1
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Post-Concussion Brain Changes Relative to Pre-Injury White Matter and Cerebral Blood Flow: A Prospective Observational Study. Neurology 2025; 104:e213374. [PMID: 40073308 DOI: 10.1212/wnl.0000000000213374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Medical clearance for return to play (RTP) after sports-related concussion is based on clinical assessment. It is unknown whether brain physiology has entirely returned to preinjury baseline at the time of clearance. In this longitudinal study, we assessed whether concussed individuals show functional and structural MRI brain changes relative to preinjury levels that persist beyond medical clearance. Secondary objectives were to test whether postconcussion changes exceed uninjured brain variability and to correlate MRI findings with clinical recovery time. METHODS For this prospective observational study, healthy athletes without a history of psychiatric, neurologic, or sensory-motor conditions were recruited from a single university sport medicine clinic. Clinical and MRI data were collected at preseason baseline, and those who were later concussed were reassessed at 1-7 days after injury, RTP, 1-3 months after RTP, and 1 year after RTP. A demographically matched control cohort of uninjured athletes was also reassessed at their subsequent preseason baseline. Primary outcomes were postconcussion changes in MRI measures of cerebral blood flow (CBF), white matter mean diffusivity (MD), and fractional anisotropy (FA), evaluated using mixed models. Secondary outcomes were group differences in MRI change scores and correlations of change scores with days to RTP. RESULTS Of the 187 athletes enrolled in the study, 25 had concussion with follow-up imaging (20.3 ± 1.5 years, 56% male, 44% female) and were compared with 27 controls (19.7 ± 1.8 years, 44% male, 56% female). Concussed athletes showed statistically significant changes from baseline, including decreased frontoinsular CBF (mean and 95% CI -8.97 [-12.80, -5.01] mL/100 g/minute, z = -4.53), along with increased MD (1.94 × 10-5 [1.26, 2.69] × 10-5, z = 5.48) and reduced FA (-7.30 × 10-3 [-9.80, -5.05] × 10-3, z = -6.07) in the corona radiata and internal capsule. Effects persisted beyond RTP, although only CBF changes exceeded longitudinal variability in controls. For participants with longer recovery periods, significantly greater changes in medial temporal CBF were also seen (ρ = 0.64 [0.44, 0.81], z = 6.80). DISCUSSION This study provides direct evidence of persistent postconcussion changes in CBF and white matter at RTP and up to 1 year later. These results support incomplete recovery of brain physiology at medical clearance, with secondary analyses emphasizing the sensitivity of CBF to clinical recovery.
Collapse
Affiliation(s)
- Nathan W Churchill
- Brain Health and Wellness Research Program, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Department of Physics, Toronto Metropolitan University, Ontario, Canada
| | - Michael G Hutchison
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Ontario, Canada
| | - Simon J Graham
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Tom A Schweizer
- Brain Health and Wellness Research Program, St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Ontario, Canada
- Faculty of Medicine (Neurosurgery), University of Toronto, Ontario, Canada
| |
Collapse
|
2
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2025; 42:640-667. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
3
|
Tayebi M, Kwon E, McGeown J, Potter L, Taylor D, Condron P, Qiao M, McHugh P, Maller J, Nielsen P, Wang A, Fernandez J, Scadeng M, Shim V, Holdsworth S. Characterizing the Effect of Repetitive Head Impact Exposure and mTBI on Adolescent Collision Sports Players' Brain with Diffusion Magnetic Resonance Imaging. J Neurotrauma 2025; 42:349-366. [PMID: 39714998 DOI: 10.1089/neu.2024.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Athletes in collision sports frequently sustain repetitive head impacts (RHI), which, while not individually severe enough for a clinical mild traumatic brain injury (mTBI) diagnosis, can compromise neuronal organization by transferring mechanical energy to the brain. Although numerous studies target athletes with mTBI, there is a lack of longitudinal research on young collision sport participants, highlighting an unaddressed concern regarding cumulative RHI effects on brain microstructures. Therefore, this study aimed to investigate the microstructural changes in the brains' of high school rugby players due to repeated head impacts and to establish a correlation between clinical symptoms, cumulative effects of RHI exposure, and changes in the brain's microstructure. We conducted a longitudinal magnetic resonance imaging (MRI) study on 36 male high school rugby players across a season using 3D T1-weighted and multi-shell diffusion MRI sequences, comparing them with 20 matched controls. Players with concussions were separately tracked up to 6 weeks post-injury with three-times scans within this period. The Sport Concussion Assessment Tool (SCAT5) symptom scale assessed mTBI symptoms, and mouthguard-embedded kinematic sensors recorded head impacts. No significant volumetric changes in subcortical structures were found post-rugby season. However, there were substantial differences in mean diffusivity (MD) and axial diffusivity (AD) between the rugby players and controls across widespread brain regions. Diffusion metrics, especially AD, MD, and radial diffusivity of certain brain tracts, displayed strong correlations with SCAT5 symptom severity. Repeated head impacts during a rugby season may adversely affect the structural organization of the brain's white matter. The observed diffusion changes, closely tied to SCAT5 symptom burden, stress the profound effects of seasonal head impacts and highlight individual variability in response to repetitive head impact exposure. To better manage sports-related mTBI and guide return-to-play decisions, comprehensive studies on brain injury mechanisms and recovery post-mTBI/RHI exposure are required.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Eryn Kwon
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Josh McGeown
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Leigh Potter
- Mātai Medical Research Institute, Gisborne, New Zealand
| | | | - Paul Condron
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Miao Qiao
- Department of Computer Science, The University of Auckland, Auckland, New Zealand
| | | | | | - Poul Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Miriam Scadeng
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, The University of Auckland, Gisborne, New Zealand
- Mātai Medical Research Institute, Gisborne, New Zealand
| | - Samantha Holdsworth
- Mātai Medical Research Institute, Gisborne, New Zealand
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Dybing KM, McAllister TW, Wu YC, McDonald BC, Broglio SP, Mihalik JP, Guskiewicz KM, Goldman JT, Jackson JC, Saykin AJ, Risacher SL, Nudelman KNH. Association of Alzheimer's Disease Polygenic Risk Score with Concussion Severity and Recovery Metrics. Sports Med 2025:10.1007/s40279-024-02150-w. [PMID: 39821585 DOI: 10.1007/s40279-024-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed. OBJECTIVE We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset. METHODS We assessed six concussion outcomes in 931 participants, including two recovery measures (number of days to asymptomatic and to return to play (RTP)) and four severity measures (scores on SAC and BESS, SCAT symptom severity and total number of symptoms). We calculated the PRS using a published score and performed multiple linear regression to assess the relationship of the PRS with outcomes. We also used ANOVAs, t-tests, and chi-square tests to examine outcomes by APOE genotype. RESULTS Higher PRS was associated with longer injury to RTP time in the normal RTP (< 24 days) subgroup (p = 0.024). A one standard deviation increase in the PRS resulted in a 9.89 hour increase to RTP time. This result was no longer significant after inclusion of covariates. There were no other consistently significant effects. CONCLUSIONS Our findings suggest high AD genetic risk is not associated with more severe concussions or poor recovery in young adults. Future studies should attempt to replicate these findings in larger samples with longer follow-up using PRS calculated from diverse populations.
Collapse
Affiliation(s)
- Kaitlyn M Dybing
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Thomas W McAllister
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua T Goldman
- Sports Medicine, University of California Los Angeles, Los Angeles, Los Angeles, CA, USA
| | - Jonathan C Jackson
- United States Air Force Academy, 2355 Faculty Drive, Suite 1N207, USAFA, CO, USA
- Utah Valley Orthopedics and Sports Medicine, Provo, UT, USA
- Utah Valley Orthopedics and Sports Medicine, Saratoga Springs, UT, USA
- Department of Family Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kelly N H Nudelman
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Brieck KA, Brieck ZJ, Ashby JA, Phelps OC, Cernak I. A Narrative Review of the Effects of Internal Jugular Vein Compression on Brain Structure and Function During Periods of Head Impact. Cureus 2025; 17:e77625. [PMID: 39834663 PMCID: PMC11743508 DOI: 10.7759/cureus.77625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Subconcussive impacts are very common in the sports world and can have many negative impacts on human function, including increased risk for cognitive decline and behavioral impairments such as chronic traumatic encephalopathy (CTE). The purpose of this article is to analyze the available literature on the effects of jugular vein compression applied by a cervical collar on cerebral structure and function in the setting of chronic impact exposure. This narrative review analyzed 17 articles on brain structure and function, published between 1992 and 2022. Our review of the 17 studies shows an overall neuroprotective effect of the external jugular vein compression applied by the cervical collar during insult to the head as compared to groups who did not wear a collar. These findings suggest a potential role of the cervical collar, in addition to helmets, in reducing the incidence of concussion-induced microtraumas and cascading secondary injury mechanisms. Though positive results are consistent throughout the studies, future studies with increased sample sizes are necessary to create precise estimates of the effects of the cervical collar. In addition, the analyzed studies mainly looked at the effects of the cervical collar on football players, soccer players, and Special Weapons and Tactics (SWAT) team members; thus, additional rigorous studies are needed to assess the impact of the cervical collar on other high-risk populations such as military and law-enforcement personnel, among others.
Collapse
Affiliation(s)
- Kathryn A Brieck
- Neurology, Augusta University Medical College of Georgia, Augusta, USA
| | | | - John A Ashby
- Neurology, Mercer University School of Medicine, Macon, USA
| | - Owen C Phelps
- Neurology, Mercer University School of Medicine, Macon, USA
| | - Ibolja Cernak
- Physiology, Thomas F. Frist, Jr. College of Medicine, Nashville, USA
| |
Collapse
|
6
|
Cheng C, Lu CF, Hsieh BY, Huang SH, Kao YCJ. Anisotropy component of DTI reveals long-term neuroinflammation following repetitive mild traumatic brain injury in rats. Eur Radiol Exp 2024; 8:82. [PMID: 39046630 PMCID: PMC11269550 DOI: 10.1186/s41747-024-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND This study aimed to investigate the long-term effects of repetitive mild traumatic brain injury (rmTBI) with varying inter-injury intervals by measuring diffusion tensor metrics, including mean diffusivity (MD), fractional anisotropy (FA), and diffusion magnitude (L) and pure anisotropy (q). METHODS Eighteen rats were randomly divided into three groups: short-interval rmTBI (n = 6), long-interval rmTBI (n = 6), and sham controls (n = 6). MD, FA, L, and q values were analyzed from longitudinal diffusion tensor imaging at days 50 and 90 after rmTBI. Immunohistochemical staining against neurons, astrocytes, microglia, and myelin was performed. Analysis of variance, Pearson correlation coefficient, and simple linear regression model were used. RESULTS At day 50 post-rmTBI, lower cortical FA and q values were shown in the short-interval group (p ≤ 0.038). In contrast, higher FA and q values were shown for the long-interval group (p ≤ 0.039) in the corpus callosum. In the ipsilesional external capsule and internal capsule, no significant changes were found in FA, while lower L and q values were shown in the short-interval group (p ≤ 0.028) at day 90. The q values in the external capsule and internal capsule were negatively correlated with the number of microglial cells and the total number of astroglial cells (p ≤ 0.035). CONCLUSION Tensor scalar measurements, such as L and q values, are sensitive to exacerbated chronic injury induced by rmTBI with shorter inter-injury intervals and reflect long-term astrogliosis induced by the cumulative injury. RELEVANCE STATEMENT Tensor scalar measurements, including L and q values, are potential DTI metrics for detecting long-term and subtle injury following rmTBI; in particular, q values may be used for quantifying remote white matter (WM) changes following rmTBI. KEY POINTS The alteration of L and q values was demonstrated after chronic repetitive mild traumatic brain injury. Changing q values were observed in the impact site and remote WM. The lower q values in the remote WM were associated with astrogliosis.
Collapse
Affiliation(s)
- Ching Cheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Hui Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Dybing KM, McAllister TW, Wu YC, McDonald BC, Broglio SP, Mihalik JP, Guskiewicz KM, Goldman JT, Jackson JC, Risacher SL, Saykin AJ, Nudelman KNH. Association of Alzheimer's disease polygenic risk score with concussion severity and recovery metrics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.10.24309042. [PMID: 39040205 PMCID: PMC11261937 DOI: 10.1101/2024.07.10.24309042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed. We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset. We assessed six outcomes in 931 total participants. The outcomes were two concussion recovery measures (number of days to asymptomatic status, number of days to return to play (RTP)) and four concussion severity measures (scores on SAC and BESS, SCAT symptom severity, and total number of symptoms). We calculated PRS using a published score [1] and performed multiple linear regression (MLR) to assess the relationship of PRS with the outcomes. We also used t-tests and chi-square tests to examine outcomes by APOE genotype, and MLR to analyze outcomes in European and African genetic ancestry subgroups. Higher PRS was associated with longer injury to RTP in the normal RTP (<24 days) subgroup ( p = 0.024), and one standard deviation increase in PRS resulted in a 9.89 hour increase to the RTP interval. There were no other consistently significant effects, suggesting that high AD genetic risk is not strongly associated with more severe concussions or poor recovery in young adults. Future studies should attempt to replicate these findings in larger samples with longer follow-up using PRS calculated from diverse populations.
Collapse
|
8
|
Lunkova E, McCabe S, Chen JK, Saluja RS, Ptito A. Exploring oculomotor functions in a pilot study with healthy controls: Insights from eye-tracking and fMRI. PLoS One 2024; 19:e0303596. [PMID: 38905269 PMCID: PMC11192399 DOI: 10.1371/journal.pone.0303596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024] Open
Abstract
Eye-tracking techniques have gained widespread application in various fields including research on the visual system, neurosciences, psychology, and human-computer interaction, with emerging clinical implications. In this preliminary phase of our study, we introduce a pilot test of innovative virtual reality technology designed for tracking head and eye movements among healthy individuals. This tool was developed to assess the presence of mild traumatic brain injury (mTBI), given the frequent association of oculomotor function deficits with such injuries. Alongside eye-tracking, we also integrated fMRI due to the complementary nature of these techniques, offering insights into both neural activation patterns and behavioural responses, thereby providing a comprehensive understanding of oculomotor function. We used fMRI with tasks evaluating oculomotor functions: Smooth Pursuit (SP), Saccades, Anti-Saccades, and Optokinetic Nystagmus (OKN). Prior to the scanning, the testing with a system of VR goggles with integrated eye and head tracking was used where subjects performed the same tasks as those used in fMRI. 31 healthy adult controls (HCs) were tested with the purpose of identifying brain regions associated with these tasks and collecting preliminary norms for later comparison with concussed subjects. HCs' fMRI results showed following peak activation regions: SP-cuneus, superior parietal lobule, paracentral lobule, inferior parietal lobule (IPL), cerebellartonsil (CT); Saccades-middle frontal gyrus (MFG), postcentral gyrus, medial frontal gyrus; Anti-saccades-precuneus, IPL, MFG; OKN-middle temporal gyrus, ACC, postcentral gyrus, MFG, CT. These results demonstrated brain regions associated with the performance on oculomotor tasks in healthy controls and most of the highlighted areas are corresponding with those affected in concussion. This suggests that the involvement of brain areas susceptible to mTBI in implementing oculomotor evaluation, taken together with commonly reported oculomotor difficulties post-concussion, may lead to finding objective biomarkers using eye-tracking tasks.
Collapse
Affiliation(s)
- Ekaterina Lunkova
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Sarah McCabe
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jen-Kai Chen
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rajeet Singh Saluja
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Alain Ptito
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Psychology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Goubran M, Mills BD, Georgiadis M, Karimpoor M, Mouchawar N, Sami S, Dennis EL, Akers C, Mitchell L, Boldt B, Douglas D, DiGiacomo PS, Rosenberg J, Grant G, Wintermark M, Camarillo DB, Zeineh M. Microstructural Alterations in Tract Development in College Football and Volleyball Players: A Longitudinal Diffusion MRI Study. Neurology 2023; 101:e953-e965. [PMID: 37479529 PMCID: PMC10501097 DOI: 10.1212/wnl.0000000000207543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/05/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Repeated impacts in high-contact sports such as American football can affect the brain's microstructure, which can be studied using diffusion MRI. Most imaging studies are cross-sectional, do not include low-contact players as controls, or lack advanced tract-specific microstructural metrics. We aimed to investigate longitudinal changes in high-contact collegiate athletes compared with low-contact controls using advanced diffusion MRI and automated fiber quantification. METHODS We examined brain microstructure in high-contact (football) and low-contact (volleyball) collegiate athletes with up to 4 years of follow-up. Inclusion criteria included university and team enrollment. Exclusion criteria included history of neurosurgery, severe brain injury, and major neurologic or substance abuse disorder. We investigated diffusion metrics along the length of tracts using nested linear mixed-effects models to ascertain the acute and chronic effects of subconcussive and concussive impacts, and associations between diffusion changes with clinical, behavioral, and sports-related measures. RESULTS Forty-nine football and 24 volleyball players (271 total scans) were included. Football players had significantly divergent trajectories in multiple microstructural metrics and tracts. Longitudinal increases in fractional anisotropy and axonal water fraction, and decreases in radial/mean diffusivity and orientation dispersion index, were present in volleyball but absent in football players (all findings |T-statistic|> 3.5, p value <0.0001). This pattern was present in the callosum forceps minor, superior longitudinal fasciculus, thalamic radiation, and cingulum hippocampus. Longitudinal differences were more prominent and observed in more tracts in concussed football players (n = 24, |T|> 3.6, p < 0.0001). An analysis of immediate postconcussion scans (n = 12) demonstrated a transient localized increase in axial diffusivity and mean/radial kurtosis in the uncinate and cingulum hippocampus (|T| > 3.7, p < 0.0001). Finally, within football players, those with high position-based impact risk demonstrated increased intracellular volume fraction longitudinally (T = 3.6, p < 0.0001). DISCUSSION The observed longitudinal changes seen in football, and especially concussed athletes, could reveal diminished myelination, altered axonal calibers, or depressed pruning processes leading to a static, nondecreasing axonal dispersion. This prospective longitudinal study demonstrates divergent tract-specific trajectories of brain microstructure, possibly reflecting a concussive and repeated subconcussive impact-related alteration of white matter development in football athletes.
Collapse
Affiliation(s)
- Maged Goubran
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Brian David Mills
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Marios Georgiadis
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Mahta Karimpoor
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Nicole Mouchawar
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Sohrab Sami
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Emily Larson Dennis
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Carolyn Akers
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Lex Mitchell
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Brian Boldt
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - David Douglas
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Phillip Scott DiGiacomo
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Jarrett Rosenberg
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Gerald Grant
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Max Wintermark
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - David Benjamin Camarillo
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA
| | - Michael Zeineh
- From the Departments of Radiology (Maged Goubran, B.D.M., Marios Georgiadis, M.K., N.M., C.A., L.M., D.D., P.S.D., J.R., M.W., M.Z.), Neurosurgery (G.G.), and Bioengineering (D.B.C.), Stanford University, CA; Department of Medical Biophysics (Maged Goubran) and Physical Sciences Platform & Hurvitz Brain Sciences Research Program (Maged Goubran), Sunnybrook Research Institute, University of Toronto, ON, Canada; Stanford Center for Clinical Research (S.S.), CA; Department of Neurology (E.L.D.), University of Utah School of Medicine, Salt Lake City; Department of Radiology (B.B.), Uniformed Services University of the Health Sciences, Bethesda, MD; and Department of Radiology (B.B.), Madigan Army Medical Center, Tacoma, WA.
| |
Collapse
|
10
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
11
|
Lima Santos JP, Jia-Richards M, Kontos AP, Collins MW, Versace A. Emotional Regulation and Adolescent Concussion: Overview and Role of Neuroimaging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6274. [PMID: 37444121 PMCID: PMC10341732 DOI: 10.3390/ijerph20136274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Emotional dysregulation symptoms following a concussion are associated with an increased risk for emotional dysregulation disorders (e.g., depression and anxiety), especially in adolescents. However, predicting the emergence or worsening of emotional dysregulation symptoms after concussion and the extent to which this predates the onset of subsequent psychiatric morbidity after injury remains challenging. Although advanced neuroimaging techniques, such as functional magnetic resonance imaging and diffusion magnetic resonance imaging, have been used to detect and monitor concussion-related brain abnormalities in research settings, their clinical utility remains limited. In this narrative review, we have performed a comprehensive search of the available literature regarding emotional regulation, adolescent concussion, and advanced neuroimaging techniques in electronic databases (PubMed, Scopus, and Google Scholar). We highlight clinical evidence showing the heightened susceptibility of adolescents to experiencing emotional dysregulation symptoms following a concussion. Furthermore, we describe and provide empirical support for widely used magnetic resonance imaging modalities (i.e., functional and diffusion imaging), which are utilized to detect abnormalities in circuits responsible for emotional regulation. Additionally, we assess how these abnormalities relate to the emotional dysregulation symptoms often reported by adolescents post-injury. Yet, it remains to be determined if a progression of concussion-related abnormalities exists, especially in brain regions that undergo significant developmental changes during adolescence. We conclude that neuroimaging techniques hold potential as clinically useful tools for predicting and, ultimately, monitoring the treatment response to emotional dysregulation in adolescents following a concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Meilin Jia-Richards
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Michael W. Collins
- Department of Orthopaedic Surgery, UPMC Sports Concussion Program, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.P.K.); (M.W.C.)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (M.J.-R.); (A.V.)
| |
Collapse
|
12
|
Esopenko C, Sollmann N, Bonke EM, Wiegand TLT, Heinen F, de Souza NL, Breedlove KM, Shenton ME, Lin AP, Koerte IK. Current and Emerging Techniques in Neuroimaging of Sport-Related Concussion. J Clin Neurophysiol 2023; 40:398-407. [PMID: 36930218 PMCID: PMC10329721 DOI: 10.1097/wnp.0000000000000864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY Sport-related concussion (SRC) affects an estimated 1.6 to 3.8 million Americans each year. Sport-related concussion results from biomechanical forces to the head or neck that lead to a broad range of neurologic symptoms and impaired cognitive function. Although most individuals recover within weeks, some develop chronic symptoms. The heterogeneity of both the clinical presentation and the underlying brain injury profile make SRC a challenging condition. Adding to this challenge, there is also a lack of objective and reliable biomarkers to support diagnosis, to inform clinical decision making, and to monitor recovery after SRC. In this review, the authors provide an overview of advanced neuroimaging techniques that provide the sensitivity needed to capture subtle changes in brain structure, metabolism, function, and perfusion after SRC. This is followed by a discussion of emerging neuroimaging techniques, as well as current efforts of international research consortia committed to the study of SRC. Finally, the authors emphasize the need for advanced multimodal neuroimaging to develop objective biomarkers that will inform targeted treatment strategies after SRC.
Collapse
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Nico Sollmann
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena M. Bonke
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Tim L. T. Wiegand
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felicitas Heinen
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Nicola L. de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Katherine M. Breedlove
- Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Alexander P. Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Inga K. Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Grant M, Liu J, Wintermark M, Bagci U, Douglas D. Current State of Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Traumatic Brain Injury Prognostication. Neuroimaging Clin N Am 2023; 33:279-297. [PMID: 36965946 DOI: 10.1016/j.nic.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Advanced imaging techniques are needed to assist in providing a prognosis for patients with traumatic brain injury (TBI), particularly mild TBI (mTBI). Diffusion tensor imaging (DTI) is one promising advanced imaging technique, but has shown variable results in patients with TBI and is not without limitations, especially when considering individual patients. Efforts to resolve these limitations are being explored and include developing advanced diffusion techniques, creating a normative database, improving study design, and testing machine learning algorithms. This article will review the fundamentals of DTI, providing an overview of the current state of its utility in evaluating and providing prognosis in patients with TBI.
Collapse
Affiliation(s)
- Matthew Grant
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA; Department of Radiology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA; Department of Radiology, Landstuhl Regional Medical Center, Dr Hitzelberger Straße, 66849 Landstuhl, Germany.
| | - JiaJing Liu
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Max Wintermark
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA; Neuroradiology Department, The University of Texas Anderson Cancer Center, 1400 Pressler Street, Unit 1482, Houston, TX 77030, USA
| | - Ulas Bagci
- Radiology and Biomedical Engineering Department, Northwestern University, 737 North Michigan Drive, Suite 1600, Chicago, IL 60611, USA; Department of Computer Science, University of Central Florida, 4328 Scorpius Street, Orlando, Florida, 32816
| | - David Douglas
- Department of Radiology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA; Department of Radiology, 96th Medical Group, Eglin Air Force Base, 307 Boatner Road, Eglin Air Force Base, Florida 32542, USA
| |
Collapse
|
14
|
Christensen BA, Clark B, Muir AM, Allen WD, Corbin EM, Jaggi T, Alder N, Clawson A, Farrer TJ, Bigler ED, Larson MJ. Interhemispheric transfer time and concussion in adolescents: A longitudinal study using response time and event-related potential measures. Front Hum Neurosci 2023; 17:1161156. [PMID: 37056961 PMCID: PMC10086259 DOI: 10.3389/fnhum.2023.1161156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionConcussion in children and adolescents is a public health concern with higher concussion incidence than adults and increased susceptibility to axonal injury. The corpus callosum is a vulnerable location of concussion-related white matter damage that can be associated with short- and long-term effects of concussion. Interhemispheric transfer time (IHTT) of visual information across the corpus callosum can be used as a direct measure of corpus callosum functioning that may be impacted by adolescent concussion with slower IHTT relative to matched controls. Longitudinal studies and studies testing physiological measures of IHTT following concussion in adolescents are lacking.MethodsWe used the N1 and P1 components of the scalp-recorded brain event-related potential (ERP) to measure IHTT in 20 adolescents (ages 12–19 years old) with confirmed concussion and 16 neurologically-healthy control participants within 3 weeks of concussion (subacute stage) and approximately 10 months after injury (longitudinal).ResultsSeparate two-group (concussion, control) by two-time (3 weeks, 10 months) repeated measures ANOVAs on difference response times and IHTT latencies of the P1 and N1 components showed no significant differences by group (ps ≥ 0.25) nor by time (ps ≥ 0.64), with no significant interactions (ps ≥ 0.15).DiscussionResults from the current sample suggest that measures of IHTT may not be strongly influenced at 3 weeks or longitudinally following adolescent concussion using the current IHTT paradigm.
Collapse
Affiliation(s)
- Benjamin A. Christensen
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Bradley Clark
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Alexandra M. Muir
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Whitney D. Allen
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Erin M. Corbin
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Tyshae Jaggi
- Pacific Northwest University of Health Sciences, Yakima, WA, United States
| | - Nathan Alder
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ann Clawson
- Children’s National Hospital, Washington, DC, United States
| | - Thomas J. Farrer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Erin D. Bigler
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
- Departments of Psychiatry and Neurology, University of Utah, Salt Lake City, UT, United States
| | - Michael J. Larson
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Psychology, Brigham Young University, Provo, UT, United States
- *Correspondence: Michael J. Larson,
| |
Collapse
|
15
|
Diffusion-Weighted Imaging in Mild Traumatic Brain Injury: A Systematic Review of the Literature. Neuropsychol Rev 2023; 33:42-121. [PMID: 33721207 DOI: 10.1007/s11065-021-09485-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
There is evidence that diffusion-weighted imaging (DWI) is able to detect tissue alterations following mild traumatic brain injury (mTBI) that may not be observed on conventional neuroimaging; however, findings are often inconsistent between studies. This systematic review assesses patterns of differences in DWI metrics between those with and without a history of mTBI. A PubMed literature search was performed using relevant indexing terms for articles published prior to May 14, 2020. Findings were limited to human studies using DWI in mTBI. Articles were excluded if they were not full-length, did not contain original data, if they were case studies, pertained to military populations, had inadequate injury severity classification, or did not report post-injury interval. Findings were reported independently for four subgroups: acute/subacute pediatric mTBI, acute/subacute adult mTBI, chronic adult mTBI, and sport-related concussion, and all DWI acquisition and analysis methods used were included. Patterns of findings between studies were reported, along with strengths and weaknesses of the current state of the literature. Although heterogeneity of sample characteristics and study methods limited the consistency of findings, alterations in DWI metrics were most commonly reported in the corpus callosum, corona radiata, internal capsule, and long association pathways. Many acute/subacute pediatric studies reported higher FA and lower ADC or MD in various regions. In contrast, acute/subacute adult studies most commonly indicate lower FA within the context of higher MD and RD. In the chronic phase of recovery, FA may remain low, possibly indicating overall demyelination or Wallerian degeneration over time. Longitudinal studies, though limited, generally indicate at least a partial normalization of DWI metrics over time, which is often associated with functional improvement. We conclude that DWI is able to detect structural mTBI-related abnormalities that may persist over time, although future DWI research will benefit from larger samples, improved data analysis methods, standardized reporting, and increasing transparency.
Collapse
|
16
|
Sheldrake E, Lam B, Al-Hakeem H, Wheeler AL, Goldstein BI, Dunkley BT, Ameis S, Reed N, Scratch SE. A Scoping Review of Magnetic Resonance Modalities Used in Detection of Persistent Postconcussion Symptoms in Pediatric Populations. J Child Neurol 2023; 38:85-102. [PMID: 36380680 PMCID: PMC10061627 DOI: 10.1177/08830738221120741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Up to 30% of youth with concussion experience PPCSs (PPCS) lasting 4 weeks or longer, and can significantly impact quality of life. Magnetic resonance imaging (MRI) has the potential to increase understanding of causal mechanisms underlying PPCS. However, there are no clear modalities to assist in detecting PPCS. This scoping review aims to synthesize findings on utilization of MRI among children and youth with PPCS, and summarize progress and limitations. Thirty-six studies were included from 4907 identified papers. Many studies used multiple modalities, including (1) structural (n = 27) such as T1-weighted imaging, diffusion weighted imaging, and susceptibility weighted imaging; and (2) functional (n = 23) such as functional MRI and perfusion-weighted imaging. Findings were heterogeneous among modalities and regions of interest, which warrants future reviews that report on the patterns and potential advancements in the field. Consideration of modalities that target PPCS prediction and sensitive modalities that can supplement a biopsychosocial approach to PPCS would benefit future research.
Collapse
Affiliation(s)
- Elena Sheldrake
- Bloorview Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Brendan Lam
- Bloorview Research Institute, Toronto, Ontario, Canada
| | | | - Anne L. Wheeler
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I. Goldstein
- Centre for Addiction and Mental Health, Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T. Dunkley
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Ameis
- Centre for Addiction and Mental Health, Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Nick Reed
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Shannon E. Scratch
- Bloorview Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Rapid Prediction and Accurate Location Selection of Mild Traumatic Brain Injury (mTBI) by Using Multiple Parameter Analysis of Diffusion Tensor Imaging (DTI): Integrating Correlational and Clinical Approaches. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7467479. [PMID: 36700239 PMCID: PMC9870681 DOI: 10.1155/2023/7467479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/25/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Background Mild traumatic brain injury (mTBI) is a widespread and serious public health problem which also causes physical and psychological suffering to patients and their families and imposes a significant economic burden on society. But it is usually very difficult to detect and provide warning of mTBI in early stage. Therefore, a novel method is urgent for the increasing demands on the accurate and rapid prediction and feature selection of mTBI. Objectives To establish a better idea of the performance of neuroimage biomarker in the acute phase of mTBI, our study adopts diffusion tensor imaging (DTI) which could present the pathophysiological changes of white matter through several parameters noninvasively and combined with behavioral experiments such as intelligence quotient test, memory, executive function, and motion function to find the relationship between DTI abnormal brain regions and behavioral abnormalities. Then, provide new method for rapid prediction and feature selection of mTBI. Methods 77 mTBI patients were admitted to the Emergency and Neurosurgery Departments of the Third Xiangya Hospital of Central South University from August 2019 to July 2021; the patients (41 males and 36 females) suffered mTBI because of car accident (36), assault (11), and fall (30). All the mTBI patients were examined through MRI scan and behavioral psychology test within 3 days after injury. MRI images and behavioral psychology tests were also collected; the correlation between the DTI biomarker and the cognitive psychological outcome was analyzed. A series of integration and computational methods were also used for fusion arithmetic and result analysis. Results Compared with the healthy control group, the patients in the acute stage of mTBI presented lower scores in the digit symbol substitution test (DSST), suggesting that mTBI patients in the acute stage had decline in information processing speed and associative learning. The difference of DTI parameters in acute stage mTBI patients was mainly manifested as increased AD and MD values in multiple brain regions, while RD and FA values have no significant difference. The most significant brain regions were bilateral corticospinal tracts (CST), bilateral posterior internal capsule lentiform nucleus, bilateral superior longitudinal fasciculus, left terminal striae, and left sagittal plane with right posterior thalamic radiation. The Pearson correlation coefficient was significantly positive correlation between AD and MD elevation in the left sagittal layer and the results of DSST and digit span in acute stage mTBI patients. Conclusions The acute phase mTBI patients performed lower score on the DSST than those in the normal control group. This neuropsychological change was associated with increased AD value and MD value in the left sagittal layer, which indicated reduction of information processing speed in mTBI patients in the acute phase. It might be related to abnormal AD value and MD value in the upper longitudinal tract, lower longitudinal tract, lower frontal occipital tract, and sagittal layer. In this study, combined with neuropsychological test and increase of the AD value and MD value in certain brain region, neurosurgeon should pay more attention to the abnormal of the upper longitudinal tract and the patients' information processing speed in the diagnosis and treatment of the acute phase mTBI patients. The study offers a much more secure and integrated method for rapid prediction and feature selection of mTBI, which could have broader clinical approaches and application prospects.
Collapse
|
18
|
Dhote VV, Samundre P, Upaganlawar AB, Ganeshpurkar A. Gene Therapy for Chronic Traumatic Brain Injury: Challenges in Resolving Long-term Consequences of Brain Damage. Curr Gene Ther 2023; 23:3-19. [PMID: 34814817 DOI: 10.2174/1566523221666211123101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
The gene therapy is alluring not only for CNS disorders but also for other pathological conditions. Gene therapy employs the insertion of a healthy gene into the identified genome to replace or replenish genes responsible for pathological disorder or damage due to trauma. The last decade has seen a drastic change in the understanding of vital aspects of gene therapy. Despite the complexity of traumatic brain injury (TBI), the advent of gene therapy in various neurodegenerative disorders has reinforced the ongoing efforts of alleviating TBI-related outcomes with gene therapy. The review highlights the genes modulated in response to TBI and evaluates their impact on the severity and duration of the injury. We have reviewed strategies that pinpointed the most relevant gene targets to restrict debilitating events of brain trauma and utilize vector of choice to deliver the gene of interest at the appropriate site. We have made an attempt to summarize the long-term neurobehavioral consequences of TBI due to numerous pathometabolic perturbations associated with a plethora of genes. Herein, we shed light on the basic pathological mechanisms of brain injury, genetic polymorphism in individuals susceptible to severe outcomes, modulation of gene expression due to TBI, and identification of genes for their possible use in gene therapy. The review also provides insights on the use of vectors and challenges in translations of this gene therapy to clinical practices.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Aman B Upaganlawar
- SNJB's Shree Sureshdada Jain College of Pharmacy, Chandwad, Nasik, Maharashtra, 423101, India
| | - Aditya Ganeshpurkar
- Department of Pharmacy, Shri Ram Institute of Technology, Jabalpur, MP, India
| |
Collapse
|
19
|
Mustafi SM, Yang HC, Harezlak J, Meier TB, Brett BL, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, LaConte SM, Duma SM, Broglio SP, McCrea MA, McAllister TW, Wu YC. Effects of White-Matter Tract Length in Sport-Related Concussion: A Tractography Study from the NCAA-DoD CARE Consortium. J Neurotrauma 2022; 39:1495-1506. [PMID: 35730116 PMCID: PMC9689766 DOI: 10.1089/neu.2021.0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sport-related concussion (SRC) is an important public health issue. White-matter alterations after SRC are widely studied by neuroimaging approaches, such as diffusion magnetic resonance imaging (MRI). Although the exact anatomical location of the alterations may differ, significant white-matter alterations are commonly observed in long fiber tracts, but are never proven. In the present study, we performed streamline tractography to characterize the association between tract length and white-matter microstructural alterations after SRC. Sixty-eight collegiate athletes diagnosed with acute concussion (24-48 h post-injury) and 64 matched contact-sport controls were included in this study. The athletes underwent diffusion tensor imaging (DTI) in 3.0 T MRI scanners across three study sites. DTI metrics were used for tract-based spatial statistics to map white-matter regions-of-interest (ROIs) with significant group differences. Whole-brain white-mater streamline tractography was performed to extract "affected" white-matter streamlines (i.e., streamlines passing through the identified ROIs). In the concussed athletes, streamline counts and DTI metrics of the affected white-matter fiber tracts were summarized and compared with unaffected white-matter tracts across tract length in the same participant. The affected white-matter tracts had a high streamline count at length of 80-100 mm and high length-adjusted affected ratio for streamline length longer than 80 mm. DTI mean diffusivity was higher in the affected streamlines longer than 100 mm with significant associations with the Brief Symptom Inventory score. Our findings suggest that long fibers in the brains of collegiate athletes are more vulnerable to acute SRC with higher mean diffusivity and a higher affected ratio compared with the whole distribution.
Collapse
Affiliation(s)
- Sourajit M. Mustafi
- Institute of Genetics, San Diego, California, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ho-Ching Yang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Benjamin L. Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher C. Giza
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
- Division of Pediatric Neurology, Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California, USA
| | - Joshua Goldman
- Family Medicine, Ronald Reagan UCLA Medical Center, UCLA Health - Santa Monica Medical Center, Los Angeles, California, USA
| | - Kevin M. Guskiewicz
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina, at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason P. Mihalik
- Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, Department of Exercise and Sport Science, University of North Carolina, at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen M. LaConte
- School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University, Blacksburg, Virginia, USA
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Stefan M. Duma
- School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University, Blacksburg, Virginia, USA
| | - Steven P. Broglio
- Michigan Concussion Center, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Raikes AC, Hernandez GD, Mullins VA, Wang Y, Lopez C, Killgore WDS, Chilton FH, Brinton RD. Effects of docosahexaenoic acid and eicosapentaoic acid supplementation on white matter integrity after repetitive sub-concussive head impacts during American football: Exploratory neuroimaging findings from a pilot RCT. Front Neurol 2022; 13:891531. [PMID: 36188406 PMCID: PMC9521411 DOI: 10.3389/fneur.2022.891531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Context Repetitive sub-concussive head impacts (RSHIs) are common in American football and result in changes to the microstructural integrity of white matter. Both docosahexaenoic acid (DHA) and eicosapentaoic acid (EPA) supplementation exerted neuroprotective effects against RSHIs in animal models and in a prior study in football players supplemented with DHA alone. Objective Here, we present exploratory neuroimaging outcomes from a randomized controlled trial of DHA + EPA supplementation in American football players. We hypothesized that supplementation would result in less white matter integrity loss on diffusion weighted imaging over the season. Design setting participants We conducted a double-blind placebo-controlled trial in 38 American football players between June 2019 and January 2020. Intervention Participants were randomized to the treatment (2.442 g/day DHA and 1.020 g/day EPA) or placebo group for five times-per-week supplementation for 7 months. Of these, 27 participants were included in the neuroimaging data analysis (n = 16 placebo; n = 11 DHA + EPA). Exploratory outcome measures Changes in white matter integrity were quantified using both voxelwise diffusion kurtosis scalars and deterministic tractography at baseline and end of season. Additional neuroimaging outcomes included changes in regional gray matter volume as well as intra-regional, edge-wise, and network level functional connectivity. Serum neurofilament light (NfL) provided a peripheral biomarker of axonal damage. Results No voxel-wise between-group differences were identified on diffusion tensor metrics. Deterministic tractography using quantitative anisotropy (QA) revealed increased structural connectivity in ascending corticostriatal fibers and decreased connectivity in long association and commissural fibers in the DHA+EPA group compared to the placebo group. Serum NfL increases were correlated with increased mean (ρ = 0.47), axial (ρ = 0.44), and radial (ρ = 0.51) diffusivity and decreased QA (ρ = -0.52) in the corpus callosum and bilateral corona radiata irrespective of treatment group. DHA + EPA supplementation did preserve default mode/frontoparietal control network connectivity (g = 0.96, p = 0.024). Conclusions These exploratory findings did not provide strong evidence that DHA + EPA prevented or protected against axonal damage as quantified via neuroimaging. Neuroprotective effects on functional connectivity were observed despite white matter damage. Further studies with larger samples are needed to fully establish the relationship between omega-3 supplementation, RSHIs, and neuroimaging biomarkers. Trial registration ClinicalTrials.gov-NCT04796207.
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Veronica A. Mullins
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Claudia Lopez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - William D. S. Killgore
- Social, Cognitive, and Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Floyd H. Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Migneron-Foisy V, Muckle G, Jacobson JL, Ayotte P, Jacobson SW, Saint-Amour D. Impact of chronic exposure to legacy environmental contaminants on the corpus callosum microstructure: A diffusion MRI study of Inuit adolescents. Neurotoxicology 2022; 92:200-211. [PMID: 35995272 DOI: 10.1016/j.neuro.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Exposure to environmental contaminants is an important public health concern for the Inuit population of northern Québec, who have been exposed to mercury (Hg), polychlorinated biphenyls (PCBs) and lead (Pb). During the last 25 years, the Nunavik Child Development Study (NCDS) birth cohort has reported adverse associations between these exposures and brain function outcomes. In the current study, we aimed to determine whether contaminant exposure is associated with alterations of the corpus callosum (CC), which plays an important role in various cognitive, motor and sensory function processes. Magnetic resonance imaging (MRI) was administered to 89 NCDS participants (mean age ± SD = 18.4 ± 1.2). Diffusion-weighted imaging was assessed to characterize the microstructure of the CC white matter in 7 structurally and functionally distinct regions of interest (ROIs) using a tractography-based segmentation approach. The following metrics were computed: fiber tract density, fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). Multiple linear regression models adjusted for sex, age, current alcohol/drug use and fish nutrients (omega-3 fatty acids and selenium) were conducted to assess the association between diffusion-weighted imaging metrics and Hg, PCB 153 and Pb concentrations obtained at birth in the cord blood and postnatally (mean values from blood samples at 11 and 18 years of age). Exposures were not associated with fiber tract density. Nor were significant associations found with cord and postnatal blood Pb concentrations for FA. However, pre- and postnatal Hg and PCB concentrations were significantly associated with higher FA of several regions of the CC, namely anterior midbody, posterior midbody, isthmus, and splenium, with the most pronounced effects observed in the splenium. FA results were mainly associated with lower RD. This study shows that exposure to Hg and PCB 153 alters the posterior microstructure of the CC, providing neuroimaging evidence of how developmental exposure to environmental chemicals can impair brain function and behavior in late adolescence.
Collapse
Affiliation(s)
- Vincent Migneron-Foisy
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada
| | - Gina Muckle
- School of Psychology, Université Laval, Québec, Québec, Canada; Centre de Recherche du CHUQ de Québec, Université Laval, Québec, Canada
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pierre Ayotte
- Department of Social and Preventive Medicine, Université Laval, Québec, Québec, Canada
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada.
| |
Collapse
|
22
|
McDonald MA, Tayebi M, McGeown JP, Kwon EE, Holdsworth SJ, Danesh‐Meyer HV. A window into eye movement dysfunction following mTBI: A scoping review of magnetic resonance imaging and eye tracking findings. Brain Behav 2022; 12:e2714. [PMID: 35861623 PMCID: PMC9392543 DOI: 10.1002/brb3.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Mild traumatic brain injury (mTBI), commonly known as concussion, is a complex neurobehavioral phenomenon affecting six in 1000 people globally each year. Symptoms last between days and years as microstructural damage to axons and neurometabolic changes result in brain network disruption. There is no clinically available objective biomarker to diagnose the severity of injury or monitor recovery. However, emerging evidence suggests eye movement dysfunction (e.g., saccades and smooth pursuits) in patients with mTBI. Patients with a higher symptom burden and prolonged recovery time following injury may show higher degrees of eye movement dysfunction. Likewise, recent advances in magnetic resonance imaging (MRI) have revealed both white matter tract damage and functional network alterations in mTBI patients, which involve areas responsible for the ocular motor control. This scoping review is presented in three sections: Section 1 explores the anatomical control of eye movements to aid the reader with interpreting the discussion in subsequent sections. Section 2 examines the relationship between abnormal MRI findings and eye tracking after mTBI based on the available evidence. Finally, Section 3 communicates gaps in our knowledge about MRI and eye tracking, which should be addressed in order to substantiate this emerging field.
Collapse
Affiliation(s)
- Matthew A. McDonald
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
| | - Maryam Tayebi
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Joshua P. McGeown
- Mātai Medical Research InstituteGisborneNew Zealand
- Auckland University of Technology Traumatic Brain Injury NetworkAucklandNew Zealand
| | - Eryn E. Kwon
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
- Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
| | - Samantha J Holdsworth
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Mātai Medical Research InstituteGisborneNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Helen V Danesh‐Meyer
- Department of OphthalmologyUniversity of AucklandAucklandNew Zealand
- Eye InstituteAucklandNew Zealand
| |
Collapse
|
23
|
Lima Santos JP, Kontos AP, Holland CL, Stiffler RS, Bitzer HB, Caviston K, Shaffer M, Suss SJ, Martinez L, Manelis A, Iyengar S, Brent D, Ladouceur CD, Collins MW, Phillips ML, Versace A. The role of sleep quality on white matter integrity and concussion symptom severity in adolescents. Neuroimage Clin 2022; 35:103130. [PMID: 35917722 PMCID: PMC9421495 DOI: 10.1016/j.nicl.2022.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sleep problems are common after concussion; yet, to date, no study has evaluated the relationship between sleep, white matter integrity, and post-concussion symptoms in adolescents. Using self-reported quality of sleep measures within the first 10 days of injury, we aimed to determine if quality of sleep exerts a main effect on white matter integrity in major tracts, as measured by diffusion Magnetic Resonance Imaging (dMRI), and further examine whether this effect can help explain the variance in post-concussion symptom severity in 12- to 17.9-year-old adolescents. METHODS dMRI data were collected in 57 concussed adolescents (mean age[SD] = 15.4[1.5] years; 41.2 % female) with no history of major psychiatric diagnoses. Severity of post-concussion symptoms was assessed at study entry (mean days[SD] = 3.7[2.5] days since injury). Using the Pittsburgh Sleep Quality Index (PSQI), concussed adolescents were divided into two groups based on their quality of sleep in the days between injury and scan: good sleepers (PSQI global score ≤ 5; N = 33) and poor sleepers (PSQI global score > 5; N = 24). Neurite Orientation Dispersion and Dispersion Index (NODDI), specifically the Neurite Density Index (NDI), was used to quantify microstructural properties in major tracts, including 18 bilateral and one interhemispheric tract, and identify whether dMRI differences existed in good vs poor sleepers. Since the interval between concussion and neuroimaging acquisition varied among concussed adolescents, this interval was included in the analysis along with an interaction term with sleep groups. Regularized regression was used to identify if quality of sleep-related dMRI measures correlated with post-concussion symptom severity. Due to higher reported concussion symptom severity in females, interaction terms between dMRI and sex were included in the regularized regression model. Data collected in 33 sex- and age-matched non-concussed controls (mean age[SD] = 15.2[1.5]; 45.5 % female) served as healthy reference and sex and age were covariates in all analyses. RESULTS Relative to good sleepers, poor sleepers demonstrated widespread lower NDI (18 of the 19 tracts; FDR corrected P < 0.048). This group effect was only significant with at least seven days between concussion and neuroimaging acquisition. Post-concussion symptoms severity was negatively correlated with NDI in four of these tracts: cingulum bundle, optic radiation, striato-fronto-orbital tract, and superior longitudinal fasciculus I. The multiple linear regression model combining sex and NDI of these four tracts was able to explain 33.2 % of the variability in symptom severity (F[7,49] = 4.9, P < 0.001, Adjusted R2 = 0.332). Relative to non-concussed controls, poor sleepers demonstrated lower NDI in the cingulum bundle, optic radiation, and superior longitudinal fasciculus I (FDR corrected P < 0.040). CONCLUSIONS Poor quality of sleep following concussion is associated with widespread lower integrity of major white matter tracts, that in turn helped to explain post-concussion symptom severity in 12-17.9-year-old adolescents. The effect of sleep on white matter integrity following concussion was significant after one week, suggesting that acute sleep interventions may need this time to begin to take effect. Our findings may suggest an important relationship between good quality of sleep in the days following concussion and integrity of major white matter tracts. Moving forward, researchers should evaluate the effectiveness of sleep interventions on white matter integrity and clinical outcomes following concussion.
Collapse
Affiliation(s)
- João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anthony P Kontos
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Cynthia L Holland
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hannah B Bitzer
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Kaitlin Caviston
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Madelyn Shaffer
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Stephen J Suss
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laramie Martinez
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Manelis
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Brent
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecile D Ladouceur
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W Collins
- Department of Orthopaedic Surgery/UPMC Sports Concussion Program- University of Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Mito R, Parker DM, Abbott DF, Makdissi M, Pedersen M, Jackson GD. White matter abnormalities characterize the acute stage of sports-related mild traumatic brain injury. Brain Commun 2022; 4:fcac208. [PMID: 36043140 PMCID: PMC9419063 DOI: 10.1093/braincomms/fcac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sports-related concussion, a form of mild traumatic brain injury, is characterized by transient disturbances of brain function. There is increasing evidence that functional brain changes may be driven by subtle abnormalities in white matter microstructure, and diffusion MRI has been instrumental in demonstrating these white matter abnormalities in vivo. However, the reported location and direction of the observed white matter changes in mild traumatic brain injury are variable, likely attributable to the inherent limitations of the white matter models used. This cross-sectional study applies an advanced and robust technique known as fixel-based analysis to investigate fibre tract-specific abnormalities in professional Australian Football League players with a recent mild traumatic brain injury. We used the fixel-based analysis framework to identify common abnormalities found in specific fibre tracts in participants with an acute injury (≤12 days after injury; n = 14). We then assessed whether similar changes exist in subacute injury (>12 days and <3 months after injury; n = 15). The control group was 29 neurologically healthy control participants. We assessed microstructural differences in fibre density and fibre bundle morphology and performed whole-brain fixel-based analysis to compare groups. Subsequent tract-of-interest analyses were performed within five selected white matter tracts to investigate the relationship between the observed tract-specific abnormalities and days since injury and the relationship between these tract-specific changes with cognitive abnormalities. Our whole-brain analyses revealed significant increases in fibre density and bundle cross-section in the acute mild traumatic brain injury group when compared with controls. The acute mild traumatic brain injury group showed even more extensive differences when compared with the subacute injury group than with controls. The fibre structures affected in acute concussion included the corpus callosum, left prefrontal and left parahippocampal white matter. The fibre density and cross-sectional increases were independent of time since injury in the acute injury group, and were not associated with cognitive deficits. Overall, this study demonstrates that acute mild traumatic brain injury is characterized by specific white matter abnormalities, which are compatible with tract-specific cytotoxic oedema. These potential oedematous changes were absent in our subacute mild traumatic brain injury participants, suggesting that they may normalize within 12 days after injury, although subtle abnormalities may persist in the subacute stage. Future longitudinal studies are needed to elucidate individualized recovery after brain injury.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - Donna M Parker
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
| | - David F Abbott
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Olympic Park Sports Medicine Centre , Melbourne, VIC 3004 , Australia
| | - Mangor Pedersen
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Psychology and Neuroscience, Auckland University of Technology (AUT) , Auckland 1010 , New Zealand
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Melbourne, VIC 3084 , Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC 3052 , Australia
- Department of Neurology, Austin Health , Melbourne, VIC 3084 , Australia
| |
Collapse
|
25
|
Detection of Chronic Blast-Related Mild Traumatic Brain Injury with Diffusion Tensor Imaging and Support Vector Machines. Diagnostics (Basel) 2022; 12:diagnostics12040987. [PMID: 35454035 PMCID: PMC9030428 DOI: 10.3390/diagnostics12040987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Blast-related mild traumatic brain injury (bmTBI) often leads to long-term sequalae, but diagnostic approaches are lacking due to insufficient knowledge about the predominant pathophysiology. This study aimed to build a diagnostic model for future verification by applying machine-learning based support vector machine (SVM) modeling to diffusion tensor imaging (DTI) datasets to elucidate white-matter features that distinguish bmTBI from healthy controls (HC). Twenty subacute/chronic bmTBI and 19 HC combat-deployed personnel underwent DTI. Clinically relevant features for modeling were selected using tract-based analyses that identified group differences throughout white-matter tracts in five DTI metrics to elucidate the pathogenesis of injury. These features were then analyzed using SVM modeling with cross validation. Tract-based analyses revealed abnormally decreased radial diffusivity (RD), increased fractional anisotropy (FA) and axial/radial diffusivity ratio (AD/RD) in the bmTBI group, mostly in anterior tracts (29 features). SVM models showed that FA of the anterior/superior corona radiata and AD/RD of the corpus callosum and anterior limbs of the internal capsule (5 features) best distinguished bmTBI from HCs with 89% accuracy. This is the first application of SVM to identify prominent features of bmTBI solely based on DTI metrics in well-defined tracts, which if successfully validated could promote targeted treatment interventions.
Collapse
|
26
|
Miller LE, Urban JE, Espeland MA, Walkup MP, Holcomb JM, Davenport EM, Powers AK, Whitlow CT, Maldjian JA, Stitzel JD. Cumulative strain-based metrics for predicting subconcussive head impact exposure-related imaging changes in a cohort of American youth football players. J Neurosurg Pediatr 2022; 29:387-396. [PMID: 35061991 PMCID: PMC9404368 DOI: 10.3171/2021.10.peds21355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Youth football athletes are exposed to repetitive subconcussive head impacts during normal participation in the sport, and there is increasing concern about the long-term effects of these impacts. The objective of the current study was to determine if strain-based cumulative exposure measures are superior to kinematic-based exposure measures for predicting imaging changes in the brain. METHODS This prospective, longitudinal cohort study was conducted from 2012 to 2017 and assessed youth, male football athletes. Kinematic data were collected at all practices and games from enrolled athletes participating in local youth football organizations in Winston-Salem, North Carolina, and were used to calculate multiple risk-weighted cumulative exposure (RWE) kinematic metrics and 36 strain-based exposure metrics. Pre- and postseason imaging was performed at Wake Forest School of Medicine, and diffusion tensor imaging (DTI) measures, including fractional anisotropy (FA), and its components (CL, CP, and CS), and mean diffusivity (MD), were investigated. Included participants were youth football players ranging in age from 9 to 13 years. Exclusion criteria included any history of previous neurological illness, psychiatric illness, brain tumor, concussion within the past 6 months, and/or contraindication to MRI. RESULTS A total of 95 male athletes (mean age 11.9 years [SD 1.0 years]) participated between 2012 and 2017, with some participating for multiple seasons, resulting in 116 unique athlete-seasons. Regression analysis revealed statistically significant linear relationships between the FA, linear coefficient (CL), and spherical coefficient (CS) and all strain exposure measures, and well as the planar coefficient (CP) and 8 strain measures. For the kinematic exposure measures, there were statistically significant relationships between FA and RWE linear (RWEL) and RWE combined probability (RWECP) as well as CS and RWEL. According to area under the receiver operating characteristic (ROC) curve (AUC) analysis, the best-performing metrics were all strain measures, and included metrics based on tensile, compressive, and shear strain. CONCLUSIONS Using ROC curves and AUC analysis, all exposure metrics were ranked in order of performance, and the results demonstrated that all the strain-based metrics performed better than any of the kinematic metrics, indicating that strain-based metrics are better discriminators of imaging changes than kinematic-based measures. Studies relating the biomechanics of head impacts with brain imaging and cognitive function may allow equipment designers, care providers, and organizations to prevent, identify, and treat injuries in order to make football a safer activity.
Collapse
Affiliation(s)
- Logan E. Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Winston-Salem
| | - Jillian E. Urban
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Winston-Salem
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem
| | - Michael P. Walkup
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem
| | - James M. Holcomb
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, Texas
| | | | - Alexander K. Powers
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem
| | - Christopher T. Whitlow
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Joseph A. Maldjian
- Department of Radiology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Joel D. Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem,School of Biomedical Engineering and Sciences, Virginia Tech–Wake Forest University, Winston-Salem
| |
Collapse
|
27
|
Cao M, Luo Y, Wu Z, Wu K, Li X. Abnormal neurite density and orientation dispersion in frontal lobe link to elevated hyperactive/impulsive behaviours in young adults with traumatic brain injury. Brain Commun 2022; 4:fcac011. [PMID: 35187485 PMCID: PMC8853727 DOI: 10.1093/braincomms/fcac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury is a major public health concern. A significant proportion of individuals experience post-traumatic brain injury behavioural impairments, especially in attention and inhibitory control domains. Traditional diffusion-weighted MRI techniques, such as diffusion tensor imaging, have provided tools to assess white matter structural disruptions reflecting the long-term brain tissue alterations associated with traumatic brain injury. The recently developed neurite orientation dispersion and density imaging is a more advanced diffusion MRI modality, which provides more refined characterization of brain tissue microstructures by assessing the neurite orientation dispersion and neurite density properties. In this study, neurite orientation dispersion and density imaging data from 44 young adults with chronic traumatic brain injury (who had no prior-injury diagnoses of any sub-presentation of attention deficits/hyperactivity disorder or experience of severe inattentive and/or hyperactive behaviours) and 45 group-matched normal controls were investigated, to assess the post-injury morphometrical and microstructural brain alterations and their relationships with the behavioural outcomes. Maps of fractional anisotropy, neurite orientation dispersion index and neurite density index were calculated. Vertex-wise and voxel-wise analyses were conducted for grey matter and white matter, respectively. Post hoc region-of-interest-based analyses were also performed. Compared to the controls, the group of traumatic brain injury showed significantly increased orientation dispersion index and significantly decreased neurite density index in various grey matter regions, as well as significantly decreased orientation dispersion index in several white matter regions. Brain-behavioural association analyses indicated that the reduced neurite density index of the left precentral gyrus and the reduced orientation dispersion index of the left superior longitudinal fasciculus were significantly associated with elevated hyperactive/impulsive symptoms in the patients with traumatic brain injury. These findings suggest that post-injury chronical neurite intracellular volume and angular distribution anomalies in the frontal lobe, practically the precentral area, can significantly contribute to the onset of hyperactive/impulsive behaviours in young adults with traumatic brain injury.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yuyang Luo
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kai Wu
- Department of Electrical and Computer Engineering, School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
28
|
Refined Analysis of Chronic White Matter Changes after Traumatic Brain Injury and Repeated Sports-Related Concussions: Of Use in Targeted Rehabilitative Approaches? J Clin Med 2022; 11:jcm11020358. [PMID: 35054052 PMCID: PMC8780504 DOI: 10.3390/jcm11020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) or repeated sport-related concussions (rSRC) may lead to long-term memory impairment. Diffusion tensor imaging (DTI) is helpful to reveal global white matter damage but may underestimate focal abnormalities. We investigated the distribution of post-injury regional white matter changes after TBI and rSRC. Six patients with moderate/severe TBI, and 12 athletes with rSRC were included ≥6 months post-injury, and 10 (age-matched) healthy controls (HC) were analyzed. The Repeatable Battery for the Assessment of Neuropsychological Status was performed at the time of DTI. Major white matter pathways were tracked using q-space diffeomorphic reconstruction and analyzed for global and regional changes with a controlled false discovery rate. TBI patients displayed multiple classic white matter injuries compared with HC (p < 0.01). At the regional white matter analysis, the left frontal aslant tract, anterior thalamic radiation, and the genu of the corpus callosum displayed focal changes in both groups compared with HC but with different trends. Both TBI and rSRC displayed worse memory performance compared with HC (p < 0.05). While global analysis of DTI-based parameters did not reveal common abnormalities in TBI and rSRC, abnormalities to the fronto-thalamic network were observed in both groups using regional analysis of the white matter pathways. These results may be valuable to tailor individualized rehabilitative approaches for post-injury cognitive impairment in both TBI and rSRC patients.
Collapse
|
29
|
The diffusion-tensor imaging reveals alterations in water diffusion parameters in acute pediatric concussion. Acta Neurol Belg 2021; 121:1463-1468. [PMID: 32246319 DOI: 10.1007/s13760-020-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Wide-spread visualization methods which are computed tomography (CT) and magnetic resonance imaging (MRI) are not sensitive to mild traumatic brain injury (mTBI). However, mTBI may cause changes of cerebral microstructure that could be found using diffusion-tensor imaging. The aim of this study is to reveal the impact of acute mTBI (no more than 3 days after trauma) on diffusion parameters in corpus callosum, corticospinal tract, and thalamus in children (aged 14-18). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were analyzed. Significant increase in FA and decrease in ADC were observed in thalamus. The trend to an increase in FA is observed in corpus callosum.
Collapse
|
30
|
de Souza NL, Buckman JF, Dennis EL, Parrott JS, Velez C, Wilde EA, Tate DF, Esopenko C. Association between white matter organization and cognitive performance in athletes with a history of sport-related concussion. J Clin Exp Neuropsychol 2021; 43:704-715. [PMID: 34779351 DOI: 10.1080/13803395.2021.1991893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Impairments in cognitive performance after sport-related concussion (SRC) typically resolve within weeks of the injury, whereas alterations to white matter (WM) organization have been found to persist longer into the chronic injury stage. However, longer-term associations between cognition and WM organization following SRC have not been studied. The objective of this study was to compare WM organization and cognitive performance in collegiate athletes an average of almost 4 years post-SRC to athletes with no history of SRC. METHOD National Collegiate Athletic Association Division III athletes (n = 71, age = 19.3 ± 1.2; 14 with self-reported SRC) completed a neurocognitive assessment and diffusion tensor imaging (DTI). WM organization was assessed by extracting measures of fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) from 20 WM regions of interest (ROIs). Multivariate partial least squares analyses were used to compare athletes with and without a history of SRC and assess relationships between DTI-derived metrics of WM organization and cognitive measures. RESULTS Cognitive performance and ROI metrics did not differ between athletes with and without prior SRC. However, among athletes with a history of SRC, better executive function, processing speed, and memory but worse choice reaction time were associated with higher FA and lower MD and RD in several WM tracts. CONCLUSION Athletes with a history of SRC demonstrated greater associations between cognitive performance and WM organization, but also variability in the domains showing associations. Taken together, the findings demonstrate the importance of examining brain-behavior relationships several years after SRC to better gauge how WM organization supports cognition.
Collapse
Affiliation(s)
- Nicola L de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers University - New Brunswick, Piscataway, NJ, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | | | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.,George E. Wahlen Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, USA.,Missouri Institute of Mental Health, University of Missouri, St. Louis, MO, USA
| | - Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| |
Collapse
|
31
|
Yuan W, Diekfuss JA, Barber Foss KD, Dudley JA, Leach JL, Narad ME, DiCesare CA, Bonnette S, Epstein JN, Logan K, Altaye M, Myer GD. High School Sports-Related Concussion and the Effect of a Jugular Vein Compression Collar: A Prospective Longitudinal Investigation of Neuroimaging and Neurofunctional Outcomes. J Neurotrauma 2021; 38:2811-2821. [PMID: 34375130 DOI: 10.1089/neu.2021.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sports-related concussion (SRC) can exert serious acute and long-term consequences on brain microstructure, function, and behavioral outcomes. We aimed to quantify the alterations in white matter (WM) microstructure and global network organization, and the decrements in behavioral and cognitive outcomes from pre-season to post-concussion in youth athletes who experienced SRC. We also aimed to evaluate whether wearing a jugular compression neck collar, a device designed to mitigate brain "slosh" injury, would mitigate the pre-season to post-concussion alterations in neuroimaging, behavioral, and cognitive outcomes. A total of 488 high school football and soccer athletes (14-18 years old) were prospectively enrolled and assigned to the non-collar group (n = 237) or the collar group (n = 251). The outcomes of the study were the pre-season to post-concussion neuroimaging, behavioral, and cognitive alterations. Forty-six participants (non-collar: n = 24; collar: n = 22) were diagnosed with a SRC during the season. Forty of these 46 athletes (non-collar: n = 20; collar: n = 20) completed neuroimaging assessment. Significant pre-season to post-concussion alterations in WM microstructural integrity and brain network organization were found in these athletes (corrected p < 0.05). The alterations were significantly reduced in collar-wearing athletes compared to non-collar-wearing athletes (corrected p < 0.05). Concussion and collar main effects were identified for some of the behavioral and cognitive outcomes, but no collar by SRC interaction effects were observed in any outcomes. In summary, young athletes exhibited significant WM microstructural and network organizational, and cognitive alterations following SRC. The use of the jugular vein compression collar showed promising evidence to reduce these alterations in high school contact sport athletes.
Collapse
Affiliation(s)
- Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jed A Diekfuss
- Emory Sports Performance and Research Center, Flowery Branch, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kim D Barber Foss
- Emory Sports Performance and Research Center, Flowery Branch, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jonathan A Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James L Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Megan E Narad
- Division of Behavioral Medicine & Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christopher A DiCesare
- Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Scott Bonnette
- Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffery N Epstein
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Behavioral Medicine & Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelsey Logan
- Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gregory D Myer
- Emory Sports Performance and Research Center, Flowery Branch, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
32
|
Holcomb JM, Fisicaro RA, Miller LE, Yu FF, Davenport EM, Xi Y, Urban JE, Wagner BC, Powers AK, Whitlow CT, Stitzel JD, Maldjian JA. Regional White Matter Diffusion Changes Associated with the Cumulative Tensile Strain and Strain Rate in Nonconcussed Youth Football Players. J Neurotrauma 2021; 38:2763-2771. [PMID: 34039024 PMCID: PMC8820832 DOI: 10.1089/neu.2020.7580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to assess the relationship between regional white matter diffusion imaging changes and finite element strain measures in nonconcussed youth football players. Pre- and post-season diffusion-weighted imaging was performed in 102 youth football subject-seasons, in which no concussions were diagnosed. The diffusion data were normalized to the IXI template. Percent change in fractional anisotropy (%ΔFA) images were generated. Using data from the head impact telemetry system, the cumulative maximum principal strain one times strain rate (CMPS1 × SR), a measure of the cumulative tensile brain strain and strain rate for one season, was calculated for each subject. Two linear regression analyses were performed to identify significant positive or inverse relationships between CMPS1 × SR and %ΔFA within the international consortium for brain mapping white matter mask. Age, body mass index, days between pre- and post-season imaging, previous brain injury, attention disorder diagnosis, and imaging protocol were included as covariates. False discovery rate correction was used with corrected alphas of 0.025 and voxel thresholds of zero. Controlling for all covariates, a significant, positive linear relationship between %ΔFA and CMPS1 × SR was identified in the bilateral cingulum, fornix, internal capsule, external capsule, corpus callosum, corona radiata, corticospinal tract, cerebral and middle cerebellar peduncle, superior longitudinal fasciculus, and right superior fronto-occipital fasciculus. Post hoc analyses further demonstrated significant %ΔFA differences between high-strain football subjects and noncollision control athletes, no significant %ΔFA differences between low-strain subjects and noncollision control athletes, and that CMPS1 × SR significantly explained more %ΔFA variance than number of head impacts alone.
Collapse
Affiliation(s)
- James M. Holcomb
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan A. Fisicaro
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Logan E. Miller
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Fang F. Yu
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Yin Xi
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jillian E. Urban
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ben C. Wagner
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Joel D. Stitzel
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | |
Collapse
|
33
|
Potential Mechanisms of Acute Standing Balance Deficits After Concussions and Subconcussive Head Impacts: A Review. Ann Biomed Eng 2021; 49:2693-2715. [PMID: 34258718 DOI: 10.1007/s10439-021-02831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023]
Abstract
Standing balance deficits are prevalent after concussions and have also been reported after subconcussive head impacts. However, the mechanisms underlying such deficits are not fully understood. The objective of this review is to consolidate evidence linking head impact biomechanics to standing balance deficits. Mechanical energy transferred to the head during impacts may deform neural and sensory components involved in the control of standing balance. From our review of acute balance-related changes, concussions frequently resulted in increased magnitude but reduced complexity of postural sway, while subconcussive studies showed inconsistent outcomes. Although vestibular and visual symptoms are common, potential injury to these sensors and their neural pathways are often neglected in biomechanics analyses. While current evidence implies a link between tissue deformations in deep brain regions including the brainstem and common post-concussion balance-related deficits, this link has not been adequately investigated. Key limitations in current studies include inadequate balance sampling duration, varying test time points, and lack of head impact biomechanics measurements. Future investigations should also employ targeted quantitative methods to probe the sensorimotor and neural components underlying balance control. A deeper understanding of the specific injury mechanisms will inform diagnosis and management of balance deficits after concussions and subconcussive head impact exposure.
Collapse
|
34
|
Dhote VV, Raja MKMM, Samundre P, Sharma S, Anwikar S, Upaganlawar AB. Sports Related Brain Injury and Neurodegeneration in Athletes. Curr Mol Pharmacol 2021; 15:51-76. [PMID: 34515018 DOI: 10.2174/1874467214666210910114324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | | | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Supriya Sharma
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Shraddha Anwikar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Aman B Upaganlawar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| |
Collapse
|
35
|
Lees B, Earls NE, Meares S, Batchelor J, Oxenham V, Rae CD, Jugé L, Cysique LA. Diffusion Tensor Imaging in Sport-Related Concussion: A Systematic Review Using an a priori Quality Rating System. J Neurotrauma 2021; 38:3032-3046. [PMID: 34309410 DOI: 10.1089/neu.2021.0154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffusion tensor imaging (DTI) of brain white matter (WM) may be useful for characterizing the nature and degree of brain injury after sport-related concussion (SRC) and assist in establishing objective diagnostic and prognostic biomarkers. This study aimed to conduct a systematic review using an a priori quality rating strategy to determine the most consistent DTI-WM changes post-SRC. Articles published in English (until June 2020) were retrieved by standard research engine and gray literature searches (N = 4932), using PRISMA guidelines. Eligible studies were non-interventional naturalistic original studies that conducted DTI within 6 months of SRC in current athletes from all levels of play, types of sports, and sex. A total of 29 articles were included in the review, and after quality appraisal by two raters, data from 10 studies were extracted after being identified as high quality. High-quality studies showed widespread moderate-to-large WM differences when SRC samples were compared to controls during the acute to early chronic stage (days to weeks) post-SRC, including both increased and decreased fractional anisotropy and axial diffusivity and decreased mean diffusivity and radial diffusivity. WM differences remained stable in the chronic stage (2-6 months post-SRC). DTI metrics were commonly associated with SRC symptom severity, although standardized SRC diagnostics would improve future research. This indicates that microstructural recovery is often incomplete at return to play and may lag behind clinically assessed recovery measures. Future work should explore interindividual trajectories to improve understanding of the heterogeneous and dynamic WM patterns post-SRC.
Collapse
Affiliation(s)
- Briana Lees
- The Matilda Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nicola E Earls
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Susanne Meares
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Jennifer Batchelor
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
| | - Vincent Oxenham
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia.,Department of Neurology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, UNSW Medicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Lucette A Cysique
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,St. Vincent's Hospital Applied Medical Research Centre, Peter Duncan Neuroscience, Sydney, New South Wales, Australia.,School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Symons GF, Clough M, Fielding J, O'Brien WT, Shepherd CE, Wright DK, Shultz SR. The Neurological Consequences of Engaging in Australian Collision Sports. J Neurotrauma 2021; 37:792-809. [PMID: 32056505 DOI: 10.1089/neu.2019.6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Collision sports are an integral part of Australian culture. The most common collision sports in Australia are Australian rules football, rugby union, and rugby league. Each of these sports often results in participants sustaining mild brain traumas, such as concussive and subconcussive injuries. However, the majority of previous studies and reviews pertaining to the neurological implications of sustaining mild brain traumas, while engaging in collision sports, have focused on those popular in North America and Europe. As part of this 2020 International Neurotrauma Symposium special issue, which highlights Australian neurotrauma research, this article will therefore review the burden of mild brain traumas in Australian collision sports athletes. Specifically, this review will first provide an overview of the consequences of mild brain trauma in Australian collision sports, followed by a summary of the previous studies that have investigated neurocognition, ocular motor function, neuroimaging, and fluid biomarkers, as well as neuropathological outcomes in Australian collision sports athletes. A review of the literature indicates that although Australians have contributed to the field, several knowledge gaps and limitations currently exist. These include important questions related to sex differences, the identification and implementation of blood and imaging biomarkers, the need for consistent study designs and common data elements, as well as more multi-modal studies. We conclude that although Australia has had an active history of investigating the neurological impact of collision sports participation, further research is clearly needed to better understand these consequences in Australian athletes and how they can be mitigated.
Collapse
Affiliation(s)
- Georgia F Symons
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - William T O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Claire E Shepherd
- Neuroscience Research Australia, The University of New South Wales, Sydney, New South Wales, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
37
|
Benjamini D, Iacono D, Komlosh ME, Perl DP, Brody DL, Basser PJ. Diffuse axonal injury has a characteristic multidimensional MRI signature in the human brain. Brain 2021; 144:800-816. [PMID: 33739417 DOI: 10.1093/brain/awaa447] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023] Open
Abstract
Axonal injury is a major contributor to the clinical symptomatology in patients with traumatic brain injury. Conventional neuroradiological tools, such as CT and MRI, are insensitive to diffuse axonal injury (DAI) caused by trauma. Diffusion tensor MRI parameters may change in DAI lesions; however, the nature of these changes is inconsistent. Multidimensional MRI is an emerging approach that combines T1, T2, and diffusion, and replaces voxel-averaged values with distributions, which allows selective isolation of specific potential abnormal components. By performing a combined post-mortem multidimensional MRI and histopathology study, we aimed to investigate T1-T2-diffusion changes linked to DAI and to define their histopathological correlates. Corpora callosa derived from eight subjects who had sustained traumatic brain injury, and three control brain donors underwent post-mortem ex vivo MRI at 7 T. Multidimensional, diffusion tensor, and quantitative T1 and T2 MRI data were acquired and processed. Following MRI acquisition, slices from the same tissue were tested for amyloid precursor protein (APP) immunoreactivity to define DAI severity. A robust image co-registration method was applied to accurately match MRI-derived parameters and histopathology, after which 12 regions of interest per tissue block were selected based on APP density, but blind to MRI. We identified abnormal multidimensional T1-T2, diffusion-T2, and diffusion-T1 components that are strongly associated with DAI and used them to generate axonal injury images. We found that compared to control white matter, mild and severe DAI lesions contained significantly larger abnormal T1-T2 component (P = 0.005 and P < 0.001, respectively), and significantly larger abnormal diffusion-T2 component (P = 0.005 and P < 0.001, respectively). Furthermore, within patients with traumatic brain injury the multidimensional MRI biomarkers differentiated normal-appearing white matter from mild and severe DAI lesions, with significantly larger abnormal T1-T2 and diffusion-T2 components (P = 0.003 and P < 0.001, respectively, for T1-T2; P = 0.022 and P < 0.001, respectively, for diffusion-T2). Conversely, none of the conventional quantitative MRI parameters were able to differentiate lesions and normal-appearing white matter. Lastly, we found that the abnormal T1-T2, diffusion-T1, and diffusion-T2 components and their axonal damage images were strongly correlated with quantitative APP staining (r = 0.876, P < 0.001; r = 0.727, P < 0.001; and r = 0.743, P < 0.001, respectively), while producing negligible intensities in grey matter and in normal-appearing white matter. These results suggest that multidimensional MRI may provide non-invasive biomarkers for detection of DAI, which is the pathological substrate for neurological disorders ranging from concussion to severe traumatic brain injury.
Collapse
Affiliation(s)
- Dan Benjamini
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
| | - Diego Iacono
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA.,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Neuroscience Graduate Program, Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Michal E Komlosh
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, USA
| | - Daniel P Perl
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA
| | - David L Brody
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, MD, USA.,Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
38
|
McGeown JP, Hume PA, Kara S, King D, Theadom A. Preliminary Evidence for the Clinical Utility of Tactile Somatosensory Assessments of Sport-Related mTBI. SPORTS MEDICINE - OPEN 2021; 7:56. [PMID: 34370132 PMCID: PMC8353035 DOI: 10.1186/s40798-021-00340-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the clinical utility of tactile somatosensory assessments to assist clinicians in diagnosing sport-related mild traumatic brain injury (SR-mTBI), classifying recovery trajectory based on performance at initial clinical assessment, and determining if neurophysiological recovery coincided with clinical recovery. RESEARCH DESIGN Prospective cohort study with normative controls. METHODS At admission (n = 79) and discharge (n = 45/79), SR-mTBI patients completed the SCAT-5 symptom scale, along with the following three components from the Cortical Metrics Brain Gauge somatosensory assessment (BG-SA): temporal order judgement (TOJ), TOJ with confounding condition (TOJc), and duration discrimination (DUR). To assist SR-mTBI diagnosis on admission, BG-SA performance was used in logistic regression to discriminate cases belonging to the SR-mTBI sample or a healthy reference sample (pooled BG-SA data for healthy participants in previous studies). Decision trees evaluated how accurately BG-SA performance classified SR-mTBI recovery trajectories. RESULTS BG-SA TOJ, TOJc, and DUR poorly discriminated between cases belonging to the SR-mTBI sample or a healthy reference sample (0.54-0.70 AUC, 47.46-64.71 PPV, 48.48-61.11 NPV). The BG-SA evaluated did not accurately classify SR-mTBI recovery trajectories (> 14-day resolution 48%, ≤14-day resolution 54%, lost to referral/follow-up 45%). Mann-Whitney U tests revealed differences in BG-SA TOJc performance between SR-mTBI participants and the healthy reference sample at initial clinical assessment and at clinical recovery (p < 0.05). CONCLUSIONS BG-SA TOJ, TOJc, and DUR appear to have limited clinical utility to assist clinicians with diagnosing SR-mTBI or predicting recovery trajectories under ecologically valid conditions. Neurophysiological abnormalities persisted beyond clinical recovery given abnormal BG-SA TOJc performance observed when SR-mTBI patients achieved clinical recovery.
Collapse
Affiliation(s)
- Joshua P McGeown
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| | - Stephen Kara
- Axis Sports Medicine Clinic, Auckland, New Zealand
| | - Doug King
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Alice Theadom
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
39
|
Hellewell SC, Welton T, Pearce AJ, Maller JJ, Grieve SM. Diffusion MRI as a complementary assessment to cognition, emotion, and motor dysfunction after sports-related concussion: a systematic review and critical appraisal of the literature. Brain Imaging Behav 2021; 15:1685-1704. [PMID: 32720180 DOI: 10.1007/s11682-020-00336-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sports-related concussion (SRC) is a complex and heterogeneous injury with psychological, cognitive and functional consequences. Advances in diffusion magnetic resonance imaging (dMRI) allow sensitive measurement of white matter pathology post-SRC and may provide insight into injury and recovery. We systematically reviewed and meta-analyzed the literature examining dMRI alongside cognitive, emotional or motor assessments to determine relationships between these analyses. Sixteen studies examining young athletes (n = 6) or retired professionals (n = 10) met the inclusion criteria, with 12 emotional, 10 cognitive and four motor assessments. Studies had heterogeneous methodology, moderate quality and modest sample sizes. Fractional anisotropy (FA) was the most frequent dMRI metric, with SRC-induced changes described most commonly in the frontal lobe and least in the cerebellum and brainstem. There is an emerging complementary role for dMRI as part of a comprehensive assessment battery for SRC. However, larger-scale studies with broader subject populations (specifically, in females and in the 30-45 year age range) are needed to corroborate findings and determine the true diagnostic utility of dMRI post-SRC.
Collapse
Affiliation(s)
- Sarah C Hellewell
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Thomas Welton
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Alan J Pearce
- School of Allied Health, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jerome J Maller
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.,General Electric Healthcare, Richmond, VIC, 3181, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia. .,Department of Radiology, Royal Prince Alfred Hospital, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
40
|
Zimmerman KA, Laverse E, Samra R, Yanez Lopez M, Jolly AE, Bourke NJ, Graham NSN, Patel MC, Hardy J, Kemp S, Morris HR, Sharp DJ. White matter abnormalities in active elite adult rugby players. Brain Commun 2021; 3:fcab133. [PMID: 34435188 PMCID: PMC8381344 DOI: 10.1093/braincomms/fcab133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Etienne Laverse
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - Ravjeet Samra
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of
Biomedical Engineering and Imaging Sciences, King’s College
London, London SE1 7EH, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Neil S N Graham
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
| | - Maneesh C Patel
- Imaging Department, Imperial College Healthcare NHS
Trust, Charing Cross Hospital, London W6 8RF, UK
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila
Weston Laboratories, Queen Square Genomics, UCL Dementia Research
Institute, London WC1N 3BG, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham,
London TW2 7BA, UK
- Faculty of Epidemiology and Public Health, London
School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience,
University College London, London NW3 2PF, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging
Laboratory, Division of Brain Sciences, Hammersmith Hospital, Imperial College
London, London W12 0NN, UK
- Care Research & Technology Centre, UK
Dementia Research Institute, London W12 0BZ, UK
- The Royal British Legion Centre for Blast Injury
Studies, Imperial College London SW7 2AZ, UK
| |
Collapse
|
41
|
Major B, Symons GF, Sinclair B, O'Brien WT, Costello D, Wright DK, Clough M, Mutimer S, Sun M, Yamakawa GR, Brady RD, O'Sullivan MJ, Mychasiuk R, McDonald SJ, O'Brien TJ, Law M, Kolbe S, Shultz SR. White and Gray Matter Abnormalities in Australian Footballers With a History of Sports-Related Concussion: An MRI Study. Cereb Cortex 2021; 31:5331-5338. [PMID: 34148076 DOI: 10.1093/cercor/bhab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Sports-related concussion (SRC) is a form of mild traumatic brain injury that has been linked to long-term neurological abnormalities. Australian rules football is a collision sport with wide national participation and is growing in popularity worldwide. However, the chronic neurological consequences of SRC in Australian footballers remain poorly understood. This study investigated the presence of brain abnormalities in Australian footballers with a history of sports-related concussion (HoC) using multimodal MRI. Male Australian footballers with HoC (n = 26), as well as noncollision sport athletes with no HoC (n = 27), were recruited to the study. None of the footballers had sustained a concussion in the preceding 6 months, and all players were asymptomatic. Data were acquired using a 3T MRI scanner. White matter integrity was assessed using diffusion tensor imaging. Cortical thickness, subcortical volumes, and cavum septum pellucidum (CSP) were analyzed using structural MRI. Australian footballers had evidence of widespread microstructural white matter damage and cortical thinning. No significant differences were found regarding subcortical volumes or CSP. These novel findings provide evidence of persisting white and gray matter abnormalities in Australian footballers with HoC, and raise concerns related to the long-term neurological health of these athletes.
Collapse
Affiliation(s)
- Brendan Major
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Georgia F Symons
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Ben Sinclair
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - William T O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Daniel Costello
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - David K Wright
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Meaghan Clough
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Rhys D Brady
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Michael J O'Sullivan
- Department of Faculty of Medicine, UQ Centre for Clinical Research and Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Meng Law
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC 3004, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
42
|
Rudroff T, Workman CD. Transcranial Direct Current Stimulation as a Treatment Tool for Mild Traumatic Brain Injury. Brain Sci 2021; 11:brainsci11060806. [PMID: 34207004 PMCID: PMC8235194 DOI: 10.3390/brainsci11060806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short- and long-term motor and cognitive impairments. Recent studies have documented the therapeutic potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique used for this purpose is transcranial direct current stimulation (tDCS). The focus of this review was to provide a detailed, comprehensive (i.e., both cognitive and motor impairment) overview of the literature regarding therapeutic tDCS paradigms after mTBI. A publication search of the PubMed, Scopus, CINAHL, and PsycINFO databases was performed to identify records that applied tDCS in mTBI. The publication search yielded 14,422 records from all of the databases, however, only three met the inclusion criteria and were included in the final review. Based on the review, there is limited evidence of tDCS improving cognitive and motor performance. Surprisingly, there were only three studies that used tDCS in mTBI, which highlights an urgent need for more research to provide additional insights into ideal therapeutic brain targets and optimized stimulation parameters.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Neurology, University of Iowa Health Clinics, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-467-0363
| | - Craig D. Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
43
|
Kaufman MW, Su CA, Trivedi NN, Lee MK, Nelson GB, Cupp SA, Voos JE. The Current Status of Concussion Assessment Scales: A Critical Analysis Review. JBJS Rev 2021; 9:01874474-202106000-00001. [PMID: 34101673 DOI: 10.2106/jbjs.rvw.20.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
» Concussion is a complex pathophysiologic process that affects the brain; it is induced by biomechanical forces, with alteration in mental status with or without loss of consciousness. » Concussion assessment tools may be broadly categorized into (1) screening tests such as the SAC (Standardized Assessment of Concussion), the BESS (Balance Error Scoring System), and the King-Devick (KD) test; (2) confirmatory tests including the SCAT (Sport Concussion Assessment Tool), the ImPACT (Immediate Post-Concussion Assessment and Cognitive Testing), and the VOMS (Vestibular Oculomotor Screening); and (3) objective examinations such as brain network activation (BNA) analysis, imaging studies, and physiologic markers. » The KD, child SCAT3 (cSCAT3), child ImPACT (cImPACT), and VOMS tests may be used to evaluate for concussion in the pediatric athlete. » Future work with BNA, functional magnetic resonance imaging, diffusion tensor imaging, and serum biomarkers may provide more objective assessment of concussion, neurologic injury, and subsequent recovery.
Collapse
Affiliation(s)
| | - Charles A Su
- Departments of Orthopaedic Surgery (C.A.S., N.N.T., G.B.N., S.A.C., and J.E.V.) and Family Medicine (S.A.C.), University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Nikunj N Trivedi
- Departments of Orthopaedic Surgery (C.A.S., N.N.T., G.B.N., S.A.C., and J.E.V.) and Family Medicine (S.A.C.), University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Michelle K Lee
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
| | - Grant B Nelson
- Departments of Orthopaedic Surgery (C.A.S., N.N.T., G.B.N., S.A.C., and J.E.V.) and Family Medicine (S.A.C.), University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Sean A Cupp
- Departments of Orthopaedic Surgery (C.A.S., N.N.T., G.B.N., S.A.C., and J.E.V.) and Family Medicine (S.A.C.), University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - James E Voos
- Departments of Orthopaedic Surgery (C.A.S., N.N.T., G.B.N., S.A.C., and J.E.V.) and Family Medicine (S.A.C.), University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
44
|
Tayebi M, Holdsworth SJ, Champagne AA, Cook DJ, Nielsen P, Lee TR, Wang A, Fernandez J, Shim V. The role of diffusion tensor imaging in characterizing injury patterns on athletes with concussion and subconcussive injury: a systematic review. Brain Inj 2021; 35:621-644. [PMID: 33843389 DOI: 10.1080/02699052.2021.1895313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is a major public health problem. The majority of TBIs are in the form of mild TBI (also known as concussion) with sports-related concussion (SRC) receiving public attention in recent years.Here we have performed a systematic review of the literature on the use of Diffusion Tensor Imaging (DTI) on sports-related concussion and subconcussive injuries. Our review found different patterns of change in DTI parameters between concussed and subconcussed groups. The Fractional Anisotropy (FA) was either unchanged or increased for the concussion group, while the subconcussed group generally experienced a decrease in FA. A reverse pattern was observed for Mean Diffusivity (MD) - where the concussed group experienced a decrease in MD while the subconcussed group showed an increase in MD. However, in general, discrepancies were observed in the results reported in the literature - likely due to the huge variations in DTI acquisition parameters, and image processing and analysis methods used in these studies. This calls for more comprehensive and well-controlled studies in this field, including those that combine the advanced brain imaging with biomechancial modeling and kinematic sensors - to shed light on the underlying mechanisms behind the structural changes observed from the imaging studies.
Collapse
Affiliation(s)
- Maryam Tayebi
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Insitute, Gisborne, New Zealand
| | - Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Poul Nielsen
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tae-Rin Lee
- Advanced Institute of Convergence Technology, Seoul National University, Seoul, Republic of Korea
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
45
|
Koerte IK, Esopenko C, Hinds SR, Shenton ME, Bonke EM, Bazarian JJ, Bickart KC, Bigler ED, Bouix S, Buckley TA, Choe MC, Echlin PS, Gill J, Giza CC, Hayes J, Hodges CB, Irimia A, Johnson PK, Kenney K, Levin HS, Lin AP, Lindsey HM, Lipton ML, Max JE, Mayer AR, Meier TB, Merchant-Borna K, Merkley TL, Mills BD, Newsome MR, Porfido T, Stephens JA, Tartaglia MC, Ware AL, Zafonte RD, Zeineh MM, Thompson PM, Tate DF, Dennis EL, Wilde EA, Baron D. The ENIGMA sports injury working group:- an international collaboration to further our understanding of sport-related brain injury. Brain Imaging Behav 2021; 15:576-584. [PMID: 32720179 PMCID: PMC7855299 DOI: 10.1007/s11682-020-00370-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor.
Collapse
Affiliation(s)
- Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität München, Waltherstr. 23, 80337, Munich, Germany.
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Science, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sidney R Hinds
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elena M Bonke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität München, Waltherstr. 23, 80337, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Jeffrey J Bazarian
- Departments of Emergency Medicine & Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Kevin C Bickart
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Neurology and Neuropsychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Meeryo C Choe
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neurology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Paul S Echlin
- Elliott Sports Medicine Clinic, Burlington, ON, Canada
| | - Jessica Gill
- Department of Intramural Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher C Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- Department of Pediatrics, Division of Neurology, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jasmeet Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Michael L Lipton
- Departments of Radiology, Psychiatry and Behavioral Sciences and The Dominick P. Purpura Department of Neuroscience, The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Montefiore Medicine, Bronx, NY, USA
| | - Jeffrey E Max
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, Rady Children's Hospital, San Diego, CA, USA
| | - Andrew R Mayer
- Mind Research Network, Albuquerque, NM, USA
- Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kian Merchant-Borna
- Departments of Emergency Medicine & Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Tricia L Merkley
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Brian D Mills
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Tara Porfido
- School of Graduate Studies, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Jaclyn A Stephens
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, USA
| | - Maria Carmela Tartaglia
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross D Zafonte
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - David Baron
- Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
46
|
Chmielewski TL, Tatman J, Suzuki S, Horodyski M, Reisman DS, Bauer RM, Clugston JR, Herman DC. Impaired motor control after sport-related concussion could increase risk for musculoskeletal injury: Implications for clinical management and rehabilitation. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:154-161. [PMID: 33188963 PMCID: PMC7987572 DOI: 10.1016/j.jshs.2020.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 05/29/2023]
Abstract
This review presents a conceptual framework and supporting evidence that links impaired motor control after sport-related concussion (SRC) to increased risk for musculoskeletal injury. Multiple studies have found that athletes who are post-SRC have higher risk for musculoskeletal injury compared to their counterparts. A small body of research suggests that impairments in motor control are associated with musculoskeletal injury risk. Motor control involves the perception and processing of sensory information and subsequent coordination of motor output within the central nervous system to perform a motor task. Motor control is inclusive of motor planning and motor learning. If sensory information is not accurately perceived or there is interference with sensory information processing and cognition, motor function will be altered, and an athlete may become vulnerable to injury during sport participation. Athletes with SRC show neuroanatomic and neurophysiological changes relevant to motor control even after meeting return to sport criteria, including a normal neurological examination, resolution of symptoms, and return to baseline function on traditional concussion testing. In conjunction, altered motor function is demonstrated after SRC in muscle activation and force production, movement patterns, balance/postural stability, and motor task performance, especially performance of a motor task paired with a cognitive task (i.e., dual-task condition). The clinical implications of this conceptual framework include a need to intentionally address motor control impairments after SRC to mitigate musculoskeletal injury risk and to monitor motor control as the athlete progresses through the return to sport continuum.
Collapse
Affiliation(s)
| | | | - Shuhei Suzuki
- TRIA Orthopedic Center, Bloomington, MN 55431, USA; ATP Tour Inc., Ponte Vedra Beach, FL 32082, USA
| | - MaryBeth Horodyski
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32607, USA
| | - Darcy S Reisman
- Department of Physical Therapy, University of Delaware, Newark, DE 19716, USA
| | - Russell M Bauer
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611, USA
| | - James R Clugston
- Department of Community Health & Family Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Daniel C Herman
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|
47
|
Brett BL, Koch KM, Muftuler LT, Budde M, McCrea MA, Meier TB. Association of Head Impact Exposure with White Matter Macrostructure and Microstructure Metrics. J Neurotrauma 2021; 38:474-484. [PMID: 33003979 PMCID: PMC7875606 DOI: 10.1089/neu.2020.7376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prior studies have reported white matter abnormalities associated with a history of cumulative concussion and/or repetitive head impacts (RHI) in contact sport athletes. Growing evidence suggests these abnormalities may begin as more subtle changes earlier in life in active younger athletes. We investigated the relationship between prior concussion and contact sport exposure with multi-modal white matter microstructure and macrostructure using magnetic resonance imaging. High school and collegiate athletes (n = 121) completed up to four evaluations involving neuroimaging. Linear mixed-effects models examined associations of years of contact sport exposure (i.e., RHI proxy) and prior concussion across multiple metrics of white matter, including total white matter volume, diffusion tensor imaging (DTI) metrics, diffusion kurtosis imaging (DKI) metrics, and quantitative susceptibility mapping (QSM). A significant inverse association between cumulative years of contact sport exposure and QSM was observed, F(1, 237.77) = 4.67, p = 0.032. Cumulative contact sport exposure was also associated with decreased radial diffusivity, F(1, 114.56) = 5.81, p = 0.018, as well as elevated fractional anisotropy, F(1, 115.32) = 5.40, p = 0.022, and radial kurtosis, F(1, 113.45) = 4.03, p = 0.047. In contrast, macroscopic white matter volume was not significantly associated with cumulative contact sport exposure (p > 0.05). Concussion history was not significantly associated with QSM, DTI, DKI, or white matter volume (all, p > 0.05). Cumulative contact sport exposure is associated with subtle differences in white matter microstructure, but not gross white matter macrostructure, in young active athletes. Longitudinal follow-up is required to assess the progression of these findings to determine their contribution to potential adverse effects later in life.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kevin M. Koch
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Depertment of Radiology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Imaging Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - L. Tugan Muftuler
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Depertment of Radiology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew Budde
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A. McCrea
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Neurology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Timothy B. Meier
- Department of Neurosurgery, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Center for Neurotrauma Research, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
48
|
Mahan MY, Rafter DJ, Truwit CL, Oswood M, Samadani U. Evaluation of diffusion measurements reveals radial diffusivity indicative of microstructural damage following acute, mild traumatic brain injury. Magn Reson Imaging 2020; 77:137-147. [PMID: 33359428 DOI: 10.1016/j.mri.2020.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/25/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Mild TBI, characterized by microstructural damage, often undetectable on conventional imaging techniques, is a pervasive condition that disturbs brain function and can potentially result in long-term deficits. Deciphering the underlying microstructural damage in mild TBI is crucial for establishing a reliable diagnosis and enabling effective therapeutics. Efforts to capture this damage have been extensive, but results have been inconsistent and incomplete. METHODS To that effect, we set out to examine the shape of the diffusion tensor in mild TBI during the acute phase of injury. We inspected diffusivity and geometric measurements describing the diffusion tensor's shape and compared mild TBI (N = 34, 20.4-66.6 yo) measurements with those from healthy control (N = 42, 20.7-67.2 yo) participants using voxelwise tract-based spatial statistics. Subsequently, to explore associations between the diffusion measurements in mild TBI, we performed nonparametric statistics and machine learning techniques. RESULTS Overall, mild TBI displayed a diffuse increase in Dλ2, Dλ3, Dradial, Dmean, and Cspherical, with a diffuse decrease in Afractional, Amode, and Clinear, in addition to no change in Daxial or Cplanar. Most notably, our results provide evidence for Dradial as a potential biomarker for microstructural damage, specifically its main component Dλ2, based on their performance in discriminating between mild TBI and control groups. Afractional was also found to be important for discriminating between groups. CONCLUSION Our results revealed the importance of a diffusion measurement often overlooked, Dradial, in assessing TBI and suggest differentiating diffusion measurements has the potential utility to detect variations in the underlying pathophysiology after injury.
Collapse
Affiliation(s)
- Margaret Y Mahan
- Department of Biomedical Informatics and Computational Biology, University of Minnesota, 101 Pleasant St SE, Minneapolis, MN 55455, USA.
| | - Daniel J Rafter
- Department of Biomedical Informatics and Computational Biology, University of Minnesota, 101 Pleasant St SE, Minneapolis, MN 55455, USA
| | - Charles L Truwit
- Diagnostic Imaging, Philips Global, 6655 Wedgwood Rd N #105, Maple Grove, MN 55311, USA; Department of Radiology, Hennepin Healthcare, 701 Park Ave, Minneapolis, MN 55415, USA.
| | - Mark Oswood
- Department of Radiology, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Radiology, Hennepin Healthcare, 701 Park Ave, Minneapolis, MN 55415, USA.
| | - Uzma Samadani
- Department of Biomedical Informatics and Computational Biology, University of Minnesota, 101 Pleasant St SE, Minneapolis, MN 55455, USA; Department of Neurosurgery, Minneapolis VA Medical Center, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| |
Collapse
|
49
|
Kawata K, Steinfeldt JA, Huibregtse ME, Nowak MK, Macy JT, Kercher K, Rettke DJ, Shin A, Chen Z, Ejima K, Newman SD, Cheng H. Association Between Proteomic Blood Biomarkers and DTI/NODDI Metrics in Adolescent Football Players: A Pilot Study. Front Neurol 2020; 11:581781. [PMID: 33304306 PMCID: PMC7701105 DOI: 10.3389/fneur.2020.581781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
While neuroimaging and blood biomarker have been two of the most active areas of research in the neurotrauma community, these fields rarely intersect to delineate subconcussive brain injury. The aim of the study was to examine the association between diffusion MRI techniques [diffusion tensor imaging (DTI) and neurite orientation/dispersion density imaging (NODDI)] and brain-injury blood biomarker levels [tau, neurofilament-light (NfL), glial-fibrillary-acidic-protein (GFAP)] in high-school football players at their baseline, aiming to detect cumulative neuronal damage from prior seasons. Twenty-five football players were enrolled in the study. MRI measures and blood samples were obtained during preseason data collection. The whole-brain, tract-based spatial statistics was conducted for six diffusion metrics: fractional anisotropy (FA), mean diffusivity (MD), axial/radial diffusivity (AD, RD), neurite density index (NDI), and orientation dispersion index (ODI). Five players were ineligible for MRIs, and three serum samples were excluded due to hemolysis, resulting in 17 completed set of diffusion metrics and blood biomarker levels for association analysis. Our permutation-based regression model revealed that serum tau levels were significantly associated with MD and NDI in various axonal tracts; specifically, elevated serum tau levels correlated to elevated MD (p = 0.0044) and reduced NDI (p = 0.016) in the corpus callosum and surrounding white matter tracts (e.g., longitudinal fasciculus). Additionally, there was a negative association between NfL and ODI in the focal area of the longitudinal fasciculus. Our data suggest that high school football players may develop axonal microstructural abnormality in the corpus callosum and surrounding white matter tracts, such as longitudinal fasciculus. A future study is warranted to determine the longitudinal multimodal relationship in response to repetitive exposure to sports-related head impacts.
Collapse
Affiliation(s)
- Keisuke Kawata
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| | - Jesse A. Steinfeldt
- Department of Counseling and Educational Psychology, School of Education, Indiana University, Bloomington, IN, United States
| | - Megan E. Huibregtse
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Madeleine K. Nowak
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Jonathan T. Macy
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Kyle Kercher
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Devin J. Rettke
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zhongxue Chen
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, United States
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
| | - Hu Cheng
- Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
50
|
Bai L, Bai G, Wang S, Yang X, Gan S, Jia X, Yin B, Yan Z. Strategic white matter injury associated with long-term information processing speed deficits in mild traumatic brain injury. Hum Brain Mapp 2020; 41:4431-4441. [PMID: 32657510 PMCID: PMC7502829 DOI: 10.1002/hbm.25135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Deficits in information processing speed (IPS) are among the earliest and most prominent cognitive manifestations in mild traumatic brain injury (mTBI). We investigated the impact of white matter fiber location on IPS outcome in an individual basis assessment. A total of 112 acute mild TBI with all CT negative underwent brain DTI and blood sampling for inflammation cytokines within 7 days postinjury and 72 age- and sex matched healthy controls with same assessments were enrolled. IPS outcome was assessed by the trail making test at 6-12 month postinjury in mild TBI. Fractional anisotropy (FA) features were extracted using a novel lesion-load analytical strategy to capture spatially heterogeneous white matter injuries and minimize implicit assumptions of uniform injury across diverse clinical presentations. Acute mild TBI exhibited a general pattern of increased and decreased FA in specific white matter tracts. The power of acute FA measures to identify patients developing IPS deficits with 92% accuracy and further improved to 96% accuracy by adding inflammation cytokines. The classifiers predicted individual's IPS and working memory ratings (r = .74 and .80, respectively, p < .001). The thalamo-cortical circuits and commissural tracts projecting or connecting frontal regions became important predictors. This prognostic model was also verified by an independent replicate sample. Our findings highlighted damage to frontal interhemispheric and thalamic projection fiber tracts harboring frontal-subcortical neuronal circuits as a predictor for processing speed performance in mild TBI.
Collapse
Affiliation(s)
- Lijun Bai
- Department of RadiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical EngineeringSchool of Life Science and Technology, Xi' an Jiaotong UniversityXi'anChina
| | - Guanghui Bai
- Department of RadiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical EngineeringSchool of Life Science and Technology, Xi' an Jiaotong UniversityXi'anChina
| | - Xuefei Yang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical EngineeringSchool of Life Science and Technology, Xi' an Jiaotong UniversityXi'anChina
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical EngineeringSchool of Life Science and Technology, Xi' an Jiaotong UniversityXi'anChina
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical EngineeringSchool of Life Science and Technology, Xi' an Jiaotong UniversityXi'anChina
| | - Bo Yin
- Department of Neurosurgerythe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhihan Yan
- Department of RadiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|