1
|
Barbour MA, Whitehead B, Gumbo C, Karelina K, Weil ZM. Traumatic brain injury persistently increases the incidence of both ischemic and hemorrhagic strokes: Potential mechanisms. Prog Neurobiol 2025; 248:102749. [PMID: 40113130 PMCID: PMC12021558 DOI: 10.1016/j.pneurobio.2025.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Traumatic brain injuries (TBI) significantly increase the risk of both ischemic and hemorrhagic strokes, with effects persisting for years after the initial injury. The mechanisms underlying this increased stroke risk are complex, multifactorial, and incompletely understood but likely include chronic cerebrovascular dysfunction, blood-brain barrier disruption, and inflammatory responses. Epidemiological studies consistently show that TBI is an independent risk factor for stroke, with more severe injuries associated with greater risk, especially for hemorrhagic strokes. Traditional risk factors for stroke, such as hypertension, poor diet, and sedentary lifestyle, further elevate the risk in TBI survivors. Modifiable lifestyle factors, such as improving sleep, increasing physical activity, and adopting heart-healthy diets, offer potential intervention points to mitigate stroke risk. Pharmacological considerations, including the use of antidepressants, anticoagulants, and statins, also influence stroke risk, particularly with regard to hemorrhagic complications. This review explores the pathophysiological mechanisms linking TBI and stroke, emphasizing the need for future research to identify specific biomarkers and imaging techniques to predict stroke vulnerability in TBI patients. Addressing the gaps in understanding, particularly regarding small vessel pathology, will be essential to developing targeted therapies for reducing stroke incidence in TBI survivors.
Collapse
Affiliation(s)
- Mikaela A Barbour
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA.
| | - Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| | - Claymore Gumbo
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| | - Zachary M Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, 108 Biomedical Road, 313 BMRC, Morgantown, WV 26506, USA
| |
Collapse
|
2
|
Hasanpour-Segherlou Z, Masheghati F, Shakeri-Darzehkanani M, Hosseini-Siyanaki MR, Lucke-Wold B. Neurodegenerative Disorders in the Context of Vascular Changes after Traumatic Brain Injury. JOURNAL OF VASCULAR DISEASES 2024; 3:319-332. [DOI: 10.3390/jvd3030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2025]
Abstract
Traumatic brain injury (TBI) results from external biomechanical forces that cause structural and physiological disturbances in the brain, leading to neuronal, axonal, and vascular damage. TBIs are predominantly mild (65%), with moderate (10%) and severe (25%) cases also prevalent. TBI significantly impacts health, increasing the risk of neurodegenerative diseases such as dementia, post injury. The initial phase of TBI involves acute disruption of the blood–brain barrier (BBB) due to vascular shear stress, leading to ischemic damage and amyloid-beta accumulation. Among the acute cerebrovascular changes after trauma are early progressive hemorrhage, micro bleeding, coagulopathy, neurovascular unit (NVU) uncoupling, changes in the BBB, changes in cerebral blood flow (CBF), and cerebral edema. The secondary phase is characterized by metabolic dysregulation and inflammation, mediated by oxidative stress and reactive oxygen species (ROS), which contribute to further neurodegeneration. The cerebrovascular changes and neuroinflammation include excitotoxicity from elevated extracellular glutamate levels, coagulopathy, NVU, immune responses, and chronic vascular changes after TBI result in neurodegeneration. Severe TBI often leads to dysfunction in organs outside the brain, which can significantly impact patient care and outcomes. The vascular component of systemic inflammation after TBI includes immune dysregulation, hemodynamic dysfunction, coagulopathy, respiratory failure, and acute kidney injury. There are differences in how men and women acquire traumatic brain injuries, how their brains respond to these injuries at the cellular and molecular levels, and in their brain repair and recovery processes. Also, the patterns of cerebrovascular dysfunction and stroke vulnerability after TBI are different in males and females based on animal studies.
Collapse
Affiliation(s)
| | | | | | | | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Singh A, Gong S, Vu A, Li S, Obenaus A. Social deficits mirror delayed cerebrovascular dysfunction after traumatic brain injury. Acta Neuropathol Commun 2024; 12:126. [PMID: 39107831 PMCID: PMC11304659 DOI: 10.1186/s40478-024-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences, including social isolation and depression. TBI modifies neurovascular physiology and behavior but the chronic physiological implications of altered brain perfusion on social interactions are unknown. Adult C57/BL6 male mice received a moderate cortical TBI, and social behaviors were assessed at baseline, 3-, 7-, 14-, 30-, and 60-days post injury (dpi). Magnetic resonance imaging (MRI, 9.4T) using dynamic susceptibility contrast perfusion weighted MRI were acquired. At 60dpi mice underwent histological angioarchitectural mapping. Analysis utilized standardized protocols followed by cross-correlation metrics. Social behavior deficits at 60dpi emerged as reduced interactions with a familiar cage-mate (partner) that mirrored significant reductions in cerebral blood flow (CBF) at 60dpi. CBF perturbations were dynamic temporally and across brain regions including regions known to regulate social behavior such as hippocampus, hypothalamus, and rhinal cortex. Social isolation in TBI-mice emerged with a significant decline in preference to spend time with a cage mate. Cortical vascular density was also reduced corroborating the decline in brain perfusion and social interactions. Thus, the late emergence of social interaction deficits mirrored the reduced vascular density and CBF in regions known to be involved in social behaviors. Vascular morphology and function improved prior to the late decrements in social function and our correlations strongly implicate a linkage between vascular density, cerebral perfusion, and social interactions. Our study provides a clinically relevant timeline of alterations in social deficits alongside functional vascular recovery that can guide future therapeutics.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
- Department of Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, 120 Walter P Martin Research Center, Torrance, California, 90502, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Steven Gong
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Anh Vu
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Scott Li
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA.
- Division of Biomedical Sciences, 206 SOM Research Bldg, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
4
|
Liang Y, Wang Y, Sun C, Xiang Y, Deng Y. Deferoxamine reduces endothelial ferroptosis and protects cerebrovascular function after experimental traumatic brain injury. Brain Res Bull 2024; 207:110878. [PMID: 38218407 DOI: 10.1016/j.brainresbull.2024.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Cerebrovascular dysfunction resulting from traumatic brain injury (TBI) significantly contributes to poor patient outcomes. Recent studies revealed the involvement of iron metabolism in neuronal survival, yet its effect on vasculature remains unclear. This study aims to explore the impact of endothelial ferroptosis on cerebrovascular function in TBI. A Controlled Cortical Impact (CCI) model was established in mice, resulting in a significant increase in iron-related proteins such as TfR1, FPN1, and FTH, as well as oxidative stress biomarker 4HNE. This was accompanied by a decline in expression of the ferroptosis inhibitor GPX4. Moreover, Perls' staining and nonhemin iron content assay showed iron overload in brain microvascular endothelial cells (BMECs) and the ipsilateral cortex. Immunofluorescence staining revealed more FTH-positive cerebral endothelial cells, consistent with impaired perfusion vessel density and cerebral blood flow. As a specific iron chelator, deferoxamine (DFO) treatment inhibited such ferroptotic proteins expression and the accumulation of lipid-reactive oxygen species following CCI, enhancing glutathione peroxidase (GPx) activity. DFO treatment significantly reduced iron deposition in BMECs and brain tissue, and increased density of the cerebral capillaries as well. Consequently, DFO treatment led to improvements in cerebral blood flow (as measured by laser speckle imaging) and behavioral performance (as measured by the neurological severity scores, rotarod test, and Morris water maze test). Taken together, our results indicated that TBI induces remarkable iron disorder and endothelial ferroptosis, and DFO treatment may help maintain iron homeostasis and protect vascular function. This may provide a novel therapeutic strategy to prevent cerebrovascular dysfunction following TBI.
Collapse
Affiliation(s)
- Yidan Liang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yanglingxi Wang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Chao Sun
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yi Xiang
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
5
|
Xiao X, Xu L, Lu H, Liu X, Sun H, Guo Z, Sun J, Qi F, Niu X, Wang A, Ge Q, Zhuang Y, Geng X, Chen X, Lan Y, He J, Sun W. Untargeted Metabolomic Analyses of Body Fluids to Differentiate TBI DOC and NTBI DOC. Curr Mol Med 2024; 24:1183-1193. [PMID: 37817528 DOI: 10.2174/0115665240249826230928104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE To investigate the metabolomic differences between Traumatic brain injury (TBI) disorder of consciousness (DOC) patients and non-traumatic brain injury (NTBI) DOC patients by using cerebrospinal fluid (CSF), serum and urine samples beneficial to understand the pathological mechanism differences between the two etiologies, provide potential clues for the subsequent treatment and prognosis, and investigate the metabolome differences and similarities between TBI and NTBI among three different body fluids. METHODS In total, 24 TBI DOC subjects and 29 NTBI DOC subjects were enrolled. CSF, serum and urine samples from TBI DOC and NTBI DOC patients were collected and analyzed by performing UPLC-MS. The statistical methods and pathway analyses were applied to discover potential biomarkers and altered metabolic functions. RESULTS When comparing TBI DOC and NTBI DOC, 36, 31 and 52 differential metabolites were obtained in CSF, serum and urine, respectively. The functional analysis of differential metabolites obtained in CSF, serum and urine were all related to amino acid metabolism. Except for amino acid metabolism, metabolic biomarkers in CSF, serum and urine mainly focus on central function, cognitive function, necrosis and apoptosis and neurological function, respectively. In CSF, the highest AUC was 0.864 (Isoproturon) and 0.816 (Proline betaine). Then, the AUC of NFurfurylformamide in serum was 0.941, while the AUC of Dihydronepetalactone and Doxepin N-oxide glucuronide were 1.0 in urine. CONCLUSION CSF, serum and urine metabolomic analyses could differentiate TBI DOC from NTBI DOC and functional analyses showed a metabolic change difference between TBI DOC and NTBI DOC.
Collapse
Affiliation(s)
- Xiaoping Xiao
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Medical College, Beijing, China
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Hezhen Lu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaoyan Liu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Jiameng Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Feng Qi
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Xia Niu
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Aiwei Wang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueling Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College Beijing, China
| |
Collapse
|
6
|
Kitagawa M, Abiko K, Sheriff S, Maudsley AA, Li X, Sawamura D, Ahn S, Tha KK. Brain Temperature as an Indicator of Cognitive Function in Traumatic Brain Injury Patients. Metabolites 2023; 14:17. [PMID: 38248820 PMCID: PMC10818445 DOI: 10.3390/metabo14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Whether brain temperature noninvasively extracted by magnetic resonance imaging has a role in identifying brain changes in the later phases of mild to moderate traumatic brain injury (TBI) is not known. This prospective study aimed to evaluate if TBI patients in subacute and chronic phases had altered brain temperature measured by whole-brain magnetic resonance spectroscopic imaging (WB-MRSI) and if the measurable brain temperature had any relationship with cognitive function scores. WB-MRSI was performed on eight TBI patients and fifteen age- and sex-matched control subjects. Brain temperature (T) was extracted from the brain's major metabolites and compared between the two groups. The T of the patients was tested for correlation with cognitive function test scores. The results showed significantly lower brain temperature in the TBI patients (p < 0.05). Brain temperature derived from N-acetylaspartate (TNAA) strongly correlated with the 2 s paced auditory serial addition test (PASAT-2s) score (p < 0.05). The observation of lower brain temperature in TBI patients may be due to decreased metabolic activity resulting from glucose and oxygen depletion. The correlation of brain temperature with PASAT-2s may imply that noninvasive brain temperature may become a noninvasive index reflecting cognitive performance.
Collapse
Affiliation(s)
- Maho Kitagawa
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan; (M.K.); (X.L.)
| | - Kagari Abiko
- Department of Rehabilitation, Hokkaido University Hospital, Sapporo 060-8648, Japan;
- Department of Rehabilitation, Sapporo Azabu Neurosurgical Hospital, Sapporo 065-0022, Japan
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.S.); (A.A.M.)
| | - Andrew A. Maudsley
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (S.S.); (A.A.M.)
| | - Xinnan Li
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan; (M.K.); (X.L.)
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Hokkaido University Faculty of Health Sciences, Sapporo 060-0812, Japan;
| | - Sinyeob Ahn
- Siemens Healthineers, San Francisco, CA 94553, USA;
| | - Khin Khin Tha
- Laboratory for Biomarker Imaging Science, Graduate School of Biomedical Science and Engineering, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan; (M.K.); (X.L.)
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
7
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
8
|
Penn C, Katnik C, Cuevas J, Mohapatra SS, Mohapatra S. Multispectral optoacoustic tomography (MSOT): Monitoring neurovascular changes in a mouse repetitive traumatic brain injury model. J Neurosci Methods 2023; 393:109876. [PMID: 37150303 PMCID: PMC10388337 DOI: 10.1016/j.jneumeth.2023.109876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Evidence suggests that mild TBI injuries, which comprise > 75% of all TBIs, can cause chronic post-concussive symptoms, especially when experienced repetitively (rTBI). rTBI is a major cause of cognitive deficit in athletes and military personnel and is associated with neurovascular changes. Current methods to monitor neurovascular changes in detail are prohibitively expensive and invasive for patients with mild injuries. NEW METHOD We evaluated the potential of multispectral optoacoustic tomography (MSOT) to monitor neurovascular changes and assess therapeutic strategies in a mouse model of rTBI. Mice were subjected to rTBI or sham via controlled cortical impact and administered pioglitazone (PG) or vehicle. Oxygenated and deoxygenated hemoglobin were monitored using MSOT. Indocyanine green clearance was imaged via MSOT to evaluate blood-brain-barrier (BBB) integrity. RESULTS Mice subjected to rTBI show a transient increase in oxygenated/total hemoglobin ratio which can be mitigated by PG administration. rTBI mice also show BBB disruption shortly after injury and reduction of oxygenated/total hemoglobin in the chronic stage, neither of which were affected by PG intervention. COMPARISON WITH EXISTING METHODS MSOT imaging has the potential as a noninvasive in vivo imaging method to monitor neurovascular changes and assess therapeutics in mouse models of rTBI. In comparison to standard methods of tracking inflammation and BBB disruption, MSOT can be used multiple times throughout the course of injury without the need for surgery. Thus, MSOT is especially useful in research of rTBI models for screening therapeutics, and with further technological improvements may be extended for use in rTBI patients.
Collapse
Affiliation(s)
- Courtney Penn
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Chris Katnik
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Javier Cuevas
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Internal Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Churchill NW, Graham SJ, Schweizer TA. Perfusion Imaging of Traumatic Brain Injury. Neuroimaging Clin N Am 2023; 33:315-324. [PMID: 36965948 DOI: 10.1016/j.nic.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The mechanisms for regulating cerebral blood flow (CBF) are highly sensitive to traumatic brain injury (TBI). The perfusion imaging technique may be used to assess CBF and identify perfusion abnormalities following a TBI. Studies have identified CBF disturbances across the injury severity spectrum and correlations with both acute and long-term indices of clinical outcome. Although not yet widely used in the clinical context, this is an important area of ongoing research.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Physics Department, Toronto Metropolitan University, 60 St George St, Toronto, ON M5S 1A7, Canada.
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, ON M5G 1L7, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Wellness Way, Toronto, ON M4N 3M5, Canada; Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, Saint Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1M8, Canada; Faculty of Medicine (Neurosurgery), University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
10
|
Patient-Centered Approaches to Cognitive Assessment in Acute TBI. Curr Neurol Neurosci Rep 2023; 23:59-66. [PMID: 36705882 DOI: 10.1007/s11910-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this article is to help clinicians understand how underlying pathophysiologies and medical comorbidities associated with acute traumatic brain injury (TBI) can impact assessment of cognition during the initial stages of recovery. Clinicians can use information from this article to develop assessment plans rooted in patient-centered care. RECENT FINDINGS The authors conducted a review of the literature related to the assessment of cognition in acute TBI, focusing on pathophysiology, medical comorbidities, and assessment approaches. Results indicated that TBI pathophysiologies associated with white and gray matter changes make many patients vulnerable to cognitive deficits. Acute comorbidities such as psychological and pain status influence cognitive abilities as well. The current approaches to cognitive assessment can be limited in many ways, though by using the patient's neuropathological profile, noted comorbidities, and other patient specific factors, clinicians can potentially improve the effectiveness of assessment.
Collapse
|
11
|
Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study. Neuroimage Clin 2023; 37:103344. [PMID: 36804686 PMCID: PMC9969322 DOI: 10.1016/j.nicl.2023.103344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with alterations in cerebral blood flow (CBF), which may underlie functional disability and precipitate TBI-induced neurodegeneration. Although it is known that chronic moderate-severe TBI (msTBI) causes decreases in CBF, the temporal dynamics during the early chronic phase of TBI remain unknown. Using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI), we examined longitudinal CBF changes in 29 patients with msTBI at 3, 6, and 12 months post-injury in comparison to 35 demographically-matched healthy controls (HC). We investigated the difference between the two groups and the within-subject time effect in the TBI patients using whole-brain voxel-wise analysis. Mean CBF in gray matter (GM) was lower in the TBI group compared to HC at 6 and 12 months post-injury. Within the TBI group, we identified widespread regional decreases in CBF from 3 to 6 months post-injury. In contrast, there were no regions with decreasing CBF from 6 to 12 months post-injury, indicating stabilization of hypoperfusion. There was instead a small area of increase in CBF observed in the right precuneus. These CBF changes were not accompanied by cortical atrophy. The change in CBF was correlated with change in executive function from 3 to 6 months post-injury in TBI patients, suggesting functional relevance of CBF measures. Understanding the time course of TBI-induced hypoperfusion and its relationship with cognitive improvement could provide an optimal treatment window to benefit long-term outcome.
Collapse
Affiliation(s)
- Naomi L Gaggi
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Jeffrey B Ware
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Sudipto Dolui
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Daniel Brennan
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| | - Julia Torrellas
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States.
| | - Ze Wang
- University of Maryland School of Medicine, 655 W Baltimore St. S, Baltimore, MD 21201, United States.
| | - John Whyte
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA 19027, United States.
| | - Ramon Diaz-Arrastia
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Junghoon J Kim
- City University of New York (CUNY) School of Medicine, Townsend Harris Hall, 160 Convent Avenue, Convent Avenue, New York, NY 10031, United States; City University of New York (CUNY) Graduate Center, 365 5(th) Avenue, New York, NY 10016, United States.
| |
Collapse
|
12
|
Mishra RK, Galwankar S, Gerber J, Jain A, Yunus M, Cincu R, Moscote-Salazar LR, Quiñones-Ossa GA, Agrawal A. Neutrophil-lymphocyte ratio as a predictor of outcome following traumatic brain injury: Systematic review and meta-analysis. J Neurosci Rural Pract 2022; 13:618-635. [PMID: 36743744 PMCID: PMC9893942 DOI: 10.25259/jnrp-2022-4-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The neutrophil-to-lymphocyte ratio (NLR) is a simple and routinely performed hematological parameter; however, studies on NLR as a prognostic tool in traumatic brain injury (TBI) have yielded contradictory results. MATERIALS AND METHODS This systematic review and meta-analysis was conducted according to the Preferred Reporting Items in the Systematic Review and Meta-Analysis guidelines 2020. Electronic databases of PubMed, Cochrane Library, Web of Science, and Scopus were searched. The population consisted of TBI patients in the absence of moderate and severe extracranial injury. Day 1 NLR was taken for the analysis. The outcomes evaluated were mortality and the Glasgow Outcome Scale (GOS). No restrictions were placed on the language, year and country of publication, and duration of follow-up. Animal studies were excluded from the study. Studies, where inadequate data were reported for the outcomes, were included in the qualitative synthesis but excluded from the quantitative synthesis. Study quality was evaluated using the Newcastle-Ottawa scale (NOS). The risk of bias was estimated using the Cochrane RoBANS risk of bias tool. RESULTS We retrieved 7213 citations using the search strategy and 2097 citations were excluded based on the screening of the title and abstract. Full text was retrieved for 40 articles and subjected to the eligibility criteria, of which 28 were excluded from the study. Twelve studies were eligible for the synthesis of the systematic review while seven studies qualified for the meta-analysis. The median score of the articles was 8/9 as per NOS. The risk of selection bias was low in all the studies while the risk of detection bias was high in all except one study. Ten studies were conducted on adult patients, while two studies reported pediatric TBI. A meta-analysis for GOS showed that high NLR predicted unfavorable outcomes at ≥6 months with a mean difference of -5.18 (95% confidence interval: -10.04, -0.32); P = 0.04; heterogeneity (I2), being 98%. The effect estimates for NLR and mortality were a mean difference of -3.22 (95% confidence interval: -7.12, 0.68), P = 0.11, and an I2 of 85%. Meta-analysis for Area under the curve (AUC) receiver operating characteristic of the included studies showed good predictive power of NLR in predicting outcomes following TBI with AUC 0.706 (95% CI: 0.582-0.829). CONCLUSION A higher admission NLR predicts an increased mortality risk and unfavorable outcomes following TBI. However, future research will likely address the existing gaps.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Neurosurgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sagar Galwankar
- Department of Global Health, University of South Florida, Tampa, Florida, United States
| | - Joel Gerber
- Department of Emergency Medicine, University of South Florida, Tampa, Florida, United States
| | - Anuj Jain
- Department of Anesthesia, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Md. Yunus
- Department of Trauma and Emergency Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Rafael Cincu
- Department of Neurosurgery, Valencia General Hospital, Valencia, Spain
| | | | | | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
13
|
Zheng S, Mu S, Li J, Zhang S, Wei L, Wang M, Xu Y, Wang S. Cerebral venous hemodynamic responses in a mouse model of traumatic brain injury. Brain Res 2022; 1792:148014. [PMID: 35839929 DOI: 10.1016/j.brainres.2022.148014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/28/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem that endangers human health and is divided into primary and secondary injuries. Previous work has confirmed that changes in cerebral blood flow (CBF) are related to the progression of secondary injury, although clinical studies have shown that CBF monitoring cannot fully and accurately evaluate disease progression. These studies have almost ignored the monitoring of venous blood flow; however, as an outflow channel of the cerebral circulation, it warrants discussion. To explore the regulation of venous blood flow after TBI, the present study established TBI mouse models of different severities, observed changes in cerebral venous blood flow by laser speckle flow imaging, and recorded intracranial pressure (ICP) after brain injury to evaluate the correlation between venous blood flow and ICP. Behavioral and histopathological assessments were performed after the intervention. The results showed that there was a significant negative correlation between ICP and venous blood flow (r = -0.795, P < 0.01), and both recovered to varying degrees in the later stages of observation. The blood flow changes in regional microvessels were similar to those in venous, and the expression of angiogenesis proteins around the impact area was significantly increased. In conclusion, this study based on the TBI mouse model, recorded the changes in venous blood flow and ICP and revealed that venous blood flow can be used as an indicator of the progression of secondary brain injury.
Collapse
Affiliation(s)
- Shaorui Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, Affiliated Hospital of Putian University, Putian 351100, China
| | - Shuwen Mu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Jun Li
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Shangming Zhang
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Liangfeng Wei
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Mingyue Wang
- Department of Pathology, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Yongjun Xu
- Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| |
Collapse
|
14
|
Latchoumane CFV, Betancur MI, Simchick GA, Sun MK, Forghani R, Lenear CE, Ahmed A, Mohankumar R, Balaji N, Mason HD, Archer-Hartmann SA, Azadi P, Holmes PV, Zhao Q, Bellamkonda RV, Karumbaiah L. Engineered glycomaterial implants orchestrate large-scale functional repair of brain tissue chronically after severe traumatic brain injury. SCIENCE ADVANCES 2021; 7:7/10/eabe0207. [PMID: 33674306 PMCID: PMC7935369 DOI: 10.1126/sciadv.abe0207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/21/2021] [Indexed: 05/14/2023]
Abstract
Severe traumatic brain injury (sTBI) survivors experience permanent functional disabilities due to significant volume loss and the brain's poor capacity to regenerate. Chondroitin sulfate glycosaminoglycans (CS-GAGs) are key regulators of growth factor signaling and neural stem cell homeostasis in the brain. However, the efficacy of engineered CS (eCS) matrices in mediating structural and functional recovery chronically after sTBI has not been investigated. We report that neurotrophic factor functionalized acellular eCS matrices implanted into the rat M1 region acutely after sTBI significantly enhanced cellular repair and gross motor function recovery when compared to controls 20 weeks after sTBI. Animals subjected to M2 region injuries followed by eCS matrix implantations demonstrated the significant recovery of "reach-to-grasp" function. This was attributed to enhanced volumetric vascularization, activity-regulated cytoskeleton (Arc) protein expression, and perilesional sensorimotor connectivity. These findings indicate that eCS matrices implanted acutely after sTBI can support complex cellular, vascular, and neuronal circuit repair chronically after sTBI.
Collapse
Affiliation(s)
- Charles-Francois V Latchoumane
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Martha I Betancur
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - Gregory A Simchick
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Min Kyoung Sun
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Rameen Forghani
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Christopher E Lenear
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Aws Ahmed
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ramya Mohankumar
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Nivedha Balaji
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Hannah D Mason
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Philip V Holmes
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
- Psychology Department, University of Georgia, Athens, GA 30602, USA
| | - Qun Zhao
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
- Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA
- Bio-Imaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA.
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Melatonin prevents post-traumatic ischemic damage in rats. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.816697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Ware JB, Dolui S, Duda J, Gaggi N, Choi R, Detre J, Whyte J, Diaz-Arrastia R, Kim JJ. Relationship of Cerebral Blood Flow to Cognitive Function and Recovery in Early Chronic Traumatic Brain Injury. J Neurotrauma 2020; 37:2180-2187. [PMID: 32349614 DOI: 10.1089/neu.2020.7031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity worldwide, for which biomarkers are needed to better understand the underlying pathophysiology. Microvascular injury represents a subset of pathological mechanisms contributing to cognitive dysfunction after TBI, which may also impair subsequent neural repair thereby inhibiting cognitive recovery. Magnetic resonance imaging (MRI)-based measurement of cerebral blood flow (CBF) by arterial spin labeling (ASL) provides an appealing means of assessing microvascular disruption in TBI; however, the relationship between CBF alterations in the early chronic post-TBI setting and cognitive dysfunction as well as subsequent cognitive recovery remain poorly understood. Structural MRI and ASL were performed in 42 TBI subjects 3 months post-injury and 35 matched healthy controls. Neuropsychological testing was performed in each subject, as well as in a subset of TBI patients (n = 33) at 6 and/or 12 months post-injury. TBI and control subject CBF data were compared between groups in a voxel-wise fashion while controlling for the effects of structural atrophy. A region-of-interest approach was then used to compare CBF to clinical and neuropsychological measures within the TBI group in a cross-sectional fashion, as well as to the degree of subsequent cognitive recovery among subjects with follow-up testing. At 3 months post-injury, the TBI group demonstrated lower performance in each cognitive domain (p < 0.05), as well as widespread reductions in gray matter CBF independent of structural atrophy (p < 0.05). Within the TBI group, CBF was moderately correlated with injury severity (r = -0.43; p = 0.009) and executive function (r = 0.43; p = 0.01). In the longitudinal analysis, there was a positive correlation between initial CBF and processing speed recovery (r = 0.43; p = 0.015) independent of age, education level, and initial test score. Early chronic TBI is associated with widespread gray matter CBF deficits, which are correlated with injury severity and cognitive dysfunction. CBF may predict subsequent recovery in some cognitive domains.
Collapse
Affiliation(s)
- Jeffrey B Ware
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Duda
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Naomi Gaggi
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robin Choi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | - John Detre
- Moss Rehabilitation Research Institute, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | | | - Junghoon J Kim
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Increased Risk of Stroke Among Young Adults With Serious Traumatic Brain Injury. J Head Trauma Rehabil 2020; 35:E310-E319. [DOI: 10.1097/htr.0000000000000539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Demir D, Kuru Bektaşoğlu P, Koyuncuoğlu T, Kandemir C, Akakın D, Yüksel M, Çelikoğlu E, Yeğen BÇ, Gürer B. Neuroprotective effects of mildronate in a rat model of traumatic brain injury. Injury 2019; 50:1586-1592. [PMID: 31481152 DOI: 10.1016/j.injury.2019.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is one of the most common preventable causes of mortality and morbidity. Inflammation, apoptosis, oxidative stress, and ischemia are some of the important pathophysiological mechanisms underlying neuronal loss after TBI. Mildronate is demonstrated to be beneficial in various experimental models of ischemic diseases via anti-inflammatory, antioxidant, and neuroprotective mechanisms. This study aimed to investigate possible antioxidant, anti-inflammatory, antiapoptotic, and neuroprotective effects of mildronate in a rat model of TBI. METHODS A total of 46 male rats were divided into three groups of control, saline-treated TBI, and mildronate-treated TBI. Both TBI groups were subjected to closed-head contusive weight-drop injuries followed by treatment with saline or mildronate (100 mg/kg) administered intraperitoneally. The forebrain was removed 24 h after trauma induction, the activities of myeloperoxidase (MPO) and caspase-3, levels of superoxide dismutase (SOD), luminol- and lucigenin-enhanced chemiluminescence were measured, and histomorphological evaluation of cerebral tissues was performed. RESULTS Increased MPO and caspase-3 activities in the vehicle-treated TBI group (p < 0.001) were suppressed in the mildronate-treated TBI group (p < 0.001). Similarly, increase in luminol and lucigenin levels (p < 0.001 and p < 0.01, respectively) in the vehicle-treated TBI group were decreased in the mildronate-treated TBI group (p < 0.001). Concomitantly, in the vehicle-treated TBI group, TBI-induced decrease in SOD activity (p < 0.01) was reversed with mildronate treatment (p < 0.05). On histopathological examination, TBI-induced damage in the cerebral cortex was lesser in the mildronate-treated TBI group than that in other groups. CONCLUSION This study revealed for the first time that mildronate, exhibits neuroprotective effects against TBI because of its anti-inflammatory, antiapoptotic, and antioxidant activities.
Collapse
Affiliation(s)
- Dilan Demir
- Department of Neurosurgery, University of Health Sciences, Istanbul Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Pınar Kuru Bektaşoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey; Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| | - Türkan Koyuncuoğlu
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Cansu Kandemir
- Department of Histology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Related Services, Istanbul, Turkey
| | - Erhan Çelikoğlu
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Bora Gürer
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
19
|
Patchana T, Dorkoski R, Zampella B, Wiginton JG, Sweiss RB, Menoni R, Miulli DE. The Use of Computed Tomography Perfusion on Admission to Predict Outcomes in Surgical and Nonsurgical Traumatic Brain Injury Patients. Cureus 2019; 11:e5077. [PMID: 31516787 PMCID: PMC6721926 DOI: 10.7759/cureus.5077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction: The objective of this study was to investigate if data obtained from a computed tomography (CT) perfusion study on admission could correlate to outcomes for the patient, including the patient’s length of stay in the hospital and their initial and final Glasgow Coma Scale (GCS), as well as the modified Rankin Scale (mRS) on discharge. We present an initial subset of patients fulfilling the inclusion criteria: over the age of 18 with mild, moderate, or severe traumatic brain injury (TBI). Patients admitted with a diagnosis of TBI had CT perfusion studies performed within 48 hours of admission. GCS, length of stay, mRS, and discharge location were tracked, along with the patient’s course of hospitalization. Initial results and discussion on the utility of CT perfusion for predicting outcomes are presented. Methods: Patients exhibiting mild, moderate, or severe TBI were assessed using CT perfusion within 48 hours of admission from January to July 2019 at the Arrowhead Regional Medical Center (ARMC). The neurosurgery census and patient records were assessed for progression of outcomes. Data obtained from the perfusion scans were correlated to patient outcomes to evaluate the utility of CT perfusion in predicting outcomes in surgical and nonsurgical TBI patients. Results: Preliminary data were obtained on six patients exhibiting TBI, ranging from mild to severe. The mean GCS of our patient cohort on admission was eight, with the most common mechanism of injury found to be falls (50%) and motor vehicle accidents (50%). Cerebral blood volume (CBV) seemed to increase with Rankin value (Pearson's correlations coefficient = 0.43 but was statistically insignificant (P = 0.21)). Cerebral blood flow (CBF) was found to be correlated with CBV, and both increased with Rankin score (Pearson's correlation coefficient = 0.56) but were statistically insignificant (P = 0.27). These results suggest that with a larger sample size, CBV and CBF may be correlated to patient outcome. Conclusion: Although more data is needed, preliminary results suggest that with larger patient populations, CT perfusion may provide information that can be correlated clinically to patient outcomes. This study shows that CBF and CBV may serve as useful indicators for prognostication of TBI patients.
Collapse
Affiliation(s)
- Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Ryan Dorkoski
- Environmental and Plant Science, Ohio University, Athens, USA
| | - Bailey Zampella
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James G Wiginton
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Raed B Sweiss
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Rosalinda Menoni
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Dan E Miulli
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
20
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
21
|
Crone JS, Bio BJ, Vespa PM, Lutkenhoff ES, Monti MM. Restoration of thalamo-cortical connectivity after brain injury: recovery of consciousness, complex behavior, or passage of time? J Neurosci Res 2017; 96:671-687. [DOI: 10.1002/jnr.24115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Julia S. Crone
- Department of Psychology; University of California Los Angeles; Los Angeles CA 90095 USA
| | - Branden J. Bio
- Department of Psychology; University of California Los Angeles; Los Angeles CA 90095 USA
- Department of Psychology; Princeton University; Princeton NJ 08540 USA
| | - Paul M. Vespa
- Brain Injury Research Center (BIRC); Department of Neurosurgery, Geffen School of Medicine at UCLA; Los Angeles CA 90095 USA
- Department of Neurology; Geffen School of Medicine at UCLA; Los Angeles CA 90095 USA
| | - Evan S. Lutkenhoff
- Department of Psychology; University of California Los Angeles; Los Angeles CA 90095 USA
| | - Martin M. Monti
- Department of Psychology; University of California Los Angeles; Los Angeles CA 90095 USA
- Brain Injury Research Center (BIRC); Department of Neurosurgery, Geffen School of Medicine at UCLA; Los Angeles CA 90095 USA
| |
Collapse
|
22
|
Salehi A, Zhang JH, Obenaus A. Response of the cerebral vasculature following traumatic brain injury. J Cereb Blood Flow Metab 2017; 37:2320-2339. [PMID: 28378621 PMCID: PMC5531360 DOI: 10.1177/0271678x17701460] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.
Collapse
Affiliation(s)
- Arjang Salehi
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 3 Department of Physiology and Pharmacology Loma Linda University School of Medicine, CA, USA.,4 Department of Anesthesiology Loma Linda University School of Medicine, CA, USA.,5 Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andre Obenaus
- 1 Cell, Molecular and Developmental Biology Program, University of California, Riverside, CA, USA.,2 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA.,6 Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
23
|
Algarra NN, Sharma D. Perioperative Management of Traumatic Brain Injury. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Jullienne A, Obenaus A, Ichkova A, Savona-Baron C, Pearce WJ, Badaut J. Chronic cerebrovascular dysfunction after traumatic brain injury. J Neurosci Res 2016; 94:609-22. [PMID: 27117494 PMCID: PMC5415378 DOI: 10.1002/jnr.23732] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/11/2016] [Accepted: 02/28/2016] [Indexed: 12/12/2022]
Abstract
Traumatic brain injuries (TBI) often involve vascular dysfunction that leads to long-term alterations in physiological and cognitive functions of the brain. Indeed, all the cells that form blood vessels and that are involved in maintaining their proper function can be altered by TBI. This Review focuses on the different types of cerebrovascular dysfunction that occur after TBI, including cerebral blood flow alterations, autoregulation impairments, subarachnoid hemorrhage, vasospasms, blood-brain barrier disruption, and edema formation. We also discuss the mechanisms that mediate these dysfunctions, focusing on the cellular components of cerebral blood vessels (endothelial cells, smooth muscle cells, astrocytes, pericytes, perivascular nerves) and their known and potential roles in the secondary injury cascade. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California Riverside, Riverside, California
| | | | | | - William J Pearce
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jerome Badaut
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, California
- CNRS UMR5287, University of Bordeaux, Bordeaux, France
| |
Collapse
|
25
|
Kenney K, Amyot F, Haber M, Pronger A, Bogoslovsky T, Moore C, Diaz-Arrastia R. Cerebral Vascular Injury in Traumatic Brain Injury. Exp Neurol 2016; 275 Pt 3:353-366. [DOI: 10.1016/j.expneurol.2015.05.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022]
|
26
|
Simon D, Nascimento RIMD, Filho EMR, Bencke J, Regner A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Inj 2015; 30:23-8. [PMID: 26555864 DOI: 10.3109/02699052.2015.1077993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Severe traumatic brain injury (TBI) is associated with a 30-70% mortality rate. Nevertheless, in clinical practice there are no effective biomarkers for the prediction of fatal outcome following severe TBI. Therefore, the aim was to determine whether brain-derived neurotrophic factor (BDNF) plasma levels are associated with intensive care unit (ICU) mortality in patients with severe TBI. METHODS This prospective study enrolled 120 male patients who suffered severe TBI (Glasgow Coma Scale 3-8 at emergency room admission). The plasma BDNF level was determined at ICU admission (mean 6.4 hours after emergency room admission). RESULTS Severe TBI was associated with a 35% mortality rate and 64% of the patients presented severe TBI with multi-trauma. The mean plasma BDNF concentration among the severe TBI victims was 704.2 ± 63.4 pg ml(-1) (±SEM). Nevertheless, there were no significant differences between BDNF levels in the survivor (700.2 ± 82.8 pg ml(-1)) or non-survivor (711.6 ± 97.4 pg ml(-1)) groups (p = 0.238) or in the isolated TBI (800.4 ± 117.4 pg ml(-1)) or TBI with multi-trauma groups (650.5 ± 73.9 pg ml(-1)) (p = 0.109). CONCLUSIONS Plasma BDNF concentrations did not correlate with either short-term fatal outcome or type of injury following severe TBI.
Collapse
Affiliation(s)
- Daniel Simon
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde .,b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| | | | | | - Jane Bencke
- b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and
| | - Andrea Regner
- a Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde .,b Laboratório de Biomarcadores do Trauma , Universidade Luterana do Brasil , Canoas , Brazil , and.,c Curso de Medicina , Universidade Luterana do Brasil , Canoas , Brazil
| |
Collapse
|
27
|
Dilmen ÖK, Akçıl EF, Tunalı Y. Intensive Care Treatment in Traumatic Brain Injury. Turk J Anaesthesiol Reanim 2014; 43:1-6. [PMID: 27366456 DOI: 10.5152/tjar.2014.26680] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022] Open
Abstract
Head injury remains a serious public problem, especially in the young population. The understanding of the mechanism of secondary injury and the development of appropriate monitoring and critical care treatment strategies reduced the mortality of head injury. The pathophysiology, monitoring and treatment principles of head injury are summarised in this article.
Collapse
Affiliation(s)
- Özlem Korkmaz Dilmen
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Eren Fatma Akçıl
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Yusuf Tunalı
- Department of Anaesthesiology and Reanimation, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
28
|
Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol 2014; 5:114. [PMID: 25071702 PMCID: PMC4083561 DOI: 10.3389/fneur.2014.00114] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.
Collapse
Affiliation(s)
- Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University , Uppsala , Sweden ; Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Henrik Engquist
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University , Uppsala , Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University , Uppsala , Sweden
| |
Collapse
|
29
|
Hu S, Li F, Luo H, Xia Y, Zhang J, Hu R, Cui G, Meng H, Feng H. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning. Neurol Res 2013; 32:173-8. [DOI: 10.1179/174313209x414524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Traumatic brain injury (TBI) is a leading cause of death and long-term cognitive and behavioral dysfunction in children and young adults, yet effective treatments are lacking, in part because critical aspects of TBI neurobiology and natural history are not understood. We review recent advances in neuroimaging and discuss how they are helping to address these fundamental gaps. RECENT FINDINGS Novel imaging methods provide detailed information on how TBI affects anatomical integrity (diffusion tensor imaging; voxel-based morphometry; susceptibility-weighted imaging, magnetization transfer imaging), metabolic activity (magnetic resonance spectroscopy), perfusion (positron emission tomography, perfusion computed tomography, perfusion magnetic resonance), and patterns of functional activation (functional magnetic resonance imaging). Individually and collectively, these methods can significantly enhance TBI diagnosis and outcome prediction. SUMMARY Refinements in neuroimaging offer a window into the complex neuroanatomical and neurophysiological disturbances induced by TBI. Research is needed to understand how these alterations evolve with time and in response to therapeutic interventions.
Collapse
|
31
|
Maugans TA, Farley C, Altaye M, Leach J, Cecil KM. Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics 2012; 129:28-37. [PMID: 22129537 PMCID: PMC3255471 DOI: 10.1542/peds.2011-2083] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES The pathophysiology of sports-related concussion (SRC) is incompletely understood. Human adult and experimental animal investigations have revealed structural axonal injuries, decreases in the neuronal metabolite N-acetyl aspartate, and reduced cerebral blood flow (CBF) after SRC and minor traumatic brain injury. The authors of this investigation explore these possibilities after pediatric SRC. PATIENTS AND METHODS Twelve children, ages 11 to 15 years, who experienced SRC were evaluated by ImPACT neurocognitive testing, T1 and susceptibility weighted MRI, diffusion tensor imaging, proton magnetic resonance spectroscopy, and phase contrast angiography at <72 hours, 14 days, and 30 days or greater after concussion. A similar number of age- and gender-matched controls were evaluated at a single time point. RESULTS ImPACT results confirmed statistically significant differences in initial total symptom score and reaction time between the SRC and control groups, resolving by 14 days for total symptom score and 30 days for reaction time. No evidence of structural injury was found on qualitative review of MRI. No decreases in neuronal metabolite N-acetyl aspartate or elevation of lactic acid were detected by proton magnetic resonance spectroscopy. Statistically significant alterations in CBF were documented in the SRC group, with reduction in CBF predominating (38 vs 48 mL/100 g per minute; P = .027). Improvement toward control values occurred in only 27% of the participants at 14 days and 64% at >30 days after SRC. CONCLUSIONS Pediatric SRC is primarily a physiologic injury, affecting CBF significantly without evidence of measurable structural, metabolic neuronal or axonal injury. Further study of CBF mechanisms is needed to explain patterns of recovery.
Collapse
Affiliation(s)
- Todd A. Maugans
- Division of Neurosurgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Chad Farley
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mekibib Altaye
- Division of Epidemiology and Biostatistics,Department of Pediatrics
| | - James Leach
- Department of Pediatrics,,Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kim M. Cecil
- Department of Pediatrics,,Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Kim J, Whyte J, Patel S, Avants B, Europa E, Wang J, Slattery J, Gee JC, Coslett HB, Detre JA. Resting cerebral blood flow alterations in chronic traumatic brain injury: an arterial spin labeling perfusion FMRI study. J Neurotrauma 2010; 27:1399-411. [PMID: 20528163 DOI: 10.1089/neu.2009.1215] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Non-invasive measurement of resting state cerebral blood flow (CBF) may reflect alterations of brain structure and function after traumatic brain injury (TBI). However, previous imaging studies of resting state brain in chronic TBI have been limited by several factors, including measurement in relative rather than absolute units, use of crude spatial registration methods, exclusion of subjects with substantial focal lesions, and exposure to ionizing radiation, which limits repeated assessments. This study aimed to overcome those obstacles by measuring absolute CBF with an arterial spin labeling perfusion fMRI technique, and using an image preprocessing protocol that is optimized for brains with mixed diffuse and focal injuries characteristic of moderate and severe TBI. Resting state CBF was quantified in 27 individuals with moderate to severe TBI in the chronic stage, and 22 demographically matched healthy controls. In addition to global CBF reductions in the TBI subjects, more prominent regional hypoperfusion was found in the posterior cingulate cortices, the thalami, and multiple locations in the frontal cortices. Diffuse injury, as assessed by tensor-based morphometry, was mainly associated with reduced CBF in the posterior cingulate cortices and the thalami, where the greatest volume losses were detected. Hypoperfusion in superior and middle frontal cortices, in contrast, was associated with focal lesions. These results suggest that structural lesions, both focal and diffuse, are the main contributors to the absolute CBF alterations seen in chronic TBI, and that CBF may serve as a tool to assess functioning neuronal volume. We also speculate that resting reductions in posterior cingulate perfusion may reflect alterations in the default-mode network, and may contribute to the attentional deficits common in TBI.
Collapse
Affiliation(s)
- Junghoon Kim
- Moss Rehabilitation Research Institute, Albert Einstein Healthcare Network, Elkins Park, Pennsylvania 19027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CAN J EMERG MED 2010; 12:355-64. [PMID: 20650030 DOI: 10.1017/s1481803500012471] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION During the past 7 years, considerable new evidence has accumulated supporting the use of prophylactic hypothermia for traumatic brain injury (TBI). Studies can be divided into 2 broad categories: studies with protocols for cooling for a short, predetermined period (e.g., 24-48 h), and those that cool for longer periods and/or terminate based on the normalization of intracranial pressure (ICP). There have been no systematic reviews of hypothermia for TBI that include this recent new evidence. METHODS This analysis followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions and the QUOROM (quality of reporting of meta-analyses) statement. We developed a comprehensive search strategy to identify all randomized controlled trials (RCTs) comparing therapeutic hypothermia with standard management in TBI patients. We searched Embase, MEDLINE, Web of Science, the Cochrane Central Register of Controlled Trials, the Cochrane Database of Systematic Reviews, ProceedingsFirst and PapersFirst. Additional relevant articles were identified by hand-searching conference proceedings and bibliographies. All stages of study identification and selection, quality assessment and analysis were conducted according to prospectively defined criteria. Study quality was determined by assessment of each study for the use of allocation concealment and outcome assessment blinding. Studies were divided into 2 a priori-defined subgroups for analysis based on cooling strategy: short term (< or = 48 h), and long term or goal-directed (> 48 h and/or continued until normalization of ICP). Outcomes included mortality and good neurologic outcome (defined as Glasgow Outcome Scale score of 4 or 5). Pooling of primary outcomes was completed using relative risk (RR) and reported with 95% confidence intervals (CIs). RESULTS Of 1709 articles, 12 studies with 1327 participants were selected for quantitative analysis. Eight of these studies cooled according to a long-term or goal-directed strategy, and 4 used a short-term strategy. Summary results demonstrated lower mortality (RR 0.73, 95% CI 0.62-0.85) and more common good neurologic outcome (RR 1.52, 95% CI 1.28-1.80). When only short-term cooling studies were analyzed, neither mortality (RR 0.98, 95% CI 0.75-1.30) nor neurologic outcome (RR 1.31, 95% CI 0.94-1.83) were improved. In 8 studies of long-term or goal-directed cooling, mortality was reduced (RR 0.62, 95% CI 0.51-0.76) and good neurologic outcome was more common (RR 1.68, 95% CI 1.44-1.96). CONCLUSION The best available evidence to date supports the use of early prophylactic mild-to-moderate hypothermia in patients with severe TBI (Glasgow Coma Scale score < or = 8) to decrease mortality and improve rates of good neurologic recovery. This treatment should be commenced as soon as possible after injury (e.g., in the emergency department after computed tomography) regardless of initial ICP, or before ICP is measured. Most studies report using a temperature of 32 degrees -34 degrees C. The maximal benefit occurred with a long-term or goal-directed cooling protocol, in which cooling was continued for at least 72 hours and/or until stable normalization of intracranial pressure for at least 24 hours was achieved. There is large potential for further research on this therapy in prehospital and emergency department settings.
Collapse
|
34
|
Hayward NMEA, Immonen R, Tuunanen PI, Ndode-Ekane XE, Gröhn O, Pitkänen A. Association of chronic vascular changes with functional outcome after traumatic brain injury in rats. J Neurotrauma 2010; 27:2203-19. [PMID: 20839948 DOI: 10.1089/neu.2010.1448] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested the hypothesis that vascular remodeling in the cortex, hippocampus, and thalamus is associated with long-term functional recovery after traumatic brain injury (TBI). We induced TBI with lateral fluid-percussion (LFP) injury in adult rats. Animals were followed-up for 9 months, during which we tested motor performance using a neuroscore test, spatial learning and memory with a Morris water maze, and seizure susceptibility with a pentylenetetrazol (PTZ) test. At 8 months, they underwent structural MRI, and cerebral blood flow (CBF) was assessed by arterial spin labeling (ASL) MRI. Then, rats were perfused for histology to assess the density of blood vessels. In the perilesional cortex, the CBF decreased by 56% (p < 0.01 compared to controls), and vessel density increased by 28% (p < 0.01). There was a negative correlation between CBF in the perilesional cortex and vessel density (r = -0.75, p < 0.01). However, in the hippocampus, we found a 13% decrease in CBF ipsilaterally (p < 0.05) and 20% contralaterally (p < 0.01), and no change in vessel number. In the ipsilateral thalamus, the increase in CBF (34%, p < 0.01) was associated with a remarkable increase in vessel density (78%, p < 0.01). Animals showed motor impairment that was not associated with vascular changes. Instead, poor performance in the Morris water maze correlated with enhanced thalamic vessel density (r = -0.81, p < 0.01). Finally, enhanced seizure susceptibility was associated with reduced CBF in the ipsilateral hippocampus (r = 0.78, p < 0.05) and increased vascular density in the thalamus (r = 0.69, p < 0.05). There was little interaction between the behavioral measures. The present study demonstrates that each of the investigated brain areas has a unique pattern of vascular abnormalities. Chronic alterations in CBF could not be attributed to changes in vascular density. Association of thalamic hypervascularity to epileptogenesis warrants further studies. Finally, hippocampal hypoperfusion may predict later seizure susceptibility in the LFP injury model of TBI, which could be of value for pre-clinical antiepileptogenesis trials.
Collapse
Affiliation(s)
- Nick M E A Hayward
- Department of Neurobiology, Biomedical NMR Group, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
35
|
A survey on application of quantitative methods on analysis of brain parameters changing with temperature. J Med Syst 2009; 34:1059-71. [PMID: 20703602 DOI: 10.1007/s10916-009-9324-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Brain temperature fluctuations occur in consequence of physiological and pathophysiological conditions and indicate changes in brain metabolism, cerebral blood flow (CBF), brain functions and neural damage. Lowering the brain temperature of patients with traumatic brain injuries achieves considerable improvements. When the human brain is cooled down to 30°C, it switches to a sub functional regime where it can live longer with less oxygen, glucose and other supplies. Fluctuations in brain temperature cause changes in brain parameters which can be measured by electroencephalogram (EEG) and transcranial Doppler (TCD). It is very important to understand the temperature dependencies of brain's electrical activity and blood flow and their interrelations considering the good clinical results achieved by lowering the brain temperature of neurologically injured patients. Since protecting the patient's brain is of primary importance in many fields including cardiology, neurology, traumatology and anesthesia it can be clearly seen that this subject is very important. In this study, we survey the "state-of-the-art" in analysis of EEG and TCD brain parameters changing with temperature and present further research opportunities.
Collapse
|
36
|
Wilson JRF, Green A. Acute Traumatic Brain Injury: A Review of Recent Advances in Imaging and Management. Eur J Trauma Emerg Surg 2009; 35:176. [PMID: 26814773 DOI: 10.1007/s00068-008-8095-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 12/06/2008] [Indexed: 10/21/2022]
Abstract
Acute traumatic brain injury (TBI) is a major cause of death and disability in young persons worldwide, producing a substantial economic burden on health services. New technology in computed tomography and magnetic resonance imaging is allowing the acquisition of more accurate and detailed information on cerebral pathology post-TBI. This has greatly improved prognostic ability in TBI and enables earlier identification of pathology, making it potentially amenable to therapeutic intervention. Recent advances in the management of TBI have been hampered by a lack of class I evidence arising from difficulties in applying strict study protocols to a patient subset as heterogeneous as post-TBI patients. The most definite benefits in terms of survival after TBI come from admission to a specialist neurosurgical centre, with goal-targeted therapy and intensive care services. Some traditional therapies for the treatment of acute TBI have been proven to be harmful and should be avoided. A number of management strategies have proved potentially beneficial post-TBI, but there is insufficient evidence to make definitive recommendations at present. Future therapies that are currently under investigation include decompressive craniectomy, progesterone therapy, and possibly therapeutic hypothermia.
Collapse
Affiliation(s)
- Jamie R F Wilson
- University of Oxford Medical Sciences Division, John Radcliffe Hospital, Headley Way, Headington, Oxford, UK. .,University of Oxford Medical Sciences Division, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX39DU, UK.
| | - Alex Green
- Department of Neurosurgery, West Wing, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
37
|
Stevens RD, Pustavoitau A, van Zijl P. The Role of Imaging in Acute Brain Injury. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Abstract
The knowledge of the pathophysiology after traumatic head injury is necessary for adequate and patient-oriented treatment. As the primary insult, which represents the direct mechanical damage, cannot be therapeutically influenced, target of the treatment is the limitation of the secondary damage (delayed non-mechanical damage). It is influenced by changes in cerebral blood flow (hypo- and hyperperfusion), impairment of cerebrovascular autoregulation, cerebral metabolic dysfunction and inadequate cerebral oxygenation. Furthermore, excitotoxic cell damage and inflammation may lead to apoptotic and necrotic cell death. Understanding the multidimensional cascade of secondary brain injury offers differentiated therapeutic options.
Collapse
Affiliation(s)
- C Werner
- Klinik für Anästhesiologie, der Johannes Gutenberg-Universität Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany.
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Developments in imaging following traumatic brain injury are outlined. Numerous techniques have evolved over the past several years giving us more information about the injury and prognosis for recovery. Some of these techniques are in clinical use while others are used primarily in research but have the potential to become clinically useful. RECENT FINDINGS Computed tomography (CT) scanning is the primary imaging technique for acute brain injury, giving rapid information and being part of a general trauma work up in the emergency situation. It has supplanted plain films in the immediate management of brain injury. Following stabilization, MRI is the method of choice for evaluating the full extent of brain injury. Information on diffuse axonal injury is obtained by several MRI sequences. Diffusion tensor imaging is able to show long tract damage and relates to prognosis. There are several techniques which are best suited to research in brain injury, including single photon emission CT, PET and xenon CT. SUMMARY CT and MRI are now the imaging techniques for acute and subacute brain injury, respectively. Diffusion tensor imaging is being developed to provide more information on structural damage in brain injury. There are several research techniques available for brain injury, particularly relating to cerebral blood flow and metabolism.
Collapse
|
40
|
Abstract
Head injury remains an important cause of death and disability in young adults. This review will discuss the role of structural imaging using computed tomography (CT) and magnetic resonance imaging (MRI) and physiological imaging using CT perfusion, 131Xe CT, MRI and spectroscopy (MRS), single photon emission computed tomography, and positron emission tomography (PET) in the assessment, management, and prediction of outcome after head injury. CT allows rapid assessment of brain pathology which ensures patients who require urgent surgical intervention receive appropriate care. Although MRI provides greater spatial resolution, particularly within the posterior fossa and deep white matter, a complete assessment of the burden of injury requires imaging of cerebral physiology. Physiological imaging techniques can only provide 'snap shots' of physiology within the injured brain, but they can be repeated, and such data can be used to assess the impact of therapeutic interventions. Perfusion imaging based on CT techniques (xenon CT and CT perfusion) can be implemented easily in most hospital centres, and provide quantitative perfusion data in addition to structural images. PET imaging provides unparalleled insights into cerebral physiology and pathophysiology, but is not widely available and is primarily a research tool. MR technology continues to develop and is becoming generally available. Using a complex variety of sequences, MR can provide data concerning both structural and physiological derangements. Future developments with such imaging techniques should improve understanding of the pathophysiology of brain injury and provide data that should improve management and prediction of functional outcome.
Collapse
Affiliation(s)
- J P Coles
- University Department of Anaesthesia, Addenbrooke's Hospital, Box 93, Hills Road, Cambridge CB2 2QQ, UK.
| |
Collapse
|
41
|
Maruishi M, Miyatani M, Nakao T, Muranaka H. Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 2007; 78:168-73. [PMID: 16952916 PMCID: PMC2077668 DOI: 10.1136/jnnp.2006.097345] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To determine how cortical compensation occurs in higher cognitive systems during the recovery phase of diffuse axonal injury (DAI). DESIGN 12 right-handed patients with a magnetic resonance imaging (MRI) lesion pattern compatible with pure DAI were identified. Pure DAI was defined as finding of traumatic microbleeds on T2*-weighted gradient-echo images in the absence of otherwise traumatic or non-traumatic MRI abnormalities. 12 matched healthy controls were also enrolled. Functional magnetic resonance imaging (fMRI) was used to assess brain activation during a working memory test (Paced Visual Serial Attention Test (PVSAT)). RESULTS No significant group differences were observed in reaction times for the PVSAT. Although patients with pure DAI committed a few errors during the PVSAT, controls respond correctly to each probe. Controls showed activations in the left frontal gyrus, left parietal gyrus and right inferior parietal gyrus. Patients with pure DAI showed activations in the left inferior frontal gyrus, right inferior frontal gyrus and right middle frontal gyrus. Between-group analysis of the PVSAT task showed significantly greater activation of the right inferior frontal gyrus (BA 45) and right middle frontal gyrus (BA 9) in patient with pure DAI versus controls. CONCLUSIONS Patients with pure DAI require compensatory activation of the contralateral (right) prefrontal region to carry out activities similar to healthy controls. These findings provide further evidence for the adaptive capacity of neuronal systems and brain plasticity during the recovery stages of DAI.
Collapse
Affiliation(s)
- M Maruishi
- Hiroshima Higher Brain Function Center, Taguchi, Saijo, Higashihiroshima, Japan.
| | | | | | | |
Collapse
|
42
|
Evaluation of hyperbaric oxygen treatment of neuropsychiatric disorders following traumatic brain injury. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200612010-00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Abstract
PURPOSE OF REVIEW To review the techniques for imaging cerebral blood flow and metabolism following injury to the brain. RECENT FINDINGS Xenon enhanced computerized tomography (Xenon CT), CT perfusion and single photon emission CT provide measurements of cerebral perfusion, while positron emission tomography (PET), and magnetic resonance imaging and spectroscopy (MRI and MRS) are able to assess both perfusion and cerebral metabolism. Xenon CT and CT perfusion are readily available and have proved useful in a variety of causes of brain injury. PET is an extremely useful research tool for defining cerebral physiology, but is limited in its availability. Despite the continuing development of MRI and MRS imaging, the scanning environment remains hostile for critically ill patients, and further research is required before the techniques become generally available. SUMMARY Imaging of cerebral blood flow and metabolism has been shown to be useful following a variety of causes of brain injury, as it can help to define the cause and extent of injury, identify appropriate treatments and predict outcome. Imaging based on CT techniques (Xenon CT and CT perfusion) can be implemented easily in most hospital centres, and are able to provide quantitative perfusion data in addition to structural images.
Collapse
Affiliation(s)
- Jonathan P Coles
- University Department of Anaesthesia, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|