1
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
2
|
Fillafer C, Paeger A, Schneider MF. The living state: How cellular excitability is controlled by the thermodynamic state of the membrane. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:57-68. [PMID: 33058943 DOI: 10.1016/j.pbiomolbio.2020.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
The thermodynamic (TD) properties of biological membranes play a central role for living systems. It has been suggested, for instance, that nonlinear pulses such as action potentials (APs) can only exist if the membrane state is in vicinity of a TD transition. Herein, two membrane properties in living systems - excitability and velocity - are analyzed for a broad spectrum of conditions (temperature (T), 3D-pressure (p) and pH-dependence). Based on experimental data from Characean cells and a review of literature we predict parameter ranges in which a transition of the membrane is located (15-35°C below growth temperature; 1-3pH units below pH7; at ∼800atm) and propose the corresponding phase diagrams. The latter explain: (i) changes of AP velocity with T,p and pH.(ii) The existence and origin of two qualitatively different forms of loss of nonlinear excitability ("nerve block", anesthesia). (iii) The type and quantity of parameter changes that trigger APs. Finally, a quantitative comparison between the TD behavior of 2D-lipid model membranes with living systems is attempted. The typical shifts in transition temperature with pH and p of model membranes agree with values obtained from cell physiological measurements. Taken together, these results suggest that it is not specific molecules that control the excitability of living systems but rather the TD properties of the membrane interface. The approach as proposed herein can be extended to other quantities (membrane potential, calcium concentration, etc.) and makes falsifiable predictions, for example, that a transition exists within the specified parameter ranges in excitable cells.
Collapse
Affiliation(s)
- Christian Fillafer
- Medical and Biological Physics, Department of Physics, Technical University Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany.
| | - Anne Paeger
- Medical and Biological Physics, Department of Physics, Technical University Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany
| | - Matthias F Schneider
- Medical and Biological Physics, Department of Physics, Technical University Dortmund, Otto-Hahn-Str. 4, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Montanino A, Deryckere A, Famaey N, Seuntjens E, Kleiven S. Mechanical characterization of squid giant axon membrane sheath and influence of the collagenous endoneurium on its properties. Sci Rep 2019; 9:8969. [PMID: 31222074 PMCID: PMC6586665 DOI: 10.1038/s41598-019-45446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
To understand traumas to the nervous system, the relation between mechanical load and functional impairment needs to be explained. Cellular-level computational models are being used to capture the mechanism behind mechanically-induced injuries and possibly predict these events. However, uncertainties in the material properties used in computational models undermine the validity of their predictions. For this reason, in this study the squid giant axon was used as a model to provide a description of the axonal mechanical behavior in a large strain and high strain rate regime [Formula: see text], which is relevant for injury investigations. More importantly, squid giant axon membrane sheaths were isolated and tested under dynamic uniaxial tension and relaxation. From the lumen outward, the membrane sheath presents: an axolemma, a layer of Schwann cells followed by the basement membrane and a prominent layer of loose connective tissue consisting of fibroblasts and collagen. Our results highlight the load-bearing role of this enwrapping structure and provide a constitutive description that could in turn be used in computational models. Furthermore, tests performed on collagen-depleted membrane sheaths reveal both the substantial contribution of the endoneurium to the total sheath's response and an interesting increase in material nonlinearity when the collagen in this connective layer is digested. All in all, our results provide useful insights for modelling the axonal mechanical response and in turn will lead to a better understanding of the relationship between mechanical insult and electrophysiological outcome.
Collapse
Affiliation(s)
- Annaclaudia Montanino
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden.
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics section, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Svein Kleiven
- Division of Neuronic Engineering, Royal Institute of Technology (KTH), Huddinge, Sweden
| |
Collapse
|
4
|
Cinelli I, Destrade M, McHugh P, Duffy M. Effects of nerve bundle geometry on neurotrauma evaluation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3118. [PMID: 29908048 DOI: 10.1002/cnm.3118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE We confirm that alteration of a neuron structure can induce abnormalities in signal propagation for nervous systems, as observed in brain damage. Here, we investigate the effects of geometrical changes and damage of a neuron structure in 2 scaled nerve bundle models, made of myelinated nerve fibers or unmyelinated nerve fibers. METHODS We propose a 3D finite element model of nerve bundles, combining a real-time full electromechanical coupling, a modulated threshold for spiking activation, and independent alteration of the electrical properties for each fiber. With the inclusion of plasticity, we then simulate mechanical compression and tension to induce damage at the membrane of a nerve bundle made of 4 fibers. We examine the resulting changes in strain and neural activity by considering in turn the cases of intact and traumatized nerve membranes. RESULTS Our results show lower strain and lower electrophysiological impairments in unmyelinated fibers than in myelinated fibers, higher deformation levels in larger bundles, and higher electrophysiological impairments in smaller bundles. CONCLUSION We conclude that the insulation sheath of myelin constricts the membrane deformation and scatters plastic strains within the bundle, that larger bundles deform more than small bundles, and that small fibers tolerate a higher level of elongation before mechanical failure.
Collapse
Affiliation(s)
- Ilaria Cinelli
- Discipline of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Ap, NUI, Galway, Ireland
| | - Peter McHugh
- Discipline of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Maeve Duffy
- Electrical and Electronic Engineering, National University of Ireland, Galway, Ireland
| |
Collapse
|
5
|
Cinelli I, Destrade M, Duffy M, McHugh P. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2942. [PMID: 29160926 DOI: 10.1002/cnm.2942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission.
Collapse
Affiliation(s)
- I Cinelli
- Discipline of Biomedical Engineering, NUI Galway, University Road, H91 TK33, Galway, Ireland
- Discipline of Electrical and Electronic Engineering, NUI Galway, H91 TK33, Galway, Ireland
| | - M Destrade
- School of Mathematics, Statistics and Applied Mathematics, NUI Galway, University Road, H91 TK33, Galway, Ireland
| | - M Duffy
- Discipline of Biomedical Engineering, NUI Galway, University Road, H91 TK33, Galway, Ireland
| | - P McHugh
- Discipline of Biomedical Engineering, NUI Galway, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|
6
|
Cinelli I, Destrade M, Duffy M, McHugh P. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:978-981. [PMID: 29060037 DOI: 10.1109/embc.2017.8036989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axonal damage is one of the most common pathological features of traumatic brain injury, leading to abnormalities in signal propagation for nervous systems. We present a 3D fully coupled electro-mechanical model of a nerve bundle, made with the finite element software Abaqus 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation and independent alteration of the electrical properties for each 3-layer fibre within the bundle. Compression and tension are simulated to induce damage at the nerve membrane. Changes in strain, stress distribution and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatized nerve membrane. Results show greater changes in transmitting action potential in the myelinated fibre.
Collapse
|
7
|
Wahab RA, Choi M, Liu Y, Krauthamer V, Zderic V, Myers MR. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model. Med Phys 2012; 39:4274-83. [PMID: 22830761 DOI: 10.1118/1.4729712] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To study how pressure pulses affect nerves through mechanisms that are neither thermal nor cavitational, and investigate how the effects are related to cumulative radiation-force impulse (CRFI). Applications include traumatic brain injury and acoustic neuromodulation. METHODS A simple neural model consisting of the giant axon of a live earthworm was exposed to trains of pressure pulses produced by an 825 kHz focused ultrasound transducer. The peak negative pressure of the pulses and duty cycle of the pulse train were controlled so that neither cavitation nor significant temperature rise occurred. The amplitude and conduction velocity of action-potentials triggered in the worm were measured as the magnitude of the pulses and number of pulses in the pulse trains were varied. RESULTS The functionality of the axons decreased when sufficient pulse energy was applied. The level of CRFI at which the observed effects occur is consistent with the lower levels of injury observed in this study relative to blast tubes. The relevant CRFI values are also comparable to CRFI values in other studies showing measureable changes in action-potential amplitudes and velocities. Plotting the measured action-potential amplitudes and conduction velocities from different experiments with widely varying exposure regimens against the single parameter of CRFI yielded values that agreed within 21% in terms of amplitude and 5% in velocity. A predictive model based on the assumption that the temporal rate of decay of action-potential amplitude and velocity is linearly proportional the radiation force experienced by the axon predicted the experimental amplitudes and conduction velocities to within about 20% agreement. CONCLUSIONS The functionality of axons decreased due to noncavitational mechanical effects. The radiation force, possibly by inducing changes in ion-channel permeability, appears to be a possible mechanism for explaining the observed degradation. The CRFI is also a promising parameter for quantifying neural bioeffects during exposure to pressure waves, and for predicting axon functionality.
Collapse
Affiliation(s)
- Radia Abdul Wahab
- Department of Electrical and Computing Engineering, George Washington University, Washington, DC 20052, USA
| | | | | | | | | | | |
Collapse
|
8
|
Magou GC, Guo Y, Choudhury M, Chen L, Hususan N, Masotti S, Pfister BJ. Engineering a high throughput axon injury system. J Neurotrauma 2011; 28:2203-18. [PMID: 21787172 DOI: 10.1089/neu.2010.1596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several key biological mechanisms of traumatic injury to axons have been elucidated using in vitro stretch injury models. These models, however, are based on the experimentation of single cultures keeping productivity slow. Indeed, low yield has hindered important and well-founded investigations requiring high throughput methods such as proteomic analyses. To meet this need, we engineered a multi-well high throughput injury device to accelerate and accommodate the next generation of traumatic brain injury research. This modular system stretch injures neuronal cultures in either a 24-well culture plate format or 6 individual wells simultaneously. Custom software control allows the user to accurately program the pressure pulse parameters to achieve the desired substrate deformation and injury parameters. Analysis of the pressure waveforms showed that peak pressure was linearly related to input pressure and valve open times and that the 6- and 24-well modules displayed rise times, peak pressures, and decays with extremely small standard deviations. Data also confirmed that the pressure pulse was distributed evenly throughout the pressure chambers and therefore to each injury well. Importantly, the relationship between substrate deformation and applied pressure was consistent among the multiple wells and displayed a predictable linear behavior in each module. These data confirm that this multi-well system performs as well as currently used stretch injury devices and can undertake high throughput studies that are needed across the field of neurotrauma research.
Collapse
Affiliation(s)
- George C Magou
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang HC, Ma YB. Experimental models of traumatic axonal injury. J Clin Neurosci 2009; 17:157-62. [PMID: 20042337 DOI: 10.1016/j.jocn.2009.07.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death in people under 45 years of age worldwide. Such injury is characterized by a wide spectrum of mechanisms of injury and pathologies. Traumatic axonal injury (TAI), originally described as diffuse axonal injury, is one of the most common pathological features of TBI and is thought to be responsible for the long-lasting neurological impairments following TBI. Since the late 1980s a series of in vivo and in vitro experimental models of TAI have been developed to better understand the complex mechanisms of axonal injury and to define the relationship between mechanical forces and the structural and functional changes of injured axons. These models are designed to mimic as closely as possible the clinical condition of human TAI and have greatly improved our understanding of different aspects of TAI. The present review summarizes the most widely used experimental models of TAI. Focusing in particular on in vivo models, this survey aims to provide a broad overview of current knowledge and controversies in the development and use of the experimental models of TAI.
Collapse
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, No. 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Baoshan, Shanghai 201900, China
| | | |
Collapse
|
10
|
|
11
|
Lovell P, Jezzini SH, Moroz LL. Electroporation of neurons and growth cones in Aplysia californica. J Neurosci Methods 2006; 151:114-20. [PMID: 16174534 DOI: 10.1016/j.jneumeth.2005.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/24/2005] [Accepted: 06/24/2005] [Indexed: 11/19/2022]
Abstract
Specific labeling of individual neurons and neuronal processes is virtually an everyday task for neuroscientists. Many traditional ways for delivery of intracellular dyes have limitations in terms of speed, efficiency and reproducibility. Electroporation is a fast, reliable and efficient method to deliver microscopic amounts of polar and charged molecules into neurons and their compartments such as individual neurites and growth cones. Here, we present a simple and highly effective procedure for intracellular labeling of individual Aplysia neurons both in intact ganglia and in cell culture. Pleural mechanoreceptor neurons have been used as illustrative examples to demonstrate applicability of direct and local labeling of the smallest individual neurites (< 2 microm) and single growth cones. Specifically, a 3-s train of 1.0 V hyperpolarizing pulses at 50 Hz effectively filled discrete neurites in contact with the tip of the micropipette with no dye transfer visible to other, non-contacted neurites. Application of this localized dye labeling technique to single neurites reveals a surprisingly complex morphology for patterns of axonal branching in culture. The protocol can be easily applied to a variety of models in neuroscience including accessible nervous systems of invertebrate animals.
Collapse
Affiliation(s)
- Peter Lovell
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9005 Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | | | | |
Collapse
|
12
|
McNally HA, Rajwa B, Sturgis J, Robinson JP. Comparative three-dimensional imaging of living neurons with confocal and atomic force microscopy. J Neurosci Methods 2005; 142:177-84. [PMID: 15698657 DOI: 10.1016/j.jneumeth.2004.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 11/22/2022]
Abstract
Atomic force microscopy applications extend across a number of fields; however, limitations have reduced its effectiveness in live cell analysis. This report discusses the use of AFM to evaluate the three-dimensional (3-D) architecture of living chick dorsal root ganglia and sympathetic ganglia. These data sets were compared to similar images acquired with confocal laser scanning microscopy of identical cells. For this comparison we made use of visualization techniques which were applicable to both sets of data and identified several issues when coupling these technologies. These direct comparisons offer quantitative validation and confirmation of the character of novel images acquired by AFM. This paper is one in a series emphasizing various new applications of AFM in neurobiology.
Collapse
Affiliation(s)
- Helen A McNally
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47906-2065, USA.
| | | | | | | |
Collapse
|
13
|
Geddes DM, Cargill RS, LaPlaca MC. Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 2004; 20:1039-49. [PMID: 14588120 DOI: 10.1089/089771503770195885] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism by which mechanical impact to brain tissue is transduced to neuronal impairment remains poorly understood. Using an in vitro model of neuronal stretch, we found that mechanical stretch of neurons resulted in a transient plasma membrane permeability increase. Primary cortical neurons, seeded on silicone substrates, were subjected to a defined rate and magnitude strain pulse by stretching the substrates over a fixed cylindrical form. To identify plasma membrane defects, various sized fluorescent molecules were added to the bathing media either immediately before injury or 1, 2, 5, or 10 min after injury and removed one minute later. The percent of cells that took up dye depended on the applied strain rate, strain magnitude and molecular size. Severe stretch (10 sec(-1), 0.30) resulted in significant uptake of all tested molecules (ranging between 0.5 and 8.9 nm radii) with up to 60% of cells positively stained. Furthermore, the neurons remained permeable to the smallest molecule (carboxyfluorescein, 380 Da) up to 5 min after severe stretch but were only permeable to larger molecules (>/=10 kDa) immediately after stretch. These transiently formed membrane defects may be the initiating mechanism that translates mechanical stretch to cellular dysfunction.
Collapse
Affiliation(s)
- Donna M Geddes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
14
|
Gallant PE. Axotomy inhibits the slow axonal transport of tubulin in the squid giant axon. THE BIOLOGICAL BULLETIN 2003; 205:187-188. [PMID: 14583521 DOI: 10.2307/1543244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- P E Gallant
- National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Eddleman CS, Bittner GD, Fishman HM. SEM comparison of severed ends of giant axons isolated from squid (Loligo pealeii) and crayfish (Procambarus clarkii). THE BIOLOGICAL BULLETIN 2002; 203:219-220. [PMID: 12414587 DOI: 10.2307/1543406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
16
|
Galbraith JA, Reese TS, Schlief ML, Gallant PE. Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc Natl Acad Sci U S A 1999; 96:11589-94. [PMID: 10500221 PMCID: PMC18078 DOI: 10.1073/pnas.96.20.11589] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major issue in the slow transport of cytoskeletal proteins is the form in which they are transported. We have investigated the possibility that unpolymerized as well as polymerized cytoskeletal proteins can be actively transported in axons. We report the active transport of highly diffusible tubulin oligomers, as well as transport of the less diffusible neurofilament polymers. After injection into the squid giant axon, tubulin was transported in an anterograde direction at an average rate of 2.3 mm/day, whereas neurofilament was moved at 1.1 mm/day. Addition of the metabolic poisons cyanide or dinitrophenol reduced the active transport of both proteins to less than 10% of control values, whereas disruption of microtubules by treatment of the axon with cold in the presence of nocodazole reduced transport of both proteins to approximately 20% of control levels. Passive diffusion of these proteins occurred in parallel with transport. The diffusion coefficient of the moving tubulin in axoplasm was 8.6 micrometer(2)/s compared with only 0.43 micrometer(2)/s for neurofilament. These results suggest that the tubulin was transported in the unpolymerized state and that the neurofilament was transported in the polymerized state by an energy-dependent nocodazole/cold-sensitive transport mechanism.
Collapse
Affiliation(s)
- J A Galbraith
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4062, USA.
| | | | | | | |
Collapse
|
17
|
Okonkwo DO, Povlishock JT. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 1999; 19:443-51. [PMID: 10197514 DOI: 10.1097/00004647-199904000-00010] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury evokes multiple axonal pathologies that contribute to the ultimate disconnection of injured axons. In severe traumatic brain injury, the axolemma is perturbed focally, presumably allowing for the influx of Ca2+ and initiation of Ca2+ -sensitive, proaxotomy processes. Mitochondria in foci of axolemmal failure may act as Ca2+ sinks that sequester Ca2+ to preserve low cytoplasmic calcium concentrations. This Ca2+ load within mitochondria, however, may cause colloid osmotic swelling and loss of function by a Ca2+ -induced opening of the permeability transition pore. Local failure of mitochondria, in turn, can decrease production of high-energy phosphates necessary to maintain membrane pumps and restore ionic balance in foci of axolemmal permeability change. The authors evaluated the ability of the permeability transition pore inhibitor cyclosporin A (CsA) to prevent mitochondrial swelling in injured axonal segments demonstrating altered axolemmal permeability after impact acceleration injury in rat. At the electron microscopic level, statistically fewer abnormal mitochondria were seen in traumatically injured axons from CsA-pretreated injured animals. Further, this mitochondrial protection translated into axonal protection in a second group of injured rats, whose brains were reacted with antibodies against amyloid precursor protein, a known marker of injured axons. Pretreatment with CsA significantly reduced the number of axons undergoing delayed axotomy, as evidenced by a decrease in the density of amyloid precursor protein-immunoreactive axons. Collectively, these studies demonstrate that CsA protects both mitochondria and the related axonal shaft, suggesting that this agent may be of therapeutic use in traumatic brain injury.
Collapse
Affiliation(s)
- D O Okonkwo
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709, USA
| | | |
Collapse
|
18
|
Eddleman CS, Smyers ME, Lore A, Fishman HM, Bittner GD. Anomalies associated with dye exclusion as a measure of axolemmal repair in invertebrate axons. Neurosci Lett 1998; 256:123-6. [PMID: 9855355 DOI: 10.1016/s0304-3940(98)00709-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
After axonal injury, dye exclusion is often used as a measure of the re-establishment of a structural barrier. We now report that this use of dye exclusion is equivocal in two situations. (1) When a negatively-charged hydrophilic fluorescent dye (HFD) was placed in the physiological saline (PS) surrounding a crayfish medial giant axon (CMGA) before transection, this dye did not readily diffuse into the cut ends after transection whereas uncharged or neutralized dyes did do so. (2) When axoplasm flowed out of the cut ends of a transected squid giant axon (SGA), this outflow markedly slowed hydrophilic fluorescent dyes from diffusing into the cut ends. These anomalies suggest that dye exclusion by an injured axon does not always indicate that a structural barrier has formed. Therefore, dye assessments of axonal repair require control experiments that rule out anomalous exclusion due to dye interactions (biochemical and fluid dynamics) with components (axoplasm, axolemma, glial sheath, etc.) of the particular axon under study.
Collapse
Affiliation(s)
- C S Eddleman
- Department of Physiology and Biophysics, University of Texas Medical Branch at Galveston 77555-0641, USA.
| | | | | | | | | |
Collapse
|
19
|
Lundqvist JA, Sahlin F, Aberg MA, Strömberg A, Eriksson PS, Orwar O. Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. Proc Natl Acad Sci U S A 1998; 95:10356-60. [PMID: 9724707 PMCID: PMC27898 DOI: 10.1073/pnas.95.18.10356] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.
Collapse
Affiliation(s)
- J A Lundqvist
- Department of Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|