto C Montelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil.,Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Maria de Lourdes R de S da Cunha
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Pasqual Barretti
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Rodrigo T Hernandes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
23
|
High prevalence of CTX-M-1 group in ESBL-producing enterobacteriaceae infection in intensive care units in southern Chile. Braz J Infect Dis 2019; 23:102-110. [PMID: 31028724 PMCID: PMC9425662 DOI: 10.1016/j.bjid.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022] Open
Abstract
Enterobacteria-producing extended-spectrum β-lactamases (ESBL) play an important role in healthcare infections, increasing hospitalization time, morbidity and mortality rates. Among several ESBLs that emerge from these pathogens, CTX-M-type enzymes had the most successful global spread in different epidemiological settings. Latin America presents high prevalence of CTX-M-2 in ESBL-producing enterobacterial infections with local emergence of the CTX-M-1 group. However, this high prevalence of the CTX-M-1 group has not yet been reported in Chile. The aim of this study was to identify ESBLs among enterobacteria isolated from clinical samples of critically ill patients from southern Chile. One-hundred thirty seven ESBL-producing bacteria were isolated from outpatients from all critical patient units from Hernán Henríquez Aravena Hospital. Phenotype characterization was performed by antibiogram, screening of ESBL, and determination of minimum inhibitory concentration (MIC). PCR was used for genetic confirmation of resistance. Molecular typing was performed by ERIC-PCR. ESBL-producing isolates were identified as Klebsiella pneumoniae (n = 115), Escherichia coli (n = 18), Proteus mirabilis (n = 3), and Enterobacter cloacae (n = 1), presenting multidrug resistance profiles. PCR amplification showed that the strains were positive for blaSHV (n = 111/81%), blaCTX-M-1 (n = 116/84.7%), blaTEM (n = 100/73%), blaCTX-M-2 (n = 28/20.4%), blaCTX-M-9 (0.7%), blaPER-1 (0.7%), and blaGES-10 (0.7%). The multiple production of ESBL was observed in 93% of isolates, suggesting high genetic mobility independent of the clonal relationship. The high frequency of the CTX-M-1 group and a high rate of ESBL co-production are changing the epidemiology of the ESBL profile in Chilean intensive care units. This epidemiology is a constant and increasing challenge, not only in Chile, but worldwide.
Collapse
|
24
|
Castanheira M, Deshpande LM, Mendes RE, Canton R, Sader HS, Jones RN. Variations in the Occurrence of Resistance Phenotypes and Carbapenemase Genes Among Enterobacteriaceae Isolates in 20 Years of the SENTRY Antimicrobial Surveillance Program. Open Forum Infect Dis 2019; 6:S23-S33. [PMID: 30895212 PMCID: PMC6419900 DOI: 10.1093/ofid/ofy347] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background A total of 178 825 Enterobacteriaceae isolates collected in 199 hospitals from 42 countries worldwide over 20 years (1997 to 2016) of the SENTRY Program were susceptibility tested by reference broth microdilution methods. Methods Trends in percentages over time were analyzed by the χ2 test. Results were reported as the percentage difference between the first (1997–2000) and the last (2013–2016) time period. Results Enterobacteriaceae exhibiting resistance to cephalosporins (extended-spectrum β-lactamase [ESBL] phenotype) and carbapenem resistance (CRE) significantly increased (P < 0.05; χ2 test) from 10.3% to 24.0% and 0.6% to 2.9%, respectively. Similar trends were noted for all regions and infection sources. Klebsiella pneumoniae mainly drove the CRE increase. Multidrug-resistance (MDR) rates significantly increased from 7.3% to 15.3% overall, with important trends in all regions and infection sources. Significant increases were noted for MDR K. pneumoniae and Escherichia coli, polymyxin-resistant K. pneumoniae (2.0% to 5.5% overall), and aminoglycoside-resistant E. coli (7.0% to 18.0%) and K. pneumoniae (18.1% to 26.9%) over time in North America and Latin America. Carbapenemase-encoding genes were screened after 2007, and the occurrence of these genes was compared for 2007–2009 and 2014–2016. Among 1298 CRE isolates from the 2 study periods, blaKPC was detected among 186 (49.7%) and 501 (54.2%) isolates in 2007–2009 and 2014–2016, respectively. Metallo-β-lactamase genes were detected among 4.3% of the isolates from 2007 to 2009 and 12.7% of the isolates from 2014 to 2016, mainly due to the dissemination of isolates carrying blaNDM. Genes encoding IMP and VIM enzymes were observed in 1.9% and 2.4% (7 and 9 isolates) of the isolates from 2007 to 2009 and 0.4% and 1.9% of the isolates from 2014 to 2016. OXA-48 and variants increased from 4.3% in 2007–2009 to 12.6% in 2014–2016 (mainly in Europe). Conclusions A change in the epidemiology of carbapenemases and important increases in ESBL, CRE, MDR, and other resistant phenotypes among virtually all geographic regions and infection sources were noted in the 20 years of surveillance, highlighting the impact of antimicrobial resistance and the importance of its continuous monitoring.
Collapse
Affiliation(s)
| | | | | | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | | |
Collapse
|
25
|
Freitas DY, Araújo S, Folador ARC, Ramos RTJ, Azevedo JSN, Tacão M, Silva A, Henriques I, Baraúna RA. Extended Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria Recovered From an Amazonian Lake Near the City of Belém, Brazil. Front Microbiol 2019; 10:364. [PMID: 30873145 PMCID: PMC6403167 DOI: 10.3389/fmicb.2019.00364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Aquatic systems have been described as antibiotic resistance reservoirs, where water may act as a vehicle for the spread of resistant bacteria and resistance genes. We evaluated the occurrence and diversity of third generation cephalosporin-resistant gram-negative bacteria in a lake in the Amazonia region. This water is used for human activities, including consumption after appropriate treatment. Eighteen samples were obtained from six sites in October 2014. Water quality parameters were generally within the legislation limits. Thirty-three bacterial isolates were identified as Escherichia (n = 7 isolates), Acinetobacter, Enterobacter, and Klebsiella (n = 5 each), Pseudomonas (n = 4), Shigella (n = 3), and Chromobacterium, Citrobacter, Leclercia, Phytobacter (1 isolate each). Twenty nine out of 33 isolates (88%) were resistant to most beta-lactams, except carbapenems, and 88% (n = 29) were resistant to antibiotics included in at least three different classes. Among the beta-lactamase genes inspected, the blaCTX–M was the most prevalent (n = 12 positive isolates), followed by blaTEM (n = 5) and blaSHV (n = 4). blaCTX–M–15 (n = 5), blaCTX–M–14 (n = 1) and blaCTX–M–2 (n = 1) variants were detected in conserved genomic contexts: blaCTX–M–15 flanked by ISEcp1 and Orf477; blaCTX–M–14 flanked by ISEcp1 and IS903; and blaCTX–M–2 associated to an ISCR element. For 4 strains the transfer of blaCTX–M was confirmed by conjugation assays. Compared with the recipient, the transconjugants showed more than 500-fold increases in the MICs of cefotaxime and 16 to 32-fold increases in the MICs of ceftazidime. Two isolates (Escherichia coli APC43A and Acinetobacter baumannii APC25) were selected for whole genome analysis. APC43A was predicted as a E. coli pathogen of the high-risk clone ST471 and serotype O154:H18. blaCTX–M–15 as well as determinants related to efflux of antibiotics, were noted in APC43A genome. A. baumannii APC25 was susceptible to carbapenems and antibiotic resistance genes detected in its genome were intrinsic determinants (e.g., blaOXA–208 and blaADC–like). The strain was not predicted as a human pathogen and belongs to a new sequence type. Operons related to metal resistance were predicted in both genomes as well as pathogenicity and resistance islands. Results suggest a high dissemination of ESBL-producing bacteria in Lake Água Preta which, although not presenting characteristics of a strongly impacted environment, contains multi-drug resistant pathogenic strains.
Collapse
Affiliation(s)
- Dhara Y Freitas
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Susana Araújo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Adriana R C Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Rommel T J Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Marta Tacão
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Isabel Henriques
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Rafael A Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
26
|
Rocha FR, Fehlberg LCC, Cordeiro-Moura JR, Ramos AC, Pinto VDPT, Barbosa FCB. High Frequency of Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Nosocomial Strains Isolated from a Teaching Hospital in Brazil. Microb Drug Resist 2019; 25:909-914. [PMID: 30810460 DOI: 10.1089/mdr.2018.0142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the frequency, antimicrobial sensitivity profile, and genetic characteristics of nosocomial strains of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from inpatients at a teaching hospital in Brazil. The bacterial identification, phenotypic detection of ESBL, and antimicrobial susceptibility profile were performed by the VITEK 2 automated system. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) mass spectrometry was used to confirm the identity of the species and genotyping of ESBL-producing K. pneumoniae was performed by pulsed-field gel electrophoresis (PFGE). Thirty-six ESBL-producing K. pneumoniae nosocomial strains isolated from November 2013 to August 2014 were analyzed. High resistance rates were observed for ceftriaxone, ceftazidime, cefepime, gentamicin, and ciprofloxacin. However, all isolates were susceptible to amikacin and meropenem. All strains harbored blaCTX-M-like and blaSHV-like genes. Molecular typing by PFGE showed a diversity of genotypes distributed among 25 clusters, but two isolates collected in different wards had the same genotypic profile and carried the same bla genes, so they were considered clones. The data showed that there was a high frequency of ESBL-producing K. pneumoniae multidrug-resistant among patients in the studied hospital. Furthermore, the detection of blaCTX-M-like genes in all isolates suggests that these enzymes are the major ESBL responsible for the beta-lactam resistance phenotypes among the analyzed strains.
Collapse
Affiliation(s)
| | | | | | - Ana Carolina Ramos
- 2 Laboratory Alerta, Division of Infectious Diseases, Federal University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
27
|
Hayashi W, Ohsaki Y, Taniguchi Y, Koide S, Kawamura K, Suzuki M, Kimura K, Wachino JI, Nagano Y, Arakawa Y, Nagano N. High prevalence of blaCTX-M-14 among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan. Int J Food Microbiol 2018; 284:98-104. [DOI: 10.1016/j.ijfoodmicro.2018.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 01/27/2023]
|
28
|
Araújo BF, Royer S, Campos PA, Ferreira ML, Gonçalves IR, Machado LG, Lincopan N, Fernandes MR, Cerdeira LT, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Insights into a novel Tn4401 deletion (Tn4401i) in a multidrug-resistant Klebsiella pneumoniae clinical strain belonging to the high-risk clonal group 258 producing KPC-2. Int J Antimicrob Agents 2018; 52:525-527. [DOI: 10.1016/j.ijantimicag.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/11/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
|
29
|
Sellera FP, Fernandes MR, Moura Q, Carvalho MPN, Lincopan N. Extended-spectrum-β-lactamase (CTX-M)-producing Escherichia coli in wild fishes from a polluted area in the Atlantic Coast of South America. MARINE POLLUTION BULLETIN 2018; 135:183-186. [PMID: 30301029 DOI: 10.1016/j.marpolbul.2018.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The presence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in oceanic ecosystems constitutes an emerging public health risks in the marine environment. In this study, we report for the first time the identification of ESBL (CTX-M)-producing E. coli in wild fishes from a polluted area in the South Atlantic coast of Brazil, where a genomic analysis confirm the presence of livestock and human E. coli lineages belonging to sequence types (STs) ST744 and ST746, which carried clinically relevant resistance genes for human and veterinary antibiotics, and heavy metals. These findings reveal the presence of multidrug-resistant (MDR) bacteria in the gut microbiota of wild fishes living in polluted coastal waters, alerting that microbial contamination by bacteria related directly and indirectly to human or animal activities could affect the safety of the seafood supply, as well as the commercial and recreational use of coastal marine waters.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Miriam R Fernandes
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo P N Carvalho
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Pereira JL, Volcão LM, Klafke GB, Vieira RS, Gonçalves CV, Ramis IB, da Silva PEA, von Groll A. Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum β-Lactamases of Escherichia coli and Klebsiella spp. Isolates from Urinary Tract Infections in Southern Brazil. Microb Drug Resist 2018; 25:173-181. [PMID: 30133334 DOI: 10.1089/mdr.2018.0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to evaluate the frequency of different extended-spectrum β-lactamases (ESBL) as well as to associate these ESBL with antimicrobial (ATM) resistance in Escherichia coli and Klebsiella spp. isolates from outpatients and inpatients with urinary tract infections. The study included 435 consecutive nonduplicate clinical isolates, including 362 E. coli isolates, 62 Klebsiella pneumoniae isolates, and 11 K. oxytoca isolates. Isolates were obtained from patients who were treated in a University Hospital between August 2012 and July 2013. Three multiplex PCR were performed to identify the ESBL groups. A total of 48 (11%) ESBL-producing isolates were found. The risk for the ESBL presence was significantly higher in males (26.4%) than females (8%), from hospital-acquired infections (29.1%) than community-acquired infections (7.0%) and in Klebsiella spp. (27.4%) than in E. coli (7.7%). ESBL-producing isolates presented a significantly higher percentage of resistance in 21 of the 23 ATMs analyzed. The CTX-M-1 group was the most predominant ESBL identified. The blaCTX-M-1-group gene was found in 56% of the total ESBL producers from community and in 42.4% from hospital origins; it was followed in frequency by the blaCTX-M-8/25-group, also found in both environments. Klebsiella spp. presented the largest variety of β-lactamase enzyme combinations and a higher level of resistance to cefotaxime. These findings contribute to better knowledge of the epidemiology of ESBL enzymes and are alarming for the reduced therapeutic options available for the risk groups identified in the studied populations.
Collapse
Affiliation(s)
- Juliano Lacava Pereira
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Lisiane Martins Volcão
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Gabriel Baracy Klafke
- 2 Faculdade de Medicina, Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Roseli Stone Vieira
- 3 Hospital Universitário Dr. Miguel Riet Correa , Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | | | - Ivy Bastos Ramis
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Pedro Eduardo Almeida da Silva
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| | - Andrea von Groll
- 1 Faculdade de Medicina, Medical Microbiology Research Center (NUPEMM), Universidade Federal do Rio Grande-FURG , Rio Grande, Brazil
| |
Collapse
|
31
|
Melo LC, Oresco C, Leigue L, Netto HM, Melville PA, Benites NR, Saras E, Haenni M, Lincopan N, Madec JY. Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased companion animals in Brazil. Vet Microbiol 2018; 221:59-66. [PMID: 29981709 DOI: 10.1016/j.vetmic.2018.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/13/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
Extended-spectrum beta-lactamase (ESBL)- and plasmid-mediated AmpC (pAmpC)-carrying Enterobacteriaceae have widely disseminated in human, animal and environmental reservoirs. Pets have been recognized as a source of ESBL/pAmpC worldwide, and are possibly also a source of human contamination. The aim of this study was to document to what extent cats and dogs may act as a driving force in the spread of ESBLs and pAmpCs in Brazil. A total of 113 healthy stray cats and dogs and 74 sick pets were sampled, and extended-spectrum cephalosporin-resistant Enterobacteriaceae (ESC-R) were detected in 28/113 (24.8%) and 8/74 (10.8%) tested animals, respectively. Different Enterobacteriaceae isolates (mostly E. coli), a large number of E. coli clones (with ST90, ST457, ST973 and ST2541 being predominant), and several ESBL/pAmpC genes and plasmids were characterized, highlighting the ability of stray and pet cats and dogs to further spread a wide range of ESC-resistance determinants. The ESBL phenotype was due to the blaCTX-M-2 and blaCTX-M-8 genes, as found in human epidemiology in Brazil, but blaCTX-M-9 and blaCTX-M-15 were also identified. The pAmpC phenotype was systematically due to the presence of the blaCMY-2 gene, mostly carried by IncI1 ST12 plasmids. Our results showed that pets can be considered a significant reservoir of multidrug-resistant bacteria in Brazil. This is especially true for healthy stray dogs that displayed the highest prevalence (24.8%) of ESBLs/pAmpC resistance determinants, which can then be further spread both to the environment and to other animals or humans by contact.
Collapse
Affiliation(s)
- Luana C Melo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil; Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Cíntia Oresco
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Lucianne Leigue
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | | | - Priscilla A Melville
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Nilson R Benites
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon - Université Claude Bernard Lyon 1, Lyon, France.
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Laboratoire de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
32
|
Xu Y, Sun H, Bai X, Fu S, Fan R, Xiong Y. Occurrence of multidrug-resistant and ESBL-producing atypical enteropathogenic Escherichia coli in China. Gut Pathog 2018; 10:8. [PMID: 30038667 PMCID: PMC6054294 DOI: 10.1186/s13099-018-0234-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
Background Atypical enteropathogenic Escherichia coli (aEPEC) is regarded as a globally emerging enteropathogen. aEPECs exhibit various level of resistance to a range of antibiotics, which is increasing alarmingly. The present study investigated the antimicrobial resistance of aEPEC isolates recovered from diarrheal patients, healthy carriers, animals, and raw meats. Results Among 267 aEPEC isolates, 146 (54.7%) were resistant to tetracycline, followed by ampicillin (49.4%), streptomycin (46.1%), and piperacillin (41.2%). Multidrug resistance (MDR) was detected in 128 (47.9%) isolates, and 40 MDR isolates were resistant to ≥ 10 antimicrobial agents. A total of 47 (17.6%) aEPEC isolates were identified as extended-spectrum β-lactamase (ESBL)-producers. The blaCTX-M-14 and blaCTX-M-15 genes were predominant among ESBL-producing isolates. Conclusions This investigation depicted the occurrence of multidrug-resistant and ESBL-producing aEPEC isolates in China. The results suggested that it is necessary to continuously monitor the emergence and spread of MDR aEPEC. Electronic supplementary material The online version of this article (10.1186/s13099-018-0234-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanmei Xu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Hui Sun
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Shanshan Fu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Ruyue Fan
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yanwen Xiong
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang China
| |
Collapse
|
33
|
Andrade LN, Novais Â, Stegani LMM, Ferreira JC, Rodrigues C, Darini ALC, Peixe L. Virulence genes, capsular and plasmid types of multidrug-resistant CTX-M(-2, -8, -15) and KPC-2-producing Klebsiella pneumoniae isolates from four major hospitals in Brazil. Diagn Microbiol Infect Dis 2018; 91:164-168. [PMID: 29459053 DOI: 10.1016/j.diagmicrobio.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 01/20/2023]
Abstract
We performed a single-month snapshot study of the population diversity of multidrug resistant (MDR) Klebsiella pneumoniae isolates producing carbapenemases and/or extended-spectrum β-lactamases from four major hospitals in Brazil. Isolates produced diverse ESBL (CTX-M-2, -8, -15, SHV-2), KPC-2 or both (CTX-M-2 and KPC-2), linked to specific genetic backgrounds and plasmids from a few families (IncR, IncFIIk, IncL/M) that were shared among clonal lineages within and between hospitals. A high clonal diversity was identified, among isolates from the same ST (ST11, ST15, ST101 or ST340). Diverse capsular types (n=13 K-types) were identified, most of which linked to specific ST (ST11 and K27 or K64, ST101 and K17, ST340 and KL151, ST15 and K24 or ST17 and KL112). Isolates shared a common set of virulence genes (ureA, fimH, uge, wabG, mrkD, entB) and occasionally ybtS (42%) and kfuBC (18%). Our data suggest intra- and inter-hospital spread of common genetic structures and international MDR K. pneumoniae clones.
Collapse
Affiliation(s)
- Leonardo Neves Andrade
- Universidade de São Paulo (USP) - Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Ribeirão Preto, SP, Brazil
| | - Ângela Novais
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Lenita Maria Marcato Stegani
- Universidade de São Paulo (USP) - Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Ribeirão Preto, SP, Brazil
| | - Joseane Cristina Ferreira
- Universidade de São Paulo (USP) - Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Ribeirão Preto, SP, Brazil
| | - Carla Rodrigues
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana Lucia Costa Darini
- Universidade de São Paulo (USP) - Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Ribeirão Preto, SP, Brazil
| | - Luisa Peixe
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
34
|
Alonso C, Zarazaga M, Ben Sallem R, Jouini A, Ben Slama K, Torres C. Antibiotic resistance inEscherichia coliin husbandry animals: the African perspective. Lett Appl Microbiol 2017; 64:318-334. [DOI: 10.1111/lam.12724] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- C.A. Alonso
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - M. Zarazaga
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| | - R. Ben Sallem
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - A. Jouini
- Laboratoire d’Épidémiologie et Microbiologie Vétérinaire. Institut Pasteur de Tunis; Université de Tunis El Manar; Tunis Tunisia
| | - K. Ben Slama
- Faculté des Sciences de Tunis; Laboratoire des Microorganismes et Biomolécules Actives; Université de Tunis El Manar; Tunis Tunisia
| | - C. Torres
- Área Bioquímica y Biología Molecular; Universidad de La Rioja; Logroño Spain
| |
Collapse
|