1
|
Zaforas M, Benayas E, Madroñero-Mariscal R, Domínguez-Bajo A, Fernández-López E, Hernández-Martín Y, González-Mayorga A, Alonso-Calviño E, Hernández ER, López-Dolado E, Rosa JM, Aguilar J, Serrano MC. Graphene oxide scaffolds promote functional improvements mediated by scaffold-invading axons in thoracic transected rats. Bioact Mater 2025; 47:32-50. [PMID: 39877155 PMCID: PMC11772149 DOI: 10.1016/j.bioactmat.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation. In this context, electrically active materials such as graphene and its derivates become particularly interesting. Indeed, solid evidence of their capacity to closely interact with neural cells and networks is growing. Encouraged by previous findings in our laboratory on the exploration of 3D porous reduced graphene oxide (rGO) scaffolds in chronic cervical hemisected rats (C6), herein we report their neuro-reparative properties when chronically implanted in complete transected rats (T9-T10), in which no preserved contralateral neural networks can assist in any observed recovery. Electrophysiological recordings from brainstem regions show antidromic activation of a small population of neurons in response to electrical stimulation caudal to the injury. These neurons are located in the Gigantocellular nucleus of reticular formation and vestibular nuclei, both regions directly related to motor functions. Together with histological features at the lesion site, such as more abundant and larger blood vessels and more abundant, longer and more homogeneously distributed axons, our results corroborate that rGO scaffolds create a permissive environment that allows the invasion of functional axonic processes from neurons located in brainstem nuclei with motor function in a rat model of complete thoracic transection. Additionally, behavioral tests evidence that these scaffolds play an important role in whole-body mechanical stabilization (postural control) proved by the absence of scoliosis, a higher trunk stability and a larger cervico-thoraco-lumbar movement range in rGO-implanted rats.
Collapse
Affiliation(s)
- Marta Zaforas
- Laboratorio de Neurofisiología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
- Escuela de Doctorado UAM, Centro de Estudios de Posgrado, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 2, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Raquel Madroñero-Mariscal
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Elena Fernández-López
- Laboratorio de Neurofisiología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Yasmina Hernández-Martín
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Elena Alonso-Calviño
- Laboratorio de Neurofisiología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Eduardo R. Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Elisa López-Dolado
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Juliana M. Rosa
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071, Toledo, Spain
- Neuronal Circuits and Behaviour Group, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Juan Aguilar
- Laboratorio de Neurofisiología Experimental, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - María C. Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| |
Collapse
|
2
|
Eneanya C, Smith GM. The Sensory Input from the External Cuneate Nucleus and Central Cervical Nucleus to the Cerebellum Refines Forelimb Movements. Cells 2025; 14:589. [PMID: 40277914 PMCID: PMC12025734 DOI: 10.3390/cells14080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Goal-directed reaching movements are extremely accurate to the point that the location, placement, and speed of the limbs are specific from trial to trial. These movements require descending motor commands and feedback modulation from ascending sensory information. The descending motor commands and ascending sensory information work in conjunction to ensure that the movement is accurate and precise through an error-corrected process that resides in the cerebellum. Disruptions to this information may cause errors in the precision of forelimb motor targeting. According to the previous literature, the external cuneate nucleus (ECN) and central cervical nucleus (CeCv) are responsible for conveying unconscious sensory information from the forelimbs, shoulders, and neck muscles to the cerebellum. Here, we examined the significance of the ECN and CeCv, separately, in forelimb function. In conjunction with inhibitory DREADDs (hM4Di), we observed an obstruction in single pellet reaching and grasping when ECN activity was repressed, both unilaterally and bilaterally, in normal rats. We also observed reduced reach in the grooming assessment bilaterally. We discovered that the CeCv terminates in the medial cerebellar nucleus (MCN), within the deep cerebellar nuclei (DCN), which, to the best of our knowledge, was previously not clearly defined. Together, this information provides evidence that the requirement of ascending sensory information is important in forelimb function.
Collapse
Affiliation(s)
| | - George M. Smith
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA;
| |
Collapse
|
3
|
Kalotra S, Kaur G. Neuromethods and assessment tools for traumatic spinal cord injury in rodents: A mini review. Injury 2025; 56:112288. [PMID: 40398195 DOI: 10.1016/j.injury.2025.112288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/22/2025] [Accepted: 03/20/2025] [Indexed: 05/23/2025]
Abstract
Spinal cord injury (SCI) is one of the most devastating neurological disorders associated with severe locomotor disability and a high rate of morbidity. Over the last 20-30 years, animal SCI models have proven to be extremely useful in better understanding the underlying molecular mechanism(s) involved in human traumatic SCI and in assessing the efficacy of available therapeutic agents. Thus, the current review article aims to provide readers with an overview of the methods used to induce traumatic SCI and highlight the recent advances in assessment of the functional recovery in rodent models. SCI models are classified into contusion, compression, transection, and Hypoxia-ischemia based on the mechanism of injury caused. Transection injury models are useful for studying the anatomic regeneration and neural circuitries in locomotion, whereas, compression/contusion injury models are used for studying complex biomechanism and neuropathology of human SCI. The ultimate goal of pre-clinical experimental work on traumatic SCI model is to develop effective repair/regenerative strategies for the clinical purpose. Here, we have summarized recent functional recovery assessment tool including quantification of myelin loss and motor neuron counts, axonal regeneration through behavioural and molecular studies.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
4
|
Jones LAT, Field-Fote EC, Magnuson D, Tom V, Basso DM, Fouad K, Mulcahey MJ. Outcome measures in rodent models for spinal cord injury and their human correlates. Exp Neurol 2025; 386:115169. [PMID: 39884330 DOI: 10.1016/j.expneurol.2025.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Pre-clinical research is intended to inform clinical research, however, communication between these researchers is lacking. A better understanding of what can be learned from animal and human models and what cannot, is essential. This includes a better understanding of where underlying constructs in outcome measures in rodents and humans align and where they diverge to improve dialogue between human and animal researchers. The goal of this review is to promote an understanding of similarities and differences in outcome measures and encourage consideration of these differences when planning, interpreting, and communicating findings from animal or human experiments. Seven individuals with a range of expertise in human and animal research and outcome measures reviewed rat and human measures focused on sensorimotor and functional outcomes. They then discussed where measures corresponded and where they did not, based on the underlying construct the assessment is intended to measure. Key findings are that measures of impairment (such as strength) often used in clinical trials are not commonly used in rodents. Measures such as speed and distance of locomotion are commonly assessed in humans and, while not commonly assessed in rodents, can be collected through existing outcome measures. Additional findings are that animal and human outcome measures are often developed and evaluated differently, with more standardized processes applied to human outcome measures. A deeper understanding and communication of similarities and differences in outcome measures, and where differences are necessary due to interspecies differences, may improve translation from animals to humans and humans to animals.
Collapse
Affiliation(s)
- L A T Jones
- Thomas Jefferson University, Department of Physical Medicine and Rehabilitation, Center for Outcomes and Measurement, Philadelphia, PA, USA.
| | - E C Field-Fote
- Shepherd Center, Spinal Cord Injury Research Program, Atlanta, GA, USA; Emory University School of Medicine, Division of Physical Therapy, Atlanta, GA, USA; Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, USA
| | - D Magnuson
- University of Louisville, Kentucky Spinal Cord Injury Research Center, Louisville, KY, USA
| | - V Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - D M Basso
- The Ohio State University, School of Health and Rehabilitation Sciences, Columbus, OH, USA
| | - K Fouad
- University of Alberta, Rehabilitation Medicine, Edmonton, AB, Canada
| | - M J Mulcahey
- Thomas Jefferson University, Department of Occupational Therapy, Center for Outcomes and Measurement, Philadelphia, PA, USA
| |
Collapse
|
5
|
Sheikh IS, Keefe KM, Sterling NA, Junker IP, Li C, Chen J, Xu XM, Kirby LG, Smith GM. Compensatory adaptation of parallel motor pathways promotes skilled forelimb recovery after spinal cord injury. iScience 2024; 27:111371. [PMID: 39654633 PMCID: PMC11626773 DOI: 10.1016/j.isci.2024.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Skilled forelimb patterning is regulated by the corticospinal tract (CST) with support from brainstem regions. When the CST is lesioned, there is a loss of forelimb function; however, if indirect pathways remain intact, rehabilitative training can facilitate recovery. Following spinal cord injury, rehabilitation is thought to enhance the reorganization and plasticity of spared supraspinal-propriospinal circuits, aiding functional recovery. This study focused on the roles of cervical propriospinal interneurons (PNs) and rubrospinal neurons (RNs) in the recovery of reaching and grasping behaviors in rats with bilateral lesions of the CST and dorsal columns at C5. The lesions resulted in a 50% decrease in pellet retrieval, which normalized over four weeks of training. Silencing PNs or RNs after recovery resulted in reduced retrieval success. Notably, silencing both pathways corresponded to greater functional loss, underscoring their parallel contributions to recovery, alongside evidence of CST fiber sprouting in the spinal cord and red nucleus.
Collapse
Affiliation(s)
- Imran S. Sheikh
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kathleen M. Keefe
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Noelle A. Sterling
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ian P. Junker
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Chen Li
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jie Chen
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lynn G. Kirby
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - George M. Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Pan JZ, Wang Z, Sun W, Pan P, Li W, Sun Y, Chen S, Lin A, Tan W, He L, Greene J, Yao V, An L, Liang R, Li Q, Yu J, Zhang L, Kyritsis N, Fernandez XD, Moncivais S, Mendoza E, Fung P, Wang G, Niu X, Du Q, Xiao Z, Chang Y, Lv P, Huie JR, Torres‐Espin A, Ferguson AR, Hemmerle DD, Talbott JF, Weinstein PR, Pascual LU, Singh V, DiGiorgio AM, Saigal R, Whetstone WD, Manley GT, Dhall SS, Bresnahan JC, Maze M, Jiang X, Singhal NS, Beattie MS, Su H, Guan Z. ATF3 is a neuron-specific biomarker for spinal cord injury and ischaemic stroke. Clin Transl Med 2024; 14:e1650. [PMID: 38649772 PMCID: PMC11035380 DOI: 10.1002/ctm2.1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.
Collapse
Affiliation(s)
- Jonathan Z. Pan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhanqiang Wang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurologyCangzhou People's HospitalCangzhouChina
| | - Wei Sun
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Peipei Pan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wei Li
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Yongtao Sun
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyQianfoshan Hospital, Shandong UniversityJinanChina
| | - Shoulin Chen
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyThe Second Affiliated Hospital, Nanchang UniversityNanchangChina
| | - Amity Lin
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Wulin Tan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyGuangzhou Medical UniversityGuangzhouChina
| | - Liangliang He
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Pain ManagementXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Jacob Greene
- Medical SchoolUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Virginia Yao
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lijun An
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyNo. 1 People's HospitalHuaianChina
| | - Rich Liang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Qifeng Li
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of NeurosurgeryTianjin Medical University General HospitalTianjinChina
| | - Jessica Yu
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Nikolaos Kyritsis
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xuan Duong Fernandez
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sara Moncivais
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Esmeralda Mendoza
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Pamela Fung
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gongming Wang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Xinhuan Niu
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Qihang Du
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyShandong Provincial Hospital, Shandong UniversityJinanChina
| | - Zhaoyang Xiao
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of AnesthesiologyThe Second Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Yuwen Chang
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peiyuan Lv
- Department of AnesthesiologyThe Second Affiliated Hospital, Dalian Medical UniversityDalianChina
- Department of NeurologyHebei Medical UniversityShijiazhuangChina
| | - J. Russell Huie
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Abel Torres‐Espin
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Ferguson
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Debra D. Hemmerle
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason F. Talbott
- Department of RadiologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Philip R. Weinstein
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lisa U. Pascual
- Department of Orthopedic SurgeryOrthopaedic Trauma InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Vineeta Singh
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Anthony M. DiGiorgio
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Rajiv Saigal
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - William D. Whetstone
- Department of Emergency MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Geoffrey T. Manley
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Sanjay S. Dhall
- Department of NeurosurgeryHarbor UCLA Medical CenterTorranceCaliforniaUSA
| | - Jacqueline C. Bresnahan
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xiangning Jiang
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Neel S. Singhal
- Department of NeurologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael S. Beattie
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Hua Su
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Center for Cerebrovascular ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative CareUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
7
|
Doulames VM, Marquardt LM, Hefferon ME, Baugh NJ, Suhar RA, Wang AT, Dubbin KR, Weimann JM, Palmer TD, Plant GW, Heilshorn SC. Custom-engineered hydrogels for delivery of human iPSC-derived neurons into the injured cervical spinal cord. Biomaterials 2024; 305:122400. [PMID: 38134472 PMCID: PMC10846596 DOI: 10.1016/j.biomaterials.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023]
Abstract
Cervical damage is the most prevalent type of spinal cord injury clinically, although few preclinical research studies focus on this anatomical region of injury. Here we present a combinatorial therapy composed of a custom-engineered, injectable hydrogel and human induced pluripotent stem cell (iPSC)-derived deep cortical neurons. The biomimetic hydrogel has a modular design that includes a protein-engineered component to allow customization of the cell-adhesive peptide sequence and a synthetic polymer component to allow customization of the gel mechanical properties. In vitro studies with encapsulated iPSC-neurons were used to select a bespoke hydrogel formulation that maintains cell viability and promotes neurite extension. Following injection into the injured cervical spinal cord in a rat contusion model, the hydrogel biodegraded over six weeks without causing any adverse reaction. Compared to cell delivery using saline, the hydrogel significantly improved the reproducibility of cell transplantation and integration into the host tissue. Across three metrics of animal behavior, this combinatorial therapy significantly improved sensorimotor function by six weeks post transplantation. Taken together, these findings demonstrate that design of a combinatorial therapy that includes a gel customized for a specific fate-restricted cell type can induce regeneration in the injured cervical spinal cord.
Collapse
Affiliation(s)
- V M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - L M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - M E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - N J Baugh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - R A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - A T Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - K R Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - J M Weimann
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - T D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - G W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - S C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Bao S, Lei Y. Motor unit activity and synaptic inputs to motoneurons in the caudal part of the injured spinal cord. J Neurophysiol 2024; 131:187-197. [PMID: 38117916 DOI: 10.1152/jn.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.
Collapse
Affiliation(s)
- Shancheng Bao
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, United States
| | - Yuming Lei
- Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
9
|
Glaser EP, Stewart AN, Jagielo-Miller JE, Bailey CS, Prendergast MA, Gensel JC. Effects of Acute Ethanol Intoxication on Spinal Cord Injury Outcomes in Female Mice. J Neurotrauma 2023; 40:2541-2551. [PMID: 37350129 PMCID: PMC10698778 DOI: 10.1089/neu.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Abstract Approximately one in three traumatic spinal cord injuries (SCIs) occurs during or shortly after the consumption of alcohol. A small number of retrospective clinical studies report variable effects of alcohol intoxication on mortality, neurological recovery, and complications after SCI. Some of these studies demonstrate a protective effect of alcohol intoxication on SCI outcomes, whereas others show an increased complication risk. Pre-clinical studies in rat, ferret, and feline SCI models report a detrimental effect of ethanol intoxication on hemorrhage, motor recovery, and biochemical markers of tissue injury. However, no studies to date have investigated the neuropathological consequences of ethanol intoxication at the time of SCI or the reciprocal effect of SCI on ethanol metabolism. Therefore, we combined a pre-clinical mouse model of acute ethanol intoxication and experimental vertebral level T9 contusion SCI to investigate their interactive effects in female mice. We first investigated the effect of SCI on ethanol metabolism and found that T9 SCI does not alter ethanol metabolism. However, we did find that isoflurane anesthesia significantly slowed ethanol metabolism independent of SCI. We also determined how acute ethanol intoxication at the time of SCI alters locomotor recovery and lesion pathology. Using the Basso Mouse Scale (BMS) and CatWalk XT Gait Analysis System, we assessed locomotor recovery for 6 weeks after injury and observed that acute ethanol intoxication at the time of injury did not alter locomotor recovery. We also found no effect of ethanol intoxication on heat hyperalgesia development. There was, however, a detrimental effect of ethanol on tissue sparing after SCI. Therefore, we conclude that acute alcohol intoxication at the time of injury may contribute to the neuropathological consequences of SCI.
Collapse
Affiliation(s)
- Ethan P. Glaser
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew N. Stewart
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Julia E. Jagielo-Miller
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Caleb S. Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - Mark A. Prendergast
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| | - John C. Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Stewart AN, Gensel JC, Jones L, Fouad K. Challenges in Translating Regenerative Therapies for Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2023; 29:23-43. [PMID: 38174141 PMCID: PMC10759906 DOI: 10.46292/sci23-00044s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Regenerating the injured spinal cord is a substantial challenge with many obstacles that need to be overcome to achieve robust functional benefits. This abundance of hurdles can partly explain the limited success when applying regenerative intervention treatments in animal models and/or people. In this article, we elaborate on a few of these obstacles, starting with the applicability of animal models and how they compare to the clinical setting. We then discuss the requirement for combinatorial interventions and the associated problems in experimental design, including the addition of rehabilitative training. The article expands on differences in lesion sizes and locations between humans and common animal models, and how this difference can determine the success or failure of an intervention. An additional and frequently overlooked problem in the translation of interventions that applies beyond the field of neuroregeneration is the reporting bias and the lack of transparency in reporting findings. New data mandates are tackling this problem and will eventually result in a more balanced view of the field. Finally, we will discuss strategies to negotiate the challenging course of successful translation to facilitate successful translation of regeneration promoting interventions.
Collapse
Affiliation(s)
- Andrew N. Stewart
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - John C. Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Linda Jones
- Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Karim Fouad
- Department of Physical Therapy, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
12
|
Huang Z, Lin J, Jiang H, Lin W, Huang Z, Chen J, Xiao W, Lin Q, Wang J, Wen S, Zhu Q, Liu J. Metformin promotes Schwann cell remyelination, preserves neural tissue and improves functional recovery after spinal cord injury. Neuropeptides 2023; 100:102348. [PMID: 37236132 DOI: 10.1016/j.npep.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Patients with a spinal cord injury (SCI) usually suffer lifelong disability as a result. Considering this, SCI treatment and pathology study are urgently needed. Metformin, a widely used hypoglycemic drug, has been indicated for its important role in central nervous system diseases. This study aimed to investigate the potential effect of metformin on remyelination after SCI. In the present study, we established a cervical contusion SCI model and metformin treatment was applied after SCI. Biomechanical parameters and behavioral assessment were used to evaluate the severity of injury and the improvement of functional recovery after SCI, respectively. The immunofluorescence and western blot were performed at the terminal time point. Our results showed that treating with metformin after SCI improved functional recovery by reducing the white matter loss and promoting Schwann cell remyelination, and the Nrg1/ErbB signaling pathway may be involved in promoting remyelination mediated by oligodendrocytes and Schwann cells. In addition, the area of spared tissues was significantly increased in the metformin group. However, metformin had no significant effects on the glial scar and inflammation after SCI. In summary, these findings indicated that the role of metformin in Schwann cell remyelination after SCI was probably related to the regulation of the Nrg1/ErbB pathway. It is, therefore, possible to suggest that metformin may be a potential therapy for SCI.
Collapse
Affiliation(s)
- Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Wanrong Lin
- Department of Neurology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 51000, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Jiayu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China
| | - Wende Xiao
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China
| | - Qiong Lin
- School of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China
| | - Shifeng Wen
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China.
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 51000, China.
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 51000, China.
| |
Collapse
|
13
|
Kunpalin Y, Vergote S, Joyeux L, Telli O, David AL, Belfort M, De Coppi P, Deprest J. Local host response of commercially available dural patches for fetal repair of spina bifida aperta in rabbit model. Prenat Diagn 2023; 43:370-381. [PMID: 36650109 DOI: 10.1002/pd.6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Fetal surgery for spina bifida aperta (SBA) by open hysterotomy typically repairs anatomical native tissue in layers. Increasingly, fetoscopic repair is performed using a dural patch followed by skin closure. We studied the host response to selected commercially available patches currently being used in a fetal rabbit model for spina bifida repair. METHODS SBA was surgically induced at 23-24 days of gestation (term = 31 days). Fetal rabbits were assigned to unrepaired (SBA group), or immediate repair with Duragen™ or Durepair™. Non-operated littermates served as normal controls. At term, spinal cords underwent immunohistochemical staining including Nissl and glial fibrillary acidic protein. We hypothesized that spinal cord coverage with a dural patch and skin closure would preserve motor neuron density within the non-inferiority limit of 201.65 cells/mm2 and reduce inflammation compared to unrepaired SBA fetuses. RESULTS Motor neuron density assessed by Nissl staining was conserved both by Duragen (n = 6, 89.5; 95% CI -158.3 to -20.6) and Durepair (n = 6, 37.0; 95% CI -132.6 to -58.5), whereas density of GFAP-positive cells to quantify inflammation was lower than in unrepaired SBA-fetuses (SBA 2366.0 ± 669.7 cells/mm2 vs. Duragen 1274.0 ± 157.2 cells/mm2 ; p = 0.0002, Durepair 1069.0 ± 270.7 cells/mm2 ; p < 0.0001). CONCLUSIONS Covering the rabbit spinal cord with either Duragen or Durepair followed by skin closure preserves motor neuron density and reduces the inflammatory response.
Collapse
Affiliation(s)
- Yada Kunpalin
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Simen Vergote
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Luc Joyeux
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Onur Telli
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium
| | - Anna L David
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Michael Belfort
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, MyFetUZ Fetal Research Center, KU Leuven, Leuven, Belgium.,Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
14
|
Fisher KM, Garner JP, Darian-Smith C. Small sensory spinal lesions that affect hand function in monkeys greatly alter primary afferent and motor neuron connections in the cord. J Comp Neurol 2022; 530:3039-3055. [PMID: 35973735 PMCID: PMC9561953 DOI: 10.1002/cne.25395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/20/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Small sensory spinal injuries induce plasticity across the neuraxis, but little is understood about their effect on segmental connections or motor neuron (MN) function. Here, we begin to address this at two levels. First, we compared afferent input distributions from the skin and muscles of the digits with corresponding MN pools to determine their spatial relationship, in both the normal state and 4-6 months after a unilateral dorsal root/dorsal column lesion (DRL/DCL), affecting digits 1-3. Second, we looked at specific changes to MN inputs and membrane properties that likely impact functional recovery. Monkeys received a targeted unilateral DRL/DCL, and 4-6 months later, cholera toxin subunit B (CT-B) was injected bilaterally into either the distal pads of digits 1-3, or related intrinsic hand muscles, to label inputs to the cord, and corresponding MNs. In controls (unlesioned side), cutaneous and proprioceptive afferents from digits 1-3 showed different distribution patterns but similar rostrocaudal spread within the dorsal horn from C1 to T2. In contrast, MNs were distributed across just two segments (C7-8). Following the lesion, sensory inputs were significantly diminished across all 10 segments, though this did not alter MN distributions. Afferent and monoamine inputs, as well as KCC2 cotransporters, were also significantly altered on the cell membrane of CT-B labeled MNs postlesion. In contrast, inhibitory neurotransmission and perineuronal net integrity were not altered at this prechronic timepoint. Our findings indicate that even a small sensory injury can significantly impact sensory and motor spinal neurons and provide new insight into the complex process of recovery.
Collapse
Affiliation(s)
- Karen M. Fisher
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Joseph P. Garner
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| | - Corinna Darian-Smith
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA94305-5342
| |
Collapse
|
15
|
Tsuboi Y, Ito A, Otsuka T, Murakami H, Sawada M, Sawamoto K. Habilitation Improves Mouse Gait Development Following Neonatal Brain Injury. Prog Rehabil Med 2022; 7:20220061. [PMID: 36479304 PMCID: PMC9706041 DOI: 10.2490/prm.20220061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/16/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES Neonatal brain injury during gait development disrupts neural circuits and causes permanent gait dysfunction. Rehabilitation as an intervention to improve impaired gait function has been used in adults as a treatment for stroke and spinal cord injury. However, although neonates have greater neuroplasticity and regenerative capacity than adults, normal gait development and the effects of habilitation on gait function following neonatal brain injury are largely unknown. METHODS In this study, we generated cryogenic injury in mice at postnatal day 2 and subsequently performed habilitative training to promote autonomous limb movement for 4 weeks. We also quantitatively analyzed the gait acquisition process in developing mice using the Catwalk XT system. RESULTS Using quantitative gait analyses, we showed that during normal gait development in mice, stance phase function matures later than swing phase function. We also demonstrated that habilitation in which active limb movements were enhanced by suspending mice with a rubber band with no floor grounding promotes motor learning, including gait function, in mice with impaired acquisition of gait function resulting from neonatal brain injury. CONCLUSIONS Our findings provide a basis for research on gait development in mice and suggest new habilitation strategies for patients with impaired gait development caused by perinatal brain diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia.
Collapse
Affiliation(s)
- Yoshiaki Tsuboi
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
- Department of Orthopaedic Surgery, Nagoya City University
Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Ito
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
| | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University
Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Murakami
- Department of Orthopaedic Surgery, Nagoya City University
Graduate School of Medical Sciences, Nagoya, Japan
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
- Division of Neural Development and Regeneration, National
Institute for Physiological Sciences, Okazaki, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology,
Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences,
Nagoya, Japan
- Division of Neural Development and Regeneration, National
Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
16
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Dietz V, Knox K, Moore S, Roberts N, Corona KK, Dulin JN. Dorsal horn neuronal sparing predicts the development of at-level mechanical allodynia following cervical spinal cord injury in mice. Exp Neurol 2022; 352:114048. [PMID: 35304102 DOI: 10.1016/j.expneurol.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Spinal cord injury (SCI) frequently results in immediate and sustained neurological dysfunction, including intractable neuropathic pain in approximately 60-80% of individuals. SCI induces immediate mechanical damage to spinal cord tissue followed by a period of secondary injury in which tissue damage is further propagated, contributing to the development of anatomically unique lesions. Variability in lesion size and location influences the degree of motor and sensory dysfunction incurred by an individual. We predicted that variability in lesion parameters may also explain why some, but not all, experimental animals develop mechanical sensitivity after SCI. To characterize the relationship of lesion anatomy to mechanical allodynia, we utilized a mouse cervical hemicontusion model of SCI that has been shown to lead to the development and persistence of mechanical allodynia in the ipsilateral forelimb after injury. At four weeks post-SCI, the numbers and locations of surviving neurons were quantified along with total lesion volume and nociceptive fiber sprouting. We found that the subset of animals exhibiting mechanical allodynia had significantly increased neuronal sparing in the ipsilateral dorsal horn around the lesion epicenter compared to animals that did not exhibit mechanical allodynia. Additionally, we failed to observe significant differences between groups in nociceptive fiber density in the dorsal horn around the lesion epicenter. Notably, we found that impactor probe displacement upon administration of the SCI surgery was significantly lower in sensitive animals compared with not-sensitive animals. Together, our data indicate that lesion severity negatively correlates with the manifestation of at-level mechanical hypersensitivity and suggests that sparing of dorsal horn neurons may be required for the development of neuropathic pain.
Collapse
Affiliation(s)
- Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Katelyn Knox
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sherilynne Moore
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Nolan Roberts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Anatomical and behavioral outcomes following a graded hemi-contusive cervical spinal cord injury model in mice. Behav Brain Res 2022; 419:113698. [PMID: 34856301 DOI: 10.1016/j.bbr.2021.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND A graded hemi-contusion spinal cord injury produces complex anatomical deformation of the spinal cord parenchyma. The relationship between lesion severity and behavioral consequences in a novel contusion mouse model remains unknown. PURPOSE We aimed to establish a graded cervical hemi-contusion spinal cord injury model in mice and investigate the correlation between graded anatomical damage to the spinal cord and resulting behavioral impairments. METHODS Thirty-two mice were divided into groups of 1.2 mm, 1.5 mm and sham. The tip of an impactor with a diameter of 1 mm was utilized to compress the left dorsal cord of C5 by 1.2 mm or 1.5 mm at a speed of 300 mm/s. Forelimb motor function was evaluated using rearing, grooming and grip-strength tests before and after the injuries. Histologically the area of white matter sparing, gray matter sparing and lesion area were quantified at 6-week-post-injury. RESULTS Behavioral assessments showed a more severe forelimb functional deficit in 1.5 mm contusion displacements relative to 1.2 mm contusion displacements after injury. The 1.2 mm hemi-contusion mainly caused damage to the dorsal fasciculus, ventral and dorsal horn, while the 1.5 mm hemi-contusion lead to additional damage extending to ventral fasciculus. Sparing of the gray and white matter at the epicenter was 36.8 ± 2.4% and 12.4 ± 2.6% in the 1.2 mm group, and 27.6 ± 4.0% and 4.1 ± 2.2% in the 1.5 mm group, respectively. Furthermore, the lesion area was 20.8 ± 3.0% and 36.0 ± 2.1% in the 1.2 mm and 1.5 mm groups, respectively. There was a significant correlation between the performance in the grooming test and white matter sparing, and between grip-test strength and gray matter sparing. CONCLUSION The present study demonstrates that a hemi-contusion cervical spinal cord injury in mice can be graded by contusion displacement and that there is a correlation between anatomical and behavioral outcomes. This study provides a means for determining the severity of lesions in a contusion mouse model.
Collapse
|
19
|
Samejima S, Ievins AM, Boissenin A, Tolley NM, Khorasani A, Mondello SE, Moritz CT. Automated lever task with minimum antigravity movement for rats with cervical spinal cord injury. J Neurosci Methods 2022; 366:109433. [PMID: 34863839 DOI: 10.1016/j.jneumeth.2021.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 11/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although there is currently no cure for paralysis due to spinal cord injury (SCI), the highest treatment priority is restoring arm and hand function for people with cervical SCI. Preclinical animal models provide an opportunity to test innovative treatments, but severe cervical injury models require significant time and effort to assess responses to novel interventions. Moreover, there is no behavioral task that can assess forelimb movement in rats with severe cervical SCI unable to perform antigravity movements. NEW METHOD We developed a novel lever pressing task for rats with severe cervical SCI. We employed an automated adaptive algorithm to train animals using open-source software and commercially available hardware. We found that using the adaptive training required only 13.3 ± 2.5 training days to achieve behavioral proficiency. The lever press task could quantify immediate and long-term improvements in severely impaired forelimb function effectively. This behavior platform has potential to facilitate rehabilitative training and assess effects of therapeutic modalities following SCI. COMPARISON WITH EXISTING METHODS There is no existing assessment aiming to quantify forelimb extension movement in rodents without function against gravity. We found that the new lever press task in the antigravity position could assess the severity of cervical SCI as well as the compensatory movement in the proximal forelimb less affected by the injury. CONCLUSIONS This study demonstrates that the new behavioral task is capable of tracking the functional changes with various therapies in rats with severe forelimb impairments in a cost- and time-efficient manner.
Collapse
Affiliation(s)
- Soshi Samejima
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States; Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States; UW Institute for Neural Engineering, University of Washington, Seattle, WA, United States; The Center for Neurotechnology, University of Washington, Seattle, WA, United States
| | - Aiva M Ievins
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States; Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Adrien Boissenin
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Abed Khorasani
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States; Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, United States; Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States; UW Institute for Neural Engineering, University of Washington, Seattle, WA, United States; The Center for Neurotechnology, University of Washington, Seattle, WA, United States; Department of Physiology & Biophysics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
20
|
Sanganahalli BG, Chitturi J, Herman P, Elkabes S, Heary R, Hyder F, Kannurpatti S. Supraspinal sensorimotor and pain-related reorganization after a hemicontusion rat cervical spinal cord injury. J Neurotrauma 2021; 38:3393-3405. [PMID: 34714150 DOI: 10.1089/neu.2021.0190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the presence of pain impedes motor recovery in individuals with spinal cord injury (SCI), it is necessary to understand their supraspinal substrates in translational animal models. Using functional magnetic resonance imaging (fMRI) in a rat model of hemicontusion cervical SCI, supraspinal changes were mapped and correlated with sensorimotor behavioral outcomes. Female adult rats underwent sham or SCI using a 2.5 mm impactor and 150 kDyne force. SCI permanently impaired motor activity in only the ipsilesional forelimb along with thermal hyperalgesia at 5 and 6 wks. Spinal MRI at 8 wks after SCI showed ipsilateral T1 and T2 lesions with no discernable lesions across shams. fMRI mapping during electrical forepaw stimulation indicated SCI-induced sensorimotor reorganization with an expansion of the contralesional forelimb representation. Resting state fMRI based functional connectivity density (FCD), a marker of regional neuronal hubs increased or decreased across brain regions involved in nociception. FCD increases after SCI were in the primary and secondary somatosensory cortices (S1 and S2), anterior cingulate cortex (ACC), insula and the prefrontal cortex (PFC) and decreases were across the hippocampus, thalamus, hypothalamus and amygdala in SCI. Resting state functional connectivity (RSFC) assessments from the FCD altered regions of interest indicated cortico-cortical RSFC increases and cortico-insular, cortico-thalamic and cortico-hypothalamic RSFC decreases after SCI. Hippocampus, amygdala and thalamus showed decreased RSFC with most cortical regions and between themselves except the hippocampus-amygdala network, which showed increased RSFC after SCI. While select nociceptive region's intrinsic activity associated strongly with evoked pain behaviors after SCI (eg., PFC, ACC, hippocampus, thalamus, hypothalamus, M1 and S1BF) other nociceptive regions had weaker associations (eg., amygdala, insula, auditory cortex, S1FL, S1HL, S2 and M2), but differed significantly in their intrinsic activities between sham and SCI. The weaker associated nociceptive regions may possibly encode both the evoked and affective components of pain.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Yale University School of Medicine, 12228, Diagnostic Radiology, New Haven, Connecticut, United States;
| | - Jyothsna Chitturi
- Rutgers Biomedical and Health Sciences, 5751, Radiology, Newark, New Jersey, United States;
| | - Peter Herman
- Yale University School of Medicine, 12228, Magnetic Resonance Research Center, Department of Diagnostic Radiology and Biomedical Engineering, Section of Bioimaging Science, New Haven, Connecticut, United States;
| | - Stella Elkabes
- Rutgers Biomedical and Health Sciences, 5751, Neurosurgery, Newark, New Jersey, United States;
| | - Robert Heary
- Hackensack Meridian School of Medicine, 576909, Nutley, New Jersey, United States;
| | | | - Sridhar Kannurpatti
- Rutgers Biomedical and Health Sciences, 5751, Radiology, Newark, New Jersey, United States;
| |
Collapse
|
21
|
Cerro PD, Barriga-Martín A, Vara H, Romero-Muñoz LM, Rodríguez-De-Lope Á, Collazos-Castro JE. Neuropathological and Motor Impairments after Incomplete Cervical Spinal Cord Injury in Pigs. J Neurotrauma 2021; 38:2956-2977. [PMID: 34121450 DOI: 10.1089/neu.2020.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Humans, primates, and rodents with cervical spinal cord injury (SCI) show permanent sensorimotor dysfunction of the upper/forelimb as consequence of axonal damage and local neuronal death. This work aimed at characterizing a model of cervical SCI in domestic pigs in which hemisection with excision of 1 cm of spinal cord was performed to reproduce the loss of neural tissue observed in human neuropathology. Posture and motor control were assessed over 3 months by scales and kinematics of treadmill locomotion. Histological measurements included lesion length, atrophy of the adjacent spinal cord segments, and neuronal death. In some animals, the retrograde neural tracer aminostilbamidine was injected in segments caudal to the lesion to visualize propriospinal projection neurons. Neuronal loss extended for 4-6 mm from the lesion borders and was more severe in the ipsilateral, caudal spinal cord stump. Axonal Wallerian degeneration was observed caudally and rostrally, associated with marked atrophy of the white matter in the spinal cord segments adjacent to the lesion. The pigs showed chronic monoplegia or severe monoparesis of the foreleg ipsilateral to the lesion, whereas the trunk and the other legs had postural and motor impairments that substantially improved during the first month post-lesion. Adaptations of the walking cycle such as those reported for rats and humans ameliorated the negative impact of focal neurological deficits on locomotor performance. These results provide a baseline of behavior and histology in a porcine model of cervical spinal cord hemisection that can be used for translational research in SCI therapeutics.
Collapse
Affiliation(s)
- Patricia Del Cerro
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain.,Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Andrés Barriga-Martín
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Hugo Vara
- Neural Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Luis M Romero-Muñoz
- Orthopedic Surgery and Traumatology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | | | | |
Collapse
|
22
|
Wiggins JW, Sledd JE, Coolen LM. Spinal Cord Injury Causes Reduction of Galanin and Gastrin Releasing Peptide mRNA Expression in the Spinal Ejaculation Generator of Male Rats. Front Neurol 2021; 12:670536. [PMID: 34239493 PMCID: PMC8258150 DOI: 10.3389/fneur.2021.670536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/21/2021] [Indexed: 01/23/2023] Open
Abstract
Spinal cord injury (SCI) in men is commonly associated with sexual dysfunction, including anejaculation, and chronic mid-thoracic contusion injury in male rats also impairs ejaculatory reflexes. Ejaculation is controlled by a spinal ejaculation generator consisting of a population of lumbar spinothalamic (LSt) neurons that control ejaculation through release of four neuropeptides including galanin and gastrin releasing peptide (GRP) onto lumbar and sacral autonomic and motor nuclei. It was recently demonstrated that spinal contusion injury in male rats caused reduction of GRP-immunoreactivity, but not galanin-immunoreactivity in LSt cells, indicative of reduced GRP peptide levels, but inconclusive results for galanin. The current study further tests the hypothesis that contusion injury causes a disruption of GRP and galanin mRNA in LSt cells. Male rats received mid-thoracic contusion injury and galanin and GRP mRNA were visualized 8 weeks later in the lumbar spinal cord using fluorescent in situ hybridization. Spinal cord injury significantly reduced GRP and galanin mRNA in LSt cells. Galanin expression was higher in LSt cells compared to GRP. However, expression of the two transcripts were positively correlated in LSt cells in both sham and SCI animals, suggesting that expression for the two neuropeptides may be co-regulated. Immunofluorescent visualization of galanin and GRP peptides demonstrated a significant reduction in GRP-immunoreactivity, but not galanin in LSt cells, confirming the previous observations. In conclusion, SCI reduced GRP and galanin expression in LSt cells with an apparent greater impact on GRP peptide levels. GRP and galanin are both essential for triggering ejaculation and thus such reduction may contribute to ejaculatory dysfunction following SCI in rats.
Collapse
Affiliation(s)
- James W Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
23
|
Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J, Ding R. Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 2021; 168:142-154. [PMID: 33823244 DOI: 10.1016/j.freeradbiomed.2021.03.037] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury that characterized by oxidative stress and inflammatory response. Kaempferol is reported to be an anti-neuroinflammation in neurologic disorders. Nevertheless, the role and mechanism of kaempferol in SCI remains unclear. The present study aims to investigate effects of kaempferol on SCI and its possible underlying mechanisms in in vivo and in vitro models. A C5 hemi-contusion injury was induced in Sprague-Dawley rats to investigate the neuroprotective effects of kaempferol after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without kaempferol. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. The in vivo studies showed that kaempferol could improve the recovery of hindlimb motor function and ameliorate tissue damage in the spinal cord after SCI. Moreover, administration of kaempferol reduced microglia activation and oxidative stress level in the spinal cord. The in vitro studies showed that kaempferol suppressed the microglia activation resulting from the administration of LPS with ATP to BV-2 cells. Pretreated BV2 cells with kaempferol reduced the generation of reactive oxygen species (ROS) by inhibiting NADPH oxidase 4, and then, suppressed the phosphorylation of p38 MAPK and JNK, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. We also observed that kaempferol could inhibite the pyroptosis related proteins (NLRP3 Caspase-1 p10 ASC N-GSDMD) and reduce the release of IL-18 and IL-1β. In conclusion, kaempferol was able to reduce oxidative stress and inflammatory response through down-regulation of ROS dependent MAPKs- NF-κB and pyroptosis signaling pathway, which suggested that kaempferol might be a novel promising therapeutic agent for SCI.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinqiang Yao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baihui Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wangsheng Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Congrui Liao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangheng Dai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianting Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ruoting Ding
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
24
|
Jannesar S, Salegio EA, Beattie MS, Bresnahan JC, Sparrey CJ. Correlating Tissue Mechanics and Spinal Cord Injury: Patient-Specific Finite Element Models of Unilateral Cervical Contusion Spinal Cord Injury in Non-Human Primates. J Neurotrauma 2021; 38:698-717. [PMID: 33066716 PMCID: PMC8418518 DOI: 10.1089/neu.2019.6840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-human primate (NHP) models are the closest approximation of human spinal cord injury (SCI) available for pre-clinical trials. The NHP models, however, include broader morphological variability that can confound experimental outcomes. We developed subject-specific finite element (FE) models to quantify the relationship between impact mechanics and SCI, including the correlations between FE outcomes and tissue damage. Subject-specific models of cervical unilateral contusion SCI were generated from pre-injury MRIs of six NHPs. Stress and strain outcomes were compared with lesion histology using logit analysis. A parallel generic model was constructed to compare the outcomes of subject-specific and generic models. The FE outcomes were correlated more strongly with gray matter damage (0.29 < R2 < 0.76) than white matter (0.18 < R2 < 0.58). Maximum/minimum principal strain, Von-Mises and Tresca stresses showed the strongest correlations (0.31 < R2 < 0.76) with tissue damage in the gray matter while minimum principal strain, Von-Mises stress, and Tresca stress best predicted white matter damage (0.23 < R2 < 0.58). Tissue damage thresholds varied for each subject. The generic FE model captured the impact biomechanics in two of the four models; however, the correlations between FE outcomes and tissue damage were weaker than the subject-specific models (gray matter [0.25 < R2 < 0.69] and white matter [R2 < 0.06] except for one subject [0.26 < R2 < 0.48]). The FE mechanical outputs correlated with tissue damage in spinal cord white and gray matters, and the subject-specific models accurately mimicked the biomechanics of NHP cervical contusion impacts.
Collapse
Affiliation(s)
- Shervin Jannesar
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Ernesto A. Salegio
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Michael S. Beattie
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Jacqueline C. Bresnahan
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA
| | - Carolyn J. Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Huie JR, Ferguson AR, Kyritsis N, Pan JZ, Irvine KA, Nielson JL, Schupp PG, Oldham MC, Gensel JC, Lin A, Segal MR, Ratan RR, Bresnahan JC, Beattie MS. Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury. Sci Rep 2021; 11:3442. [PMID: 33564058 PMCID: PMC7873211 DOI: 10.1038/s41598-021-82951-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target.
Collapse
Affiliation(s)
- J R Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, CA, USA
| | - A R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, CA, USA.
- San Francisco Veterans Affairs Medical Center, San Francisco, USA.
| | - N Kyritsis
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, CA, USA
| | - J Z Pan
- Department of Anesthesiology, University of California San Francisco, San Francisco, USA
| | - K-A Irvine
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Anesthesia, Perioperative Medicine and Pain, Stanford University, Stanford, CA, USA
| | - J L Nielson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, USA
| | - P G Schupp
- Brain Tumor Research Center, University of California, San Francisco, USA
| | - M C Oldham
- Brain Tumor Research Center, University of California, San Francisco, USA
| | - J C Gensel
- SCoBIRC, University of Kentucky, Lexington, USA
| | - A Lin
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, CA, USA
| | - M R Segal
- Department of Epidemiology and Biostatistics, Center for Bioinformatics and Molecular Biostatistics, University of California San Francisco, San Francisco, USA
| | - R R Ratan
- Department of Neurology and Neuroscience, Burke-Cornell Medical Research Institute, Weill Medical College of Cornell University, New York, USA
| | - J C Bresnahan
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, CA, USA
| | - M S Beattie
- Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), University of California, San Francisco, CA, USA.
| |
Collapse
|
26
|
Liu J, Li R, Huang Z, Lin J, Ji W, Huang Z, Liu Q, Wu X, Wu X, Jiang H, Ye Y, Zhu Q. Rapamycin Preserves Neural Tissue, Promotes Schwann Cell Myelination and Reduces Glial Scar Formation After Hemi-Contusion Spinal Cord Injury in Mice. Front Mol Neurosci 2021; 13:574041. [PMID: 33551740 PMCID: PMC7862581 DOI: 10.3389/fnmol.2020.574041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Protecting white matter is one of the key treatment strategies for spinal cord injury (SCI), including alleviation of myelin loss and promotion of remyelination. Rapamycin has been shown neuroprotective effects against SCI and cardiotoxic effects while enhancing autophagy. However, specific neuroprotection of rapamycin for the white matter after cervical SCI has not been reported. Therefore, we aim to evaluate the role of rapamycin in neuroprotection after hemi-contusion SCI in mice. Forty-six 8-week-old mice were randomly assigned into the rapamycin group (n = 16), vehicle group (n = 16), and sham group (n = 10). All mice of the rapamycin and vehicle groups received a unilateral contusion with 1.2-mm displacement at C5 followed by daily intraperitoneal injection of rapamycin or dimethyl sulfoxide solution (1.5 mg⋅kg-1⋅day-1). The behavioral assessment was conducted before the injury, 3 days and every 2 weeks post-injury (WPI). The autophagy-related proteins, the area of spared white matter, the number of oligodendrocytes (OLs) and axons were evaluated at 12 WPI, as well as the glial scar and the myelin sheaths formed by Schwann cells at the epicenter. The 1.2 mm contusion led to a consistent moderate-severe SCI in terms of motor function and tissue damage. Rapamycin administration promoted autophagy in spinal cord tissue after injury and reduced the glial scar at the epicenter. Additionally, rapamycin increased the number of OLs and improved motor function significantly than in the vehicle group. Furthermore, the rapamycin injection resulted in an increase of Schwann cell-mediated remyelination and weight loss. Our results suggest that rapamycin can enhance autophagy, promote Schwann cell myelination and motor function recovery by preserved neural tissue, and reduce glial scar after hemi-contusive cervical SCI, indicating a potential strategy for SCI treatment.
Collapse
Affiliation(s)
- Junhao Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Spine Surgery, Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruoyao Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Ji
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Pharmaceutical Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep 2020; 10:19500. [PMID: 33177623 PMCID: PMC7659012 DOI: 10.1038/s41598-020-76441-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022] Open
Abstract
Historically, the membrane attack complex, composed of complement components C5b-9, has been connected to lytic cell death and implicated in secondary injury after a CNS insult. However, studies to date have utilized either non-littermate control rat models, or mouse models that lack significant C5b-9 activity. To investigate what role C5b-9 plays in spinal cord injury and recovery, we generated littermate PVG C6 wildtype and deficient rats and tested functional and histological recovery after moderate contusion injury using the Infinite Horizon Impactor. We compare the effect of C6 deficiency on recovery of locomotor function and histological injury parameters in PVG rats under two conditions: (1) animals maintained as separate C6 WT and C6-D homozygous colonies; and (2) establishment of a heterozygous colony to generate C6 WT and C6-D littermate controls. The results suggest that maintenance of separate homozygous colonies is inadequate for testing the effect of C6 deficiency on locomotor and histological recovery after SCI, and highlight the importance of using littermate controls in studies involving genetic manipulation of the complement cascade.
Collapse
Affiliation(s)
- Diane Su
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Mitra J Hooshmand
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Manuel D Galvan
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | - Rebecca A Nishi
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Brian J Cummings
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA
| | - Aileen J Anderson
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders (iMIND), University of California, Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
- Department of Physical Medicine and Rehabilitation, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Fouad K, Ng C, Basso DM. Behavioral testing in animal models of spinal cord injury. Exp Neurol 2020; 333:113410. [PMID: 32735871 PMCID: PMC8325780 DOI: 10.1016/j.expneurol.2020.113410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
This review is based on a lecture presented at the Craig H. Neilsen Foundation sponsored Spinal Cord Injury Training Program at Ohio State University. We discuss the advantages and challenges of injury models in rodents and theory relation to various behavioral outcome measures. We offer strategies and advice on experimental design, behavioral testing, and on the challenges, one will encounter with animal testing. This review is designed to guide those entering the field of spinal cord injury and/or involved with in vivo animal testing.
Collapse
Affiliation(s)
- K Fouad
- University of Alberta, Faculty of Rehabilitation Medicine, Dept of Physical Therapy, 3-48 Corbett Hall, Edmonton T6G 2G4, Canada; University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada.
| | - C Ng
- University of Alberta, Neuroscience and Mental Health Institute, 2-132 Li Ka Shing, Edmonton T6G 2E1, Canada
| | - D M Basso
- Ohio State University, College of Medicine, School of Health and Rehabilitation Sciences, 106A Atwell Hall, 453 W. 10th Ave, Columbus, OH 43210, USA
| |
Collapse
|
29
|
Chitturi J, Sanganahalli BG, Herman P, Hyder F, Ni L, Elkabes S, Heary R, Kannurpatti SS. Association Between Magnetic Resonance Imaging-Based Spinal Morphometry and Sensorimotor Behavior in a Hemicontusion Model of Incomplete Cervical Spinal Cord Injury in Rats. Brain Connect 2020; 10:479-489. [PMID: 32981350 DOI: 10.1089/brain.2020.0812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Structural connectivity in the reorganizing spinal cord after injury dictates functional connectivity and hence the neurological outcome. As magnetic resonance imaging (MRI)-based structural parameters are mostly accessible across spinal cord injury (SCI) patients, we studied MRI-based spinal morphological changes and their relationship to neurological outcome in the rat model of cervical SCI. Introduction: Functional connectivity assessments on patients with SCI rely heavily on MRI-based approaches to investigate the complete neural axis (both spinal cord and brain). Hence, underlying MRI-based structural and morphometric changes in the reorganizing spinal cord and their relationship to neurological outcomes is crucial for meaningful interpretation of functional connectivity changes across the neural axis. Methods: Young adult rats, aged 1.5 months, underwent a precise mechanical impact hemicontusion incomplete cervical SCI at the C4/C5 level, after which sensorimotor behavioral assessments were tracked during the reorganization period of 1-6 weeks, followed by MRI of the cervical spinal cord at 8 weeks after SCI. Results: A significant ipsilesional forelimb motor debilitation was observed from 1 to 6 weeks after injury. Heat sensitivity testing (Hargreaves) showed ipsilesional forelimb hypersensitivity at 5 and 6 weeks after SCI. MRI of the cervical spine showed ipsilateral T1- and T2-weighted lesions across all SCI rats compared with no significant lesions in sham rats. Morphometric assessments of the lesional and nonlesional changes showed the diverse nature of their interindividual variability in the SCI receiving rats. While the various T1 and T2 MRI lesional volumes associated weakly or moderately with neurological outcome, the nonlesional spinal morphometric changes associated much more strongly. The results have important implications for interpreting functional MRI-based functional connectivity after SCI by providing vital underlying structural changes and their relative neurological impact. Impact statement Functional connectivity assessments on patients with SCI relies heavily upon MRI based approaches. Hence, underlying MRI based structural and morphometric changes in the reorganizing spinal cord and its relationship to neurological outcomes is vital for meaningful interpretation of functional connectivity changes across the complete neural axis (both spinal cord and the brain).
Collapse
Affiliation(s)
- Jyothsna Chitturi
- Department of Radiology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Basavaraju G Sanganahalli
- Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA.,Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, Connecticut, USA
| | - Peter Herman
- Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA.,Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, Connecticut, USA
| | - Fahmeed Hyder
- Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA.,Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Li Ni
- Department of Neurosurgery, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Stella Elkabes
- Department of Neurosurgery, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Robert Heary
- Hackensack University School of Medicine, Nutley, New Jersey, USA
| | - Sridhar S Kannurpatti
- Department of Radiology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| |
Collapse
|
30
|
Explosive-driven double-blast exposure: molecular, histopathological, and behavioral consequences. Sci Rep 2020; 10:17446. [PMID: 33060648 PMCID: PMC7566442 DOI: 10.1038/s41598-020-74296-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury generated by blast may induce long-term neurological and psychiatric sequelae. We aimed to identify molecular, histopathological, and behavioral changes in rats 2 weeks after explosive-driven double-blast exposure. Rats received two 30-psi (~ 207-kPa) blasts 24 h apart or were handled identically without blast. All rats were behaviorally assessed over 2 weeks. At Day 15, rats were euthanized, and brains removed. Brains were dissected into frontal cortex, hippocampus, cerebellum, and brainstem. Western blotting was performed to measure levels of total-Tau, phosphorylated-Tau (pTau), amyloid precursor protein (APP), GFAP, Iba1, αII-spectrin, and spectrin breakdown products (SBDP). Kinases and phosphatases, correlated with tau phosphorylation were also measured. Immunohistochemistry for pTau, APP, GFAP, and Iba1 was performed. pTau protein level was greater in the hippocampus, cerebellum, and brainstem and APP protein level was greater in cerebellum of blast vs control rats (p < 0.05). GFAP, Iba1, αII-spectrin, and SBDP remained unchanged. No immunohistochemical or neurobehavioral changes were observed. The dissociation between increased pTau and APP in different regions in the absence of neurobehavioral changes 2 weeks after double blast exposure is a relevant finding, consistent with human data showing that battlefield blasts might be associated with molecular changes before signs of neurological and psychiatric disorders manifest.
Collapse
|
31
|
The effects of mouse strain and age on a model of unilateral cervical contusion spinal cord injury. PLoS One 2020; 15:e0234245. [PMID: 32542053 PMCID: PMC7295191 DOI: 10.1371/journal.pone.0234245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
There are approximately 1.2 million people currently living with spinal cord injury (SCI), with a majority of cases at the cervical level and half involving incomplete injuries. Yet, as most preclinical research has been focused on bilateral thoracic models, there remains a disconnect between bench and bedside that limits translational success. Here, we profile a clinically relevant model of unilateral cervical contusion injury in the mouse (30kD with 0, 2, 5, or 10 second dwell time). We demonstrate sustained behavioral deficits in performance on grip strength, cylinder reaching, horizontal ladderbeam and CatWalk automated gait analysis tasks. Beyond highlighting reliable parameters for injury assessment, we also explored the effect of mouse strain and age on injury outcome, including evaluation of constitutively immunodeficient mice relevant for neurotransplantation and cellular therapy testing. Comparison of C57Bl/6 and immunodeficient Rag2gamma(c)-/- as well as Agouti SCIDxRag2Gamma(c)-/- hybrid mouse strains revealed fine differences in post-injury ipsilateral grip strength as well as total number of rearings on the cylinder task. Differences in post-SCI contralateral forepaw duty cycle and regularity index as measured by CatWalk gait analysis between the two immunodeficient strains were also observed. Further, assessment of young (3–4 months old) and aging (16–17 months old) Rag2gamma(c)-/- mice identified age-related pre-injury differences in strength and rearing that were largely masked following cervical contusion injury; observations that may help interpret previous results in aged rodents as well as human clinical trials. Collectively, the work provides useful insight for experimental design and analysis of future pre-clinical studies in a translational unilateral cervical contusion injury model.
Collapse
|
32
|
Gallegos C, Carey M, Zheng Y, He X, Cao QL. Reaching and Grasping Training Improves Functional Recovery After Chronic Cervical Spinal Cord Injury. Front Cell Neurosci 2020; 14:110. [PMID: 32536855 PMCID: PMC7266985 DOI: 10.3389/fncel.2020.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Previous studies suggest locomotion training could be an effective non-invasive therapy after spinal cord injury (SCI) using primarily acute thoracic injuries. However, the majority of SCI patients have chronic cervical injuries. Regaining hand function could significantly increase their quality of life. In this study, we used a clinically relevant chronic cervical contusion to study the therapeutic efficacy of rehabilitation in forelimb functional recovery. Nude rats received a moderate C5 unilateral contusive injury and were then divided into two groups with or without Modified Montoya Staircase (MMS) rehabilitation. For the rehabilitation group, rats were trained 5 days a week starting at 8 weeks post-injury (PI) for 6 weeks. All rats were assessed for skilled forelimb functions with MMS test weekly and for untrained gross forelimb locomotion with grooming and horizontal ladder (HL) tests biweekly. Our results showed that MMS rehabilitation significantly increased the number of pellets taken at 13 and 14 weeks PI and the accuracy rates at 12 to 14 weeks PI. However, there were no significant differences in the grooming scores or the percentage of HL missteps at any time point. Histological analyses revealed that MMS rehabilitation significantly increased the number of serotonergic fibers and the amount of presynaptic terminals around motor neurons in the cervical ventral horns caudal to the injury and reduced glial fibrillary acidic protein (GFAP)-immunoreactive astrogliosis in spinal cords caudal to the lesion. This study shows that MMS rehabilitation can modify the injury environment, promote axonal sprouting and synaptic plasticity, and importantly, improve reaching and grasping functions in the forelimb, supporting the therapeutic potential of task-specific rehabilitation for functional recovery after chronic SCI.
Collapse
Affiliation(s)
- Chrystine Gallegos
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Carey
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Summer Undergraduate Research Program, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiuquan He
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qi Lin Cao
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
33
|
Marquardt LM, Doulames VM, Wang AT, Dubbin K, Suhar RA, Kratochvil MJ, Medress ZA, Plant GW, Heilshorn SC. Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. SCIENCE ADVANCES 2020; 6:eaaz1039. [PMID: 32270042 PMCID: PMC7112763 DOI: 10.1126/sciadv.aaz1039] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Abstract
Transplantation of patient-derived Schwann cells is a promising regenerative medicine therapy for spinal cord injuries; however, therapeutic efficacy is compromised by inefficient cell delivery. We present a materials-based strategy that addresses three common causes of transplanted cell death: (i) membrane damage during injection, (ii) cell leakage from the injection site, and (iii) apoptosis due to loss of endogenous matrix. Using protein engineering and peptide-based assembly, we designed injectable hydrogels with modular cell-adhesive and mechanical properties. In a cervical contusion model, our hydrogel matrix resulted in a greater than 700% improvement in successful Schwann cell transplantation. The combination therapy of cells and gel significantly improved the spatial distribution of transplanted cells within the endogenous tissue. A reduction in cystic cavitation and neuronal loss were also observed with substantial increases in forelimb strength and coordination. Using an injectable hydrogel matrix, therefore, can markedly improve the outcomes of cellular transplantation therapies.
Collapse
Affiliation(s)
- Laura M. Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vanessa M. Doulames
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alice T. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Karen Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Riley A. Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael J. Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Zachary A. Medress
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Giles W. Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Corresponding author. (G.W.P.); (S.C.H.)
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Corresponding author. (G.W.P.); (S.C.H.)
| |
Collapse
|
34
|
Domínguez-Bajo A, González-Mayorga A, López-Dolado E, Munuera C, García-Hernández M, Serrano MC. Graphene Oxide Microfibers Promote Regenerative Responses after Chronic Implantation in the Cervical Injured Spinal Cord. ACS Biomater Sci Eng 2020; 6:2401-2414. [PMID: 33455347 DOI: 10.1021/acsbiomaterials.0c00345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is characterized by the disruption of neuronal axons and the creation of an inhibitory environment for spinal tissue regeneration. For decades, researchers and clinicians have been devoting a great effort to develop novel therapeutic approaches which include the fabrication of biocompatible implants that could guide neural tissue repair in the lesion site in an attempt to recover the functionality of the nervous tissue. In this context, although fiberlike structures have been hypothesized to serve as a topographical guidance for axonal regrowth, work on the exploration of this type of materials is still limited for SCI. Aiming to develop such guidance platforms, we recently designed and explored in vitro reduced graphene oxide materials in the shape of microfibers (rGO-MFs). After preliminary studies to assess the feasibility of their implantation at the injured spinal cord in vivo, no evident signs of subacute local toxicity were noticed (10 days of implantation). In this work, we specifically examine for the first time the regenerative potential of these scaffolds, slightly modified in their fabrication for improved reproducibility, when chronically interfaced with a cervical spinal cord injury. After extensive characterization of their physicochemical properties and in vitro experiments with neural progenitor cells, their neural regenerative capacity in vivo is investigated in a rat experimental model of SCI after 4 months of implantation (chronic state). Behavioral tests involving the use of forelimbs are performed. Immunofluorescence studies evidence that rGO-MFs scaffolds foster the presence of neuronal structures along with blood vessels both within the epicenter and in the surroundings of the lesion area. Moreover, the inflammatory response does not worsen by the presence of this material. These findings outline the potential of rGO-MF-based scaffolds to promote regenerative features at the injured spinal cord such as axonal and vascular growth. Further studies including biological functionalization might improve their therapeutic potential by a synergistic effect of topographical and chemical cues, thus boosting neural repair after SCI.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos (HNP), Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Elisa López-Dolado
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos (HNP), Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain.,Research Unit of "Design and Development of Biomaterials for Neural Regeneration", HNP-SESCAM, Joint Research Unit with CSIC, 45071 Toledo, Spain
| | - Carmen Munuera
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mar García-Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
35
|
Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, Zou L, Ding R, Chen J. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation 2020; 17:90. [PMID: 32192500 PMCID: PMC7082940 DOI: 10.1186/s12974-020-01751-2] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Inflammatory response mediated by oxidative stress is considered as an important pathogenesis of spinal cord injury (SCI). Advanced oxidation protein products (AOPPs) are novel markers of oxidative stress and their role in inflammatory response after SCI remained unclear. This study aimed to investigate the role of AOPPs in SCI pathogenesis and explore the possible underlying mechanisms. Methods A C5 hemi-contusion injury was induced in Sprague-Dawley rats to confirm the involvement of AOPPs after SCI. For in vivo study, apocynin, the NADPH oxidase inhibitor was used to study the neuroprotective effects after SCI. For in vitro study, the BV2 microglia cell lines were pretreated with or without the inhibitor or transfected with or without small interference RNA (siRNA) and then stimulated with AOPPs. A combination of molecular and histological methods was used to clarify the mechanism and explore the signaling pathway both in vivo and in vitro. One-way analysis of variance (ANOVA) was conducted with Bonferroni post hoc tests to examine the differences between groups. Results The levels of AOPPs in plasma and cerebrospinal fluid as well as the contents in the spinal cord showed significant increase after SCI. Meanwhile, apocynin ameliorated tissue damage in the spinal cord after SCI, improving the functional recovery. Immunofluorescence staining and western blot analysis showed activation of microglia after SCI, which was in turn inhibited by apocynin. Pretreated BV2 cells with AOPPs triggered excessive generation of reactive oxygen species (ROS) by activating NADPH oxidase. Increased ROS induced p38 MAPK and JNK phosphorylation, subsequently triggering nuclear translocation of NF-κB p65 to express pro-inflammatory cytokines. Also, treatment of BV2 cells with AOPPs induced NLRP3 inflammasome activation and cleavage of Gasdermin-d (GSDMD), causing pyroptosis. This was confirmed by cleavage of caspase-1, production of downstream mature interleukin (IL)-1β and IL-18 as well as rupture of rapid cell membrane. Conclusions Collectively, these data indicated AOPPs as biomarkers of oxidative stress, modulating inflammatory response in SCI by multiple signaling pathways, which also included the induction of NADPH oxidase dependent ROS, and NLRP3-mediated pyroptosis, and activation of MAPKs and NF-κB.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinqiang Yao
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wangsheng Jiang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Li
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siyuan Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Congrui Liao
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lin Zou
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ruoting Ding
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Jianting Chen
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
36
|
Goel SA, Varghese V, Demir T. Animal models of spinal injury for studying back pain and SCI. J Clin Orthop Trauma 2020; 11:816-821. [PMID: 32904094 PMCID: PMC7452356 DOI: 10.1016/j.jcot.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Back pain is a common ailment affecting individuals around the globe. Animal models to understand the back pain mechanism, treatment modalities, and spinal cord injury are widely researched topics worldwide. Despite the presence of several animal models on disc degeneration and Spinal Cord Injury, there is a lack of a comprehensive review. MATERIAL AND METHOD A methodological narrative literature review was carried out for the study. A total of 1273 publications were found, out of which 763 were related to spine surgery in animals. The literature with full-text availability was selected for the review. Scale for the Assessment of Narrative Review Articles (SANRA) guidelines was used to assess the studies. Only English language publications were included which were listed on PubMed. A total of 113 studies were shortlisted (1976-2019) after internal validation scoring. RESULT The animal models for spine surgery ranged from rodents to primates. These are used to study the mechanisms of back pain as well as spinal cord injuries. The models could either be created surgically or through various means like use of electric cautery, chemicals or trauma. Genetic spine models have also been documented in which the injuries are created by genetic alterations and knock outs. Though the dorsal approach is the most common, the literature also mentions the anterior and lateral approach for spine surgery animal experiments. CONCLUSION There are no single perfect animal models to represent and study human models. The selection is based on the application and the methodology. Careful selection is needed to give optimum and appropriate results.
Collapse
Affiliation(s)
- Shakti A. Goel
- Indian Spinal Injuries Centre, Vasant Kunj, New Delhi, 110070, India
- Corresponding author.
| | - Vicky Varghese
- TOBB Economics, and Technology University Mechanical Engineering Department.Ankara, Turkey
| | - Tyfik Demir
- Department of Neurosurgery, Medical College of Wisconsin, WI, USA
| |
Collapse
|
37
|
Differences in Morphometric Measures of the Uninjured Porcine Spinal Cord and Dural Sac Predict Histological and Behavioral Outcomes after Traumatic Spinal Cord Injury. J Neurotrauma 2019; 36:3005-3017. [DOI: 10.1089/neu.2018.5930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
38
|
Ueno R, Takase H, Suenaga J, Kishimoto M, Kurihara Y, Takei K, Kawahara N, Yamamoto T. Axonal regeneration and functional recovery driven by endogenous Nogo receptor antagonist LOTUS in a rat model of unilateral pyramidotomy. Exp Neurol 2019; 323:113068. [PMID: 31629859 DOI: 10.1016/j.expneurol.2019.113068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/26/2022]
Abstract
The adult mammalian central nervous system (CNS) rarely recovers from injury. Myelin fragments contain axonal growth inhibitors that limit axonal regeneration, thus playing a major role in determining neural recovery. Nogo receptor-1 (NgR1) and its ligands are among the inhibitors that limit axonal regeneration. It has been previously shown that the endogenous protein, lateral olfactory tract usher substance (LOTUS), antagonizes NgR1-mediated signaling and accelerates neuronal plasticity after spinal cord injury and cerebral ischemia in mice. However, it remained unclear whether LOTUS-mediated reorganization of descending motor pathways in the adult brain is physiologically functional and contributes to functional recovery. Here, we generated LOTUS-overexpressing transgenic (LOTUS-Tg) rats to investigate the role of LOTUS in neuronal function after damage. After unilateral pyramidotomy, motor function in LOTUS-Tg rats recovered significantly compared to that in wild-type animals. In a retrograde tracing study, labeled axons spanning from the impaired side of the cervical spinal cord to the unlesioned hemisphere of the red nucleus and sensorimotor cortex were increased in LOTUS-Tg rats. Anterograde tracing from the unlesioned cortex also revealed enhanced ipsilateral connectivity to the impaired side of the cervical spinal cord in LOTUS-Tg rats. Moreover, electrophysiological analysis showed that contralesional cortex stimulation significantly increased ipsilateral forelimb movement in LOTUS-Tg rats, which was consistent with the histological findings. According to these data, LOTUS overexpression accelerates ipsilateral projection from the unlesioned cortex and promotes functional recovery after unilateral pyramidotomy. LOTUS could be a future therapeutic option for CNS injury.
Collapse
Affiliation(s)
- Ryu Ueno
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Hajime Takase
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Jun Suenaga
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Masao Kishimoto
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| | - Yuji Kurihara
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan.
| | - Kohtaro Takei
- Molecular Medical Bioscience Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan.
| | - Nobutaka Kawahara
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
39
|
Gao J, Sun Z, Xiao Z, Du Q, Niu X, Wang G, Chang YW, Sun Y, Sun W, Lin A, Bresnahan JC, Maze M, Beattie MS, Pan JZ. Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury. Br J Anaesth 2019; 123:827-838. [PMID: 31623841 DOI: 10.1016/j.bja.2019.08.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Spinal cord injury induces inflammatory responses that include the release of cytokines and the recruitment and activation of macrophages and microglia. Neuroinflammation at the lesion site contributes to secondary tissue injury and permanent locomotor dysfunction. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is anti-inflammatory and neuroprotective in both preclinical and clinical trials. We investigated the effect of DEX on the microglial response, and histological and neurological outcomes in a rat model of cervical spinal cord injury. METHODS Anaesthetised rats underwent unilateral (right) C5 spinal cord contusion (75 kdyne) using an impactor device. The locomotor function, injury size, and inflammatory responses were assessed. The effect of DEX was also studied in a microglial cell culture model. RESULTS DEX significantly improved the ipsilateral upper-limb motor dysfunction (grooming and paw placement; P<0.0001 and P=0.0012), decreased the injury size (P<0.05), spared white matter (P<0.05), and reduced the number of activated macrophages (P<0.05) at the injury site 4 weeks post-SCI. In DEX-treated rats after injury, tissue RNA expression indicated a significant downregulation of pro-inflammatory markers (e.g. interleukin [IL]-1β, tumour necrosis factor-α, interleukin (IL)-6, and CD11b) and an upregulation of anti-inflammatory and pro-resolving M2 responses (e.g. IL-4, arginase-1, and CD206) (P<0.05). In lipopolysaccharide-stimulated cultured microglia, DEX produced a similar inflammation-modulatory effect as was seen in spinal cord injury. The benefits of DEX on these outcomes were mostly reversed by an α2-adrenergic receptor antagonist. CONCLUSIONS DEX significantly improves neurological outcomes and decreases tissue damage after spinal cord injury, which is associated with modulation of neuroinflammation and is partially mediated via α2-adrenergic receptor signaling.
Collapse
Affiliation(s)
- Jiandong Gao
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhihua Sun
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Xiao
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Du
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xinhuan Niu
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Gongming Wang
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-Wen Chang
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yongtao Sun
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Wei Sun
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Anaesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Amity Lin
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jacqueline C Bresnahan
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mervyn Maze
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael S Beattie
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Jonathan Z Pan
- Department of Anaesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Bamrungsuk K, Vattarakorn A, Thongta N, Tilokskulchai K, Tapechum S, Chompoopong S. Behavioral and histopathological studies of cervical spinal cord contusion injury in rats caused by an adapted weight-drop device. ASIAN BIOMED 2019. [DOI: 10.1515/abm-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Models of spinal cord injury (SCI) caused by weight-drop devices to cause contusion have been used extensively, and transient behavioral deficits after thoracic injury have been demonstrated. The severity of the injury caused by the device should be mild enough to allow recovery.
Objective
To determine whether our adapted weight-drop device with a small tip can effectively induce mild hemicontusion at the level of the fifth cervical vertebra.
Methods
We divided 15 adult male Sprague Dawley rats into groups of 5 for the following treatments: sham (SH, laminectomy only), mild (MSCI) or severe SCI (SSCI). Behavioral tests and histopathology were used before (day 1) and after the treatment on days 3, 7, 14, 21, 28, and 35 to assess the injury.
Results
Rats with SSCI showed a significant somatosensory deficit on days 3 and 7 compared with rats in the SH group, recovering by day 14. In a horizontal-ladder test of skilled locomotion, rats with SSCI showed a significant increase in error scores and percentage of total rungs used, and a decrease in the percentage of correct paw placement compared with rats in the SH group. There was greater recovery to normal paw placement by rats with MSCI than by rats with SSCI. These behavioral deficits were consistent with histopathology using hematoxylin and eosin counterstained Luxol fast blue, indicating the degree of injury and lesion area.
Conclusions
Mild hemicontusion caused by the adapted device can be used to evaluate SCI and provides a model with which to test the efficacy of translational therapies for SCI.
Collapse
Affiliation(s)
- Kanyaratana Bamrungsuk
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Anchalee Vattarakorn
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Namphung Thongta
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Kanokwan Tilokskulchai
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| | - Supin Chompoopong
- Department of Anatomy, Faculty of Medicine, Siriraj Hospital, Mahidol University , Bangkok 10700 , Thailand
| |
Collapse
|
41
|
Richards TM, Sharma P, Kuang A, Whitty D, Ahmed Z, Shah PK. Novel Speed-Controlled Automated Ladder Walking Device Reveals Walking Speed as a Critical Determinant of Skilled Locomotion after a Spinal Cord Injury in Adult Rats. J Neurotrauma 2019; 36:2698-2721. [DOI: 10.1089/neu.2018.6152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Tiffany M. Richards
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Pawan Sharma
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| | - Aaron Kuang
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| | - Douglas Whitty
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| | - Zaghloul Ahmed
- Department of Physical Therapy, Center for Developmental Neuroscience, The College of Staten Island, Staten Island, New York
- Graduate Center, City University of New York, New York, New York
| | - Prithvi K. Shah
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
- Department of Physical Therapy, Stony Brook University, Stony Brook, New York
| |
Collapse
|
42
|
Pukos N, Goodus MT, Sahinkaya FR, McTigue DM. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped? Glia 2019; 67:2178-2202. [PMID: 31444938 DOI: 10.1002/glia.23702] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) affects over 17,000 individuals in the United States per year, resulting in sudden motor, sensory and autonomic impairments below the level of injury. These deficits may be due at least in part to the loss of oligodendrocytes and demyelination of spared axons as it leads to slowed or blocked conduction through the lesion site. It has long been accepted that progenitor cells form new oligodendrocytes after SCI, resulting in the acute formation of new myelin on demyelinated axons. However, the chronicity of demyelination and the functional significance of remyelination remain contentious. Here we review work examining demyelination and remyelination after SCI as well as the current understanding of oligodendrocyte lineage cell responses to spinal trauma, including the surprisingly long-lasting response of NG2+ oligodendrocyte progenitor cells (OPCs) to proliferate and differentiate into new myelinating oligodendrocytes for months after SCI. OPCs are highly sensitive to microenvironmental changes, and therefore respond to the ever-changing post-SCI milieu, including influx of blood, monocytes and neutrophils; activation of microglia and macrophages; changes in cytokines, chemokines and growth factors such as ciliary neurotrophic factor and fibroblast growth factor-2; glutamate excitotoxicity; and axon degeneration and sprouting. We discuss how these changes relate to spontaneous oligodendrogenesis and remyelination, the evidence for and against demyelination being an important clinical problem and if remyelination contributes to motor recovery.
Collapse
Affiliation(s)
- Nicole Pukos
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio.,Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio
| | - Matthew T Goodus
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| | - Fatma R Sahinkaya
- Neuroscience Graduate Program, Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- Belford Center for Spinal Cord Injury, Ohio State University, Columbus, Ohio.,Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio
| |
Collapse
|
43
|
GSK-3 Inhibitor Promotes Neuronal Cell Regeneration and Functional Recovery in a Rat Model of Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9628065. [PMID: 31467921 PMCID: PMC6699364 DOI: 10.1155/2019/9628065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 02/05/2023]
Abstract
The reparative process following spinal cord injury (SCI) is extremely complicated. Cells in the microenvironment express multiple inhibitory factors that affect axonal regeneration over a prolonged period of time. The axon growth inhibitory factor glycogen synthase kinase-3 (GSK-3) is an important factor during these processes. TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) is the most effective and specific non-ATP-competitive inhibitor of GSK-3. Here, we show that administering TDZD-8 after SCI was associated with significantly inhibited neuronal apoptosis, upregulated GAP-43 expression, increased density of cortical spinal tract fibers around areas of injury, and increased Basso, Beattie, and Bresnahan (BBB) scores in the lower limbs. These findings support the notion that GSK-3 inhibitors promote neuronal cell regeneration and lower limb functional recovery.
Collapse
|
44
|
Wiggins JW, Kozyrev N, Sledd JE, Wilson GG, Coolen LM. Chronic Spinal Cord Injury Reduces Gastrin-Releasing Peptide in the Spinal Ejaculation Generator in Male Rats. J Neurotrauma 2019; 36:3378-3393. [PMID: 31111794 DOI: 10.1089/neu.2019.6509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal cord injury (SCI) causes sexual dysfunction, including anejaculation in men. Likewise, chronic mid-thoracic contusion injury impairs ejaculatory reflexes in male rats. Ejaculation is controlled by a spinal ejaculation generator (SEG) comprised of a population of lumbar spinothalamic (LSt) neurons. LSt neurons co-express four neuropeptides, including gastrin-releasing peptide (GRP) and galanin and control ejaculation via release of these peptides in lumbar and sacral autonomic and motor nuclei. Here, we tested the hypothesis that contusion injury causes a disruption of the neuropeptides that are expressed in LSt cell bodies and axon terminals, thereby causing ejaculatory dysfunction. Male Sprague Dawley rats received contusion or sham surgery at spinal levels T6-7. Five to six weeks later, animals were perfused and spinal cords were immunoprocessed for galanin and GRP. Results showed that numbers of cells immunoreactive for galanin were not altered by SCI, suggesting that LSt cells are not ablated by SCI. In contrast, GRP immunoreactivity was decreased in LSt cells following SCI, evidenced by fewer GRP and galanin/GRP dual labeled cells. However, SCI did not affect efferent connections of LSt, cells as axon terminals containing galanin or GRP in contact with autonomic cells were not reduced following SCI. Finally, no changes in testosterone plasma levels or androgen receptor expression were noted after SCI. In conclusion, chronic contusion injury decreased immunoreactivity for GRP in LSt cell soma, but did not affect LSt neurons per se or LSt connections within the SEG. Since GRP is essential for triggering ejaculation, such loss may contribute to ejaculatory dysfunction following SCI.
Collapse
Affiliation(s)
- J Walker Wiggins
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie Kozyrev
- Robarts Institute, Western University, London, Ontario, Canada
| | - Jonathan E Sledd
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - George G Wilson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
45
|
Yip PK, Chapman GE, Sillito RR, Ip THR, Akhigbe G, Becker SC, Price AW, Michael-Titus AT, Armstrong JD, Tremoleda JL. Studies on long term behavioural changes in group-housed rat models of brain and spinal cord injury using an automated home cage recording system. J Neurosci Methods 2019; 321:49-63. [PMID: 30991030 DOI: 10.1016/j.jneumeth.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Neurotrauma patients face major neurological sequelae. The failure in the preclinical-to-clinical translation of candidate therapies could be due to poor evaluation of rodent behaviours after neurotrauma. NEW METHOD A home cage automated system was used to study the long term behaviour of individual rats with traumatic brain injury (TBI), spinal cord injury (SCI) and non-CNS injured controls, whilst group-housed in their home cages. Naïve rats were used as baseline controls. Automated locomotor activity and body temperature recordings were carried out 24 h /day for 3 days/week during 12 weeks post-injury. Behavioural patterns, including aggression, rearing, grooming, feeding and drinking were analysed from automated video recordings during week 1, 6 and 12. RESULTS SCI animals showed a lower locomotor activity compared to TBI or control animals during light and dark phases. TBI animals showed a higher aggression during the dark phase in the first week post-injury compared to SCI or control animals. Individual grooming and rearing were reduced in SCI animals compared to TBI and control animals in the first week post-injury during the dark phase. No differences in drinking or feeding were detected between groups. Locomotor activity did not differ between naïve male and female rats, but body temperature differ between light and dark phases for both. STANDARD METHODS Injury severity was compared to standard SCI and TBI behaviour scores (BBB and mNSS, respectively) and histological analysis. CONCLUSIONS This study demonstrates the practical benefits of using a non-intrusive automated home cage recording system to observe long term individual behaviour of group-housed SCI and TBI rats.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - George E Chapman
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - T H Richard Ip
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Georgia Akhigbe
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stephanie C Becker
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anthony W Price
- Biological Services, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - J Douglas Armstrong
- Actual Analytics Ltd, Edinburgh, United Kingdom; School of Informatics, Institute for Adaptive and Neural Computation. University of Edinburgh, Edinburgh, United Kingdom
| | - Jordi L Tremoleda
- Centre for Neuroscience, Surgery and Trauma, Centre for Trauma Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Biological Services, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
46
|
Leite APS, Pinto CG, Tibúrcio FC, Sartori AA, de Castro Rodrigues A, Barraviera B, Ferreira RS, Filadelpho AL, Matheus SMM. Heterologous fibrin sealant potentiates axonal regeneration after peripheral nerve injury with reduction in the number of suture points. Injury 2019; 50:834-847. [PMID: 30922661 DOI: 10.1016/j.injury.2019.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 03/16/2019] [Indexed: 02/02/2023]
Abstract
The use of suture associated with heterologous fibrin sealant has been highlighted for reconstruction after peripheral nerve injury, having the advantage of being safe for clinical use. In this study we compared the use of this sealant associated with reduced number of stitches with conventional suture after ischiatic nerve injury. 36 Wistar rats were divided into 4 groups: Control (C), Denervated (D), ischiatic nerve neurotmesis (6 mm gap); Suture (S), epineural anastomosis after 7 days from neurotmesis, Suture + Fibrin Sealant (SFS), anastomosis with only one suture point associated with Fibrin Sealant. Catwalk, electromyography, ischiatic and tibial nerve, soleus muscle morphological and morphometric analyses were performed. The amplitude and latency values of the Suture and Suture + Fibrin Sealant groups were similar and indicative of nerve regeneration.The ischiatic nerve morphometric analysis in the Suture + Fibrin Sealant showed superior values related to axons and nerve fibers area and diameter when compared to Suture group. In the Suture and Suture + Fibrin Sealant groups, there was an increase in muscle weight and in fast fibers frequency, it was a decrease in the percentage of collagen compared to group Denervated and in the neuromuscular junctions, the synaptic boutons were reestablished.The results suggest a protective effect at the lesion site caused by the fibrin sealant use. The stitches reduction minimizes the trauma caused by the needle and it accelerates the surgical practice. So the heterologous fibrin sealant use in nerve reconstruction should be considered.
Collapse
Affiliation(s)
- Ana Paula Silveira Leite
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil.
| | - Carina Guidi Pinto
- Graduate Program on the General Bases of Surgery, Botucatu Medical School, Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil; Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Felipe Cantore Tibúrcio
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Arthur Alves Sartori
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | | | - Benedito Barraviera
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- The Center for the Study of Venoms and Venomous Animals, UNESP, Botucatu, SP, Brazil
| | - André Luis Filadelpho
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| | - Selma Maria Michelin Matheus
- Department of Anatomy, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Paulo State University (Unesp), Institute of Biosciences, Travessa da Rua Prof. Dr. Gilberti Moreno São Paulo, 18618-689, Botucatu, Brazil
| |
Collapse
|
47
|
Hawkins BE, Huie JR, Almeida C, Chen J, Ferguson AR. Data Dissemination: Shortening the Long Tail of Traumatic Brain Injury Dark Data. J Neurotrauma 2019; 37:2414-2423. [PMID: 30794049 DOI: 10.1089/neu.2018.6192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Translation of traumatic brain injury (TBI) research findings from bench to bedside involves aligning multi-species data across diverse data types including imaging and molecular biomarkers, histopathology, behavior, and functional outcomes. In this review we argue that TBI translation should be acknowledged for what it is: a problem of big data that can be addressed using modern data science approaches. We review the history of the term big data, tracing its origins in Internet technology as data that are "big" according to the "4Vs" of volume, velocity, variety, veracity and discuss how the term has transitioned into the mainstream of biomedical research. We argue that the problem of TBI translation fundamentally centers around data variety and that solutions to this problem can be found in modern machine learning and other cutting-edge analytical approaches. Throughout our discussion we highlight the need to pull data from diverse sources including unpublished data ("dark data") and "long-tail data" (small, specialty TBI datasets undergirding the published literature). We review a few early examples of published articles in both the pre-clinical and clinical TBI research literature to demonstrate how data reuse can drive new discoveries leading into translational therapies. Making TBI data resources more Findable, Accessible, Interoperable, and Reusable (FAIR) through better data stewardship has great potential to accelerate discovery and translation for the silent epidemic of TBI.
Collapse
Affiliation(s)
- Bridget E Hawkins
- The Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - J Russell Huie
- Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Carlos Almeida
- Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jiapei Chen
- Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Adam R Ferguson
- Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,San Francisco Veterans Affairs Health Care System (SFVAHCS), San Francisco, California, USA
| |
Collapse
|
48
|
Walker CL, Wu X, Liu NK, Xu XM. Bisperoxovanadium Mediates Neuronal Protection through Inhibition of PTEN and Activation of PI3K/AKT-mTOR Signaling after Traumatic Spinal Injuries. J Neurotrauma 2019; 36:2676-2687. [PMID: 30672370 DOI: 10.1089/neu.2018.6294] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mechanisms involved in progression of cell death in spinal cord injury (SCI) have been studied extensively, few are clear targets for translation to clinical application. One of the best-understood mechanisms of cell survival in SCI is phosphatidylinositol-3-kinase (PI3K)/Akt and associated downstream signaling. Clear therapeutic efficacy of a phosphatase and tensin homologue (PTEN) inhibitor called bisperoxovanadium (bpV) has been shown in SCI, traumatic brain injury, stroke, and other neurological disease models in both neuroprotection and functional recovery. The present study aimed to elucidate mechanistic influences of bpV activity in neuronal survival in in vitro and in vivo models of SCI. Treatment with 100 nM bpV(pic) reduced cell death in a primary spinal neuron injury model (p < 0.05) in vitro, and upregulated both Akt and ribosomal protein S6 (pS6) activity (p < 0.05) compared with non-treated injured neurons. Pre-treatment of spinal neurons with a PI3K inhibitor, LY294002 or mammalian target of rapamycin (mTOR) inhibitor, rapamycin blocked bpV activation of Akt and ribosomal protein S6 activity, respectively. Treatment with bpV increased extracellular signal-related kinase (Erk) activity after scratch injury in vitro, and rapamycin reduced influence by bpV on Erk phosphorylation. After a cervical hemicontusive SCI, Akt phosphorylation decreased in total tissue via Western blot analysis (p < 0.01) as well as in penumbral ventral horn motor neurons throughout the first week post-injury (p < 0.05). Conversely, PTEN activity appeared to increase over this period. As observed in vitro, bpV also increased Erk activity post-SCI (p < 0.05). Our results suggest that PI3K/Akt signaling is the likely primary mechanism of bpV action in mediating neuroprotection in injured spinal neurons.
Collapse
Affiliation(s)
- Chandler L Walker
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana.,Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery and Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
49
|
Züchner M, Lervik A, Kondratskaya E, Bettembourg V, Zhang L, Haga HA, Boulland JL. Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals. Front Neurol 2019; 10:223. [PMID: 30941086 PMCID: PMC6433700 DOI: 10.3389/fneur.2019.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Lervik
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elena Kondratskaya
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Vanessa Bettembourg
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
50
|
Warren PM, Alilain WJ. Plasticity Induced Recovery of Breathing Occurs at Chronic Stages after Cervical Contusion. J Neurotrauma 2019; 36:1985-1999. [PMID: 30565484 DOI: 10.1089/neu.2018.6186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Severe midcervical contusion injury causes profound deficits throughout the respiratory motor system that last from acute to chronic time points post-injury. We use chondroitinase ABC (ChABC) to digest chondroitin sulphate proteoglycans within the extracellular matrix (ECM) surrounding the respiratory system at both acute and chronic time points post-injury to explore whether augmentation of plasticity can recover normal motor function. We demonstrate that, regardless of time post-injury or treatment application, the lesion cavity remains consistent, showing little regeneration or neuroprotection within our model. Through electromyography (EMG) recordings of multiple inspiratory muscles, however, we show that application of the enzyme at chronic time points post-injury initiates the recovery of normal breathing in previously paralyzed respiratory muscles. This reduced the need for compensatory activity throughout the motor system. Application of ChABC at acute time points recovered only modest amounts of respiratory function. To further understand this effect, we assessed the anatomical mechanism of this recovery. Increased EMG activity in previously paralyzed muscles was brought about by activation of spared bulbospinal pathways through the site of injury and/or sprouting of spared serotonergic fibers from the contralateral side of the cord. Accordingly, we demonstrate that alterations to the ECM and augmentation of plasticity at chronic time points post-cervical contusion can cause functional recovery of the respiratory motor system and reveal mechanistic evidence of the pathways that govern this effect.
Collapse
Affiliation(s)
- Philippa Mary Warren
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,2 King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, Guy's Campus, London Bridge, London, United Kingdom
| | - Warren Joseph Alilain
- 1 Department of Neurosciences, MetroHealth Medical Centre, Case Western Reserve University, Cleveland, Ohio.,3 Department of Neuroscience, Spinal Cord and Brain Injury Research Centre, University of Kentucky, Lexington, Kentucky
| |
Collapse
|