1
|
Inoue T, Nomura S, Yamakawa T, Takara S, Imoto H, Maruta Y, Niwayama M, Suzuki M. Intraoperative evaluation using a multimodality probe of temperature-dependent neurovascular modulation during focal brain cooling. Clin Neurophysiol 2025; 173:31-42. [PMID: 40073587 DOI: 10.1016/j.clinph.2025.02.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVE This study aimed to assess the effects of focal brain cooling (FBC) on human brain tissue through use of multiple sensing techniques by monitoring cerebrovascular activity and brain temperature. METHODS Intraoperative brain activity monitoring using a multimodality probe capable of measuring brain temperature, electrocorticography (ECoG) and changes in cerebral hemoglobin concentration was performed in 13 patients with refractory epilepsy. Brain temperature and neurovascular activity were measured beneath and surrounding the FBC device. Data were categorized into three temperature ranges [low-temperature range (LTR, <18 °C), moderate-temperature range (MTR, 18 °C-28 °C), and high-temperature range (HTR, >28 °C)] for analysis. RESULTS Changes in oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHHb) across the temperature ranges showed a U-shape and inverted U-shape pattern, respectively. ΔO2Hb decreased and ΔHHb increased in the MTR, reflecting enhanced neuronal activity and increased oxygen consumption. Conversely, ΔO2Hb increased and ΔHHb decreased in the LTR, indicating suppressed neuronal activity and reduced oxygen consumption. These findings highlight the temperature-dependent modulation of neurovascular activity by FBC, driven by distinct non-linear patterns. CONCLUSIONS FBC selectively influenced brain electrical activity and hemoglobin concentration, highlighting its subtle effects on neurovascular dynamics. SIGNIFICANCE These findings provide critical insights into optimizing cooling strategies for neurological disorders using multimodality probes and FBC devices.
Collapse
Affiliation(s)
- Takao Inoue
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan.
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Toshitaka Yamakawa
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Sayuki Takara
- Organization of Research Initiatives, Yamaguchi University, Ube, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Masatsugu Niwayama
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
2
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
4
|
Pasam T, Dandekar MP. Insights from Rodent Models for Improving Bench-to-Bedside Translation in Traumatic Brain Injury. Methods Mol Biol 2024; 2761:599-622. [PMID: 38427264 DOI: 10.1007/978-1-0716-3662-6_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
5
|
Deshetty UM, Periyasamy P. Potential Biomarkers in Experimental Animal Models for Traumatic Brain Injury. J Clin Med 2023; 12:3923. [PMID: 37373618 DOI: 10.3390/jcm12123923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted disorder that has become a significant public health concern worldwide due to its contribution to mortality and morbidity. This condition encompasses a spectrum of injuries, including axonal damage, contusions, edema, and hemorrhage. Unfortunately, specific effective therapeutic interventions to improve patient outcomes following TBI are currently lacking. Various experimental animal models have been developed to mimic TBI and evaluate potential therapeutic agents to address this issue. These models are designed to recapitulate different biomarkers and mechanisms involved in TBI. However, due to the heterogeneous nature of clinical TBI, no single experimental animal model can effectively mimic all aspects of human TBI. Accurate emulation of clinical TBI mechanisms is also tricky due to ethical considerations. Therefore, the continued study of TBI mechanisms and biomarkers, of the duration and severity of brain injury, treatment strategies, and animal model optimization is necessary. This review focuses on the pathophysiology of TBI, available experimental TBI animal models, and the range of biomarkers and detection methods for TBI. Overall, this review highlights the need for further research to improve patient outcomes and reduce the global burden of TBI.
Collapse
Affiliation(s)
- Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug delivery for the treatment of traumatic brain injury. Expert Opin Drug Deliv 2023; 20:55-73. [PMID: 36420918 PMCID: PMC9983310 DOI: 10.1080/17425247.2023.2152001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) impact the breadth of society and remain without any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure of many Phase III clinical trials may be explained by insufficient drug targeting and retention, preventing the proper attainment of an observable dosage threshold. To address this challenge, nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary outcomes. AREAS COVERED This review briefly covers the pathophysiology of TBIs and their subtypes, the current pre-clinical and clinical management strategies, explores the common models of focal, diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the existing literature on nanoparticles developed to treat TBIs. EXPERT OPINION Nanoparticles are well suited to improve secondary outcomes as their multifunctionality and customizability enhance their potential for efficient targeted delivery, payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in both acute and chronic timescales.
Collapse
Affiliation(s)
- Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Abdou H, Edwards J, Patel N, Stonko DP, Elansary N, Lang E, Richmond MJ, Ptak T, White JM, Scalea TM, Morrison JJ. Characterizing Brain Perfusion in a Swine Model of Raised Intracranial Pressure. J Surg Res 2022; 278:64-69. [PMID: 35594616 DOI: 10.1016/j.jss.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Perfusion of the brain is critical, but this can be compromised due to focal space occupying lesions (SOL). SOLs can raise intracranial pressure (ICP), resulting in reduced cerebral blood flow (CBF). Most gyrencephalic models of brain injury focus on parenchymal injury, with few models of acutely elevated ICP. We hypothesized that we could employ a SOL technique to develop a titratable ICP model and sought to quantitate the resulting decrease in brain perfusion. METHODS Six swine were anesthetized and instrumented. A Fogarty balloon catheter was inserted intracranially. Blood CO2 partial pressure was maintained between 35 and 45 mmHg. The Fogarty balloon was infused with normal saline at 1 mL/min to ICP targets of 10, 20, 30, and 40 mmHg. CBF (mL/100 g/min) were assessed at each ICP level using computed tomography perfusion (CTP). Data are presented as the mean ± standard deviation with all pressures measured in mmHg. CBF values were compared between baseline and each ICP level using analysis of variance. RESULTS Baseline ICP was 5 ± 2 and systolic blood pressure was 106 ± 7. Balloon volumes (mL) required to achieve each incremental ICP level were 2.4 ± 0.5, 4.9 ± 1.7, 7.6 ± 1.6, and 9.9 ± 1.7. CBF decreased with each raised ICP level, with CBF being significantly less than baseline at ICP values of 30 (56.1 ± 34.7 versus 20.6 ± 11.0, P < 0.05) and 40 (56.1 ± 34.7 versus 6.5 ± 10.6, P < 0.05). CONCLUSIONS An intracranial balloon catheter can be used to increase ICP, delivering a proportionate reduction in CBF. This model can be used in the future studies to examine adjuncts that manipulate intracranial pressure and their effect on brain perfusion.
Collapse
Affiliation(s)
- Hossam Abdou
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Joseph Edwards
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Neerav Patel
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - David P Stonko
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Noha Elansary
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Eric Lang
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Michael J Richmond
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Thomas Ptak
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Joseph M White
- Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Thomas M Scalea
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland
| | - Jonathan J Morrison
- R Adams Cowley Shock Trauma Center, University of Maryland Medical System, Baltimore, Maryland.
| |
Collapse
|
8
|
Ackermans NL, Varghese M, Wicinski B, Torres J, De Gasperi R, Pryor D, Elder GA, Gama Sosa MA, Reidenberg JS, Williams TM, Hof PR. Unconventional animal models for traumatic brain injury and chronic traumatic encephalopathy. J Neurosci Res 2021; 99:2463-2477. [PMID: 34255876 PMCID: PMC8596618 DOI: 10.1002/jnr.24920] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death worldwide. It is a complex injury that influences cellular physiology, causes neuronal cell death, and affects molecular pathways in the brain. This in turn can result in sensory, motor, and behavioral alterations that deeply impact the quality of life. Repetitive mild TBI can progress into chronic traumatic encephalopathy (CTE), a neurodegenerative condition linked to severe behavioral changes. While current animal models of TBI and CTE such as rodents, are useful to explore affected pathways, clinical findings therein have rarely translated into clinical applications, possibly because of the many morphofunctional differences between the model animals and humans. It is therefore important to complement these studies with alternative animal models that may better replicate the individuality of human TBI. Comparative studies in animals with naturally evolved brain protection such as bighorn sheep, woodpeckers, and whales, may provide preventive applications in humans. The advantages of an in-depth study of these unconventional animals are threefold. First, to increase knowledge of the often-understudied species in question; second, to improve common animal models based on the study of their extreme counterparts; and finally, to tap into a source of biological inspiration for comparative studies and translational applications in humans.
Collapse
Affiliation(s)
- Nicole L Ackermans
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Torres
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita De Gasperi
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Dylan Pryor
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Miguel A Gama Sosa
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terrie M Williams
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
A cortical injury model in a non-human primate to assess execution of reach and grasp actions: implications for recovery after traumatic brain injury. J Neurosci Methods 2021; 361:109283. [PMID: 34237383 PMCID: PMC9969347 DOI: 10.1016/j.jneumeth.2021.109283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time. NEW METHOD We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury. RESULTS The CCI destroyed most of M1 hand representation reducing grey matter by 9.6 mm3, 12.9 mm3, and 15.5 mm3 and underlying corona radiata by 7.4 mm3, 6.9 mm3, and 5.6 mm3 respectively. Impaired motor function was confined to the hand contralateral to the injury. Gross hand-use was only mildly affected during the first few days of observation after injury while activity requiring skilled use of the hand was impaired over three months. COMPARISON WITH EXISTING METHOD(S) This study is unique in establishing a CCI model of TBI in an NHP resulting in persistent impairments in motor function evident in volitional use of the hand. CONCLUSIONS Establishing an NHP model of TBI is essential to extend current rodent models to the complex neural architecture of the primate brain. Moving forward this model can be used to investigate novel therapeutic interventions to improve or restore impaired motor function after trauma.
Collapse
|
10
|
Zhang H, Zahid A, Ismail H, Tang Y, Jin T, Tao J. An overview of disease models for NLRP3 inflammasome over-activation. Expert Opin Drug Discov 2020; 16:429-446. [PMID: 33131335 DOI: 10.1080/17460441.2021.1844179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Inflammatory reactions, including those mediated by the NLRP3 inflammasome, maintain the body's homeostasis by removing pathogens, repairing damaged tissues, and adapting to stressed environments. However, uncontrolled activation of the NLRP3 inflammasome tends to cause various diseases using different mechanisms. Recently, many inhibitors of the NLRP3 inflammasome have been reported and many are being developed. In order to assess their efficacy, specificity, and mechanism of action, the screening process of inhibitors requires various types of cell and animal models of NLRP3-associated diseases.Areas covered: In the following review, the authors give an overview of the cell and animal models that have been used during the research and development of various inhibitors of the NLRP3 inflammasome.Expert opinion: There are many NLRP3 inflammasome inhibitors, but most of the inhibitors have poor specificity and often influence other inflammatory pathways. The potential risk for cross-reaction is high; therefore, the development of highly specific inhibitors is essential. The selection of appropriate cell and animal models, and combined use of different models for the evaluation of these inhibitors can help to clarify the target specificity and therapeutic effects, which is beneficial for the development and application of drugs targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science. Hefei National Science Center for Physical Sciences at Microscale. University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
12
|
Hirst TC, Klasen MG, Rhodes JK, Macleod MR, Andrews PJD. A Systematic Review and Meta-Analysis of Hypothermia in Experimental Traumatic Brain Injury: Why Have Promising Animal Studies Not Been Replicated in Pragmatic Clinical Trials? J Neurotrauma 2020; 37:2057-2068. [PMID: 32394804 DOI: 10.1089/neu.2019.6923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Therapeutic hypothermia was a mainstay of severe traumatic brain injury (TBI) management for half a century. Recent trials have suggested that its effect on long-term functional outcome is neutral or negative, despite apparently promising pre-clinical data. Systematic review and meta-analysis is a useful tool to collate experimental data and investigate the basis of its conclusions. We searched three online databases to identify studies testing systemic hypothermia as monotherapy for treatment of animals subjected to a TBI. Data pertaining to TBI paradigm, animal subjects, and hypothermia management were extracted as well as those relating to risk of bias. We pooled outcome data where sufficient numbers allowed and investigated heterogeneity in neurobehavioral outcomes using multi-variate meta-regression. We identified 90 publications reporting 272 experiments testing hypothermia in animals subject to TBI. The subjects were mostly small animals, with well-established models predominating. Target temperature was comparable to clinical trial data but treatment was initiated very early. Study quality was low and there was some evidence of publication bias. Delay to treatment, comorbidity, and blinded outcome assessment appeared to predict neurobehavioral outcome on multi-variate meta-regression. Therapeutic hypothermia appears to be an efficacious treatment in experimental TBI, which differs from the clinical evidence. The pre-clinical literature showed limitations in quality and design and these both appeared to affect neurobehavioral experiment outcome. These should be acknowledged when designing and interpreting pre-clinical TBI studies in the future.
Collapse
Affiliation(s)
- Theodore C Hirst
- Centre for Clinical Brain Sciences, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Belfast, United Kingdom
| | | | - Jonathan K Rhodes
- Department of Critical Care, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm R Macleod
- Centre for Clinical Brain Sciences, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter J D Andrews
- Centre for Clinical Brain Sciences, Anesthesia and Pain Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Müller HP, Roselli F, Rasche V, Kassubek J. Diffusion Tensor Imaging-Based Studies at the Group-Level Applied to Animal Models of Neurodegenerative Diseases. Front Neurosci 2020; 14:734. [PMID: 32982659 PMCID: PMC7487414 DOI: 10.3389/fnins.2020.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
The understanding of human and non-human microstructural brain alterations in the course of neurodegenerative diseases has substantially improved by the non-invasive magnetic resonance imaging (MRI) technique of diffusion tensor imaging (DTI). Animal models (including disease or knockout models) allow for a variety of experimental manipulations, which are not applicable to humans. Thus, the DTI approach provides a promising tool for cross-species cross-sectional and longitudinal investigations of the neurobiological targets and mechanisms of neurodegeneration. This overview with a systematic review focuses on the principles of DTI analysis as used in studies at the group level in living preclinical models of neurodegeneration. The translational aspect from in-vivo animal models toward (clinical) applications in humans is covered as well as the DTI-based research of the non-human brains' microstructure, the methodological aspects in data processing and analysis, and data interpretation at different abstraction levels. The aim of integrating DTI in multiparametric or multimodal imaging protocols will allow the interrogation of DTI data in terms of directional flow of information and may identify the microstructural underpinnings of neurodegeneration-related patterns.
Collapse
Affiliation(s)
| | - Francesco Roselli
- Department of Neurology, University of Ulm, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
14
|
Chen Y, Qiu S, Wang C, Li X, Tang Y, Feng Y. Measurement of viscoelastic properties of injured mouse brain after controlled cortical impact. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00110-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
15
|
Wu L, Wu D, Yang T, Xu J, Chen J, Wang L, Xu S, Zhao W, Wu C, Ji X. Hypothermic neuroprotection against acute ischemic stroke: The 2019 update. J Cereb Blood Flow Metab 2020; 40:461-481. [PMID: 31856639 PMCID: PMC7026854 DOI: 10.1177/0271678x19894869] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
Acute ischemic stroke is a leading cause of death and disability worldwide. Therapeutic hypothermia has long been considered as one of the most robust neuroprotective strategies. Although the neuroprotective effects of hypothermia have only been confirmed in patients with global cerebral ischemia after cardiac arrest and in neonatal hypoxic ischemic encephalopathy, establishing standardized protocols and strictly controlling the key parameters may extend its application in other brain injuries, such as acute ischemic stroke. In this review, we discuss the potential neuroprotective effects of hypothermia, its drawbacks evidenced in previous studies, and its potential clinical application for acute ischemic stroke especially in the era of reperfusion. Based on the different conditions between bench and bedside settings, we demonstrate the importance of vascular recanalization for neuroprotection of hypothermia by analyzing numerous literatures regarding hypothermia in focal cerebral ischemia. Then, we make a thorough analysis of key parameters of hypothermia and introduce novel hypothermic therapies. We advocate in favor of the process of clinical translation of intra-arterial selective cooling infusion in the era of reperfusion and provide insights into the prospects of hypothermia in acute ischemic stroke.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jin Xu
- Department of Library, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Luling Wang
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Assis FR, Narasimhan B, Ziai W, Tandri H. From systemic to selective brain cooling - Methods in review. Brain Circ 2019; 5:179-186. [PMID: 31950093 PMCID: PMC6950511 DOI: 10.4103/bc.bc_23_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic hypothermia (TH) remains one of the few proven neuroprotective modalities available in clinical practice today. Although targeting lower temperatures during TH seems to benefit ischemic brain cells, systemic side effects associated with global hypothermia limit its clinical applicability. Therefore, the ability to selectively reduce the temperature of the brain while minimally impacting core temperature allows for maximizing neurological benefit over systemic complications. In that scenario, selective brain cooling (SBC) has emerged as a promising modality of TH. In this report, we reviewed the general concepts of TH, from systemic to selective brain hypothermia, and explored the different cooling strategies and respective evidence, including preclinical and clinical data. SBC has been investigated in different animal models with promising results, wherein organ-specific, rapid, and deep target brain temperature managements stand out as major advantages over systemic TH. Nevertheless, procedure-related complications and adverse events still remain a concern, limiting clinical translation. Different invasive and noninvasive methods for SBC have been clinically investigated with variable results, and although adverse effects were still reported in some studies, therapies rendered overall safe profiles. Further study is needed to define the optimal technique, timing of initiation, rate and length of cooling as well as target temperature and rewarming protocols for different indications.
Collapse
Affiliation(s)
- Fabrizio R Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bharat Narasimhan
- Department of Internal Medicine, Mount Sinai St. Lukes-Roosevelt, New York, NY, USA
| | - Wendy Ziai
- Division of Anesthesia and Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harikrishna Tandri
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Gentilal N, Salvador R, Miranda PC. Temperature control in TTFields therapy of GBM: impact on the duty cycle and tissue temperature. Phys Med Biol 2019; 64:225008. [PMID: 31671414 DOI: 10.1088/1361-6560/ab5323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In TTFields therapy, Optune® is used to deliver the electric field to the tumor via 4 transducer arrays. This device monitors the temperature of the transducers and reduces the current whenever a transducer reaches 41 °C. Our aim is to quantify Optune's duty cycle and to predict the steady-state temperature distribution in the head during GBM treatment. We used a realistic head model and the finite element method to solve Pennes equation and to simulate how Optune operates considering that current reduces to zero when the thermal limit is reached. The thermal impact was evaluated considering the maximum temperature reached by each tissue and using the CEM 43 °C metric. We observed that Optune switches the current on and off intermittently. In our model, one transducer reached the temperature limit quicker than the others and consequently it was the one that controlled current injection. This led to different duty cycles for the anterior-posterior and left-right array pairs. The thermal analysis indicated that the highest temperature in the model, 41.7 °C, was reached on the scalp under a transducer. However, TTFields may lead to significant changes only at the brain level such as BBB permeability increase, cerebral blood flow variation and changes in the concentration of some neurotransmitters. The duty cycle may be increased, e.g. by controlling the current at the transducer level. These predictions should be validated by comparison with experimental data and reconciled with the lack of evidence of thermal impact in clinical trials.
Collapse
Affiliation(s)
- Nichal Gentilal
- Institute of Biophysics and Biomedical Engineering, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. Author to whom correspondence should be addressed
| | | | | |
Collapse
|
18
|
Idris Z, Song Yee A, Kandasamy R, Abd Manaf A, Hasyizan Bin Hassan M, Nazaruddin Wan Hassan W. Direct Brain Cooling in Treating Severe Traumatic Head Injury. TRAUMATIC BRAIN INJURY - NEUROBIOLOGY, DIAGNOSIS AND TREATMENT 2019. [DOI: 10.5772/intechopen.84685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Shah EJ, Gurdziel K, Ruden DM. Mammalian Models of Traumatic Brain Injury and a Place for Drosophila in TBI Research. Front Neurosci 2019; 13:409. [PMID: 31105519 PMCID: PMC6499071 DOI: 10.3389/fnins.2019.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI), caused by a sudden blow or jolt to the brain that disrupts normal function, is an emerging health epidemic with ∼2.5 million cases occurring annually in the United States that are severe enough to cause hospitalization or death. Most common causes of TBI include contact sports, vehicle crashes and domestic violence or war injuries. Injury to the central nervous system is one of the most consistent candidates for initiating the molecular and cellular cascades that result in Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Not every TBI event is alike with effects varying from person to person. The majority of people recover from mild TBI within a short period of time, but repeated incidents can have deleterious long-lasting effects which depend on factors such as the number of TBIs sustained, time till medical attention, age, gender and genetics of the individual. Despite extensive research, many questions still remain regarding diagnosis, treatment, and prevention of long-term effects from TBI as well as recovery of brain function. In this review, we present an overview of TBI pathology, discuss mammalian models for TBI and focus on current methods using Drosophila melanogaster as a model for TBI study. The relatively small brain size (∼100,000 neurons and glia), conserved neurotransmitter signaling mechanisms and sophisticated genetics of Drosophila allows for cell biological, molecular and genetic analyses that are impractical in mammalian models of TBI.
Collapse
Affiliation(s)
- Ekta J. Shah
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
| | - Douglas M. Ruden
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
20
|
Chin SM, Wion D. Early Prophylactic Hypothermia for Patients With Severe Traumatic Injury: Premature to Close the Case. Front Neurol 2019; 10:344. [PMID: 31024437 PMCID: PMC6465559 DOI: 10.3389/fneur.2019.00344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shan Min Chin
- INSERM UMR1205, Faculté Médecine Pharmacie, Université Grenoble Alpes, La Tronche, France
| | - Didier Wion
- INSERM UMR1205, Faculté Médecine Pharmacie, Université Grenoble Alpes, La Tronche, France
| |
Collapse
|
21
|
Glushakova OY, Glushakov AV, Yang L, Hayes RL, Valadka AB. Intracranial Pressure Monitoring in Experimental Traumatic Brain Injury: Implications for Clinical Management. J Neurotrauma 2019; 37:2401-2413. [PMID: 30595079 DOI: 10.1089/neu.2018.6145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is often associated with long-term disability and chronic neurological sequelae. One common contributor to unfavorable outcomes is secondary brain injury, which is potentially treatable and preventable through appropriate management of patients in the neurosurgical intensive care unit. Intracranial pressure (ICP) is currently the predominant neurological-specific physiological parameter used to direct the care of severe TBI (sTBI) patients. However, recent clinical evidence has called into question the association of ICP monitoring with improved clinical outcome. The detailed cellular and molecular derangements associated with intracranial hypertension (IC-HTN) and their relationship to injury phenotype and neurological outcomes are not completely understood. Various animal models of TBI have been developed, but the clinical applicability of ICP monitoring in the pre-clinical setting has not been well-characterized. Linking basic mechanistic studies in translational TBI models with investigation of ICP monitoring that more faithfully replicates the clinical setting will provide clinical investigators with a more informed understanding of the pathophysiology of IC-HTN, thus facilitating development of improved therapies for sTBI patients.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Likun Yang
- Department of Neurosurgery, The 101st Hospital of Chinese People's Liberation Army, Xuxi, Jiangsu, China
| | - Ronald L Hayes
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA.,Banyan Biomarkers, Inc., Alachua, Florida, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
22
|
Sellappan P, Cote J, Kreth PA, Schepkin VD, Darkazalli A, Morris DR, Alvi FS, Levenson CW. Variability and uncertainty in the rodent controlled cortical impact model of traumatic brain injury. J Neurosci Methods 2019; 312:37-42. [PMID: 30423350 DOI: 10.1016/j.jneumeth.2018.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Controlled cortical impact (CCI) has emerged as one of the most flexible and clinically applicable approaches for the induction of traumatic brain injury (TBI) in rodents and other species. Although this approach has been shown to model cognitive and functional outcomes associated with TBI in humans, recent work has shown that CCI is limited by excessive variability in lesion size despite attempts to control velocity, impact depth, and dwell time. NEW METHOD Thus, this work used high-speed imaging to evaluate the delivery of cortical impact and permit the identification of specific parameters associated with technical variability in the CCI model. RESULTS Variability is introduced by vertical oscillations that result in multiple impacts of varying depths, lateral movements after impact, and changes in velocity, particularly at the prescribed impact depth. CONCLUSIONS Together these data can inform future work to design modifications to commonly used CCI devices that produce TBI with less variability in severity and lesion size.
Collapse
Affiliation(s)
- Prabu Sellappan
- Mechanical Engineering and Florida Center for Advanced Aero-Propulsion, FAMU-FSU College of Engineering, Tallahassee, FL, United States.
| | - Jason Cote
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.
| | - Phillip A Kreth
- Mechanical Engineering and Florida Center for Advanced Aero-Propulsion, FAMU-FSU College of Engineering, Tallahassee, FL, United States.
| | - Victor D Schepkin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, United States.
| | - Ali Darkazalli
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Deborah R Morris
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Farrukh S Alvi
- Mechanical Engineering and Florida Center for Advanced Aero-Propulsion, FAMU-FSU College of Engineering, Tallahassee, FL, United States.
| | - Cathy W Levenson
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|
23
|
Hata K, Fujiwara K, Inoue T, Abe T, Kubo T, Yamakawa T, Nomura S, Imoto H, Suzuki M, Kano M. Epileptic Seizure Suppression by Focal Brain Cooling With Recirculating Coolant Cooling System: Modeling and Simulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:162-171. [PMID: 30624219 DOI: 10.1109/tnsre.2019.2891090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A focal brain cooling system for treatment of refractory epilepsy that is implantable and wearable may permit patients with this condition to lead normal daily lives. We have developed such a system for cooling of the epileptic focus by delivery of cold saline to a cooling device that is implanted cranially. The outflow is pumped for circulation and cooled by a Peltier device. Here, we describe the design of the system and evaluate its feasibility by simulation. Mathematical models were constructed based on equations of fluid dynamics and data from a cat model. Computational fluid dynamics simulations gave the following results: 1) a cooling device with a complex channel structure gives a more uniform temperature in the brain; 2) a cooling period of <10 min is required to reach an average temperature of 25.0°Cat 2 mm below the brain surface, which is the target temperature for seizure suppression. This time is short enough for cooling of the brain before seizure onset after seizure prediction by an intracranial electroencephalogram-based algorithm; and 3) battery charging would be required once every several days for most patients. These results suggest that the focal brain cooling system may be clinically applicable.
Collapse
|
24
|
Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019; 56:5332-5345. [DOI: 10.1007/s12035-018-1454-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
25
|
Baker EW, Kinder HA, Hutcheson JM, Duberstein KJJ, Platt SR, Howerth EW, West FD. Controlled Cortical Impact Severity Results in Graded Cellular, Tissue, and Functional Responses in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:61-73. [DOI: 10.1089/neu.2017.5551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Emily W. Baker
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Holly A. Kinder
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Jessica M. Hutcheson
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Kylee Jo J. Duberstein
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Simon R. Platt
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Elizabeth W. Howerth
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia
- Department of Animal and Dairy Science, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| |
Collapse
|
26
|
Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol 2018; 310:48-57. [DOI: 10.1016/j.expneurol.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
27
|
Santamaria AJ, Benavides FD, Padgett KR, Guada LG, Nunez-Gomez Y, Solano JP, Guest JD. Dichotomous Locomotor Recoveries Are Predicted by Acute Changes in Segmental Blood Flow after Thoracic Spinal Contusion Injuries in Pigs. J Neurotrauma 2018; 36:1399-1415. [PMID: 30284945 DOI: 10.1089/neu.2018.6087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuroimaging facilitates the translation of animal pre-clinical research to human application. The large porcine spinal cord is useful for testing invasive interventions. Ideally, the safety and efficacy of a delayed intervention is tested in pigs that have recovered sufficiently after spinal cord injury (SCI) to allow either deterioration or improvement of function to be detected. We set out to create moderate severity T9 injuries in Yucatan minipigs by conducting a bridging study adapting methods previously developed in infant piglets. The injury severity was varied according to two pneumatic impactor parameters: the piston compression depth into tissue or the velocity. To stratify locomotor recovery, a 10-point scale used in prior piglet studies was redefined through longitudinal observations of spontaneous recovery. Using hindlimb body weight support to discriminate injury severity, we found that end-point recovery was strongly bimodal to either non-weight-bearing plegia with reciprocating leg movements (<5/10) or recovery of weight bearing that improved toward a ceiling effect (≥ 8/10). No intermediate recovery animals were observed at 2 months post-injury. The ability of intra-operative ultrasound and acute magnetic resonance imaging (MRI) to provide immediate predictive feedback regarding tissue and vascular changes following SCI was assessed. There was an inverse association between locomotor outcome and early gray matter hemorrhage on MRI and ultrasound. Epicenter blood flow following contusion predicted recovery or non-recovery of weight-bearing. The depth of the dorsal cerebrospinal fluid space, which varied between animals, influenced injury severity and confounded the results in this fixed-stroke paradigm.
Collapse
Affiliation(s)
- Andrea J Santamaria
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Francisco D Benavides
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Kyle R Padgett
- 2 Department of Radiation Oncology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Luis G Guada
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yohjan Nunez-Gomez
- 3 Department of Pediatrics Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - Juan P Solano
- 3 Department of Pediatrics Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,4 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Szczygielski J, Glameanu C, Müller A, Klotz M, Sippl C, Hubertus V, Schäfer KH, Mautes AE, Schwerdtfeger K, Oertel J. Changes in Posttraumatic Brain Edema in Craniectomy-Selective Brain Hypothermia Model Are Associated With Modulation of Aquaporin-4 Level. Front Neurol 2018; 9:799. [PMID: 30333785 PMCID: PMC6176780 DOI: 10.3389/fneur.2018.00799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Both hypothermia and decompressive craniectomy have been considered as a treatment for traumatic brain injury. In previous experiments we established a murine model of decompressive craniectomy and we presented attenuated edema formation due to focal brain cooling. Since edema development is regulated via function of water channel proteins, our hypothesis was that the effects of decompressive craniectomy and of hypothermia are associated with a change in aquaporin-4 (AQP4) concentration. Male CD-1 mice were assigned into following groups (n = 5): sham, decompressive craniectomy, trauma, trauma followed by decompressive craniectomy and trauma + decompressive craniectomy followed by focal hypothermia. After 24 h, magnetic resonance imaging with volumetric evaluation of edema and contusion were performed, followed by ELISA analysis of AQP4 concentration in brain homogenates. Additional histopathological analysis of AQP4 immunoreactivity has been performed at more remote time point of 28d. Correlation analysis revealed a relationship between AQP4 level and both volume of edema (r2 = 0.45, p < 0.01, **) and contusion (r2 = 0.41, p < 0.01, **) 24 h after injury. Aggregated analysis of AQP4 level (mean ± SEM) presented increased AQP4 concentration in animals subjected to trauma and decompressive craniectomy (52.1 ± 5.2 pg/mL, p = 0.01; *), but not to trauma, decompressive craniectomy and hypothermia (45.3 ± 3.6 pg/mL, p > 0.05; ns) as compared with animals subjected to decompressive craniectomy only (32.8 ± 2.4 pg/mL). However, semiquantitative histopathological analysis at remote time point revealed no significant difference in AQP4 immunoreactivity across the experimental groups. This suggests that AQP4 is involved in early stages of brain edema formation after surgical decompression. The protective effect of selective brain cooling may be related to change in AQP4 response after decompressive craniectomy. The therapeutic potential of this interaction should be further explored.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Institute of Neuropathology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Cosmin Glameanu
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Andreas Müller
- Department of Radiology, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Markus Klotz
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Christoph Sippl
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Vanessa Hubertus
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany.,Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Angelika E Mautes
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Jiang J, Dai C, Niu X, Sun H, Cheng S, Zhang Z, Zhu X, Wang Y, Zhang T, Duan F, Chen X, Zhang S. Establishment of a precise novel brain trauma model in a large animal based on injury of the cerebral motor cortex. J Neurosci Methods 2018; 307:95-105. [PMID: 29960029 DOI: 10.1016/j.jneumeth.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Animal models are essential in simulating clinical diseases and facilitating relevant studies. NEW METHOD We established a precise canine model of traumatic brain injury (TBI) based on cerebral motor cortex injury which was confirmed by neuroimaging, electrophysiology, and a series of motor function assessment methods. Twelve beagles were divided into control, sham, and model groups. The cerebral motor cortex was identified by diffusion tensor imaging (DTI), a simple marker method, and intraoperative electrophysiological measurement. Bony windows were designed by magnetic resonance imaging (MRI) scan and DTI. During the operation, canines in the control group were under general anesthesia. The canines were operated via bony window craniotomy and dura mater opening in the sham group. After opening of the bony window and dura mater, the motor cortex was impacted by a modified electronic cortical contusion impactor (eCCI) in the model group. RESULTS Postoperative measurements revealed damage to the cerebral motor cortex and functional defects. Comparisons between preoperative and postoperative results demonstrated that the established model was successful. COMPARISON WITH EXISTING METHOD(S) Compared with conventional models, this is the first brain trauma model in large animal that was constructed based on injury to the cerebral motor cortex under the guidance of DTI, a simple marker method, and electrophysiology. CONCLUSION The method used to establish this model can be standardized to enhance reproducibility and provide a stable and precise large animal model of TBI for clinical and basic research.
Collapse
Affiliation(s)
- Jipeng Jiang
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| | - Chen Dai
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Xuegang Niu
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Hongtao Sun
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Shixiang Cheng
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Zhiwen Zhang
- Department of Automation, College of Computer and Control Engineering, Nankai University, Tongyan Road No.38, Tianjin 300350, China
| | - Xu Zhu
- Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China
| | - Yuting Wang
- Tianjin Medical University, Qixiangtai Road No.22, Tianjin 300070, China
| | - Tongshuo Zhang
- Department of Clinical Laboratory of Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China
| | - Feng Duan
- Department of Automation, College of Computer and Control Engineering, Nankai University, Tongyan Road No.38, Tianjin 300350, China
| | - Xuyi Chen
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease, Key laboratory of neurotrauma repair of Tianjin, Affiliated Hospital of Logistics University of PAP, Chenglin Road No.220, Tianjin 300162, China.
| |
Collapse
|
30
|
Abstract
Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. MATERIALS AND METHODS Mixed published articles and books associated with large animal models of TBI were researched and summarized. RESULTS We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. CONCLUSIONS Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.
Collapse
Affiliation(s)
- Jun-Xi Dai
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yan-Bin Ma
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Nan-Yang Le
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jun Cao
- a Department of Neurosurgery, Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yang Wang
- b Department of Emergency , Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
31
|
Osier N, Dixon CE. Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research. Brain Sci 2017; 7:E88. [PMID: 28726717 PMCID: PMC5532601 DOI: 10.3390/brainsci7070088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is increasingly recognized as a significant public health problem which warrants additional research. Part of the effort to understand mTBI and concussion includes modeling in animals. Controlled cortical impact (CCI) is a commonly employed and well-characterized model of experimental TBI that has been utilized for three decades. Today, several commercially available pneumatic- and electromagnetic-CCI devices exist as do a variety of standard and custom injury induction tips. One of CCI's strengths is that it can be scaled to a number of common laboratory animals. Similarly, the CCI model can be used to produce graded TBI ranging from mild to severe. At the mild end of the injury spectrum, CCI has been applied in many ways, including to study open and closed head mTBI, repeated injuries, and the long-term deficits associated with mTBI and concussion. The purpose of this mini-review is to introduce the CCI model, discuss ways the model can be applied to study mTBI and concussion, and compare CCI to alternative pre-clinical TBI models.
Collapse
Affiliation(s)
- Nicole Osier
- School of Nursing, Holistic Adult Health Division, University of Texas at Austin, Austin, TX 78701, USA.
- Dell Medical School, Department of Neurology, University of Texas at Austin, Austin, TX 78701, USA.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
32
|
Vink R. Large animal models of traumatic brain injury. J Neurosci Res 2017; 96:527-535. [PMID: 28500771 DOI: 10.1002/jnr.24079] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
Animal models are essential to gain a deeper understanding of the pathophysiology associated with traumatic brain injury (TBI). Rodent models of TBI have proven highly valuable with respect to the information they have provided over the years, particularly when it comes to the molecular understanding of injury mechanisms. However, there has been a failure to translate the successes in therapeutic treatment of TBI in rodents, which many believe may be related to their different brain anatomy compared with humans. Specifically, the rodent lissencephalic brain within its bony skull responds differently to injury than a human gyrencephalic brain, particularly from a biomechanical and physiological perspective. There is now far greater interest in developing more clinically relevant, large animal models of TBI so as to enhance the possibility of successful clinical translation. The current mini-review highlights the differences between lissencephalic and gyrencephalic brains, emphasizing how these differences might impact studies of TBI. Thereafter follows a summary of the different large animal models, with a critical analysis of their strengths and weaknesses.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
33
|
Inoue T, Fujii M, Kida H, Yamakawa T, Maruta Y, Tokiwa T, He Y, Nomura S, Owada Y, Yamakawa T, Suzuki M. Epidural focal brain cooling abolishes neocortical seizures in cats and non-human primates. Neurosci Res 2017; 122:35-44. [PMID: 28450153 DOI: 10.1016/j.neures.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 02/07/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022]
Abstract
Focal brain cooling (FBC) is under investigation in preclinical trials of intractable epilepsy (IE), including status epilepticus (SE). This method has been studied in rodents as a possible treatment for epileptic disorders, but more evidence from large animal studies is required. To provide evidence that FBC is a safe and effective therapy for IE, we investigated if FBC using a titanium cooling plate can reduce or terminate focal neocortical seizures without having a significant impact on brain tissue. Two cats and two macaque monkeys were chronically implanted with an epidural FBC device over the somatosensory and motor cortex. Penicillin G was delivered via the intracranial cannula for induction of local seizures. Repetitive FBC was performed using a cooling device implanted for a medium-term period (FBC for 30min at least twice every week; 3 months total) in three of the four animals. The animals exhibited seizures with repetitive epileptiform discharges (EDs) after administration of penicillin G, and these discharges decreased at less than 20°C cooling with no adverse histological effects. The results of this study suggest that epidural FBC is a safe and effective potential treatment for IE and SE.
Collapse
Affiliation(s)
- Takao Inoue
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan.
| | - Masami Fujii
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Toshitaka Yamakawa
- Department of Electrical and Electronics Engineering, Shizuoka University, Hamamatsu, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Yuichi Maruta
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Tatsuji Tokiwa
- Department of Brain Science and Engineering, Kyushu Institute of Technology, Kyushu, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Yeting He
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Takeshi Yamakawa
- Department of Brain Science and Engineering, Kyushu Institute of Technology, Kyushu, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan; Consortium of ADvanced Epilepsy Treatment (CADET), Japan
| |
Collapse
|
34
|
Overview of Traumatic Brain Injury: An Immunological Context. Brain Sci 2017; 7:brainsci7010011. [PMID: 28124982 PMCID: PMC5297300 DOI: 10.3390/brainsci7010011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) afflicts people of all ages and genders, and the severity of injury ranges from concussion/mild TBI to severe TBI. Across all spectrums, TBI has wide-ranging, and variable symptomology and outcomes. Treatment options are lacking for the early neuropathology associated with TBIs and for the chronic neuropathological and neurobehavioral deficits. Inflammation and neuroinflammation appear to be major mediators of TBI outcomes. These systems are being intensively studies using animal models and human translational studies, in the hopes of understanding the mechanisms of TBI, and developing therapeutic strategies to improve the outcomes of the millions of people impacted by TBIs each year. This manuscript provides an overview of the epidemiology and outcomes of TBI, and presents data obtained from animal and human studies focusing on an inflammatory and immunological context. Such a context is timely, as recent studies blur the traditional understanding of an “immune-privileged” central nervous system. In presenting the evidence for specific, adaptive immune response after TBI, it is hoped that future studies will be interpreted using a broader perspective that includes the contributions of the peripheral immune system, to central nervous system disorders, notably TBI and post-traumatic syndromes.
Collapse
|
35
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
36
|
Osier ND, Dixon CE. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front Neurol 2016; 7:134. [PMID: 27582726 PMCID: PMC4987613 DOI: 10.3389/fneur.2016.00134] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.
Collapse
Affiliation(s)
- Nicole D. Osier
- Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Abstract
Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties, and discusses their potential application for translational research.
Collapse
|
38
|
Osier N, Dixon CE. The Controlled Cortical Impact Model of Experimental Brain Trauma: Overview, Research Applications, and Protocol. Methods Mol Biol 2016; 1462:177-92. [PMID: 27604719 PMCID: PMC5271598 DOI: 10.1007/978-1-4939-3816-2_11] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlled cortical impact (CCI) is a commonly used and highly regarded model of brain trauma that uses a pneumatically or electromagnetically controlled piston to induce reproducible and well-controlled injury. The CCI model was originally used in ferrets and it has since been scaled for use in many other species. This chapter will describe the historical development of the CCI model, compare and contrast the pneumatic and electromagnetic models, and summarize key short- and long-term consequences of TBI that have been gleaned using this model. In accordance with the recent efforts to promote high-quality evidence through the reporting of common data elements (CDEs), relevant study details-that should be reported in CCI studies-will be noted.
Collapse
Affiliation(s)
- Nicole Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, 201 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA, 15213, USA
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, 201 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
39
|
Abstract
In a rat model of status epilepticus (SE) induced by lithium and pilocarpine and refractory to midazolam, deep hypothermia (20 °C for 30 min) reduced EEG power over 50-fold, stopped SE within 12 min, and reduced EEG spikes by 87%. Hypothermia deserves further investigation as a treatment of last resort for refractory SE. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Jerome Niquet
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Roger Baldwin
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Michael Gezalian
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Claude G. Wasterlain
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA,Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
40
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
41
|
Petraglia AL, Dashnaw ML, Turner RC, Bailes JE. Models of Mild Traumatic Brain Injury. Neurosurgery 2014; 75 Suppl 4:S34-49. [DOI: 10.1227/neu.0000000000000472] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
42
|
Wang CC, Chen YS, Lin BS, Chio CC, Hu CY, Kuo JR. The neuronal protective effects of local brain cooling at the craniectomy site after lateral fluid percussion injury in a rat model. J Surg Res 2013; 185:753-62. [DOI: 10.1016/j.jss.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
43
|
He Y, Fujii M, Inoue T, Nomura S, Maruta Y, Oka F, Shirao S, Owada Y, Kida H, Kunitsugu I, Yamakawa T, Tokiwa T, Yamakawa T, Suzuki M. Neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: Analysis from a neurophysiological perspective. Brain Res 2013; 1497:53-60. [DOI: 10.1016/j.brainres.2012.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022]
|
44
|
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity both in civilian life and on the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs that were identified as being effective in animal TBI models have all failed in Phase II or Phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, E&R Building, Room 3096, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.
| | | | | |
Collapse
|
45
|
Intraventricular cooling during CSF infusion studies. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012. [PMID: 22327699 DOI: 10.1007/978-3-7091-0956-4_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
We implemented ventricular infusion studies on 33 patients suspected of idiopathic normal pressure hydrocephalus (iNPH), benign intracranial hypertension (BIH) or occlusive hydrocephalus (HOC) in order to confirm shunt indications. The initial scope was to study O(2) supply during infusion tests to exclude further violation of already vulnerable brains during ICP elevation. Intraventricular infusion was performed via ventricle catheters with the ICP tip sensor, while brain tissue oxygenation was measured with intraparenchymal Raumedic PTO probes. In 15 out of 23 (65%; 8 NPH, 2BIH, 5 HOC), pO(2) increased constantly (average 140%), while brain temperature decreased (range: 0.2-4.5°C) during the infusion studies. In another six patients, O(2) values remained largely stable during the infusion studies (4NPH, 1BIH, 1HOC). Cerebral deoxygenation during infusion tests occurred only in two patients (1NPH, 1HOC).Overall cerebral oxygenation and temperature inversely correlated well with some temporary delay regarding oxygenation state as a consequence of cerebral temperature. Probably, this effect is a consequence of reduced cerebral metabolism caused by local cooling. We hypothesise that such cooling is mediated via the large basal arteries and suggest that such a pathophysiology, ICP-controlled local cooling, might offer a new option for brain protection (e.g. in an ICP crisis).
Collapse
|
46
|
Straus D, Prasad V, Munoz L. Selective therapeutic hypothermia: A review of invasive and noninvasive techniques. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:981-7. [DOI: 10.1590/s0004-282x2011000700025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 08/03/2011] [Indexed: 12/18/2022]
Abstract
OBJECTIVE: Therapeutic hypothermia is a promising treatment to prevent secondary neurologic injury. Clinical utility is limited by systemic complications of global hypothermia. Selective brain cooling remains a largely uninvestigated application. We review techniques of inducing selective brain cooling. METHOD: Literature review. RESULTS: Strategies of inducing selective brain cooling were divided between non-invasive and invasive techniques. Non-invasive techniques were surface cooling and cooling via the upper airway. Invasive cooling methods include transvascular and compartmental (epidural, subdural, subarachnoid and intraventricular) cooling methods to remove heat from the brain. CONCLUSION: Selective brain cooling may offer the best strategy for achieving hypothermic neuroprotection. Non-invasive strategies have proven disappointing in human trials. There is a paucity of human experiments using invasive methods of selective brain cooling. Further application of invasive cooling strategies is needed.
Collapse
|
47
|
Silasi G, Colbourne F. Unilateral brain hypothermia as a method to examine efficacy and mechanisms of neuroprotection against global ischemia. Ther Hypothermia Temp Manag 2011; 1:87-94. [PMID: 24716998 DOI: 10.1089/ther.2011.0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypothermia, especially applied during ischemia, is the gold-standard neuroprotectant. When delayed, cooling must often be maintained for a day or more to achieve robust, permanent protection. Most animal and clinical studies use whole-body cooling-an arduous technique that can cause systemic complications. Brain-selective cooling may avoid such problems. Thus, in this rat study, we used a method that cools one hemisphere without affecting the contralateral side or the body. Localized brain hypothermia was achieved by flushing cold water through a metal tube attached to the rats' skull. First, in anesthetized rats we measured temperature in the cooled and contralateral hemisphere to demonstrate selective unilateral cooling. Subsequent telemetry recordings in awake rats confirmed that brain cooling did not cause systemic hypothermia during prolonged treatment. Additionally, we subjected rats to transient global ischemia and after recovering from anesthesia they remained at normothermia or had their right hemisphere cooled for 2 days (∼32°C-33°C). Hypothermia significantly lessened CA1 injury and microglia activation on the right side at 1 and 4 week survival times. Near-complete injury and a strong microglia response occurred in the left (normothermic) hippocampus as occurred in both hippocampi of the untreated group. Thus, this focal cooling method is suitable for evaluating the efficacy and mechanisms of hypothermic neuroprotection in global ischemia models. This method also has advantages over many current systemic cooling protocols in rodents, namely: (1) lower cost, (2) simplicity, (3) safety and suitability for long-term cooling, and (4) an internal control-the normothermic hemisphere.
Collapse
Affiliation(s)
- Gergely Silasi
- 1 Centre for Neuroscience, University of Alberta , Edmonton, AB, Canada
| | | |
Collapse
|