1
|
Hajimirzaei P, Tabatabaei FSA, Nasibi-Sis H, Razavian RS, Nasirinezhad F. Schwann cell transplantation for remyelination, regeneration, tissue sparing, and functional recovery in spinal cord injury: A systematic review and meta-analysis of animal studies. Exp Neurol 2025; 384:115062. [PMID: 39579959 DOI: 10.1016/j.expneurol.2024.115062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a significant global health challenge that results in profound physical and neurological impairments. Despite progress in medical care, the treatment options for SCI are still restricted and often focus on symptom management rather than promoting neural repair and functional recovery. This study focused on clarifying the impact of Schwann cell (SC) transplantation on the molecular, cellular, and functional basis of recovery in animal models of SCI. MATERIAL AND METHODS Relevant studies were identified by conducting searches across multiple databases, which included PubMed, Web of Science, Scopus, and ProQuest. The data were analyzed via comprehensive meta-analysis software. We assessed the risk of bias via the SYRCLE method. RESULTS The analysis included 59 studies, 48 of which provided quantitative data. The results revealed significant improvements in various outcome variables, including protein zero structures (SMD = 1.66, 95 %CI: 0.96-2.36; p < 0.001; I2 = 49.8 %), peripherally myelinated axons (SMD = 1.81, 95 %CI: 0.99-2.63; p < 0.001; I2 = 39.3 %), biotinylated dextran amine-labeled CST only rostral (SMD = 1.31, 95 % CI: 0.50-2.12, p < 0.01, I2 = 49.7 %), fast blue-labeled reticular formation (SMD = 0.96, 95 %CI: 0.43-1.49, p < 0.001, I2 = 0.0 %), 5-hydroxytryptamine caudally (SMD = 0.83, 95 %CI: 0.36-1.29, p < 0.001, I2 = 17.2 %) and epicenter (SMD = 0.85, 95 %CI: 0.17-1.53, p < 0.05, I2 = 62.7 %), tyrosine hydroxylase caudally (SMD = 1.86, 95 %CI: 1.14-2.59, p < 0.001, I2 = 0.0 %) and epicenter (SMD = 1.82, 95 %CI: 1.18-2.47, p < 0.001, I2 = 0.0 %), cavity volume (SMD = -2.07, 95 %CI: -2.90 - -1.24, p < 0.001, I2 = 67.2 %), and Basso, Beattie, and Bresnahan (SMD = 1.26, 95 %CI: 0.93-1.58; p < 0.001; I2 = 79.4 %). CONCLUSIONS This study demonstrates the promising potential of SC transplantation as a therapeutic approach for SCI, clarifying its impact on various biological processes critical for recovery.
Collapse
Affiliation(s)
- Pooya Hajimirzaei
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Nasibi-Sis
- Department of Medical Library and Information Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farinaz Nasirinezhad
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Iran University of Medical sciences, Tehran, Iran; Center of Experimental and Comparative Study, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
2
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Stepanova OV, Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Chadin AV, Karsuntseva EK, Reshetov IV, Chekhonin VP. Prospects for the use of olfactory mucosa cells in bioprinting for the treatment of spinal cord injuries. World J Clin Cases 2023; 11:322-331. [PMID: 36686356 PMCID: PMC9850961 DOI: 10.12998/wjcc.v11.i2.322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The review focuses on the most important areas of cell therapy for spinal cord injuries. Olfactory mucosa cells are promising for transplantation. Obtaining these cells is safe for patients. The use of olfactory mucosa cells is effective in restoring motor function due to the remyelination and regeneration of axons after spinal cord injuries. These cells express neurotrophic factors that play an important role in the functional recovery of nerve tissue after spinal cord injuries. In addition, it is possible to increase the content of neurotrophic factors, at the site of injury, exogenously by the direct injection of neurotrophic factors or their delivery using gene therapy. The advantages of olfactory mucosa cells, in combination with neurotrophic factors, open up wide possibilities for their application in three-dimensional and four-dimensional bioprinting technology treating spinal cord injuries.
Collapse
Affiliation(s)
- Olga Vladislavovna Stepanova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Grigorii Andreevich Fursa
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Svetlana Sergeevna Andretsova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Biology, Moscow State University, Moscow 119991, Russia
| | - Valentina Sergeevna Shishkina
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Anastasia Denisovna Voronova
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Andrey Viktorovich Chadin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | | | - Vladimir Pavlovich Chekhonin
- Department of Basic and Applied Neurobiology, V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnologу, N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
4
|
Yousefifard M, Askarian-Amiri S, Nasseri Maleki S, Rafiei Alavi SN, Madani Neishaboori A, Haghani L, Vaccaro AR, Harrop JS, Lu Y, Rahimi-Movaghar V, Hosseini M. Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:3469-3488. [DOI: 10.1007/s10143-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
|
5
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Sosnovtseva AO, Stepanova OV, Stepanenko AA, Voronova AD, Chadin AV, Valikhov MP, Chekhonin VP. Recombinant Adenoviruses for Delivery of Therapeutics Following Spinal Cord Injury. Front Pharmacol 2022; 12:777628. [PMID: 35082666 PMCID: PMC8784517 DOI: 10.3389/fphar.2021.777628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
The regeneration of nerve tissue after spinal cord injury is a complex and poorly understood process. Medication and surgery are not very effective treatments for patients with spinal cord injuries. Gene therapy is a popular approach for the treatment of such patients. The delivery of therapeutic genes is carried out in a variety of ways, such as direct injection of therapeutic vectors at the site of injury, retrograde delivery of vectors, and ex vivo therapy using various cells. Recombinant adenoviruses are often used as vectors for gene transfer. This review discusses the advantages, limitations and prospects of adenovectors in spinal cord injury therapy.
Collapse
Affiliation(s)
- Anastasiia O Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V Stepanova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia D Voronova
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey V Chadin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marat P Valikhov
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Neurohumoral and Immunological Research, National Medical Research Center of Cardiology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation. Cells 2022; 11:cells11010144. [PMID: 35011706 PMCID: PMC8750549 DOI: 10.3390/cells11010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
The contemporary strategy for spinal cord injury (SCI) therapy aims to combine multiple approaches to control pathogenic mechanisms of neurodegeneration and stimulate neuroregeneration. In this study, a novel regenerative approach using an autologous leucoconcentrate enriched with transgenes encoding vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) combined with supra- and sub-lesional epidural electrical stimulation (EES) was tested on mini-pigs similar in morpho-physiological scale to humans. The complex analysis of the spinal cord recovery after a moderate contusion injury in treated mini-pigs compared to control animals revealed: better performance in behavioural and joint kinematics, restoration of electromyography characteristics, and improvement in selected immunohistology features related to cell survivability, synaptic protein expression, and glial reorganization above and below the injury. These results for the first time demonstrate the positive effect of intravenous infusion of autologous genetically-enriched leucoconcentrate producing recombinant molecules stimulating neuroregeneration combined with neuromodulation by translesional multisite EES on the restoration of the post-traumatic spinal cord in mini-pigs and suggest the high translational potential of this novel regenerative therapy for SCI patients.
Collapse
|
8
|
Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021; 146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a central nervous system (CNS) devastate event that is commonly caused by traumatic or non-traumatic events. The reinnervation of spinal cord axons is hampered through a myriad of devices counting on the damaged myelin, inflammation, glial scar, and defective inhibitory molecules. Unfortunately, an effective treatment to completely repair SCI and improve functional recovery has not been found. In this regard, strategies such as using cells, biomaterials, biomolecules, and drugs have been reported to be effective for SCI recovery. Furthermore, recent advances in combinatorial treatments, which address various aspects of SCI pathophysiology, provide optimistic outcomes for spinal cord regeneration. According to the global importance of SCI, the goal of this article review is to provide an overview of the pathophysiology of SCI, with an emphasis on the latest modes of intervention and current advanced approaches for the treatment of SCI, in conjunction with an assessment of combinatorial approaches in preclinical and clinical trials. So, this article can give scientists and clinicians' clues to help them better understand how to construct preclinical and clinical studies that could lead to a breakthrough in spinal cord regeneration.
Collapse
|
9
|
Zawadzka M, Kwaśniewska A, Miazga K, Sławińska U. Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells 2021; 10:cells10112995. [PMID: 34831217 PMCID: PMC8616284 DOI: 10.3390/cells10112995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic injury of the spinal cord (SCI) is a devastating neurological condition often leading to severe dysfunctions, therefore an improvement in clinical treatment for SCI patients is urgently needed. The potential benefits of transplantation of various cell types into the injured spinal cord have been intensively investigated in preclinical SCI models and clinical trials. Despite the many challenges that are still ahead, cell transplantation alone or in combination with other factors, such as artificial matrices, seems to be the most promising perspective. Here, we reviewed recent advances in cell-based experimental strategies supporting or restoring the function of the injured spinal cord with a particular focus on the regenerative mechanisms that could define their clinical translation.
Collapse
|
10
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Zeng CW, Sheu JC, Tsai HJ. The Neuronal Regeneration of Adult Zebrafish After Spinal Cord Injury Is Enhanced by Transplanting Optimized Number of Neural Progenitor Cells. Cell Transplant 2021; 29:963689720903679. [PMID: 32233781 PMCID: PMC7444222 DOI: 10.1177/0963689720903679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell transplantation is commonly used to study the regeneration and
repair of the nervous system in animals. However, a technical platform
used to evaluate the optimum number of transplanted cells in the
recipient’s spinal cord is little reported. Therefore, to develop such
platform, we used a zebrafish model, which has transparent embryos,
and transgenic line huORFZ, which generates green
fluorescent protein (GFP)-expressing cells in the central nervous
system under hypoxic stress. After GFP-expressing cells, also termed
as hypoxia-responsive recovering cells, were obtained from
hypoxia-exposed huORFZ embryos, we transplanted these
GFP-(+) cells into the site of spinal cord injury (SCI) in adult
wild-type zebrafish, followed by assessing the relationship between
number of transplanted cells and the survival rate of recipients. When
100, 300, 500, and 1,000 GFP-(+) donor cells were transplanted into
the lesion site of SCI-treated recipients, we found that recipient
adult zebrafish transplanted with 300 donor cells had the highest
survival rate. Those GFP-(+) donor cells could undergo proliferation
and differentiation into neuron in recipients. Furthermore,
transplantation of GFP-(+) cells into adult zebrafish treated with SCI
was able to enhance the neuronal regeneration of recipients. In
contrast, those fish transplanted with over 500 cells showed signs of
inflammation around the SCI site, resulting in higher mortality. In
this study, we developed a technological platform for transplanting
cells into the lesion site of SCI-treated adult zebrafish and defined
the optimum number of successfully transplanted cells into recipients,
as 300, and those GFP-(+) donor cells could enhance recipient’s spinal
cord regeneration. Thus, we provided a practical methodology for
studying cell transplantation therapy in neuronal regeneration of
zebrafish after SCI.
Collapse
Affiliation(s)
- Chih-Wei Zeng
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei.,Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei
| | - Huai-Jen Tsai
- Institute of Biomedical Science, Mackay Medical College, New Taipei City
| |
Collapse
|
12
|
Ghorbani F, Zamanian A. An efficient functionalization of dexamethasone-loaded polymeric scaffold with [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent for bone regeneration: Synthesis, characterization, and in vitro evaluation. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520903761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, dexamethasone-loaded gelatin–starch scaffolds were fabricated by the freeze-drying technique under different cooling temperatures and polymeric compositions. The constructs were modified via [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane coupling agent in order to produce a bioactive network structure for bone tissue engineering applications. Herein, the synergistic effect of [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane and dexamethasone was examined on the bioactivity and osteogenic behavior of scaffolds. Based on scanning electron microscopy micrographs, more fine pores were formed at higher freezing temperatures. The prepared microstructure at a rapid freezing rate resulted in diminished mechanical properties and a greater level of swelling and durability compared with a slow freezing rate. According to the acquired results, the mechanical strength decreased, while both absorption capacity and mass loss rate increased as a function of starch addition. Furthermore, the enhancement of hydrophilicity and reduction of mechanical stability enhanced the dexamethasone release levels. In addition, the synthesized constructs confirmed the positive effect of [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane and dexamethasone on biomimetic mineralization of the scaffolds. Supporting the cellular adhesion and proliferation alongside the expression of alkaline phosphatase, especially in the presence of dexamethasone, was the other advantage of synthetic scaffolds as a bone reconstructive substitute. Accordingly, drug-loaded hybrid constructs seem to be promising for further preclinical and clinical investigations in bone tissue engineering.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Islamic Republic of Iran
| |
Collapse
|
13
|
Singh T, Robles D, Vazquez M. Neuronal substrates alter the migratory responses of nonmyelinating Schwann cells to controlled brain‐derived neurotrophic factor gradients. J Tissue Eng Regen Med 2020; 14:609-621. [DOI: 10.1002/term.3025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 02/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Tanya Singh
- Department of Biomedical EngineeringCity College of New York New York NY USA
| | - Denise Robles
- Department of Biomedical EngineeringRutgers University, The State University of New Jersey New Brunswick NJ USA
| | - Maribel Vazquez
- Department of Biomedical EngineeringRutgers University, The State University of New Jersey New Brunswick NJ USA
| |
Collapse
|
14
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
15
|
Ghorbani F, Zamanian A, Kermanian F, Shamoosi A. A bioinspired 3D shape olibanum‐collagen‐gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration. Biotechnol Prog 2019; 36:e2918. [DOI: 10.1002/btpr.2918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/14/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong HospitalFudan University Pudong Medical Center Shanghai China
| | - Ali Zamanian
- Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Karaj Iran
| | - Fatemeh Kermanian
- Department of Anatomy, School of MedicineAlborz University of Medical Sciences Karaj Iran
| | - Atefeh Shamoosi
- Department of Anatomy, School of MedicineAlborz University of Medical Sciences Karaj Iran
| |
Collapse
|
16
|
High-Dose Neural Stem/Progenitor Cell Transplantation Increases Engraftment and Neuronal Distribution and Promotes Functional Recovery in Rats after Acutely Severe Spinal Cord Injury. Stem Cells Int 2019; 2019:9807978. [PMID: 31565061 PMCID: PMC6745168 DOI: 10.1155/2019/9807978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/04/2018] [Indexed: 01/12/2023] Open
Abstract
Severe spinal cord injury (SCI) leads to permanent, complete paraplegia and places considerable mental and economic burdens on patients, compared with mild to moderate SCI. However, the dose-related effects of the neural stem/precursor cell (NSPC) transplantation on the injury microenvironment, NSPC survival, axonal growth, neuronal distribution, the composition of neurons, oligodendrocytes, and astrocytes in the lesion area and functional recovery have not yet been quantitatively evaluated in the context of severe SCI. In our study, we acutely transplanted 2.5 × 104 or 1.5 × 105 NSPCs/μl into the site of transection SCI. We found that high-dose NSPC transplantation exerted immunomodulatory and neuroprotective effects in the acute phase of severe SCI. In addition, one week later, a remarkable positive relationship was observed between the transplantation dose and the number of surviving NSPCs in severe SCI. At 8 weeks postgrafting, subjects that received the higher cell dose exhibited abundant nerve regeneration, extensive neuronal distribution, increased proportions of neurons and oligodendrocytes, and nascent functional neural network formation in the lesion area. Notably, a significant functional recovery was also observed. Our data suggest that it is important to consider potential dose-related effects on donor cell survival, neuronal distribution, and locomotor recovery in the development of preclinical NSPC transplantation therapy for severe SCI.
Collapse
|
17
|
Zhao XM, He XY, Liu J, Xu Y, Xu FF, Tan YX, Zhang ZB, Wang TH. Neural Stem Cell Transplantation Improves Locomotor Function in Spinal Cord Transection Rats Associated with Nerve Regeneration and IGF-1 R Expression. Cell Transplant 2019; 28:1197-1211. [PMID: 31271053 PMCID: PMC6767897 DOI: 10.1177/0963689719860128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transplantation of neural stem cells (NSCs) is a potential strategy for the treatment of
spinal cord transection (SCT). Here we investigated whether transplanted NSCs would
improve motor function of rats with SCT and explored the underlying mechanism. First, the
rats were divided into sham, SCT, and NSC groups. Rats in the SCT and NSC groups were all
subjected to SCT in T10, and were administered with media and NSC transplantation into the
lesion site, respectively. Immunohistochemistry was used to label Nestin-, TUNEL-, and
NeuN-positive cells and reveal the expression and location of type I insulin-like growth
factor receptor (IGF-1 R). Locomotor function of hind limbs was assessed by Basso,
Beattie, Bresnahan (BBB) score and inclined plane test. The conduction velocity and
amplitude of spinal nerve fibers were measured by electrophysiology and the anatomical
changes were measured using magnetic resonance imaging. Moreover, expression of IGF-1 R
was determined by real-time polymerase chain reaction and Western blotting. The results
showed that NSCs could survive and differentiate into neurons in vitro and in vivo.
SCT-induced deficits were reduced by NSC transplantation, including increase in
NeuN-positive cells and decrease in apoptotic cells. Moreover, neurophysiological profiles
indicated that the latent period was decreased and the peak-to-peak amplitude of spinal
nerve fibers conduction was increased in transplanted rats, while morphological measures
indicated that fractional anisotropy and the number of nerve fibers in the site of spinal
cord injury were increased after NSC transplantation. In addition, mRNA and protein level
of IGF-1 R were increased in the rostral segment in the NSC group, especially in neurons.
Therefore, we concluded that NSC transplantation promotes motor function improvement of
SCT, which might be associated with activated IGF-1 R, especially in the rostral site. All
of the above suggests that this approach has potential for clinical treatment of spinal
cord injury.
Collapse
Affiliation(s)
- Xiao-Ming Zhao
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Both the author contributed equally to this article
| | - Xiu-Ying He
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Both the author contributed equally to this article
| | - Jia Liu
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei-Fei Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xin Tan
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Zi-Bin Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ting-Hua Wang
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China.,Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
18
|
Li Y, Yu Z, Men Y, Chen X, Wang B. Laminin-chitosan-PLGA conduit co-transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Exp Ther Med 2018; 16:1250-1258. [PMID: 30116376 PMCID: PMC6090254 DOI: 10.3892/etm.2018.6343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to assess the possibility and efficacy of utilizing a laminin-chitosan-poly (lactic-co-glycolic acid), otherwise known as laminin-chitosan-PLGA, nerve conduit with the co-transplantation of Schwann and neural stem cells to repair peripheral nerve defects. Previous in vitro experiments have demonstrated that the three-dimensional structure of the built in fiber filament electrospinning of laminin-chitosan-PLGA nerve conduit is beneficial to the migration and regeneration of nerve cells, and has notable mechanical strength and plasticity. It is able to provide support in the neural tissue regeneration process, and has the ability to degrade itself once peripheral nerves complete their regeneration, providing more advantages than other biological and synthetic materials. In the present study, 132 female Sprague Dawley rats were used to establish an animal model of laryngeal nerve injury, and the rats were randomly divided into six groups for experimentation. The nerve conduit was prepared and co-cultured with Schwann and neural stem cells, and micro-surgical techniques were used to repair the 5-mm-long recurrent laryngeal nerve injuries. Functional and histological assessments were performed at 8 and 12 weeks post-surgery, respectively. The results revealed that the laminin-chitosan-PLGA nerve conduit combined with Schwann and neural stem cells was able to promote nerve regeneration (P<0.05), and its effect was superior to those of the autograft (P<0.05). The results of the present study suggest that this is the ideal method for repairing peripheral nerve defects, and cells in the graft may promote nerve regeneration.
Collapse
Affiliation(s)
- Yu Li
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Ziwei Yu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Yongzhi Men
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Xinwei Chen
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| | - Baoxin Wang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200000, P.R. China
| |
Collapse
|
19
|
Xu B, Zhao Y, Xiao Z, Wang B, Liang H, Li X, Fang Y, Han S, Li X, Fan C, Dai J. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair. Adv Healthc Mater 2017; 6. [PMID: 28233428 DOI: 10.1002/adhm.201601279] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Indexed: 12/22/2022]
Abstract
Neural stem cells (NSCs) transplantation is a promising strategy to restore neuronal relays and neurological function of injured spinal cord because of the differentiation potential into functional neurons, but the transplanted NSCs often largely diffuse from the transplanted site and mainly differentiate into glial cells rather than neurons due to the adverse microenviornment after spinal cord injury (SCI). This paper fabricates a dual functional collagen scaffold tethered with a collagen-binding epidermal growth factor receptor (EGFR) antibody to simultaneously promote NSCs retention and neuronal differentiation by specifically binding to EGFR molecule expressed on NSCs and attenuating EGFR signaling, which is responsible for the inhibition of differentiation of NSCs toward neurons. Compared to unmodified control scaffold, the dual functional scaffold promotes the adhesion and neuronal differentiation of NSCs in vitro. Moreover, the implantation of the dual functional scaffold with exogenous NSCs in rat SCI model can capture and retain NSCs at the injury sites, and promote the neuronal differentiation of the retained NSCs into functional neurons, and finally dedicate to improving motor function of SCI rats, which provides a potential strategy for synchronously promoting stem cell retention and differentiation with biomaterials for SCI repair.
Collapse
Affiliation(s)
- Bai Xu
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Yannan Zhao
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Zhifeng Xiao
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Bin Wang
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Hui Liang
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Xing Li
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Yongxiang Fang
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Sufang Han
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| |
Collapse
|
20
|
Yu Z, Men Y, Dong P. Schwann cells promote the capability of neural stem cells to differentiate into neurons and secret neurotrophic factors. Exp Ther Med 2017; 13:2029-2035. [PMID: 28565804 PMCID: PMC5443174 DOI: 10.3892/etm.2017.4183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/20/2017] [Indexed: 11/05/2022] Open
Abstract
The present study investigated whether co-culturing Schwann cells (SCs) with neural stem cells (NSCs) improves viability, direction of differentiation and secretion of brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) in NSCs. The three groups assessed were as follows: SCs, NSCs, and a co-culture of SCs and NSCs. Cellular morphological changes were observed under an inverted phase contrast microscope and quantified. Cells were identified by immunofluorescence staining: S100 for SCs, Nestin for NSCs, microtubule associated protein (Map) 2 and NeuN for neurons and glial fibrillary acidic protein for astrocytes. Cell viability was evaluated by MTT assay. Secretion of BDNF and GDNF was quantified; mRNA expression was quantified by reverse transcription-quantitative polymerase chain reaction. The majority of NSCs in the co-cultured group differentiated into neurons. The cell survival rate of the co-culture group was significantly higher than the other groups on days 3, 5 and 10 (P<0.01). The secretion of BDNF in the co-culture group was significantly higher than NSCs on days 3, 5 and 7 (P<0.05), while the amount of GDNF in co-culture was significantly higher than both NSCs and SCs on day 1 (P<0.05). BDNF and GDNF gene expression in the co-culture group was significantly higher than SCs (P<0.01). Gene expression of Map2 in co-culture group was also significantly higher than both NSC and SC groups (P<0.01). Therefore, co-cultured SCs and NSCs promote differentiation of NSCs into neurons and secrete higher levels of neurotropic factors including BDNF and GDNF.
Collapse
Affiliation(s)
- Ziwei Yu
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yongzhi Men
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
21
|
Ramamurthy P, White JB, Yull Park J, Hume RI, Ebisu F, Mendez F, Takayama S, Barald KF. Concomitant differentiation of a population of mouse embryonic stem cells into neuron-like cells and schwann cell-like cells in a slow-flow microfluidic device. Dev Dyn 2017; 246:7-27. [PMID: 27761977 PMCID: PMC5159187 DOI: 10.1002/dvdy.24466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012). MIF-induced mouse embryonic stem cell (mESC)-derived "neurons" could potentially substitute for lost or damaged SGN. mESC-derived "Schwann cells" produce MIF, as do all Schwann cells (Huang et al., a; Roth et al., 2007; Roth et al., 2008) and could attract SGN to a "cell-coated" implant. RESULTS Neuron- and Schwann cell-like cells were produced from a common population of mESCs in an ultra-slow-flow microfluidic device. As the populations interacted, "neurons" grew over the "Schwann cell" lawn, and early events in myelination were documented. Blocking MIF on the Schwann cell side greatly reduced directional neurite outgrowth. MIF-expressing "Schwann cells" were used to coat a CI: Mouse SGN and MIF-induced "neurons" grew directionally to the CI and to a wild-type but not MIF-knockout organ of Corti explant. CONCLUSIONS Two novel stem cell-based approaches for treating the problem of sensorineural hearing loss are described. Developmental Dynamics 246:7-27, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Poornapriya Ramamurthy
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua B White
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Richard I Hume
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Fumi Ebisu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Flor Mendez
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shuichi Takayama
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Kate F Barald
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Hosseini M, Yousefifard M, Baikpour M, Rahimi-Movaghar V, Nasirinezhad F, Younesian S, Safari S, Ghelichkhani P, Moghadas Jafari A. The efficacy of Schwann cell transplantation on motor function recovery after spinal cord injuries in animal models: A systematic review and meta-analysis. J Chem Neuroanat 2016; 78:102-111. [PMID: 27609084 DOI: 10.1016/j.jchemneu.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/09/2016] [Accepted: 09/04/2016] [Indexed: 12/31/2022]
Abstract
AIM This article aimed to assess the efficacy of Schwann cell transplantation on motor function recovery in animal model of spinal cord injuries via meta-analysis. METHODS An extended search was carried out in the electronic databases of Medline (via PubMed), EMBASE (via OvidSP), CENTRAL, SCOPUS, Web of Science (BIOSIS), and ProQuest. Finally, 41 eligible studies conducted on 1046 animals including 517 control animals and 529 transplanted animals were included in the meta-analysis. Pooled standardized mean difference (SMD) and odds ratio (OR) with 95% confidence interval (95% CI) were reported. RESULTS The findings showed that treatment with Schwann cells leads to a modest motor function recovery after spinal cord injury (SMD=0.85; 95% CI: 0.63-1.07; p<0.001). Transplantation of these cells in acute phase of the injury (immediately after the injury) (OR=4.30; 95% CI: 1.53-12.05; p=0.007), application of mesenchymal/skin-derived precursors (OR=2.34; 95% CI: 1.28-4.29; p=0.008), and cells with human sources are associated with an increase in efficacy of Schwann cells (OR=10.96; 95% CI: 1.49-80.77; p=0.02). Finally, it seems that the efficacy of Schwann cells in mice is significantly lower than rats (OR=0.03; 95% CI: 0.003-0.41; p=0.009). CONCLUSION Transplantation of Schwann cells can moderately improve motor function recovery. It seems that inter-species differences might exist regarding the efficacy of this cells. Therefore, this should be taken into account when using Schwann cells in clinical trials regarding spinal cord injuries.
Collapse
Affiliation(s)
- Mostafa Hosseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Baikpour
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Younesian
- Department of Emergency Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeed Safari
- Department of Emergency Medicine, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Ghelichkhani
- Department of Intensive Care Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moghadas Jafari
- Department of Emergency Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
23
|
MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 2016; 6:35205. [PMID: 27748416 PMCID: PMC5066253 DOI: 10.1038/srep35205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.
Collapse
|
24
|
Lin XY, Lai BQ, Zeng X, Che MT, Ling EA, Wu W, Zeng YS. Cell Transplantation and Neuroengineering Approach for Spinal Cord Injury Treatment: A Summary of Current Laboratory Findings and Review of Literature. Cell Transplant 2016; 25:1425-38. [DOI: 10.3727/096368916x690836] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) can cause severe traumatic injury to the central nervous system (CNS). Current therapeutic effects achieved for SCI in clinical medicine show that there is still a long way to go to reach the desired goal of full or significant functional recovery. In basic medical research, however, cell transplantation, gene therapy, application of cytokines, and biomaterial scaffolds have been widely used and investigated as treatments for SCI. All of these strategies when used separately would help rebuild, to some extent, the neural circuits in the lesion area of the spinal cord. In light of this, it is generally accepted that a combined treatment may be a more effective strategy. This review focuses primarily on our recent series of work on transplantation of Schwann cells and adult stem cells, and transplantation of stem cell-derived neural network scaffolds with functional synapses. Arising from this, an artificial neural network (an exogenous neuronal relay) has been designed and fabricated by us—a biomaterial scaffold implanted with Schwann cells modified by the neurotrophin-3 (NT-3) gene and adult stem cells modified with the TrkC (receptor of NT-3) gene. More importantly, experimental evidence suggests that the novel artificial network can integrate with the host tissue and serve as an exogenous neuronal relay for signal transfer and functional improvement of SCI.
Collapse
Affiliation(s)
- Xin-Yi Lin
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Jinan University–Hong Kong University Joint Laboratory, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Yousefifard M, Rahimi-Movaghar V, Nasirinezhad F, Baikpour M, Safari S, Saadat S, Moghadas Jafari A, Asady H, Razavi Tousi SMT, Hosseini M. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience 2016; 322:377-97. [PMID: 26917272 DOI: 10.1016/j.neuroscience.2016.02.034] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/21/2022]
Abstract
Despite the vast improvements of cell therapy in spinal cord injury treatment, no optimum protocol has been developed for application of neural stem/progenitor cells. In this regard, the present meta-analysis showed that the efficacy of the neural stem/progenitor cell (NSPC) transplantation depends mainly on injury model, intervention phase, transplanted cell count, immunosuppressive use, and probably stem cell source. Improved functional recovery post NSPC transplantation was found to be higher in transection and contusion models. Moreover, NSPC transplantation in acute phase of spinal injury was found to have better functional recovery. Higher doses (>3×10(6)cell/kg) were also shown to be optimum for transplantation, but immunosuppressive agent administration negatively affected the motor function recovery. Scaffold use in NSPC transplantation could also effectively raise functional recovery.
Collapse
Affiliation(s)
- M Yousefifard
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - V Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - F Nasirinezhad
- Physiology Research Center, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - M Baikpour
- Department of Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Safari
- Department of Emergency Medicine, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Saadat
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - A Moghadas Jafari
- Department of Emergency Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - H Asady
- Department of Occupational Health Engineering, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - S M T Razavi Tousi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Hosseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 2015; 53:184-201. [DOI: 10.1016/j.biomaterials.2015.02.073] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/08/2015] [Accepted: 02/15/2015] [Indexed: 12/27/2022]
|
27
|
Tsintou M, Dalamagkas K, Seifalian AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 2015; 10:726-742. [PMID: 26109946 PMCID: PMC4468763 DOI: 10.4103/1673-5374.156966] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury results in the permanent loss of function, causing enormous personal, social and economic problems. Even though neural regeneration has been proven to be a natural mechanism, central nervous system repair mechanisms are ineffective due to the imbalance of the inhibitory and excitatory factors implicated in neuroregeneration. Therefore, there is growing research interest on discovering a novel therapeutic strategy for effective spinal cord injury repair. To this direction, cell-based delivery strategies, biomolecule delivery strategies as well as scaffold-based therapeutic strategies have been developed with a tendency to seek for the answer to a combinatorial approach of all the above. Here we review the recent advances on regenerative/neural engineering therapies for spinal cord injury, aiming at providing an insight to the most promising repair strategies, in order to facilitate future research conduction.
Collapse
Affiliation(s)
- Magdalini Tsintou
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Kyriakos Dalamagkas
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
| | - Alexander Marcus Seifalian
- UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London, London, UK
- Royal Free London NHS Foundation Trust Hospital, London, UK
| |
Collapse
|
28
|
Marcol W, Ślusarczyk W, Larysz-Brysz M, Francuz T, Jędrzejowska-Szypułka H, Łabuzek K, Lewin-Kowalik J. Grafted Activated Schwann Cells Support Survival of Injured Rat Spinal Cord White Matter. World Neurosurg 2015; 84:511-9. [PMID: 25910924 DOI: 10.1016/j.wneu.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The influence of cultured Schwann cells on injured spinal cord in rats is examined. METHODS Focal injury of spinal cord white matter at the T10 level was produced using our original non-laminectomy method with a high-pressure air stream. Schwann cells from 7-day predegenerated rat sciatic nerves were cultured, transducted with green fluorescent protein and injected into the cisterna magna (experimental group) 3 times: immediately after spinal cord injury and 3 and 7 days later. Neurons in the brainstem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of the experiment. The functional outcome and morphologic features of neuronal survival were analyzed during a 12-week follow-up. The lesions were visualized and analyzed using magnetic resonance imaging. The maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. RESULTS Rats treated with Schwann cells presented significant improvement of locomotor performance and spinal cord morphology compared with the control group. The distance covered by Schwann cells was 7 mm from the epicenter of the injury. The number of brainstem and motor cortex FG-positive neurons in the experimental group was significantly higher than in the control group. CONCLUSIONS The data show that activated Schwann cells are able to induce the repair of injured spinal cord white matter. The route of application of cells via the cisterna magna seemed to be useful for their delivery in spinal cord injury therapy.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Wojciech Ślusarczyk
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Larysz-Brysz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Krzysztof Łabuzek
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
29
|
Kanno H, Pearse DD, Ozawa H, Itoi E, Bunge MB. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus. Rev Neurosci 2015; 26:121-8. [DOI: 10.1515/revneuro-2014-0068] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022]
Abstract
AbstractTransplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.
Collapse
|
30
|
Huang F, Shen Q, Zhao J. Growth and differentiation of neural stem cells in a three-dimensional collagen gel scaffold. Neural Regen Res 2014; 8:313-9. [PMID: 25206671 PMCID: PMC4107534 DOI: 10.3969/j.issn.1673-5374.2013.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study, rat neural stem cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurospheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2’,3’-cyclic nucleotide 3’-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopedics, Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Qiang Shen
- Department of Orthopedics, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jitong Zhao
- Department of Orthopedics, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
31
|
Lai BQ, Wang JM, Ling EA, Wu JL, Zeng YS. Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev 2014; 23:910-21. [PMID: 24325427 DOI: 10.1089/scd.2013.0426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remyelination remains a challenging issue in spinal cord injury (SCI). In the present study, we cocultured Schwann cells (SCs) and neural stem cells (NSCs) with overexpression of neurotrophin-3 (NT-3) and its high affinity receptor tyrosine kinase receptor type 3 (TrkC), respectively, in a gelatin sponge (GS) scaffold. This was aimed to generate a tissue-engineered neural scaffold and to investigate whether it could enhance myelination after a complete T10 spinal cord transection in adult rats. Indeed, many NT-3 overexpressing SCs (NT-3-SCs) in the GS scaffold assumed the formation of myelin. More strikingly, a higher incidence of NSCs overexpressing TrkC differentiating toward myelinating cells was induced by NT-3-SCs. By transmission electron microscopy, the myelin sheath showed distinct multilayered lamellae formed by the seeded cells. Eighth week after the scaffold was transplanted, some myelin basic protein (MBP)-positive processes were observed within the transplantation area. Remarkably, certain segments of myelin derived from NSC-derived myelinating cells and NT-3-SCs were found to ensheath axons. In conclusion, we show here that transplantation of the GS scaffold promotes exogenous NSC-derived myelinating cells and SCs to form myelins in the injury/transplantation area of spinal cord. These findings thus provide a neurohistological basis for the future application or transplantation using GS neural scaffold to repair SCI.
Collapse
Affiliation(s)
- Bi-Qin Lai
- 1 Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University , Guangzhou, China
| | | | | | | | | |
Collapse
|
32
|
Krishna V, Konakondla S, Nicholas J, Varma A, Kindy M, Wen X. Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: a systematic review. J Spinal Cord Med 2013; 36:174-90. [PMID: 23809587 PMCID: PMC3654443 DOI: 10.1179/2045772313y.0000000095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
CONTEXT There is considerable interest in translating laboratory advances in neuronal regeneration following spinal cord injury (SCI). A multimodality approach has been advocated for successful functional neuronal regeneration. With this goal in mind several biomaterials have been employed as neuronal bridges either to support cellular transplants, to release neurotrophic factors, or to do both. A systematic review of this literature is lacking. Such a review may provide insight to strategies with a high potential for further investigation and potential clinical application. OBJECTIVE To systematically review the design strategies and outcomes after biomaterial-based multimodal interventions for neuronal regeneration in rodent SCI model. To analyse functional outcomes after implantation of biomaterial-based multimodal interventions and to identify predictors of functional outcomes. METHODS A broad PubMed, CINHAL, and a manual search of relevant literature databases yielded data from 24 publications; 14 of these articles included functional outcome information. Studies reporting behavioral data in rat model of SCI and employing biodegradable polymer-based multimodal intervention were included. For behavioral recovery, studies using severe injury models (transection or severe clip compression (>16.9 g) or contusion (50 g/cm)) were categorized separately from those investigating partial injury models (hemisection or moderate-to-severe clip compression or contusion). RESULTS The cumulative mean improvements in Basso, Beattie, and Bresnahan scores after biomaterial-based interventions are 5.93 (95% CI = 2.41 - 9.45) and 4.44 (95% CI = 2.65 - 6.24) for transection and hemisection models, respectively. Factors associated with improved outcomes include the type of polymer used and a follow-up period greater than 6 weeks. CONCLUSION The functional improvement after implantation of biopolymer-based multimodal implants is modest. The relationship with neuronal regeneration and functional outcome, the effects of inflammation at the site of injury, the prolonged survival of supporting cells, the differentiation of stem cells, the effective delivery of neurotrophic factors, and longer follow-up periods are all topics for future elucidation. Future investigations should strive to further define specific factors associated with improved functional outcomes in clinically relevant models.
Collapse
Affiliation(s)
- Vibhor Krishna
- Medical University of South Carolina, Charleston, SC, USA.
| | | | - Joyce Nicholas
- Medical University of South Carolina, Charleston, SC, USA
| | - Abhay Varma
- Medical University of South Carolina, Charleston, SC, USA
| | - Mark Kindy
- Medical University of South Carolina, Charleston, SC, USA
| | - Xuejun Wen
- Medical University of South Carolina, Charleston, SC, USA; and Department of Bioengineering, Clemson University, SC, USA
| |
Collapse
|
33
|
Lai BQ, Wang JM, Duan JJ, Chen YF, Gu HY, Ling EA, Wu JL, Zeng YS. The integration of NSC-derived and host neural networks after rat spinal cord transection. Biomaterials 2013; 34:2888-901. [DOI: 10.1016/j.biomaterials.2012.12.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/30/2012] [Indexed: 12/27/2022]
|
34
|
Roet KCD, Eggers R, Verhaagen J. Noninvasive Bioluminescence Imaging of Olfactory Ensheathing Glia and Schwann Cells following Transplantation into the Lesioned Rat Spinal Cord. Cell Transplant 2012; 21:1853-65. [DOI: 10.3727/096368911x627471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we assess the feasibility of bioluminescence imaging to monitor the survival of Schwann cells (SCs) and olfactory ensheathing glia cells (OECs) after implantation in the lesioned spinal cord of adult rats. To this end, purified SCs and OECs were genetically modified with lentiviral vectors encoding luciferase-2 and GFP and implanted in the lesioned dorsal column. The bioluminescent signal was monitored for over 3 months, and at 7 and 98 days postsurgery, the signal was compared to standard histological analysis of GFP expression in the spinal cords. The temporal profile of the bioluminescent signal showed three distinct phases for both cell types. (I) A relatively stable signal in the first week. (II) A progressive decline in signal strength in the second and third week. (III) After the third week, the average bioluminescent signal stabilized for both cell types. Interestingly, in the first week, the peak of the bioluminescent signal after luciferin injection was delayed when compared to later time points. Similar to in vitro, our data indicated a linear relationship between the in vivo bioluminescent signal and the GFP signal of the SCs and OECs in the spinal cords when the results of both the 7 and 98 day time points are combined. This is the first report of the use of in vivo bioluminescence to monitor cell survival in the lesioned rat spinal cord. Bioluminescence could be a potentially powerful, non-invasive strategy to examine the efficacy of treatments that aim to improve the survival of proregenerative cells transplanted in the injured rat spinal cord.
Collapse
Affiliation(s)
- Kasper C. D. Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Ruben Eggers
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Niapour A, Karamali F, Nemati S, Taghipour Z, Mardani M, Nasr-Esfahani MH, Baharvand H. Cotransplantation of Human Embryonic Stem Cell-Derived Neural Progenitors and Schwann Cells in a Rat Spinal Cord Contusion Injury Model Elicits a Distinct Neurogenesis and Functional Recovery. Cell Transplant 2012; 21:827-843. [DOI: 10.3727/096368911x593163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cotransplantation of neural progenitors (NPs) with Schwann cells (SCs) might be a way to overcome low rate of neuronal differentiation of NPs following transplantation in spinal cord injury (SCI) and the improvement of locomotor recovery. In this study, we initially generated NPs from human embryonic stem cells (hESCs) and investigated their potential for neuronal differentiation and functional recovery when cocultured with SCs in vitro and cotransplanted in a rat acute model of contused SCI. Cocultivation results revealed that the presence of SCs provided a consistent status for hESC-NPs and recharged their neural differentiation toward a predominantly neuronal fate. Following transplantation, a significant functional recovery was observed in all engrafted groups (NPs, SCs, NPs + SCs) relative to the vehicle and control groups. We also observed that animals receiving cotransplants established a better state as assessed with the BBB functional test. Immunohistofluorescence evaluation 5 weeks after transplantation showed invigorated neuronal differentiation and limited proliferation in the cotransplanted group when compared to the individual hESC-NP-grafted group. These findings have demonstrated that the cotransplantation of SCs with hESC-NPs could offer a synergistic effect, promoting neuronal differentiation and functional recovery.
Collapse
Affiliation(s)
- Ali Niapour
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
- Department of Anatomical Sciences, Ardebil University of Medical Science, Ardebil, Iran
| | - Fereshteh Karamali
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Shiva Nemati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Taghipour
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cell and Molecular Biology, Cell Science Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
36
|
Garbossa D, Boido M, Fontanella M, Fronda C, Ducati A, Vercelli A. Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells. Neurosurg Rev 2012; 35:293-311; discussion 311. [PMID: 22539011 DOI: 10.1007/s10143-012-0385-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/27/2011] [Accepted: 11/20/2011] [Indexed: 01/01/2023]
Abstract
Spinal cord injury (SCI) often results in significant dysfunction and disability. A series of treatments have been proposed to prevent and overcome the formation of the glial scar and inhibitory factors to axon regrowth. In the last decade, cell therapy has emerged as a new tool for several diseases of the nervous system. Stem cells act as minipumps providing trophic and immunomodulatory factors to enhance axonal growth, to modulate the environment, and to reduce neuroinflammation. This capability can be boosted by genetical manipulation to deliver trophic molecules. Different types of stem cells have been tested, according to their properties and the therapeutic aims. They differ from each other for origin, developmental stage, stage of differentiation, and fate lineage. Related to this, stem cells differentiating into neurons could be used for cell replacement, even though the feasibility that stem cells after transplantation in the adult lesioned spinal cord can differentiate into neurons, integrate within neural circuits, and emit axons reaching the muscle is quite remote. The timing of cell therapy has been variable, and may be summarized in the acute and chronic phases of disease, when stem cells interact with a completely different environment. Even though further experimental studies are needed to elucidate the mechanisms of action, the therapeutic, and the side effects of cell therapy, several clinical protocols have been tested or are under trial. Here, we report the state-of-the-art of cell therapy in SCI, in terms of feasibility, outcome, and side effects.
Collapse
Affiliation(s)
- D Garbossa
- Department of Neurosurgery, S. Giovanni Battista Hospital, University of Torino, Via Cherasco 15, 10126, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Xiong Y, Zhu JX, Fang ZY, Zeng CG, Zhang C, Qi GL, Li MH, Zhang W, Quan DP, Wan J. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Int J Nanomedicine 2012; 7:1977-89. [PMID: 22619535 PMCID: PMC3356173 DOI: 10.2147/ijn.s30706] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury.
Collapse
Affiliation(s)
- Yi Xiong
- Biomedical Research Institute, Shenzhen- PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Joosten EAJ. Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell Tissue Res 2012; 349:375-95. [PMID: 22411698 PMCID: PMC3375422 DOI: 10.1007/s00441-012-1352-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
Abstract
Important advances in the development of smart biodegradable implants for axonal regeneration after spinal cord injury have recently been reported. These advances are evaluated in this review with special emphasis on the regeneration of the corticospinal tract. The corticospinal tract is often considered the ultimate challenge in demonstrating whether a repair strategy has been successful in the regeneration of the injured mammalian spinal cord. The extensive know-how of factors and cells involved in the development of the corticospinal tract, and the advances made in material science and tissue engineering technology, have provided the foundations for the optimization of the biomatrices needed for repair. Based on the findings summarized in this review, the future development of smart biodegradable bridges for CST regrowth and regeneration in the injured spinal cord is discussed.
Collapse
Affiliation(s)
- Elbert A J Joosten
- Department of Anesthesiology, Pain Management and Research Center, Maastricht University Medical Hospital, Maastricht, The Netherlands.
| |
Collapse
|
39
|
Neural stem cells for spinal cord repair. Cell Tissue Res 2012; 349:349-62. [DOI: 10.1007/s00441-012-1363-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
|
40
|
Lu HX, Hao ZM, Jiao Q, Xie WL, Zhang JF, Lu YF, Cai M, Wang YY, Yang ZQ, Parker T, Liu Y. Neurotrophin-3 gene transduction of mouse neural stem cells promotes proliferation and neuronal differentiation in organotypic hippocampal slice cultures. Med Sci Monit 2012; 17:BR305-311. [PMID: 22037732 PMCID: PMC3539508 DOI: 10.12659/msm.882039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The transplantation of neural stem cells (NSCs) has been accepted as a promising therapeutic strategy for central nervous system disorders. However, the beneficial effect of NSC transplantation upon functional recovery is limited due to the unfavorable microenvironment (niche) at the site of trauma or degenerative disease in the brain. Combination of transplantation of NSCs with neurotrophins may overcome the hurdles of impaired cell survival and neuronal differentiation. MATERIAL/METHODS In the current study, the neurotrophin-3 (NT-3) gene was transduced into cultured mouse embryonic cortical NSCs via an AAV vector (NSC-NT-3). The effect of NT-3 over-expression on cell proliferation and differentiation in NSCs was observed by immunohistochemistry, cell culture and organotypic hippocampal slice cultures.<br /> RESULTS The characteristics of self-renewal and multiple differentiation of NSCs were well-preserved. Cells in the NSC-NT-3 group proliferated faster and differentiated into more β-tubulin III-positive neurons compared to the control group in vitro. Furthermore, cells in the NSC-NT-3 group survived in a significantly higher percentage and undertook neuronal differentiation preferably in organotypic hippocampal slice cultures. CONCLUSIONS Our results suggest that the transduction of NT-3 into NSCs could effectively promote NSCs survival, proliferation, and neuronal differentiation in vitro without change of the stemness of NSCs. This work also offers evidence to better understand the safety and efficiency of combined treatment with NT-3 and NSCs for the central nervous system disorders.
Collapse
Affiliation(s)
- Hai-xia Lu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim HJ, Oh JS, An SS, Pennant WA, Gwak SJ, Kim AN, Han PK, Yoon DH, Kim KN, Ha Y. Hypoxia-specific GM-CSF-overexpressing neural stem cells improve graft survival and functional recovery in spinal cord injury. Gene Ther 2011; 19:513-21. [DOI: 10.1038/gt.2011.137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Du BL, Xiong Y, Zeng CG, He LM, Zhang W, Quan DP, Wu JL, Li Y, Zeng YS. Transplantation of artificial neural construct partly improved spinal tissue repair and functional recovery in rats with spinal cord transection. Brain Res 2011; 1400:87-98. [DOI: 10.1016/j.brainres.2011.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 01/19/2023]
|
43
|
Ding Y, Yan Q, Ruan JW, Zhang YQ, Li WJ, Zeng X, Huang SF, Zhang YJ, Wang S, Dong H, Zeng YS. Bone Marrow Mesenchymal Stem Cells and Electroacupuncture Downregulate the Inhibitor Molecules and Promote the Axonal Regeneration in the Transected Spinal Cord of Rats. Cell Transplant 2011; 20:475-91. [DOI: 10.3727/096368910x528102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our previous study has reported that electroacupuncture (EA) promotes survival, differentiation of bone marrow mesenchymal stem cells (MSCs), and functional improvement in spinal cord-transected rats. In this study, we further investigated the structural bases of this functional improvement and the potential mechanisms of axonal regeneration in injured spinal cord after MSCs and EA treatment. Five experimental groups, 1) sham control (Sham-control); 2) operated control (Op-control); 3) electroacupuncture treatment (EA); 4) MSCs transplantation (MSCs), and 5) MSCs transplantation combined with electroacupuncture (MSCs + EA), were designed for this study. Western blots and immunohistochemical staining were used to assess the fibrillary acidic protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs) proteins expression. Basso, Beattie, Bresnahan (BBB) locomotion test, cortical motor evoked potentials (MEPs), and anterograde and retrograde tracing were utilized to assess cortical-spinal neuronal projection regeneration and functional recovery. In the MSCs + EA group, increased labeling descending corticospinal tract (CST) projections into the lesion site showed significantly improved BBB scales and enhanced motor evoked potentials after 10 weeks of MSCs transplant and EA treatment. The structural and functional recovery after MSCs + EA treatment may be due to downregulated GFAP and CSPGs protein expression, which prevented axonal degeneration as well as improved axonal regeneration.
Collapse
Affiliation(s)
- Ying Ding
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qing Yan
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture of the first Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Qing Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jie Li
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Si-Fan Huang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jiao Zhang
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shirlene Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Shan Zeng
- Division of Neuroscience, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Zhang W, Yan Q, Zeng YS, Zhang XB, Xiong Y, Wang JM, Chen SJ, Li Y, Bruce IC, Wu W. Implantation of adult bone marrow-derived mesenchymal stem cells transfected with the neurotrophin-3 gene and pretreated with retinoic acid in completely transected spinal cord. Brain Res 2010; 1359:256-71. [PMID: 20816761 DOI: 10.1016/j.brainres.2010.08.072] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/18/2010] [Accepted: 08/22/2010] [Indexed: 12/22/2022]
Abstract
Implantation of marrow-derived mesenchymal stem cells (MSCs) is the most promising therapeutic strategy for the treatment of spinal cord injury (SCI), especially because of their potential for clinical application, such as the avoidance of immunologic rejection, their strong secretory properties, and their plasticity for developing into neural cells. However, the recovery from SCI after MSC implantation is minimal due to their limited capacity for the reduction of cystic cavitation, for the axonal regeneration and their uncertain neural plasticity in the spinal cord. We previously pretreated MSCs with all-trans retinoic acid (RA) in vitro. Then we genetically modified them to overexpress neurotrophin-3 (NT-3) via a recombinant adenoviral vector (Adv). This combined treatment not only permitted more neuronal differentiation of MSCs, but stimulated more NT-3 secretion prior to grafting, according to our previous and present results. When these cells were implanted into the transected spinal cord of rats, the animals had some improvement (both functionally and structurally), including the recovery of hindlimb locomotor function, shown by the highest Basso, Beattie, and Bresnahan (BBB) scores, as well as dramatically reduced cavity volume, clear axonal regeneration and more neuronal survival. In contrast, simple MSC implantation is not a very effective therapy for spinal transection. However, the neuronal differentiation of MSCs after treatment with a combination of Adv-mediated NT-3 gene transfer and RA was only mildly improved in vivo.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Diffusible, membrane-bound, and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells. Brain Res 2010; 1359:56-66. [PMID: 20801108 DOI: 10.1016/j.brainres.2010.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 01/21/2023]
Abstract
Transplantation of olfactory ensheathing cells (OECs) has been a promising strategy in enhancing central nervous system (CNS) regeneration. However, little is known about the effects of transplanted OECs on the self-renewal, neurogenesis, and oligodendrogenesis of neural stem cells (NSCs), which are known to play a very important role in the repair of damaged CNS tissue. In this study, we investigated the influence of diffusible, membrane-bound, and extracellular matrix factors from OECs on the self-renewal and differentiation properties of NSCs. We found that diffusible factors from cultured OECs promoted self-renewal, whereas the extracellular matrix molecules from OECs increased neurogenesis and oligodendrogenesis of NSCs. Furthermore, we demonstrated that directly coculturing OECs and NSCs inhibited not only self-renewal but also neurogenesis and oligodendrogenesis of NSCs. We propose three models for the interaction between transplanted OECs and endogenous NSCs. Our findings provide new insight into the ability of OECs to promote CNS repair and also indicate potential targets for manipulation of these cells to enhance their restorative ability.
Collapse
|
46
|
Greco SJ, Rameshwar P. Recent advances and novel approaches in deriving neurons from stem cells. ACTA ACUST UNITED AC 2010; 6:324-8. [DOI: 10.1039/b914822c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Zhang H, Lin X, Wan H, Li JH, Li JM. Effect of low-intensity pulsed ultrasound on the expression of neurotrophin-3 and brain-derived neurotrophic factor in cultured Schwann cells. Microsurgery 2009; 29:479-85. [PMID: 19308950 DOI: 10.1002/micr.20644] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally known that low-intensity pulsed ultrasound (LIPUS) accelerates peripheral nerve tissue regeneration. However, the precise cellular mechanism involved is still unclear. The purpose of this study was to determine how the Schwann cells respond directly to LIPUS stimuli. Thus, we investigated the effect of LIPUS on cell proliferation, neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) mRNA expression in rat Schwann cells. Schwann cells were enzymatically isolated from postnatal 1-3 day rat sciatic nerve tissue and cultured in the six-well plate. The ultrasound was applied at a frequency of 1 MHz and an intensity of 100 mW/cm(2) spatial average temporal average for 5 minutes/day. The control group was cultured in the same way but without the administration of ultrasound. Immunohistochemistry demonstrated that more than 98% of the experimental and control cells were positive for S-100, NT-3, and BDNF. With 5-bromo-2'-deoxyuridine (BrdU) assay, the stimulated cells also exhibited an increase in the rate of cell proliferation on days 4, 7, 10, and 14. Further investigation found that mRNA expression of NT-3 was significantly upregulated in experimental groups compared with the control 14 days after the LIPUS stimulation (the ratio of NT-3/beta-actin was 0.56 +/- 0.13 vs. 0.41 +/- 0.09, P < 0.01), whereas the mRNA expression of BDNF was significantly downregulated in experimental groups compared with the control (the ratio of BDNF/beta-actin was 0.51 +/- 0.05 vs. 0.60 +/- 0.08, P < 0.05). These results demonstrated that the application of LIPUS promotes cell proliferation and NT-3 gene expression in Schwann cells, and involved in the alteration of BDNF gene expression.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Orthopaedics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
48
|
Rakei SM, Rahmanian A, Saffarian A, Shafeian R, Mehrabani D. Function Recovery after Transplantation of Fetal Brain Tissue into Injured Spinal Cord in Experimental Rats. JOURNAL OF APPLIED ANIMAL RESEARCH 2009. [DOI: 10.1080/09712119.2009.9707081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Krych AJ, Rooney GE, Chen B, Schermerhorn TC, Ameenuddin S, Gross L, Moore MJ, Currier BL, Spinner RJ, Friedman JA, Yaszemski MJ, Windebank AJ. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord. Acta Biomater 2009; 5:2551-9. [PMID: 19409869 PMCID: PMC2731813 DOI: 10.1016/j.actbio.2009.03.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/20/2009] [Accepted: 03/20/2009] [Indexed: 12/17/2022]
Abstract
Regeneration of endogenous axons through a Schwann cell (SC)-seeded scaffold implant has been demonstrated in the transected rat spinal cord. The formation of a cellular lining in the scaffold channel may limit the degree of axonal regeneration. Spinal cords of adult rats were transected and implanted with the SC-loaded polylactic co-glycollic acid (PLGA) scaffold implants containing seven parallel-aligned channels, either 450mum (n=19) or 660microm in diameter (n=14). Animals were sacrificed after 1, 2 and 3months. Immunohistochemistry for neurofilament expression was performed. The cross-sectional area of fibrous tissue and regenerative core was calculated. We found that the 450microm scaffolds had significantly greater axon fibers per channel at the 1month (186+/-37) and 3month (78+/-11) endpoints than the 660microm scaffolds (90+/-19 and 40+/-6, respectively) (p=0.0164 and 0.0149, respectively). The difference in the area of fibrous rim between the 450 and 660microm channels was most pronounced at the 1month endpoint, at 28,046+/-6551 and 58,633+/-7063microm(2), respectively (p=0.0105). Our study suggests that fabricating scaffolds with smaller diameter channels promotes greater regeneration over larger diameter channels. Axonal regeneration was reduced in the larger channels due to the generation of a large fibrous rim. Optimization of this scaffold environment establishes a platform for future studies of the effects of cell types, trophic factors or pharmacological agents on the regenerative capacity of the injured spinal cord.
Collapse
Affiliation(s)
- Aaron J. Krych
- Department of Orthopedic Surgery and Department of Bioengineering, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Gemma E. Rooney
- Department of Neurology and Department of Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Bingkun Chen
- Department of Neurology and Department of Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | | | - Syed Ameenuddin
- Department of Neurology and Department of Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - LouAnn Gross
- Department of Neurology and Department of Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Michael J. Moore
- Department of Orthopedic Surgery and Department of Bioengineering, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Bradford L. Currier
- Department of Orthopedic Surgery and Department of Bioengineering, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Robert J. Spinner
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Jonathan A. Friedman
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery and Department of Bioengineering, Mayo Clinic College of Medicine, Rochester, MN, 55905
| | - Anthony J. Windebank
- Department of Neurology and Department of Molecular Neuroscience, Mayo Clinic College of Medicine, Rochester, MN, 55905
| |
Collapse
|
50
|
Xiong Y, Zeng YS, Zeng CG, Du BL, He LM, Quan DP, Zhang W, Wang JM, Wu JL, Li Y, Li J. Synaptic transmission of neural stem cells seeded in 3-dimensional PLGA scaffolds. Biomaterials 2009; 30:3711-22. [DOI: 10.1016/j.biomaterials.2009.03.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/19/2009] [Indexed: 02/08/2023]
|