1
|
Poudineh M, Mohammadyari F, Parsamanesh N, Jamialahmadi T, Kesharwani P, Sahebkar A. Cell and gene therapeutic approaches in non-alcoholic fatty liver disease. Gene 2025; 956:149466. [PMID: 40189164 DOI: 10.1016/j.gene.2025.149466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to a range of conditions marked by the buildup of triglycerides in liver cells, accompanied by inflammation, which contributes to liver damage, clinical symptoms, and histopathological alterations. Multiple molecular pathways contribute to NAFLD pathogenesis, including immune dysregulation, endoplasmic reticulum stress, and tissue injury. Both the innate and adaptive immune systems play crucial roles in disease progression, with intricate crosstalk between liver and immune cells driving NAFLD development. Among emerging therapeutic strategies, cell and gene-based therapies have shown promise. This study reviews the pathophysiological mechanisms of NAFLD and explores the therapeutic potential of cell-based interventions, highlighting their immunomodulatory effects, inhibition of hepatic stellate cells, promotion of hepatocyte regeneration, and potential for hepatocyte differentiation. Additionally, we examine gene delivery vectors designed to target NAFLD, focusing on their role in engineering hepatocytes through gene addition or editing to enhance therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Negin Parsamanesh
- Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tananz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Shen J, Duan X, Xie T, Zhang X, Cai Y, Pan J, Zhang X, Sun X. Advances in locally administered nucleic acid therapeutics. Bioact Mater 2025; 49:218-254. [PMID: 40144794 PMCID: PMC11938090 DOI: 10.1016/j.bioactmat.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Nucleic acid drugs represent the latest generation of precision therapeutics, holding significant promise for the treatment of a wide range of intractable diseases. Delivery technology is crucial for the clinical application of nucleic acid drugs. However, extrahepatic delivery of nucleic acid drugs remains a significant challenge. Systemic administration often fails to achieve sufficient drug enrichment in target tissues. Localized administration has emerged as the predominant approach to facilitate extrahepatic delivery. While localized administration can significantly enhance drug accumulation at the injection sites, nucleic acid drugs still face biological barriers in reaching the target lesions. This review focuses on non-viral nucleic acid drug delivery techniques utilized in local administration for the treatment of extrahepatic diseases. First, the classification of nucleic acid drugs is described. Second, the current major non-viral delivery technologies for nucleic acid drugs are discussed. Third, the bio-barriers, administration approaches, and recent research advances in the local delivery of nucleic acid drugs for treating lung, brain, eye, skin, joint, and heart-related diseases are highlighted. Finally, the challenges associated with the localized therapeutic application of nucleic acid drugs are addressed.
Collapse
Affiliation(s)
- Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xusheng Duan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinrui Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhao Pan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xin Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Liu S, Wang X, Hu J, Zhao C, Qin X. Comprehensive evaluation of siRNA therapeutics on Lp(a): A network meta-analysis. Diabetes Obes Metab 2025; 27:3367-3378. [PMID: 40116213 DOI: 10.1111/dom.16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
AIMS To evaluate the efficacy and safety of siRNA drugs that lower Lp(a) in patients with dyslipidaemia. MATERIALS AND METHODS A network meta-analysis and systematic review were conducted to compare siRNA drugs targeting Lp(a), based on relevant randomized controlled trials (RCTs). A comprehensive search was performed in PubMed, Embase, Web of Science and the Cochrane Library (up to October 24, 2024). RCTs with an intervention duration of at least 12 weeks were included. Eligible studies compared siRNA drugs that reduce Lp(a), including both Lp(a)-targeted and non-targeted agents, with placebo or other siRNA drugs that reduce Lp(a). The primary outcomes were the percentage reduction and absolute reduction in Lp(a), percentage reduction in low-density lipoprotein cholesterol (LDL-C), percentage reduction in apolipoprotein B (apo(B)), adverse events and serious adverse events, including injection-site reactions. The risk of bias was assessed using the Cochrane Risk of Bias Tool (ROB2), and a random-effects network meta-analysis was performed using the frequentist approach. Confidence in effect estimates was evaluated using the Confidence In Network Meta-Analysis (CINeMA) framework. RESULTS A total of 14 trials involving 5646 participants were included. Lp(a)-targeted siRNA agents, particularly Olpasiran, demonstrated strong efficacy in significantly reducing Lp(a) levels, with the greatest percentage reduction in Lp(a) (mean difference [MD]: -92.06%; 95% CI: -102.43% to -81.69%; P-score: 0.98). Olpasiran also showed the greatest absolute reduction in Lp(a) (MD: -250.70 nmol/L; 95% confidence interval [CI]: -279.89 to -221.50; P-score: 0.99). Certain non-Lp(a)-targeted siRNA agents, such as inclisiran and zodasiran, also showed modest reductions in Lp(a) levels, reducing Lp(a) by approximately 15%. Lp(a)-targeted siRNA agents reduced LDL-C by more than 20% and decreased apo(B) by approximately 15%. In terms of safety, most drugs exhibited favourable safety profiles with no significant differences compared to placebo. However, zerlasiran raised concerns regarding injection-site reactions and other adverse events when compared to placebo. CONCLUSIONS Lp(a)-targeted siRNA agents have shown robust effectiveness in substantially reducing Lp(a) levels, including both percentage and absolute reductions, with moderate improvements in LDL-C and apo(B) concentrations. Non-Lp(a)-targeted siRNA agents also demonstrate modest reductions in Lp(a) levels. The safety profile is generally favourable, but zerlasiran and inclisiran may increase the incidence of injection-site reactions.
Collapse
Affiliation(s)
- Song Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xingjin Wang
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Jiaqiang Hu
- Department of Pharmacy, Guang'an People's Hospital, Guang'an, Sichuan, China
| | - Chen Zhao
- Department of Pharmacy, Beijing Anzhen Nanchong Hospital, Capital Medical University & Nanchong Central Hospital, Nanchong, Sichuan, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Xiaoli Qin
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Aja PM, Agu PC, Ogbu C, Alum EU, Fasogbon IV, Musyoka AM, Ngwueche W, Egwu CO, Tusubira D, Ross K. RNA research for drug discovery: Recent advances and critical insight. Gene 2025; 947:149342. [PMID: 39983851 DOI: 10.1016/j.gene.2025.149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
The field of RNA research has experienced significant changes and is now at the forefront of contemporary drug development. This narrative overview explores the scientific developments and historical turning points in RNA research, emphasising the field's critical significance in the development of novel therapeutics. Important discoveries like antisense oligonucleotides (ASOs), mRNA therapies, and RNA interference (RNAi) have created novel treatment options that can be targeted, such as the ground-breaking mRNA vaccinations against COVID-19. Advances in high-throughput sequencing, single-cell RNA sequencing, and epitranscriptomics have further unravelled the complexity of RNA biology, shedding light on the intricacies of gene regulation and cellular diversity. The integration of computational tools and bioinformatics has propelled the identification of RNA-based biomarkers and the development of RNA therapeutics. Despite significant progress, challenges such as RNA stability, delivery, and off-target effects persist, necessitating continuous innovation and ethical considerations. This review provides a critical insight into the current state and prospects of RNA research, emphasising its transformative potential in drug discovery. By examining the interplay between technological advancements and therapeutic applications, we underscore the promising horizon for RNA-based interventions in treating a myriad of diseases, marking a new era in precision medicine.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria.
| | - Peter Chinedu Agu
- Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria; Department of Biochemistry, Faculty of Science, Evangel University, Nigeria
| | - Celestine Ogbu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Esther Ugo Alum
- Publications and Extension Department, Kampala International University, P. O. Box 20000, Uganda; Biochemistry Department, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Ilemobayo Victor Fasogbon
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Angela Mumbua Musyoka
- Biochemistry Department, Biomedical Sciences Faculty, Kampala International University, P.O. Box Ishaka, Bushenyi, Uganda
| | - Wisdom Ngwueche
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinedu Ogbonia Egwu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Deusdedit Tusubira
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
5
|
Tian Z, Luo H, Chu Y, Liu Y, Gao S, Song L, Yang Z, Liu D. Prediction of Interspecies Translation for Targeting Delivery Coefficients of GalNAc-siRNA Silencing Apolipoprotein C-III Using a Mechanistic Minimal Physiologically Based Pharmacokinetic/Pharmacodynamic Model. Clin Pharmacokinet 2025:10.1007/s40262-025-01513-4. [PMID: 40317426 DOI: 10.1007/s40262-025-01513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND AND OBJECTIVE The emerging N-acetylgalactosamine-small interfering RNA (GalNAc-siRNA) conjugates lead the way for liver-targeting delivery to exert gene-silencing therapeutic effects. To facilitate the drug development of GalNAc-siRNA, further detailed understanding of the key modality-specific mechanisms underlying the temporal discordance between pharmacokinetics and pharmacodynamics and how these processes can be extrapolated from animals to humans is needed. METHODS A mechanistic minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK-PD) model for an investigational new apolipoprotein C-III (APOC3)-silencing GalNAc-siRNA (RBD5044) was developed using available pharmacokinetic/pharmacodynamic (PK/PD) data. The aim was to explore hepatic-targeting delivery processes, the PK/PD relationship, and interspecies translation. RESULTS First, multiple PK/PD datasets from mice were satisfactorily fitted using the mPBPK-PD model. Second, we translated the mice model to the monkey model, validated it, and then extrapolated from mice and monkeys to humans to simulate the PK/PD characteristics. We then mechanistically summarized and proposed the essential in vivo delivery processes of GalNAc-siRNA after subcutaneous administration (termed "ADUEB": Absorption [into system circulation], Disposition [distribution to liver target and elimination], Uptake [into hepatocytes], Escape [from endosome and lysosome compartments], and Binding [with argonaute2 to form RNA-induced silencing complex]). The targeting delivery coefficients of these processes achieved with the model using RBD5044 and the published data of another GalNAc-siRNA (fitusiran) quantitatively reflected the delivery efficiency and rate-limiting factors in targeted hepatocytes. CONCLUSION This study successfully constructed the mPBPK-PD model and conducted interspecies extrapolation for a GalNAc-siRNA targeting APOC3. Promising quantitative insights into a hepatic-targeted GalNAc-siRNA delivery system are provided to characterize the unique temporal disconnection of PK/PD properties and evaluate the key in vivo delivery processes. It will promote model-informed strategies and quantitative mechanistic understanding to support efficient drug development, evaluation, and clinical application of this modality in the future.
Collapse
Affiliation(s)
- Zhiteng Tian
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China
| | - Hui Luo
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Yantao Chu
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Yanhong Liu
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Shan Gao
- Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Ling Song
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital Beijing, Beijing, 100191, China.
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital Beijing, Beijing, 100191, China.
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, 100191, China.
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital Beijing, Beijing, 100191, China.
| |
Collapse
|
6
|
Jeon JY, Ayyar VS, Ouchi S, Fabbrini E, Koshkina A, Prusakiewicz JJ, Dallas J, Yang T, Jian W, Kang L, Cofsky K, Rady B, Tamamura R, Saito Y, Yamashita A, Vaughan T, Wendel S, Makimura H, Csonka D, Goyal N. Preclinical and Clinical Pharmacokinetics of JNJ-75220795, an siRNA Therapeutic Targeting PNPLA3, for Metabolic Dysfunction-Associated Steatohepatitis. J Clin Pharmacol 2025; 65:644-653. [PMID: 39654352 DOI: 10.1002/jcph.6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/21/2024] [Indexed: 04/29/2025]
Abstract
JNJ-75220795 or ARO-PNPLA3 is an investigational small interfering ribonucleic acid agent conjugated with N-acetyl-d-galactosamine that targets the PNPLA3 gene, currently being developed for metabolic dysfunction-associated steatohepatitis (MASH). This study evaluated the pharmacokinetics (PK) profile of single subcutaneous doses of JNJ-75220795 in preclinical species as well as in human subjects with homozygous or heterozygous PNPLA3 I148M mutation in two phase 1 studies-a first-in-human study in the United States and a first-in-Japanese study in Japan. Preclinical PK in rats and non-human primates (NHP) showed a rapid systemic absorption and elimination following single subcutaneous doses. JNJ-75220795 was predominantly distributed to the liver with peak liver concentrations reached at 4 h and still detectable at 672 and 336 h in rats and NHPs, respectively, with an apparent liver-to-plasma area under the curve (AUC) ratio of 2800 in rats. Consistent with the preclinical findings, clinical PK showed rapid systemic absorption and clearance in humans with median peak concentrations at 3.0-9.0 h and mean short half-life of 3.4-6.2 h. Plasma PK exposure parameters including Cmax and AUC increased approximately dose proportionally. Kidney had the second highest tissue exposure following the liver in rats. Renal excretion was a significant but minor elimination pathway as approximately 15%-25% of the administered dose was recovered in urine. Based on the overall data, JNJ-75220795 was primarily localized to the liver and exhibited sustained hepatic exposures, which confer prolonged pharmacodynamic effects in the target organ. The favorable PK profiles of single subcutaneous doses observed in the phase 1 studies support continued clinical development of JNJ-75220795 for the treatment of MASH.
Collapse
Affiliation(s)
- Jae Yoon Jeon
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | | | | | | | | | | | - Jed Dallas
- Arrowhead Pharmaceuticals, Inc., Madison, WI, USA
| | - Txheng Yang
- Arrowhead Pharmaceuticals, Inc., Madison, WI, USA
| | - Wenying Jian
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Lijuan Kang
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Korin Cofsky
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - Brian Rady
- Janssen Research & Development, LLC, Spring House, PA, USA
| | | | - Yuki Saito
- Janssen Pharmaceutical K.K., Tokyo, Japan
| | | | | | - Susan Wendel
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | | | - Dénes Csonka
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Navin Goyal
- Janssen Research & Development, LLC, Raritan, NJ, USA
| |
Collapse
|
7
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
8
|
Mansouri M, Mansouri K, Taheri Z, Hossaini Alhashemi S, Dehshahri A. The Fomivirsen, Patisiran, and Givosiran Odyssey: How the Success Stories May Pave the Way for Future Clinical Translation of Nucleic Acid Drugs. BioDrugs 2025; 39:359-371. [PMID: 40186723 DOI: 10.1007/s40259-025-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Over the past 25 years, the approval of several nucleic acid-based drugs by the US Food and Drug Administration (FDA) has marked a significant milestone, establishing nucleic acid drugs as a viable therapeutic modality. These groundbreaking discoveries are the result of some crucial points in the timeline of nucleic acid drug development. The inventions used in fomivirsen (Vitravene; Isis Pharmaceuticals) development paved the road for structural backbone modifications as well as nucleobase and sugar modifications. The approval of patisiran (Onpattro; Alnylam) demonstrated an effective and safe delivery system for small interfering RNA (siRNA), extending potential applications to other nucleic acids such as messenger RNA (mRNA). Givosiran (Givlaari; Alnylam) further revolutionized the field with a carrier-free, targeted platform, utilizing N-Acetylgalactosamine (GalNAc)-siRNA conjugates to enable efficient delivery, expanding therapeutic applications beyond rare genetic disorders to more common conditions such as hyperlipidemia and hypertension. In this review paper, we highlight the evolution of nucleic acid-based drug development, focusing on the pioneering agents fomivirsen, patisiran, and givosiran, and discuss the ongoing challenges in advancing these therapeutics and vaccines.
Collapse
Affiliation(s)
- Mona Mansouri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Mansouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Yin M, Wang L, Liu Y, Chen J, Gao H, Xu J, Guo Y, Cui X, Yu G, Cai C. GSH-Responsive GalNAc-Conjugated Glycopolymer for Targeted Survivin siRNA Delivery in Hepatocellular Carcinoma Therapy. ACS Macro Lett 2025:589-596. [PMID: 40269699 DOI: 10.1021/acsmacrolett.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Gene interference therapy has made significant progress in the treatment of various diseases by targeting specific pathogenic genes and down-regulating the production of harmful proteins. This approach enables the precise modulation of gene expression, offering potential therapeutic benefits for conditions driven by genetic mutations or abnormal protein accumulation. Survivin, an apoptosis-inhibiting protein, plays a critical role in regulating tumor cell proliferation and preventing programmed cell death. Its overexpression in liver cancer cells is strongly associated with poor prognosis and accelerated tumor progression. RNA interference (RNAi) therapy can effectively suppress the expression of Survivin in liver cancer, inhibiting tumor cell proliferation and promoting apoptosis. In this study, four distinct GalNAc-conjugated glycopolymer siRNA delivery systems were developed. By leveraging the efficient liver-targeting capability of the GalNAc moiety, Survivin-siRNA was specifically delivered to liver cancer cells through either covalent coupling or electrostatic adsorption. In vitro experiments demonstrated the excellent gene silencing effect of these siRNA complexes, highlighting their potential as a promising therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Mengfei Yin
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Lihao Wang
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yang Liu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jingjing Chen
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongming Gao
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jinlong Xu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yuxin Guo
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Xinying Cui
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guangli Yu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chao Cai
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
10
|
Hong J, Kim YH. Cutting-edge biotherapeutics and advanced delivery strategies for the treatment of metabolic dysfunction-associated steatotic liver disease spectrum. J Control Release 2025; 380:433-456. [PMID: 39923856 DOI: 10.1016/j.jconrel.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/22/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), a condition with the potential to progress into liver cirrhosis or hepatocellular carcinoma, has become a significant global health concern due to its increasing prevalence alongside obesity and metabolic syndrome. Despite the promise of existing therapies such as thyroid hormone receptor-β (THR-β) agonists, PPAR agonists, FXR agonists, and GLP-1 receptor agonists, their effectiveness is limited by the complexity of the metabolic, inflammatory, and fibrotic pathways that drive MASLD progression, encompassing steatosis, metabolic dysfunction-associated steatohepatitis (MASH), and reversible liver fibrosis. Recent advances in targeted therapeutics, including RNA interference (RNAi), mRNA-based gene therapies, monoclonal antibodies, proteolysis-targeting chimeras (PROTAC), peptide-based strategies, cell-based therapies such as CAR-modified immune cells and stem cells, and extracellular vesicle-based approaches, have emerged as promising interventions. Alongside these developments, innovative drug delivery systems are being actively researched to enhance the stability, precision, and therapeutic efficacy of these biotherapeutics. These delivery strategies aim to optimize biodistribution, improve target-specific action, and reduce systemic exposure, thus addressing critical limitations of existing treatment modalities. This review provides a comprehensive exploration of the underlying biological mechanisms of MASLD and evaluates the potential of these cutting-edge biotherapeutics in synergy with advanced delivery approaches to address unmet clinical needs. By integrating fundamental disease biology with translational advancements, it aims to highlight future directions for the development of effective, targeted treatments for MASLD and its associated complications.
Collapse
Affiliation(s)
- Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research Hanyang University, 04763 Seoul, South Korea; Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 04763 Seoul, South Korea; Cursus Bio Inc., Icure Tower, Gangnam-gu, Seoul 06170, Republic of Korea.
| |
Collapse
|
11
|
Yoshioka Y, Yamamoto S, Kusamori K, Nakayama M, Fujita H, Goto A, Iwasaki S, Nagata T, Itakura S, Kusuhara H, Yokota T, Hirabayashi H, Nishikawa M. Pharmacokinetics and protein binding of cholesterol-conjugated heteroduplex oligonucleotide. J Control Release 2025; 380:787-799. [PMID: 39947404 DOI: 10.1016/j.jconrel.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Heteroduplex oligonucleotide (HDO) is a novel oligonucleotide therapeutic consisting of an antisense oligonucleotide (ASO) and its complementary RNA. A recent report showed that cholesterol-conjugated HDO (Chol-HDO) exhibited antisense activity in various tissues, including the brain; however, little information is available on the pharmacokinetic and plasma protein-binding properties of HDO and Chol-HDO. In the present study, we investigated the tissue distributions of an ASO, HDO, and Chol-HDO in mice and rats after intravenous injection. Tissue distribution was evaluated by measuring the concentration of ASO in tissue samples using liquid chromatography and tandem mass spectroscopy. ASO and HDO disappeared rapidly from the plasma, whereas Chol-HDO showed prolonged retention in the systemic circulation. The amount of ASO in the brain tissue was highest after injection of Chol-HDO, confirming its efficient delivery to the brain. The tissue distribution of oligonucleotides differed less in rats than in mice. Hepatic uptake of ASO and HDO, but not of Chol-HDO, was significantly inhibited by co-administration with the scavenger receptor inhibitor dextran sulfate sodium. The binding to plasma proteins was evaluated. Compared to ASO, HDO showed lower protein binding, but Chol-HDO showed much higher binding, with remarkable differences in binding to high-density and low-density lipoproteins. The binding of Chol-HDO to these proteins was also confirmed in mouse plasma after injection. These results indicate that the binding of Chol-HDO to plasma proteins, especially lipoproteins, is critical for determining tissue distribution and brain delivery after intravenous injection.
Collapse
Affiliation(s)
- Yukitake Yoshioka
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hisashi Fujita
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Akihiko Goto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shinji Iwasaki
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan; Center for Brain Integration Research, Institute of Science Tokyo, Tokyo, Japan; NucleoTIDE and PepTIDE Drug Discovery Center, Institute of Science Tokyo, Tokyo, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan; Center for Brain Integration Research, Institute of Science Tokyo, Tokyo, Japan; NucleoTIDE and PepTIDE Drug Discovery Center, Institute of Science Tokyo, Tokyo, Japan
| | - Hideki Hirabayashi
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Makiya Nishikawa
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
| |
Collapse
|
12
|
Sung Y, Choi Y, Kim ES, Ryu JH, Kwon IC. Receptor-ligand interactions for optimized endocytosis in targeted therapies. J Control Release 2025; 380:524-538. [PMID: 39875075 DOI: 10.1016/j.jconrel.2025.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Receptor-mediated endocytosis plays a crucial role in the success of numerous therapies and remains central to advancing drug development. This process begins with ligand binding to specific receptors, triggering the internalization and intracellular trafficking of receptor-ligand complexes. These complexes are subsequently directed into distinct routes, either toward lysosomal degradation or recycling to the cell surface, with implications for therapeutic outcomes. This review examines receptor-ligand interactions as key modulators of endocytosis, emphasizing their role in shaping therapeutic design and efficacy. Advances in selecting receptor-ligand pairs and engineering ligands with optimized properties have enabled precise control over internalization, endosomal sorting, and trafficking, providing tailored solutions for diverse therapeutic applications. Leveraging these insights, strategies such as RNA-based therapies, antibody-drug conjugates (ADCs), and targeted protein degradation (TPD) platforms have been refined to selectively avoid or promote lysosomal degradation, thereby enhancing therapeutic efficacy. By bridging fundamental mechanisms of receptor-mediated endocytosis with innovative therapeutic approaches, this review offers a framework for advancing precision medicine.
Collapse
Affiliation(s)
- Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngjin Choi
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Sun Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 20841, Republic of Korea
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Ick Chan Kwon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
13
|
Ebenezer O, Oyebamiji AK, Olanlokun JO, Tuszynski JA, Wong GKS. Recent Update on siRNA Therapeutics. Int J Mol Sci 2025; 26:3456. [PMID: 40331977 PMCID: PMC12026779 DOI: 10.3390/ijms26083456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Small interfering RNA (siRNA) has been deemed a promising therapeutic method for treating diverse diseases. siRNA-based therapeutics provide a distinct mechanism of action by selectively targeting and silencing disease-causing genes at the post-transcriptional level. This paper provides an overview of the present state of siRNA-based therapeutics, highlighting their potential in different therapeutic areas. The first section of this review introduces the basic principles of siRNA technology, including its mechanism of action and delivery methods. Subsequently, we discuss the impediments associated with siRNA delivery and manufacturing development and the strategies for overcoming these obstacles. The clinical advancement of siRNA therapeutics in various disease areas, including cancer, genetic disorders, viral infections, and inflammatory diseases, is summarized. Lastly, we summarize the successes, failures, and lessons learned from the development of siRNAs. With advancements in delivery systems and improvements in target selection, the field of medicine can be revolutionized, and siRNA therapeutics can offer new treatment options for patients.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | | | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
14
|
Driscoll J, Gondaliya P, Zinn DA, Jain R, Yan IK, Dong H, Patel T. Using aptamers for targeted delivery of RNA therapies. Mol Ther 2025; 33:1344-1367. [PMID: 40045577 PMCID: PMC11997499 DOI: 10.1016/j.ymthe.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
RNA-based treatments that can silence, introduce, or restore gene expression to target human diseases are emerging as a new class of therapeutics. Despite their potential for use in broad applications, their clinical translation has been hampered by a need for delivery to specific cells and tissues. Cell targeting based on the use of aptamers provides an approach for improving their delivery to the desired sites of action. Aptamers are nucleic acid oligonucleotides with structural conformations that provide a robust capacity for the recognition of cell surface molecules and that can be used for directed targeting. Aptamers can be directly conjugated to therapeutic RNA molecules, in the form of aptamer-oligonucleotide chimeras, or incorporated into nanoparticles used as vehicles for the delivery of these therapeutics. Herein, we discuss the use of aptamers for cell-directed RNA therapies, provide an overview of different types of aptamer-targeting RNA therapeutics, and review examples of their therapeutic applications. Challenges associated with manufacturing and scaling up production, and key considerations for their clinical implementation, are also outlined.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Dylan A Zinn
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Rupesh Jain
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
15
|
Brinton EA, Eckel RH, Gaudet D, Ballantyne CM, Baker BF, Ginsberg HN, Witztum JL. Familial chylomicronemia syndrome and treatments to target hepatic APOC3 mRNA. Atherosclerosis 2025; 403:119114. [PMID: 40068508 DOI: 10.1016/j.atherosclerosis.2025.119114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/20/2025]
Abstract
Familial chylomicronemia syndrome (FCS) is a rare, recessive monogenic disorder characterized by severely elevated plasma triglyceride (TG) levels due to absent or markedly impaired lipoprotein lipase activity, leading to a greatly increased risk of acute pancreatitis. Naturally occurring very low levels of apoC-III are associated with low TG levels; thus, apoC-III is a target for TG lowering, and therapies have been developed to reduce apoC-III. Strategies to inhibit hepatic apoC-III synthesis include antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). In the last decade, technologies have been developed to enhance hepatic delivery of these potential therapeutic agents by conjugation of the ligand triantennary N-acetyl galactosamine to ASO and siRNA for receptor-mediated uptake by hepatocytes, where apoC-III is predominantly expressed. Enhanced delivery of these pharmacological agents to the target tissue has been found to support lower and/or less frequent dosing with consequent lower total systemic exposure. One antisense agent, the ASO olezarsen, is now approved by the US Food and Drug Administration (FDA) as an adjunct to diet to lower triglycerides in adults with FCS, and the other, the siRNA plozasiran, is in late-stage clinical development. Both agents have shown effectiveness in reducing both apoC-III and TG levels across several study populations. Reduced TG, lower rates of acute pancreatitis events, and similar proportions of adverse events in placebo and treated patients were recently demonstrated in placebo-controlled phase 3 trials of patients with FCS treated with olezarsen in Balance and with plozasiran in PALISADE. This review discusses causes and consequences of FCS and the rationale and progress made in developing APOC3 RNA-targeted therapeutics for the treatment of FCS.
Collapse
Affiliation(s)
- Eliot A Brinton
- The Utah Lipid Center, 421 S Wakara Way, Salt Lake City, UT, USA
| | - Robert H Eckel
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave, Aurora, CO, USA
| | - Daniel Gaudet
- Department of Medicine, Université de Montréal, PO Box 6128, Montréal, QC, H3C 3J7, ECOGENE-21, 930 Rue Jacques-Cartier E, Chicoutimi, QC, G7H 7K9, Canada
| | - Christie M Ballantyne
- Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, 6655 Travis Street, and the Texas Heart Institute, 6770 Bertner Ave, Houston, TX, USA
| | | | - Henry N Ginsberg
- Department of Internal Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 622 West 168th St, New York, NY, USA
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, M0682, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, USA.
| |
Collapse
|
16
|
Rabbani SA, El-Tanani M, Sharma S, El-Tanani Y, Kumar R, Saini M, Yadav M, Khan MA, Parvez S. RNA-Based Therapies for Neurodegenerative Diseases Targeting Pathogenic Proteins. Eur J Neurosci 2025; 61:e70110. [PMID: 40237615 DOI: 10.1111/ejn.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Neurodegeneration is featured by the gradual stagnation of neuronal function and structure, leading to significant motor and cognitive impairments. The primary histopathological features underlying these conditions include the cumulation of pathological protein aggregates, chronic inflammation, and neuronal cell death. Alzheimer's disease (AD) and Parkinson's disease (PD) are prominent examples of neurodegenerative diseases (NDDs). As of 2023, over 65 million people worldwide are affected by AD and PD, with the prevalence of these conditions steadily increasing over time. Interestingly, there are no effective therapies available to halt or slow NDD progression. Most approved treatments are focused on symptom management and are often associated with substantial side effects. Given these limitations, the development of novel therapeutic approaches targeting the molecular mechanisms underlying these disorders is essential. Notably, RNA-based therapeutics have recently emerged as a potential therapeutic approach for managing various neurological diseases, offering the potential for innovative molecular interventions in NDD. In this review, we have discussed the pathogenic role of various protein aggregates in NDD and highlighted emerging RNA-based strategies aimed at targeting these pathological proteins.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | | | - Rakesh Kumar
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Department of Pharmacy, Jagannath University, Bahadurgarh, Haryana, India
| | - Manita Saini
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Qin ZX, Zuo L, Zeng Z, Ma R, Xie W, Zhu X, Zhou X. GalNac-siRNA conjugate delivery technology promotes the treatment of typical chronic liver diseases. Expert Opin Drug Deliv 2025; 22:455-469. [PMID: 39939158 DOI: 10.1080/17425247.2025.2466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Nucleic acid-based therapeutics have become a key pillar of the 'third wave' of modern medicine, following the eras of small molecule inhibitors and antibody drugs. Their rapid progress is heavily dependent on delivery technologies, with the development of N-acetylgalactosamine (GalNAc) conjugates marking a breakthrough in targeting liver diseases. This technology has gained significant attention for its role in addressing chronic conditions like chronic hepatitis B (CHB) and nonalcoholic steatohepatitis (NASH), which are challenging to treat with conventional methods. AREAS COVERED This review explores the origins, mechanisms, and advantages of GalNAc-siRNA delivery systems, highlighting their ability to target hepatocytes via the asialoglycoprotein receptor (ASGPR). The literature reviewed covers preclinical and clinical advancements, particularly in CHB and NASH. Key developments in stabilization chemistry and conjugation technologies are examined, emphasizing their impact on enhancing therapeutic efficacy and patient compliance. EXPERT OPINION GalNAc-siRNA technology represents a transformative advancement in RNA interference (RNAi) therapies, addressing unmet needs in liver-targeted diseases. While significant progress has been made, challenges remain, including restricted targeting scope and scalability concerns. Continued innovation is expected to expand applications, improve delivery efficiency, and overcome limitations, establishing GalNAc-siRNA as a cornerstone for future nucleic acid-based treatments.
Collapse
Affiliation(s)
- Zhen-Xin Qin
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Ziran Zeng
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Rongguan Ma
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Wenyan Xie
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
18
|
Yu H, Zhong H, Liu Y, Zhang G. The efficacy and safety of RNA interference for the treatment of primary hyperoxaluria: a systematic review and meta-analysis. Clin Kidney J 2025; 18:sfae383. [PMID: 40207102 PMCID: PMC11976527 DOI: 10.1093/ckj/sfae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 04/11/2025] Open
Abstract
Primary hyperoxaluria (PH) are rare inherited disorders of liver glyoxylate metabolism. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage. The severity of disease can result in kidney failure and systemic oxalosis. Until recently, RNA interference (RNAi) has been demonstrated as a therapeutic avenue for PH. We conducted a systematic review and meta-analysis to assessed the efficacy and safety of RNAi in the treatment of PH patients. The present systemic review systematically and comprehensively summarizes the pathophysiological mechanisms by which hyperoxalemia leads to kidney failure. Furthermore, we provide a detailed summary of the mechanisms of RNAi drug action in the pharmacological treatment of PH. The enrolled studies indicated that early RNAi intervention is beneficial for patients, especially in maintaining stable kidney function and reversing the effects of hyperoxaluria. Furthermore, high-dose and long time-duration RNAi therapy may have a better clinical effect. The efficacy of RNAi combined with hemodialysis seems to be promising, and it deserves more well-designed trials with large sample sizes in the future. RNAi therapy plays an important role in the treatment of PH. Early RNAi intervention is beneficial for patients, especially in maintaining stable kidney function and reversing the effects of hyperoxaluria. Furthermore, high-dose and long time-duration RNAi therapy may have a better clinical effect, and acceptable safety. The efficacy of RNAi combined with hemodialysis seems to be promising in PH treatment.
Collapse
Affiliation(s)
- Huyan Yu
- The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China
| | - Hongfei Zhong
- The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China
- Department of Geriatrics, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, People's Republic of China
| | - Youxia Liu
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Guilian Zhang
- Department of Nephrology, Yunfu People’s Hospital, Yunfu, Guangdong, People's Republic of China
| |
Collapse
|
19
|
Kitai T, Kohsaka S, Kato T, Kato E, Sato K, Teramoto K, Yaku H, Akiyama E, Ando M, Izumi C, Ide T, Iwasaki YK, Ohno Y, Okumura T, Ozasa N, Kaji S, Kashimura T, Kitaoka H, Kinugasa Y, Kinugawa S, Toda K, Nagai T, Nakamura M, Hikoso S, Minamisawa M, Wakasa S, Anchi Y, Oishi S, Okada A, Obokata M, Kagiyama N, Kato NP, Kohno T, Sato T, Shiraishi Y, Tamaki Y, Tamura Y, Nagao K, Nagatomo Y, Nakamura N, Nochioka K, Nomura A, Nomura S, Horiuchi Y, Mizuno A, Murai R, Inomata T, Kuwahara K, Sakata Y, Tsutsui H, Kinugawa K. JCS/JHFS 2025 Guideline on Diagnosis and Treatment of Heart Failure. J Card Fail 2025:S1071-9164(25)00100-9. [PMID: 40155256 DOI: 10.1016/j.cardfail.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
20
|
Eladnani RP, Schaeper U, Diab R, Aretz J, Vrotniakaite-Bajerciene K, Çaku S, Yasmin R, Li B, Reina Caro MD, Dames S, Eisermann M, Löffler K, Martinez A, de Laat B, Brodard J, Casini A, Kremer Hovinga JA, Allam R, Fernández JA, Griffin JH, Laffan MA, Majumder R, Ahnström J, Angelillo-Scherrer A. Enhancing hemostasis potency in hemophilia with a small interfering ribonucleic acid targeting protein S. J Thromb Haemost 2025:S1538-7836(25)00201-6. [PMID: 40154791 DOI: 10.1016/j.jtha.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND One hemophilia treatment concept focuses on rebalancing coagulation and anticoagulation to restore normal blood clotting. Targeting the coagulation regulator, protein S (PS), in hemophilia shows promise to increase the generation of thrombin, a critical enzyme in the clotting process. OBJECTIVES This study aimed to: (1) assess whether inhibiting PS increases thrombin generation (TG) in plasma from individuals with hemophilia A (HA) and B (HB); and (2) develop a hepatocyte-targeted PS small interfering RNA (siRNA) therapy using N-acetylgalactosamine conjugation to restore hemostasis in hemophilia without increasing thromboembolic risks. METHODS We assessed TG in plasma from patients with HA and HB. To target the liver specifically, we developed a PS-siRNA conjugated with N-acetylgalactosamine. This approach ensures that PS levels remain adequate in other cells, thereby minimizing the risk of thrombosis. Additionally, we evaluated the therapeutic potential of PS-siRNA in preclinical models. RESULTS Inhibiting PS with a polyclonal antibody in plasma resulted in a 3- to 5-fold increase in TG in HA and a 4- to 9-fold increase in HB plasma, with a 70% reduction in plasma PS. In preclinical models, subcutaneous PS-siRNA therapy in HA mice and nonhuman primates successfully lowered PS levels and improved clot formation. It also prevented bleeding in both saphenous vein puncture and knee injury models in HA mice. Notably, it enhanced clotting without triggering widespread clot formation. CONCLUSION Reducing PS levels enhances TG in hemophilia models, and PS-siRNA therapy shows promise in improving hemostasis. This approach warrants further clinical investigation as a potential treatment for hemophilia.
Collapse
Affiliation(s)
- Raja Prince Eladnani
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rim Diab
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Kristina Vrotniakaite-Bajerciene
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sara Çaku
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rafika Yasmin
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Bojun Li
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria Desiré Reina Caro
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | - Bas de Laat
- Synapse Research Institute, Maastricht, the Netherlands
| | - Justine Brodard
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alessandro Casini
- Division of Angiology and Hemostasis, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johanna A Kremer Hovinga
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - José A Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mike A Laffan
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, UK
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, UK
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Li T, Wang Y, Chen X, Cui H, Zhang L, Liu J, Wang J, Wang X, Zhao Y, Chen Q, Wang J. Direct Cytosolic Delivery of siRNA Conjugates: A Paradigm in Antiangiogenic Therapy for Choroidal Neovascularization. ACS NANO 2025; 19:11249-11262. [PMID: 40072892 DOI: 10.1021/acsnano.4c18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Small interfering RNA (siRNA) has garnered tremendous interest as a potential therapeutic tool because of its intriguing gene-silencing ability. Toward the success in the manufacture of siRNA therapeutics for the potential treatment of choroidal neovascularization (CNV), siRNA conjugated with dual functional units of membrane-penetrating heptafluoropropyl and age-related macular degeneration-targeting cyclic Arg-Gly-Asp (RGD) peptide was attempted for transcellular transportation into the cell interiors. Of note, cyclic RGD allowed selective affinities toward the angiogenic endothelial cells in the pathological CNV. Noteworthy is the functional heptafluoropropyl group, due to its tempting lipophobic and hydrophobic properties, stimulating energy-independent transcellular trafficking behaviors to the cytoplasm directly from the extracellular compartments, namely, the nonendocytotic pathway. The behaviors manage to avoid the well-acknowledged drawback of endolysosomal entrapment, which is deemed to be the critical threat to the biovulnerable genomic therapeutics, thereby contributing to potent gene knockdown at the affected cells. Aiming for treatment of CNV, the siRNA duo was schemed with appropriate chemistry-based modifications for the targeted knockdown of both angiogenic VEGF-A and VEGF-R2. Subsequent investigations verified the potent reduction of vascular leakage, and our proposed siRNA duo accomplished a significant reduction of 67.3% in the mean area of the CNV lesion. Bioinformatic analysis has unveiled a multitude of therapeutic benefits conferred by anti-VEGF therapy, extending beyond the mere inhibition of angiogenesis, including the regulated leukocyte transendothelial migration, retinol metabolism, and estrogen signaling pathways. Hence, our proposed chemistry represents an interesting siRNA conjugate strategy accomplishing direct intracellular transportation of macromolecular biological payloads to the cytosol. Hence, this proposed fluorination strategy should be highlighted to encourage the development of appropriate prodrug chemistry in pursuit of transcellular trafficking of membrane-impermissible and biovulnerable biotherapeutics.
Collapse
Affiliation(s)
- Tongqi Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Yue Wang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Xiyi Chen
- School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Hongyan Cui
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Liuwei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Jun Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jin Wang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, No. 138 Yi-Xue-Yuan Road, Shanghai 200032, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Qixian Chen
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzheng 518120, China
| | - Jing Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| |
Collapse
|
22
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
23
|
Hu J, Gong X, Kundu J, Datta D, Egli M, Manoharan M, Mootha VV, Corey DR. Modulation of TTR Gene Expression in the Eye using Modified Duplex RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642595. [PMID: 40161828 PMCID: PMC11952378 DOI: 10.1101/2025.03.11.642595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Small interfering RNAs (siRNAs) are a proven therapeutic approach for controlling gene expression in the liver. Expanding the clinical potential of RNA interference (RNAi) requires developing strategies to enhance delivery to extra-hepatic tissues. In this study we examine inhibiting transthyretin (TRR) gene expression by short interfering RNAs (siRNAs) in the eye. Anti-TTR siRNAs have been developed as successful drugs to treat TTR amyloidosis. When administered systemically, anti-TTR siRNAs alleviate symptoms by blocking TTR expression in the liver. However, TTR amyloidosis also affects the eye, suggesting a need for reducing ocular TTR gene expression. Here, we demonstrate that C5 and 2'-O-linked lipid-modified siRNAs formulated in saline can inhibit TTR expression in the eye when administered locally by intravitreal (IVT) injection. Modeling suggests that length and accessibility of the lipid chains contributes to in vivo silencing. GalNAc modified anti-dsRNAs also inhibit TTR expression, albeit less potently. These data support lipid modified siRNAs as an approach to treating the ocular consequences of TTR amyloidosis. Inhibition of TTR expression throughout the eye demonstrates that lipid-siRNA conjugates have the potential to be a versatile platform for ocular drug discovery.
Collapse
Affiliation(s)
- Jiaxin Hu
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas TX 75390, USA
| | - Xin Gong
- UT Southwestern Medical Center, Department of Ophthalmology, Dallas, TX 75235, USA
| | | | | | - Martin Egli
- Vanderbilt University, Department of Biochemistry, School of Medicine Nashville, TN 37232, USA
| | | | - V. Vinod Mootha
- UT Southwestern Medical Center, Department of Ophthalmology, Dallas, TX 75235, USA
- UT Southwestern Medical Center, Eugene McDermott Center for Human Growth and Development, Dallas, TX, 75235, USA
| | - David R. Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas TX 75390, USA
| |
Collapse
|
24
|
Mohammadi A, Karimian A, Shokri K, Mohammadi A, Hazhir-Karzar N, Bahar R, Radfar A, Pakyari M, Tehrani B. RNA Therapies in Cardio-Kidney-Metabolic Syndrome: Advancing Disease Management. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10603-4. [PMID: 40080261 DOI: 10.1007/s12265-025-10603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Cardio-Kidney-Metabolic (CKM) Syndrome involves metabolic, kidney, and cardiovascular dysfunction, disproportionately affecting disadvantaged groups. Its staging (0-4) highlights the importance of early intervention. While current management targets hypertension, heart failure, dyslipidemia, and diabetes, RNA-based therapies offer innovative solutions by addressing molecular mechanisms of CKM Syndrome. Emerging RNA treatments, including antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), show promise in slowing disease progression across CKM stages. For example, ASOs and siRNAs targeting ApoC-III and ANGPTL3 reduce triglycerides and LDL cholesterol, while siRNAs improve blood pressure control by targeting the renin-angiotensin-aldosterone system. Obesity treatments leveraging miRNAs and circRNAs tackle a key CKM risk factor. In heart failure and diabetes, RNA-based therapies improve cardiac function and glucose control, while early kidney disease trials show potential for RNAi in acute injury. Further research is essential to refine these therapies and ensure equitable access.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Internal Medicine, Valley Health System, Las Vegas, NV, USA.
| | - Azin Karimian
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kasra Shokri
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Rayeheh Bahar
- Department of Internal Medicine, Valley Health System, Las Vegas, NV, USA
| | - Azar Radfar
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohammadreza Pakyari
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
25
|
Umezu T, Takanashi M, Fujita K, Ishikawa A, Harada Y, Matsumoto Y, Kuroda M, Murakami Y. Development of novel nucleic acid therapy aimed at directly controlling liver fibrosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102438. [PMID: 39877003 PMCID: PMC11773475 DOI: 10.1016/j.omtn.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Currently, no drugs directly treat liver fibrosis. Previously, we have shown that treatment with miR-29a-3p improved liver fibrosis in a mouse model. To investigate the effectiveness of nucleic acid therapy at a lower dose, a modified nucleic acid was prepared based on miR-29a-3p. The original microRNA was changed to an RNA-DNA hybrid structure: the 2' position of the RNA was modified with a fluorine base, and locked nucleic acid and phosphorothioate were crosslinked (hereafter called modified nucleic acid). In a mouse model of chronic liver disease treated with carbon tetrachloride (CCl4), the inhibitory effect on liver fibrosis was evaluated with oral administration of the modified nucleic acid. The modified nucleic acid was detected in the liver and gastrointestinal tract within 15 min of oral administration. After 5 weeks of stimulation with CCl4, oral administration of the modified nucleic acid for 2 weeks improved liver fibrosis; CCl4 stimulation was continued during this period as well. This treatment also suppressed the worsening of liver fibrosis. We developed a method to improve liver fibrosis orally using nuclease-resistant nucleic acids without using a drug delivery system. This method may be used as a new treatment for inhibiting the progression of liver fibrosis.
Collapse
Affiliation(s)
- Tomohiro Umezu
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Medical Technology, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yoshinari Matsumoto
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, 3-7-30 Habikino, Habikino-shi, Osaka 583-8555, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Yoshiki Murakami
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Faculty of Dentistry, Asahi University, 1851 Hozumi, Muzuho, Gifu 501-0296, Japan
| |
Collapse
|
26
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
27
|
Ang SP, Chia JE, Mukherjee D. Emerging, novel gene-modulating therapies for transthyretin amyloid cardiomyopathy. Heart Fail Rev 2025:10.1007/s10741-025-10502-5. [PMID: 40056371 DOI: 10.1007/s10741-025-10502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive, life-threatening disease caused by the pathological deposition of misfolded transthyretin (TTR) protein in the myocardium, leading to restrictive cardiomyopathy and heart failure. While TTR stabilizers such as tafamidis and acoramidis are the only FDA-approved treatments, novel gene-modulating therapies are emerging as transformative approaches. Small interfering RNA (siRNA) and antisense oligonucleotide (ASO) therapies effectively reduce TTR production and have demonstrated promising clinical outcomes, though their use in cardiac amyloidosis remains investigational. CRISPR-Cas9 therapies represent a paradigm shift, offering a potential one-time treatment by permanently silencing the TTR gene. Recent clinical trials have shown significant TTR reduction and stabilization of disease biomarkers, although long-term safety and efficacy require further evaluation. Despite the lack of direct comparisons among these modalities, their emergence highlights a promising future for ATTR-CM management. This review discusses the pathogenesis of ATTR-CM, mechanisms of novel gene-modulating therapies, clinical evidence, challenges, and the future outlook for advancing treatment options.
Collapse
Affiliation(s)
- Song Peng Ang
- Department of Medicine, Rutgers Health/Community Medical Center, Toms River, NJ, USA.
| | - Jia Ee Chia
- Department of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Debabrata Mukherjee
- Department of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
- Department of Cardiovascular Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| |
Collapse
|
28
|
Zwolsman R, Darwish YB, Kluza E, van der Meel R. Engineering Lipid Nanoparticles for mRNA Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70007. [PMID: 40195623 PMCID: PMC11976204 DOI: 10.1002/wnan.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/09/2025]
Abstract
Over the last decades, messenger RNA (mRNA) has emerged as a promising therapeutic modality, enabling the delivery of genetic instructions to cells for producing therapeutic proteins or antigens. As such, mRNA-based therapies can be developed for a wide range of conditions, including infections, cancer, metabolic disorders, and genetic diseases. Nevertheless, using mRNA therapeutically requires chemical modifications to reduce immunostimulatory effects and nanotechnology to prevent degradation and ensure intracellular delivery. Lipid nanoparticles (LNPs) have become the most effective delivery platform for mRNA therapeutics, which are primarily employed for vaccine purposes following local administration and hepatic applications following systemic administration. Here, we review the state-of-the-art LNP-mRNA technology and discuss its potential for immunotherapy. We first outline the requirements for mRNA to be used therapeutically, including the role of LNP-mediated delivery. Next, we highlight LNP-mRNA immunotherapy approaches for vaccination, immuno-oncology, and autoimmune disorders. In addition, we discuss challenges that are limiting LNP-mRNA's widespread use, including tunable biodistribution and immunostimulatory effects. Finally, we provide an outlook on how implementing approaches such as library screening and machine learning will guide the development of next-generation mRNA therapeutics.
Collapse
Affiliation(s)
- Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Youssef B. Darwish
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
29
|
Chowdary P, Carcao M, Kenet G, Pipe SW. Haemophilia. Lancet 2025; 405:736-750. [PMID: 40023652 DOI: 10.1016/s0140-6736(24)02139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 03/04/2025]
Abstract
Haemophilia A and B are congenital X-linked bleeding disorders resulting from deficiencies in clotting factors VIII (haemophilia A) and IX (haemophilia B). Patients with severe deficiency, defined as having less than 1% of normal plasma factor activivity, often have spontaneous bleeding within the first few years of life. Those with moderate and mild deficiencies typically present with post-traumatic or post-surgical bleeding later in life. A high index of suspicion and measurement of factor activity in plasma facilitates early diagnosis. In the 21st century, therapeutic advances and comprehensive care have substantially improved both mortality and morbidity associated with these conditions. Management strategies for haemophilia include on-demand treatment for bleeding episodes and all surgeries and regular treatment (ie, prophylaxis) aimed at reducing bleeds, morbidity, and mortality, thereby enhancing quality of life. Treatment options include factor replacement therapy, non-replacement therapies that increase thrombin generation, and gene therapies that facilitate in vivo clotting factor synthesis. The therapies differ in their use for prophylaxis and on-demand treatment, the mode and frequency of administration, duration of treatment effect, degree of haemostatic protection, and side-effects. Monitoring the effectiveness of these prophylactic therapies involves assessing annual bleeding rates and joint damage. Personalised management strategies, which align treatment with individual goals (eg, playing competitive sports), initiated at diagnosis and maintained throughout the lifespan, are crucial for optimal outcomes. These strategies are facilitated by a multidisciplinary team and supported by clinician-led education for both clinicians and patients.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK; Department of Haematology, Cancer Institute, University College London, London, UK.
| | - Manuel Carcao
- Department of Paediatrics, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Gili Kenet
- National Haemophilia Center and The Amalia Biron Institute of Thrombosis & Hemostasis Research, Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel
| | - Steven W Pipe
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Das RS, Datta D, Brown CR, Gilbert JA, Chan A, Willoughby J, Gupta S, Kim M, Degaonkar R, Racie T, Lei L, Schlegel MK, Castoreno A, Charisse K, Rajeev KG, Egli M, Manoharan M. Expanding Conjugate Space of RNAi Therapeutics: Ligand at the 3' End of the Antisense Strand Achieves Uncompromised In Vivo Potency and Efficacy and Reveals Interactions with the Argonaute-2 PAZ Domain. J Med Chem 2025; 68:4397-4409. [PMID: 39899704 DOI: 10.1021/acs.jmedchem.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The conjugation of the sense strands of small interfering RNA (siRNA) to tri-N-acetylgalactosamine (GalNAc), the ligand for a hepatocyte-specific receptor, enables the delivery of multiple clinically approved therapeutic agents that act through the RNA interference pathway. Here, we report the systematic evaluation of siRNAs with the 3' termini of antisense strands conjugated to GalNAc for the first time. These designs retained the same receptor affinity, in vitro and in vivo activities, as well as the same level of loading into the RNA-induced silencing complex as siRNAs with a GalNAc-conjugated sense strand. A siRNA with a GalNAc-conjugated antisense strand of 22 nucleotides had better activity than a siRNA with a 23-nucleotide antisense strand. Computational modeling of a complex of a GalNAc-conjugated antisense strand with the PAZ domain of Ago2 rationalizes the importance of the interaction of phosphate at the 3' terminus with the PAZ domain to explain the observed activity of these siRNAs.
Collapse
Affiliation(s)
- Rajat S Das
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | | | - Jason A Gilbert
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Amy Chan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | | | - Swati Gupta
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - MaryBeth Kim
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Rohan Degaonkar
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Tim Racie
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Li Lei
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Mark K Schlegel
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Adam Castoreno
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
31
|
Idres YM, Idris A, Gao W. Preclinical testing of antiviral siRNA therapeutics delivered in lipid nanoparticles in animal models - a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01815-x. [PMID: 40000558 DOI: 10.1007/s13346-025-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The advent of RNA interference (RNAi) technology through the use of short-interfering RNAs (siRNAs) represents a paradigm shift in the fight against viral infections. siRNAs, with their ability to directly target and silence specific posttranscriptional genes, offer a novel mechanism of action distinct from that of traditional pharmacotherapeutics. This review delves into the growing field of siRNA therapeutics against viral infections, highlighting their critical role in contemporary antiviral strategies. Importantly, this review will solely focus on the use of lipid nanoparticles (LNPs) as the ideal antiviral siRNA delivery agent for use in vivo. We discuss the challenges of siRNA delivery and how LNPs have emerged as a pivotal solution to enhance antiviral efficacy. Specifically, this review focuses on work that have preclinically tested LNP formulated siRNA on virus infection animal models. Since the COVID-19 pandemic, we have witnessed a resurgence in the field of RNA-based therapies, including siRNAs against viruses including, SARS-CoV-2. Notably, the critical importance of LNPs as the ideal carrier for precious 'RNA cargo' can no longer be ignored with the advent of mRNA-LNP based COVID-19 vaccines. siRNA-based therapeutics represents an emerging class of anti-infective drugs with a foreseeable future as suitable antiviral agents.
Collapse
Affiliation(s)
- Yusuf M Idres
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wenqing Gao
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
32
|
Harumoto T, Kawai R, Motosawa K, Iwano J, Koda Y, Hirata Y, Uehara K. Effect of pH-Responsive Ligands on mRNA Knockdown in EGFR-Targeting Ligand-Conjugated siRNAs. ACS Chem Biol 2025; 20:297-308. [PMID: 39898496 DOI: 10.1021/acschembio.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Ligand-conjugated small interfering RNAs (siRNAs) have emerged as a powerful approach to developing nucleic acid-based medicines. To achieve efficient mRNA knockdown, it is important to select targeting receptors with high expression and ligands that exhibit rapid internalization. However, the key characteristics of ligand-receptor sets involved in the postinternalization process remain largely unclear. In this study, we investigated the effect of ligand-receptor binding dissociation under low pH conditions, known as a postendocytic environment. Specifically, we chemically synthesized several modified epidermal growth factor (EGF) ligands that showed a variety of binding activities to the EGF receptor (EGFR) at low pH. Among these modified ligands, the siRNA conjugate with chemically synthesized EGF H10Y/H16Y, which is a less pH-responsive variant, exhibited reduced internalization and mRNA knockdown activity at high concentrations in EGFR-expressing cells. Additionally, we explored the use of antibody-related molecules (anti-EGFR IgG and Fab) as targeting moieties for siRNA conjugates. The anti-EGFR Fab-siRNA, which showed dissociation of EGF under low pH conditions, demonstrated stronger internalization and mRNA knockdown activity compared to the anti-EGFR IgG-siRNA, which strongly binds EGF at low pH. These data emphasize the importance of intracellular ligand-receptor dissociation and provide insights for future advancements in the field.
Collapse
Affiliation(s)
- Toshimasa Harumoto
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryohei Kawai
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Keiichi Motosawa
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Junko Iwano
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yasuo Koda
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yuuki Hirata
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Keiji Uehara
- Research Unit, Research Division, Kyowa Kirin Co., Ltd., Otemachi Financial City Grand Cube, 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
33
|
Tansou R, Kubo T, Nishida H, Nishimura Y, Mihara K, Yanagihara K, Seyama T. Lipid-siRNA Conjugates Targeting High PD-L1 Expression as Potential Novel Immune Checkpoint Inhibitors. Biomolecules 2025; 15:293. [PMID: 40001596 PMCID: PMC11852376 DOI: 10.3390/biom15020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Programmed death 1 ligand (PD-L1), an important immune checkpoint molecule, is mainly expressed on cancer cells and has been shown to exert an immunosuppressive effect on T-cell function by binding to programmed cell death 1 (PD-1) expressed on T-cells. Recently, immune checkpoint inhibitors using antibody drugs such as nivolumab and atezolizumab have attracted attention. However, clinical challenges, including limitations to the scope of their application, are yet to be addressed. In this study, we developed a novel immune checkpoint inhibitor that targets PD-L1 using lipid-siRNA conjugates (lipid-siPDL1s). The inhibitory effect of lipid-siPDL1s on PD-L1 expression was evaluated and found to strongly suppress mRNA expression. Notably, lipid-siPDL1s exerted a significantly stronger effect than unmodified siPDL1. Interestingly, lipid-siPDL1s strongly inhibited PD-L1 expression despite cancer cell stimulation by interferon-gamma, which induced the overexpression of PD-L1 genes. These results strongly suggest that lipid-siPDL1s could be used as novel immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Rina Tansou
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| | - Takanori Kubo
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| | - Haruka Nishida
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| | - Yoshio Nishimura
- School of Pharmaceutical Sciences, Ohu University, Fukushima 963-8611, Japan;
| | - Keichiro Mihara
- Department of International Center for Cell and Gene Therapy, Fujita Health University, Toyoake 470-1192, Japan;
| | - Kazuyoshi Yanagihara
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshio Seyama
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan; (R.T.); (H.N.); (K.Y.); (T.S.)
| |
Collapse
|
34
|
Laurent Q, Bona BL, Asohan J, Rosati M, Faiad S, Bombelli FB, Metrangolo P, Sleiman HF. Self-Assembly and Biological Properties of Highly Fluorinated Oligonucleotide Amphiphiles. Angew Chem Int Ed Engl 2025; 64:e202419996. [PMID: 39636686 PMCID: PMC11811686 DOI: 10.1002/anie.202419996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
Nucleic acids, used as therapeutics to silence disease-related genes, offer significant advantages over small molecule drugs: they provide high specificity, the ability to target "undruggable" molecules, and adaptability to a wide range of disease phenotypes. However, their instability in biological media, as well their rapid clearance from the organism limit their applicability, necessitating the use of nanocarriers to overcome these challenges. Among these strategies, spherical nucleic acids (SNA)-composed of a densely packed corona of oligonucleotides around a nanoparticle-have emerged as a powerful tool, in particular when self-assembled from DNA amphiphiles. This non-covalent strategy however has caveats, especially when it comes to stability in complex biological media, where these SNAs disassemble in contact to serum proteins. Here, we developed highly fluorinated DNA amphiphiles that readily self-assemble into SNAs and have tunable stability profiles in biological media. They are made of branched fluorinated moieties with potentially improved biodegradability as compared to their linear counterparts. Depending on the number of fluorophilic interactions, the self-assembled SNAs can have excellent serum stabilities-up to days-and readily deliver nucleic acid therapeutics for gene silencing applications. These systems show great potential as promising candidates for nucleic acid-based therapies.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Beatrice L. Bona
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Jathavan Asohan
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Marta Rosati
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Sinan Faiad
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| | - Francesca Baldelli Bombelli
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Pierangelo Metrangolo
- SupraBioNano LabDepartment of ChemistryMaterialsand Chemical Engineering “Giulio Natta”Politecnico di MilanoVia Luigi Mancinelli 7MI-20131MilanoItaly
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801 Sherbrooke St. WQC-H3A 0B8MontrealCanada
| |
Collapse
|
35
|
Siddiqui E, Siddiqui AH, Moeed A, Laique F, Najeeb H, Al Hasibuzzaman M. Advancing hypertension management: the role of zilebesiran as an siRNA therapeutic agent. Ann Med Surg (Lond) 2025; 87:577-582. [PMID: 40110301 PMCID: PMC11918631 DOI: 10.1097/ms9.0000000000002696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/16/2024] [Indexed: 03/22/2025] Open
Abstract
Elevated blood pressure poses a significant global health challenge, affecting over 1.28 billion adults worldwide, with a staggering 46% unaware of their condition. Despite its pervasive impact and association with cardiovascular disease, hypertension remains inadequately controlled, highlighting the urgent need for innovative treatment approaches. This review explores the potential of small interfering RNA (siRNA) therapeutics, focusing on zilebesiran, as a promising strategy for hypertension management. SiRNA therapy represents a groundbreaking approach to selectively modulate protein production, offering targeted intervention in the pathophysiological mechanisms underlying hypertension. Zilebesiran, a siRNA, targets hepatic angiotensinogen (AGT) synthesis through interaction with the asialoglycoprotein receptor, ultimately reducing angiotensin II levels and reducing blood pressure. Zilebesiran demonstrates remarkable pharmacokinetic properties, with sustained efficacy observed after single-dose administration. Clinical trials evaluating zilebesiran have shown significant reductions in blood pressure, with effects lasting up to 24 weeks post-administration. Moreover, combination therapy with angiotensin receptor blockers has demonstrated enhanced efficacy, highlighting the potential for synergistic effects in hypertension management. Importantly, zilebesiran exhibits a favorable safety profile, with manageable adverse events, primarily injection site reactions. Zilebesiran represents a transformative therapy in hypertension management, offering targeted and potent blood pressure reduction with favorable safety and dosing characteristics. Its emergence highlights the ongoing evolution of cardiovascular pharmacology and underscores the importance of innovative approaches to address the global burden of hypertension. Moving forward, concerted efforts in research and clinical practice are necessary to realize the benefits of zilebesiran into hypertension management protocols, ultimately advancing cardiovascular health worldwide.
Collapse
Affiliation(s)
| | | | - Abdul Moeed
- Dow University of Health Sciences, Karachi, Pakistan
| | - Fatima Laique
- Dow University of Health Sciences, Karachi, Pakistan
| | - Hala Najeeb
- Dow University of Health Sciences, Karachi, Pakistan
| | | |
Collapse
|
36
|
Kaviani S, Bai H, Das T, Asohan J, Elmanzalawy A, Marlyn J, Choueiri LE, Damha MJ, Laurent Q, Sleiman HF. Photochemical Stabilization of Self-Assembled Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407742. [PMID: 39790078 PMCID: PMC11840461 DOI: 10.1002/smll.202407742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications. Our laboratory has introduced sequence-defined DNA amphiphiles which self-assemble in aqueous solutions. Despite their advantages, self-assembled SNAs can be inherently fragile due to their reliance on non-covalent interactions and fall apart in biologically relevant conditions, specifically by interaction with serum proteins. Herein, this challenge is addressed by introducing two methods of covalent crosslinking of SNAs via UV irradiation. Thymine photodimerization or disulfide crosslinking at the micellar interface enhance SNA stability against human serum albumin binding. This enhanced stability, particularly for disulfide crosslinked SNAs, leads to increased cellular uptake. Furthermore, this crosslinking results in sustained activity and accessibility for release of the therapeutic nucleic acid, along with improvement in unaided gene silencing. The findings demonstrate the efficient stabilization of SNAs through UV crosslinking, influencing their cellular uptake, therapeutic release, and ultimately, gene silencing activity. These studies offer promising avenues for further optimization and exploration of pre-clinical, in vivo studies.
Collapse
Affiliation(s)
- Sepideh Kaviani
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Haochen Bai
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Trishalina Das
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Jathavan Asohan
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | | | - Julian Marlyn
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Lea El Choueiri
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Masad J. Damha
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Quentin Laurent
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
- University Grenoble Alpes, DCM UMR 5250Grenoble Cedex 938058France
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| |
Collapse
|
37
|
Bak A, Zhou L, Rejman J, Yanez Arteta M, Nilsson G, Ashford M. Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing. Expert Opin Drug Deliv 2025; 22:239-254. [PMID: 39797693 DOI: 10.1080/17425247.2025.2452295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION mRNA therapeutics were a niche area in drug development before COVID vaccines. They are now used in vaccine development, for non-viral therapeutic genome editing, in vivo chimeric antigen receptor T (CAR T) cell therapies and protein replacement. mRNA is large, charged, and easily degraded by nucleases. It cannot get into cells, escape the endosome, and be translated to a disease-modifying protein without a delivery system such as lipid nanoparticles (LNPs). AREAS COVERED This article covers how to design, select, and develop an LNP for therapeutic genome editing in the liver. The roadmap is divided into selecting the right LNP for discovery via a design, make, test, and analyze cycle (DMTA). The design elements are focused on ionizable lipids in a 4-component LNP, and insights are provided for how to set an in vitro and in vivo testing strategy. The second section focuses on transforming the LNP into a clinical drug product and covers formulation, analytical development, and process optimization, with brief notes on supply and regulator strategies. EXPERT OPINION The perspective discusses the impact that academic-industry collaborations can have on developing new medicines for therapeutic genome editing in the liver. From the cited collaborations an enhanced understanding of intracellular trafficking, notably endosomal escape, and the internal structure of LNPs were attained and are deemed key to designing effective and safe LNPs. The knowledge gained will also enable additional assays and structural activity relationships, which would lead to the design of the next-generation delivery systems for nucleic acid therapies.
Collapse
Affiliation(s)
- Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Joanna Rejman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunilla Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| |
Collapse
|
38
|
Choi GW, Kim JH, Kang DW, Cho HY. A journey into siRNA therapeutics development: A focus on Pharmacokinetics and Pharmacodynamics. Eur J Pharm Sci 2025; 205:106981. [PMID: 39643127 DOI: 10.1016/j.ejps.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
siRNA therapeutics are emerging novel modalities targeting highly specific mRNA via RNA interference mechanism. Its unique pharmacokinetics (PKs) and pharmacodynamics (PDs) are significant challenges for clinical use. Furthermore, naked siRNA is a highly soluble macromolecule with a negative charge, making plasma membrane penetration a significant hurdle. It is also vulnerable to nuclease degradation. Therefore, advanced formulation technologies, such as lipid nanoparticles and N-acetylgalactosamine conjugation, have been developed and are now used in clinical practice to enhance target organ delivery and stability. The innate complex biological mechanisms of siRNA, along with its formulation, are major determinants of the PK/PD characteristics of siRNA products. To systematically and quantitatively understand these characteristics, it is essential to develop and utilize quantitative PK/PD models for siRNA therapeutics. In this review, the effects of formulation on the PKs and PK/PD models of approved siRNA products were presented, highlighting the importance of selecting appropriate biomarkers and understanding formulation, PKs, and PDs for quantitative interpreting the relationship between plasma concentration, organ concentration, biomarkers, and efficacy.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
39
|
Lee S, Kibler RD, Ahn G, Hsia Y, Borst AJ, Philomin A, Kennedy MA, Huang B, Stoddard B, Baker D. Four-component protein nanocages designed by programmed symmetry breaking. Nature 2025; 638:546-552. [PMID: 39695226 PMCID: PMC11821509 DOI: 10.1038/s41586-024-07814-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/11/2024] [Indexed: 12/20/2024]
Abstract
Four, eight or twenty C3 symmetric protein trimers can be arranged with tetrahedral, octahedral or icosahedral point group symmetry to generate closed cage-like structures1,2. Viruses access more complex higher triangulation number icosahedral architectures by breaking perfect point group symmetry3-9, but nature appears not to have explored similar symmetry breaking for tetrahedral or octahedral symmetries. Here we describe a general design strategy for building higher triangulation number architectures starting from regular polyhedra through pseudosymmetrization of trimeric building blocks. Electron microscopy confirms the structures of T = 4 cages with 48 (tetrahedral), 96 (octahedral) and 240 (icosahedral) subunits, each with 4 distinct chains and 6 different protein-protein interfaces, and diameters of 33 nm, 43 nm and 75 nm, respectively. Higher triangulation number viruses possess very sophisticated functionalities; our general route to higher triangulation number nanocages should similarly enable a next generation of multiple antigen-displaying vaccine candidates10,11 and targeted delivery vehicles12,13.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Annika Philomin
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Barry Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Ajoolabady A, Pratico D, Mazidi M, Davies IG, Lip GYH, Seidah N, Libby P, Kroemer G, Ren J. PCSK9 in metabolism and diseases. Metabolism 2025; 163:156064. [PMID: 39547595 DOI: 10.1016/j.metabol.2024.156064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
PCSK9 is a serine protease that regulates plasma levels of low-density lipoprotein (LDL) and cholesterol by mediating the endolysosomal degradation of LDL receptor (LDLR) in the liver. When PCSK9 functions unchecked, it leads to increased degradation of LDLR, resulting in elevated circulatory levels of LDL and cholesterol. This dysregulation contributes to lipid and cholesterol metabolism abnormalities, foam cell formation, and the development of various diseases, including cardiovascular disease (CVD), viral infections, cancer, and sepsis. Emerging clinical and experimental evidence highlights an imperative role for PCSK9 in metabolic anomalies such as hypercholesterolemia and hyperlipidemia, as well as inflammation, and disturbances in mitochondrial homeostasis. Moreover, metabolic hormones - including insulin, glucagon, adipokines, natriuretic peptides, and sex steroids - regulate the expression and circulatory levels of PCSK9, thus influencing cardiovascular and metabolic functions. In this comprehensive review, we aim to elucidate the regulatory role of PCSK9 in lipid and cholesterol metabolism, pathophysiology of diseases such as CVD, infections, cancer, and sepsis, as well as its pharmaceutical and non-pharmaceutical targeting for therapeutic management of these conditions.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Mohsen Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; King's College London, Department of Twin Research & Genetic Epidemiology, South Wing St Thomas', London, UK; Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ian G Davies
- School of Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Copperas Hill, Liverpool L3 5AJ, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Nabil Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC H2W 1R7, Canada.
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| |
Collapse
|
41
|
de Korte D, Hoekstra M. Protein Arginine Methyltransferase 1: A Multi-Purpose Player in the Development of Cancer and Metabolic Disease. Biomolecules 2025; 15:185. [PMID: 40001488 PMCID: PMC11852820 DOI: 10.3390/biom15020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the main PRMT family member involved in the formation of monomethylarginine and asymmetric dimethylarginine on its protein substrates. Many protein substrates of PRMT1 are key mediators of cell proliferation and oncogenesis. As such, the function of PRMT1 has been most prominently investigated in the context of cancer development. However, recent in vitro and in vivo studies have highlighted that PRMT1 may also promote metabolic disorders. With the current review, we aim to present an in-depth overview of how PRMT1 influences epigenetic modulation, transcriptional regulation, DNA damage repair, and signal transduction in cancer. Furthermore, we summarize the current knowledge regarding the role of PRMT1 in metabolic reprogramming, lipid metabolism, and glucose metabolism and describe the association of PRMT1 with numerous metabolic pathologies such as obesity, liver disease, and type 2 diabetes. It has become apparent that inhibiting the function of PRMT1 will likely serve as the most beneficial therapeutic approach, since several PRMT1 inhibitors have already been shown to exert positive effects on both cancer and metabolic disease in preclinical settings. However, pharmacological PRMT1 inhibition has not yet been shown to be therapeutically effective in clinical studies.
Collapse
Affiliation(s)
| | - Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
42
|
Han X, Petrova V, Song Y, Cheng YT, Jiang X, Zhou H, Hu C, Chen DS, Yong HJ, Kim HW, Zhang B, Barkai O, Jain A, Renthal W, Lirk P, Woolf CJ, Shi J. Lipid nanoparticle delivery of siRNA to dorsal root ganglion neurons to treat pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.633455. [PMID: 39896578 PMCID: PMC11785206 DOI: 10.1101/2025.01.23.633455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Sensory neurons within the dorsal root ganglion (DRG) are the primary trigger of pain, relaying activity about noxious stimuli from the periphery to the central nervous system; however, targeting DRG neurons for pain management has remained a clinical challenge. Here, we demonstrate the use of lipid nanoparticles (LNPs) for effective intrathecal delivery of small interfering RNA (siRNA) to DRG neurons, achieving potent silencing of the transient receptor potential vanilloid 1 (TRPV1) ion channel that is predominantly expressed in nociceptor sensory neurons. This leads to a reversible interruption of heat-, capsaicin-, and inflammation-induced nociceptive conduction, as observed by behavioral outputs. Our work provides a proof-of-concept for intrathecal siRNA therapy as a novel and selective analgesic modality.
Collapse
|
43
|
Van Linthout S, Stellos K, Giacca M, Bertero E, Cannata A, Carrier L, Garcia‐Pavia P, Ghigo A, González A, Haugaa KH, Imazio M, Lopes LR, Most P, Pollesello P, Schunkert H, Streckfuss‐Bömeke K, Thum T, Tocchetti CG, Tschöpe C, van der Meer P, van Rooij E, Metra M, Rosano GM, Heymans S. State of the art and perspectives of gene therapy in heart failure. A scientific statement of the Heart Failure Association of the ESC, the ESC Council on Cardiovascular Genomics and the ESC Working Group on Myocardial & Pericardial Diseases. Eur J Heart Fail 2025; 27:5-25. [PMID: 39576264 PMCID: PMC11798634 DOI: 10.1002/ejhf.3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 02/07/2025] Open
Abstract
Gene therapy has recently become a reality in the treatment of cardiovascular diseases. Strategies to modulate gene expression using antisense oligonucleotides or small interfering RNA are proving to be safe and effective in the clinic. Adeno-associated viral vector-based gene delivery and CRISPR-Cas9-based genome editing have emerged as efficient strategies for gene delivery and repair in humans. Overall, gene therapy holds the promise not only of expanding current treatment options, but also of intervening in previously untackled causal disease mechanisms with little side effects. This scientific statement provides a comprehensive overview of the various modalities of gene therapy used to treat heart failure and some of its risk factors, and their application in the clinical setting. It discusses specifically the possibilities of gene therapy for hereditary heart diseases and (non)-genetic heart failure. Furthermore, it addresses safety and clinical trial design issues and challenges for future regulatory strategies.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité – Universitätmedizin BerlinBIH Center for Regenerative Therapies (BCRT)BerlinGermany
- German Center for Cardiovascular Research (DZHK)partner site BerlinBerlinGermany
| | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive CareUniversity Medical Centre Mannheim, Heidelberg UniversityMannheimGermany
- German Centre for Cardiovascular Research (DZHK)partner site Heidelberg/MannheimMannheimGermany
- Helmholtz Institute for Translational AngioCardioScience (HI‐TAC)MannheimGermany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, UK; Department of Medical SciencesUniversity of TriesteTriesteItaly
| | - Edoardo Bertero
- Cardiovascular Unit, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Antonio Cannata
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research ExcellenceKing's College LondonLondonUK
| | - Lucie Carrier
- Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Centre for Cardiovascular Research (DZHK)partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Pablo Garcia‐Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCVMadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Universidad Francisco de Vitoria (UFV)MadridSpain
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health SciencesMolecular Biotechnology Center "Guido Tarone," University of TorinoTorinoItaly
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA and Department of Pathology, Anatomy and PhysiologyUniversidad de NavarraPamplonaSpain
- IdiSNANavarra Institute for Health ResearchPamplonaSpain
- CIBERCV (Network for Biomedical Research in Cardiovascular Disease)Instituto de Salud Carlos IIMadridSpain
| | - Kristina H. Haugaa
- ProCardio Center for Innovation, Department of CardiologyOslo University Hospital, RikshospitaletOsloNorway
- Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Massimo Imazio
- Department of Medicine (DMED), University of Udine, and Cardiothoracic Department ASUFCUniversity Hospital Santa Maria della MisericordiaUdineItaly
| | - Luis R. Lopes
- Institute of Cardiovascular ScienceUniversity College LondonLondonUK
- Barts Heart Centre, St Bartholomew's HospitalLondonUK
| | - Patrick Most
- Department of Cardiology, Angiology, PulmonologyUniversity Hospital HeidelbergHeidelbergGermany
| | | | - Heribert Schunkert
- Department of Cardiology, Deutsches Herzzentrum MünchenTechnische Universität MünchenMunichGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Munich Heart AllianceMunichGermany
| | - Katrin Streckfuss‐Bömeke
- Clinic for Cardiology and PneumologyUniversity Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), Partner site GöttingenGöttingenGermany
- Institute of Pharmacology and ToxicologyUniversity of WürzburgWürzburgGermany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC)University Clinic WürzburgWürzburgGermany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical SchoolHannoverGermany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences; Center for Basic and Clinical Immunology Research (CISI); Interdepartmental Center for Clinical and Translational Research (CIRCET); Interdepartmental Hypertension Research Center (CIRIAPA)Federico II UniversityNaplesItaly
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité – Universitätmedizin BerlinBIH Center for Regenerative Therapies (BCRT)BerlinGermany
- German Center for Cardiovascular Research (DZHK)partner site BerlinBerlinGermany
- Deutsches Herzzentrum der Charité (DHZC), Department of Cardiology, Angiology and Intensive MedicineCampus Virchow KlinikumBerlinGermany
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Eva van Rooij
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center UtrechtUtrechtThe Netherlands
- Department of CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marco Metra
- Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public HealthUniversity of BresciaBresciaItaly
| | - Giuseppe M.C. Rosano
- Cardiovascular Clinical Academic Group, St. George's University Hospitals, NHS TrustUniversity of LondonLondonUK
- Cardiology, San Raffaele Cassino HospitalCassinoItaly
- Department of Human Sciences and Promotion of Quality of LifeSan Raffaele University of RomeRomeItaly
| | - Stephane Heymans
- Centre for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
- Department of CardiologyMaastricht University, CARIM School for Cardiovascular DiseasesMaastrichtThe Netherlands
- European Reference Network for Rare Low Prevalence and Complex Diseases of the Heart (ERN GUARD‐Heart)AmsterdamThe Netherlands
| |
Collapse
|
44
|
Hui RWH, Mak LY, Seto WK, Yuen MF. Investigational RNA Interference Agents for Hepatitis B. BioDrugs 2025; 39:21-32. [PMID: 39644435 PMCID: PMC11750937 DOI: 10.1007/s40259-024-00694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Functional cure of chronic hepatitis B (CHB)-defined as sustained seroclearance of hepatitis B surface antigen (HBsAg) with unquantifiable hepatitis B virus (HBV) DNA at 24 weeks off treatment, is an optimal treatment endpoint. Nonetheless, it cannot be consistently attained by current treatment modalities. RNA interference (RNAi) is a novel treatment strategy using small-interfering RNA (siRNA) or antisense oligonucleotide (ASO) to target HBV post-transcriptional RNA, in turn suppressing viral protein production and replication. Hence, RNAi has indirect effects in promoting host immune reconstitution against HBV. Multiple RNAi therapeutics have entered phase II/III clinical trials, demonstrating potent, dose-dependent, and sustainable effects in suppressing HBsAg. Incidences of HBsAg seroclearance, particularly with the use of ASO, have also been documented. The combination of RNAi with other antivirals/immunomodulators (e.g. pegylated interferon), have shown promising results in potentiating RNAi effects and enhancing treatment durability. Further research will be required to establish predictors of response, optimal treatment protocols, and long-term outcomes in patients on RNAi. RNAi therapeutics have shown promising results and will likely be the keystone of future HBV treatment.
Collapse
Affiliation(s)
- Rex Wan-Hin Hui
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
45
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
46
|
Menezes Junior ADS, Nogueira THM, de Lima KBA, de Oliveira HL, Botelho SM. Exploratory Studies on RNAi-Based Therapies Targeting Angiotensinogen in Hypertension: Scoping Review. J Pers Med 2024; 15:3. [PMID: 39852196 PMCID: PMC11766978 DOI: 10.3390/jpm15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Background: Systemic arterial hypertension contributes to cardiovascular morbidity and mortality worldwide. Many patients cannot achieve optimal blood pressure (BP) control with traditional therapies, which often results in poor patient adherence and limited long-term efficacy. We investigated the potential of RNA interference (RNAi) therapies targeting hepatic angiotensinogen (AGT) for hypertension management. Methods: This scoping review was conducted by the Joanna Briggs Institute, following a six-stage methodological framework and adhering to PRISMA recommendations. A comprehensive search was conducted across seven databases to identify relevant studies published until May 2024. Data extraction was performed separately, and both quantitative and qualitative analyses were conducted. A population, concept, and context model-based search was performed, selecting controlled MeSH terms and uncontrolled descriptors and cross-referencing them using Booleans. Results: Fifteen articles met our inclusion criteria. Focusing on the efficacy and safety of RNAi-based therapies, this review discusses several key approaches, including antisense oligonucleotides (IONIS-AGT-LRx), small interfering RNA (siRNAs; zilebesiran), and adeno-associated viruses carrying short hairpin RNAs. Notably, zilebesiran conjugated with N-acetylgalactosamine significantly reduced systolic BP by 20 mmHg, sustained for up to six months post-administration, with minimal adverse effects. Conclusions: RNAi-based therapies, particularly those using siRNAs, such as zilebesiran, are promising for the treatment of hypertension. They offer long-term BP control with fewer doses, potentially improving patient adherence and outcome. Although these therapies address several limitations of current antihypertensive treatments, further studies are required to confirm their long-term safety and efficacy.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Medicine School, Pontifical Catholic University of Goiás, Goiânia 74605-010, Brazil; (T.H.M.N.); (K.B.A.d.L.); (S.M.B.)
- Faculty of Medicine, Internal Department, Federal University of Goiás, Goiânia 74001-970, Brazil;
| | | | - Khissya Beatryz Alves de Lima
- Medicine School, Pontifical Catholic University of Goiás, Goiânia 74605-010, Brazil; (T.H.M.N.); (K.B.A.d.L.); (S.M.B.)
| | | | - Silvia Marçal Botelho
- Medicine School, Pontifical Catholic University of Goiás, Goiânia 74605-010, Brazil; (T.H.M.N.); (K.B.A.d.L.); (S.M.B.)
- Faculty of Medicine, Internal Department, Federal University of Goiás, Goiânia 74001-970, Brazil;
| |
Collapse
|
47
|
Zhu YS, Wu J, Zhi F. Advances in conjugate drug delivery System: Opportunities and challenges. Int J Pharm 2024; 667:124867. [PMID: 39454974 DOI: 10.1016/j.ijpharm.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ideal drug delivery system is designed to accurately deliver the drug to its intended site. The development of conjugate drug delivery system introduces a novel pathway to precise drug delivery with advantages over traditional methods. The core of a conjugate drug delivery system comprises a molecule with two functional components, bounded by a linker structure. One component is responsible for delivering or stabilizing the conjugate, while the other is used to provide the therapeutic or diagnostic effects of the bioactivity. Conjugate drug delivery system improves patient health by maintaining the structural stability of drugs in molecular form, delivering therapeutics or diagnostic material to the target site, minimising off-target accumulation and promoting patient compliance. This system includes various types of drug conjugates that modulate drug pharmacokinetics, stability, absorption, and exposure in lesions and healthy tissues. In this review, we focus on the key characteristics and recent advances of various conjugate drug delivery systems and explore their mechanisms. We also point out the current challenges faced by conjugate drug delivery system and look forward to the future prospects.
Collapse
Affiliation(s)
- Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China.
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China
| | - Feng Zhi
- Department of Neurosurgery, Clinical Medical Research Center, Third Affiliated Hospital of Soochow University, Juqian Road No.185, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
48
|
Rady T, Lehot V, Most J, Erb S, Cianferani S, Chaubet G, Basse N, Wagner A. Protocol to generate, purify, and analyze antibody-oligonucleotide conjugates from off-the-shelf antibodies. STAR Protoc 2024; 5:103329. [PMID: 39342618 PMCID: PMC11470600 DOI: 10.1016/j.xpro.2024.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Antibody-oligonucleotide conjugates (AOCs) are a fast-expanding modality for targeted delivery of therapeutic oligonucleotides to tissues. Here, we present a protocol to generate, purify, and analyze AOCs from off-the-shelf antibodies. We describe steps to conjugate single/double-stranded oligonucleotides bearing amine handles to linkers and, then, to antibodies using well-established chemistry. In addition, we provide details regarding the purification techniques and analytical methods suitable for AOC. This protocol can be applied for several purposes where AOC is a modality of interest. For complete details on the use and execution of this protocol, please refer to Rady et al.1.
Collapse
Affiliation(s)
- Tony Rady
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France.
| | - Victor Lehot
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Julien Most
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Stephane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Nicolas Basse
- Sanofi, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
49
|
Michibata J, Kawaguchi Y, Hirose H, Eguchi A, Deguchi S, Takayama K, Xu W, Niidome T, Sasaki Y, Akiyoshi K, Futaki S. Polysaccharide-Based Coacervate Microgel Bearing Cationic Peptides That Achieve Dynamic Cell-Membrane Structure Alteration and Facile Cytosolic Infusion of IgGs. Bioconjug Chem 2024; 35:1888-1899. [PMID: 39500569 DOI: 10.1021/acs.bioconjchem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Conjugates of the biocompatible polysaccharide pullulan with a cell membrane permeabilizing peptide L17E (PL-L17Es) were prepared with the aim of producing complex coacervates with pronounced intracellular antibody (IgG) delivery activity and stable structures. Coacervates with diameters of a few μm were formed simply by mixing PL-L17Es with IgG labeled with negatively charged fluorescent moieties of Alexa Fluor 488 [IgG(AF488)]. The coacervate resulted in a pronounced cytosolic infusion of IgG(AF488) and IgG binding to the target proteins inside the cell. The droplet structures were maintained even under high salt conditions, and the fluorescence in the droplet was not recovered after photobleaching, suggesting the formation of complex coacervate microgels. Dynamic changes in cell membrane structure to entrap the coacervate microgels were captured by confocal and electron microscopy, resulting in cytosolic IgG infusion. The use of M-lycotoxin instead of L17E resulted in a coacervate microgel with marked IgG delivery activity even in the presence of serum. Successful IgG delivery to primary hepatocytes, undifferentiated induced pluripotent stem (iPS) cells, and iPS cell-derived intestinal epithelial cells was also achieved. The construction of complex coacervate microgels with design flexibility and the validity of intracellular IgG delivery with high salt stability were thus demonstrated.
Collapse
Affiliation(s)
- Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akiko Eguchi
- Biobank Center, Mie University Hospital and Department of Gastroenterology and Hepatology, School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
50
|
Nissen SE, Wang Q, Nicholls SJ, Navar AM, Ray KK, Schwartz GG, Szarek M, Stroes ESG, Troquay R, Dorresteijn JAN, Fok H, Rider DA, Romano S, Wolski K, Rambaran C. Zerlasiran-A Small-Interfering RNA Targeting Lipoprotein(a): A Phase 2 Randomized Clinical Trial. JAMA 2024; 332:1992-2002. [PMID: 39556769 PMCID: PMC11574722 DOI: 10.1001/jama.2024.21957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
Importance Elevated lipoprotein(a) increases the risk of atherosclerotic cardiovascular disease (ASCVD) and aortic stenosis. Objective To evaluate the effects of zerlasiran, a small-interfering RNA targeting hepatic synthesis of apolipoprotein(a), on lipoprotein(a) serum concentration. Design, Setting, and Participants A multicenter trial in patients with stable ASCVD with serum lipoprotein(a) concentrations greater than or equal to 125 nmol/L at 26 sites in Europe and South Africa between January 3, 2023, and April 27, 2023, with last follow-up on July 1, 2024. Interventions Participants randomized to receive a subcutaneous dose of placebo every 16 weeks for 3 doses (n = 23) or every 24 weeks for 2 doses (n = 24) or zerlasiran 450 mg every 24 weeks for 2 doses (n = 45), 300 mg every 16 weeks for 3 doses (n = 42), or 300 mg every 24 weeks for 2 doses (n = 44). Main Outcome and Measures The primary outcome was the time-averaged percent change in lipoprotein(a) concentration from baseline to 36 weeks, with follow-up to 60 weeks. Results Among 178 patients, mean (SD) age was 63.7 (9.4) years, 46 (25.8%) were female, with a median (IQR) baseline lipoprotein(a) concentration of 213 (177-282) nmol/L; 172 patients completed the trial. Compared with the pooled placebo group, the least-squares mean time-averaged percent change in lipoprotein(a) concentration from baseline to week 36 was -85.6% (95% CI, -90.9% to -80.3%), -82.8% (95% CI, -88.2% to -77.4%), and -81.3% (95% CI, -86.7% to -76.0%) for the 450 mg every 24 weeks, 300 mg every 16 weeks, and 300 mg every 24 weeks groups, respectively. Median (IQR) percent change in lipoprotein(a) concentration at week 36 was -94.5% (-97.3% to -84.2%) for the 450 mg every 24 weeks group, -96.4% (-97.7% to -92.3%) for the 300 mg every 16 weeks group, and -90.0% (-93.7% to -81.3%) for the 300 mg every 24 weeks group. The most common treatment-related adverse effects were injection site reactions, with mild pain occurring in 2.3% to 7.1% of participants in the first day following drug administration. There were 20 serious adverse events in 17 patients, none considered related to the study drug. Conclusions Zerlasiran was well-tolerated and reduced time-averaged lipoprotein(a) concentration by more than 80% during 36 weeks of treatment in patients with ASCVD. Trial Registration ClinicalTrials.gov Identifier: NCT05537571.
Collapse
Affiliation(s)
- Steven E. Nissen
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | - Qiuqing Wang
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | | | | | | | | | - Michael Szarek
- University of Colorado School of Medicine, Aurora
- State University of New York, Downstate Health Sciences University, Brooklyn
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Roland Troquay
- Department of Cardiology and Interventional Cardiology, VieCuri Medical Center Northern Limburg, Venray, the Netherlands
| | | | - Henry Fok
- Silence Therapeutics, London, United Kingdom
| | | | | | - Kathy Wolski
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio
| | | |
Collapse
|