1
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
Hwang J, Estick CM, Ikonne US, Butler D, Pait MC, Elliott LH, Ruiz S, Smith K, Rentschler KM, Mundell C, Almeida MF, Stumbling Bear N, Locklear JP, Abumohsen Y, Ivey CM, Farizatto KLG, Bahr BA. The Role of Lysosomes in a Broad Disease-Modifying Approach Evaluated across Transgenic Mouse Models of Alzheimer's Disease and Parkinson's Disease and Models of Mild Cognitive Impairment. Int J Mol Sci 2019; 20:E4432. [PMID: 31505809 PMCID: PMC6770842 DOI: 10.3390/ijms20184432] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
Many neurodegenerative disorders have lysosomal impediments, and the list of proposed treatments targeting lysosomes is growing. We investigated the role of lysosomes in Alzheimer's disease (AD) and other age-related disorders, as well as in a strategy to compensate for lysosomal disturbances. Comprehensive immunostaining was used to analyze brains from wild-type mice vs. amyloid precursor protein/presenilin-1 (APP/PS1) mice that express mutant proteins linked to familial AD. Also, lysosomal modulation was evaluated for inducing synaptic and behavioral improvements in transgenic models of AD and Parkinson's disease, and in models of mild cognitive impairment (MCI). Amyloid plaques were surrounded by swollen organelles positive for the lysosome-associated membrane protein 1 (LAMP1) in the APP/PS1 cortex and hippocampus, regions with robust synaptic deterioration. Within neurons, lysosomes contain the amyloid β 42 (Aβ42) degradation product Aβ38, and this indicator of Aβ42 detoxification was augmented by Z-Phe-Ala-diazomethylketone (PADK; also known as ZFAD) as it enhanced the lysosomal hydrolase cathepsin B (CatB). PADK promoted Aβ42 colocalization with CatB in lysosomes that formed clusters in neurons, while reducing Aβ deposits as well. PADK also reduced amyloidogenic peptides and α-synuclein in correspondence with restored synaptic markers, and both synaptic and cognitive measures were improved in the APP/PS1 and MCI models. These findings indicate that lysosomal perturbation contributes to synaptic and cognitive decay, whereas safely enhancing protein clearance through modulated CatB ameliorates the compromised synapses and cognition, thus supporting early CatB upregulation as a disease-modifying therapy that may also slow the MCI to dementia continuum.
Collapse
Affiliation(s)
- Jeannie Hwang
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA
| | - Candice M Estick
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Uzoma S Ikonne
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - David Butler
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Morgan C Pait
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Lyndsie H Elliott
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Sarah Ruiz
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Kaitlan Smith
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Molecular Biotechnology Program University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Katherine M Rentschler
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Cary Mundell
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Michael F Almeida
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Nicole Stumbling Bear
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - James P Locklear
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Yara Abumohsen
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Cecily M Ivey
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Karen L G Farizatto
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA
| | - Ben A Bahr
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269, USA.
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
- Molecular Biotechnology Program University of North Carolina-Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
3
|
Kiely AP, Miners JS, Courtney R, Strand C, Love S, Holton JL. Exploring the putative role of kallikrein-6, calpain-1 and cathepsin-D in the proteolytic degradation of α-synuclein in multiple system atrophy. Neuropathol Appl Neurobiol 2018; 45:347-360. [PMID: 29993134 DOI: 10.1111/nan.12512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
AIMS There is evidence that accumulation of α-synuclein (α-syn) in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) results from impaired removal of α-syn rather than its overproduction. Kallikrein-6 (KLK6), calpain-1 (CAPN1) and cathepsin-D (CTSD) are among a small number of proteases that cleave α-syn and are dysregulated in PD and DLB. Our aim in this study was to determine whether protease activity is altered in another α-synucleinopathy, multiple system atrophy (MSA), and might thereby modulate the regional distribution of α-syn accumulation. METHODS mRNA and protein level and/or activity of KLK6, CAPN1 and CTSD were measured and assessed in relation to α-syn load in multiple brain regions (posterior frontal cortex, caudate nucleus, putamen, occipital cortex, pontine base and cerebellar white matter), in MSA (n = 20) and age-matched postmortem control tissue (n = 20). RESULTS CTSD activity was elevated in MSA in the pontine base and cerebellar white matter. KLK6 and CAPN1 levels were elevated in MSA in the putamen and cerebellar white matter. However, the activity or level of these proteolytic enzymes did not correlate with the regional distribution of α-syn. CONCLUSIONS Accumulation of α-syn in MSA is not due to reduced activity of the proteases we have studied. We suggest that their upregulation is likely to be a compensatory response to increased α-syn in MSA.
Collapse
Affiliation(s)
- A P Kiely
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - J S Miners
- Dementia Research Group, Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - R Courtney
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - C Strand
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| | - S Love
- Dementia Research Group, Clinical Neurosciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - J L Holton
- Queen Square Brain Bank, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Lysosomal response in relation to α-synuclein pathology differs between Parkinson's disease and multiple system atrophy. Neurobiol Dis 2018; 114:140-152. [PMID: 29505813 DOI: 10.1016/j.nbd.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/26/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Intracellular deposition of pathologically altered α-synuclein mostly in neurons characterises Parkinson's disease (PD), while its accumulation predominantly in oligodendrocytes is a feature of multiple system atrophy (MSA). Recently a prion-like spreading of pathologic α-synuclein has been suggested to play a role in the pathogenesis of PD and MSA. This implicates a role of protein processing systems, including lysosomes, supported also by genetic studies in PD. However, particularly for MSA, the mechanism of cell-to-cell propagation of α-synuclein is yet not fully understood. To evaluate the significance of lysosomal response, we systematically compared differently affected neuronal populations in PD, MSA, and non-diseased brains using morphometric immunohistochemistry (cathepsin D), double immunolabelling (cathepsin D/α-synuclein) laser confocal microscopy, and immunogold electron microscopy for the disease associated α-synuclein. We found that i) irrespective of the presence of neuronal inclusions, the volume density of cathepsin D immunoreactivity significantly increases in affected neurons of the pontine base in MSA brains; ii) volume density of cathepsin D immunoreactivity increases in nigral neurons in PD without inclusions and with non-ubiquitinated pre-aggregates of α-synuclein, but not in neurons with Lewy bodies; iii) cathepsin D immunoreactivity frequently colocalises with α-synuclein pre-aggregates in nigral neurons in PD; iv) ultrastructural observations confirm disease-associated α-synuclein in neuronal and astrocytic lysosomes in PD; v) lysosome-associated α-synuclein is observed in astroglia and rarely in oligodendroglia and in neurons in MSA. Our observations support a crucial role for the neuronal endosomal-lysosomal system in the processing of α-synuclein in PD. We suggest a distinct contribution of lysosomes to the pathogenesis of MSA, including the possibility of oligodendroglial and eventually neuronal uptake of exogenous α-synuclein in MSA.
Collapse
|
5
|
Romine H, Rentschler KM, Smith K, Edwards A, Colvin C, Farizatto K, Pait MC, Butler D, Bahr BA. Potential Alzheimer's Disease Therapeutics Among Weak Cysteine Protease Inhibitors Exhibit Mechanistic Differences Regarding Extent of Cathepsin B Up-Regulation and Ability to Block Calpain. ACTA ACUST UNITED AC 2017; 13:38-59. [PMID: 29805718 DOI: 10.19044/esj.2017.c1p5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cysteine protease inhibitors have long been part of drug discovery programs for Alzheimer's disease (AD), traumatic brain injury (TBI), and other disorders. Select inhibitors reduce accumulating proteins and AD pathology in mouse models. One such compound, Z-Phe-Aladiazomethylketone (PADK), exhibits a very weak IC50 (9-11 μM) towards cathepsin B (CatB), but curiously PADK causes marked up-regulation of the Aβ-degrading CatB and improves spatial memory. Potential therapeutic and weak inhibitor E64d (14 μM IC50) also up-regulates CatB. PADK and E64d were compared regarding the blockage of calcium-induced cytoskeletal deterioration in brain samples, monitoring the 150-kDa spectrin breakdown product (SBDP) known to be produced by calpain. PADK had little to no effect on SBDP production at 10-100 μM. In contrast, E64d caused a dose-dependent decline in SBDP levels with an IC50 of 3-6 μM, closely matching its reported potency for inhibiting μ-calpain. Calpain also cleaves the cytoskeletal organizing protein gephyrin, producing 49-kDa (GnBDP49) and 18-kDa (GnBDP18) breakdown products. PADK had no apparent effect on calcium-induced gephyrin fragments whereas E64d blocked their production. E64d also protected the parent gephyrin in correspondence with reduced BDP levels. The findings of this study indicate that PADK's positive and selective effects on CatB are consistent with human studies showing exercise elevates CatB and such elevation correlates with improved memory. On the other hand, E64d exhibits both marginal CatB enhancement and potent calpain inhibition. This dual effect may be beneficial for treating AD. Alternatively, the potent action on calpain-related pathology may explain E64d's protection in AD and TBI models.
Collapse
Affiliation(s)
- Heather Romine
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | | | - Kaitlan Smith
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Ayanna Edwards
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Camille Colvin
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Karen Farizatto
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - Morgan C Pait
- University of North Carolina - Pembroke, Pembroke, North Carolina, USA
| | - David Butler
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Ben A Bahr
- William C. Friday Laboratory, University of North Carolina - Pembroke, North Carolina, USA
| |
Collapse
|
6
|
Farizatto KLG, Ikonne US, Almeida MF, Ferrari MFR, Bahr BA. Aβ42-mediated proteasome inhibition and associated tau pathology in hippocampus are governed by a lysosomal response involving cathepsin B: Evidence for protective crosstalk between protein clearance pathways. PLoS One 2017; 12:e0182895. [PMID: 28797057 PMCID: PMC5552263 DOI: 10.1371/journal.pone.0182895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Impaired protein clearance likely increases the risk of protein accumulation disorders including Alzheimer’s disease (AD). Protein degradation through the proteasome pathway decreases with age and in AD brains, and the Aβ42 peptide has been shown to impair proteasome function in cultured cells and in a cell-free model. Here, Aβ42 was studied in brain tissue to measure changes in protein clearance pathways and related secondary pathology. Oligomerized Aβ42 (0.5–1.5 μM) reduced proteasome activity by 62% in hippocampal slice cultures over a 4-6-day period, corresponding with increased tau phosphorylation and reduced synaptophysin levels. Interestingly, the decrease in proteasome activity was associated with a delayed inverse effect, >2-fold increase, regarding lysosomal cathepsin B (CatB) activity. The CatB enhancement did not correspond with the Aβ42-mediated phospho-tau alterations since the latter occurred prior to the CatB response. Hippocampal slices treated with the proteasome inhibitor lactacystin also exhibited an inverse effect on CatB activity with respect to diminished proteasome function. Lactacystin caused earlier CatB enhancement than Aβ42, and no correspondence was evident between up-regulated CatB levels and the delayed synaptic pathology indicated by the loss of pre- and postsynaptic markers. Contrasting the inverse effects on the proteasomal and lysosomal pathways by Aβ42 and lactacystin, such were not found when CatB activity was up-regulated two-fold with Z-Phe-Ala-diazomethylketone (PADK). Instead of an inverse decline, proteasome function was increased marginally in PADK-treated hippocampal slices. Unexpectedly, the proteasomal augmentation was significantly pronounced in Aβ42-compromised slices, while absent in lactacystin-treated tissue, resulting in >2-fold improvement for nearly complete recovery of proteasome function by the CatB-enhancing compound. The PADK treatment also reduced Aβ42-mediated tau phosphorylation and synaptic marker declines, corresponding with the positive modulation of both proteasome activity and the lysosomal CatB enzyme. These findings indicate that proteasomal stress contributes to AD-type pathogenesis and that governing such pathology occurs through crosstalk between the two protein clearance pathways.
Collapse
Affiliation(s)
- Karen L. G. Farizatto
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
- Department of Genetics and Evolutionary Biology, Institute for Biosciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Uzoma S. Ikonne
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
| | - Michael F. Almeida
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
| | - Merari F. R. Ferrari
- Department of Genetics and Evolutionary Biology, Institute for Biosciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Ben A. Bahr
- Biotechnology Research and Training Center, William C. Friday Laboratory, University of North Carolina—Pembroke, Pembroke, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wang L, Mao N, Tan RZ, Wang HL, Wen J, Liu YH, Furhad M, Fan JM. Ginsenoside Rg1 reduces aldosterone-induced autophagy via the AMPK/mTOR pathway in NRK-52E cells. Int J Mol Med 2015; 36:518-26. [PMID: 26063203 DOI: 10.3892/ijmm.2015.2242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 02/05/2023] Open
Abstract
Aldosterone is a steroid hormone secreted from the adrenal cortex, which regulates blood pressure. Higher concentrations of aldosterone can cause several diseases, including hypertension, diabetic nephropathy and chronic kidney disease. Previous reports have demonstrated that aldosterone has a pathogenic role in renal injury via reactive oxygen species (ROS), which involves the regulation of autophagy. However, whether aldosterone can induce autophagy in renal tubular cells remains to be elucidated. In the present study, elevated autophagy was observed in rat renal tubular NRK-52E cells exposed to aldosterone, which was demonstrated by the increased number of autophagosomes, conversion of LC3-I to LC3-II and the expression of Beclin-1. The enhanced autophagy was accompanied by increased production of intracellular ROS, which was reversed by N-acetylcysteine, a specific inhibitor of ROS signaling. Furthermore, treatment with ginsenoside Rg1 reduced the aldosterone-induced autophagy and production of ROS, possibly through reducing the phosphorylation of AMPK and preserving mTOR activity. These findings demonstrated that aldosterone promoted ROS generation and increased autophagy in the NRK-52E cells. Ginsenoside Rg1 effectively relieved aldosterone-induced oxidative stress and abnormal autophagy, suggesting that Rg1 may be used as a potential therapeutic drug to inhibit the renal injury, which is induced by aldosterone.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Biotherapy of Human Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| | - Rui-Zhi Tan
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Hong-Lian Wang
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Ji Wen
- Department of Immunology and Rheumatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Hang Liu
- Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Md Furhad
- Department of Nephrology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Jun-Ming Fan
- State Key Laboratory of Biotherapy of Human Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
Mao N, Cheng Y, Shi XL, Wang L, Wen J, Zhang Q, Hu QD, Fan JM. Ginsenoside Rg1 protects mouse podocytes from aldosterone-induced injury in vitro. Acta Pharmacol Sin 2014; 35:513-522. [PMID: 24632846 PMCID: PMC4813722 DOI: 10.1038/aps.2013.187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/08/2013] [Indexed: 02/05/2023]
Abstract
AIM Aldosterone is elevated in many diseases such as hypertension, diabetic nephropathy and chronic kidney disease, etc. The aim of this study was to investigate the effects of aldosterone on intracellular ROS production and autophagy in podocytes in vitro, and to explore the possibility of ginsenoside Rg1 (Rg1) being used for protecting podocytes from aldosterone-induced injury. METHODS MPC5 mouse podocyte cells were tested. Autophagosome and autophagic vacuole formation were examined under confocal microscopy with MDC and acridine orange staining, respectively. ROS were detected with flow cytometry. Malondialdehyde content and superoxide dismutase (T-SOD) activity were measured using commercial kits. The expression of LC3-II, beclin-1, SOD2 and catalase was measured by Western blotting. RESULTS Treatment with aldosterone (10 nmol/L) significantly increased ROS generation and the expression of SOD2 and catalase in MPC5 cells. Furthermore, treatment with aldosterone significantly increased the conversion of LC3-I to LC3-II, beclin-1 expression and autophagosome formation. Co-treatment with rapamycin (1 ng/mL) or chloroquine (10 μmol/L) further increased aldosterone-induced autophagosome formation. Co-treatment with Rg1 (80 ng/mL) effectively relieved oxidative stress and increased T-SOD activity at the early stage and subsequently decreased autophagy in aldosterone-treated podocytes. Co-treatment with 3-MA (4 mmol/L) or NAC (50 mmol/L) exerted similar effects against aldosterone-induced autophagy in podocytes. CONCLUSION Aldosterone enhances ROS generation and promotes autophagy in podocytes in vitro. Ginsenoside-Rg1 effectively relieves aldosterone-induced oxidative stress, thereby indirectly inhibiting aldosterone-induced podocyte autophagy.
Collapse
Affiliation(s)
- Nan Mao
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuan Cheng
- Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Xin-li Shi
- Department of Pathobiology and Immunology, Hebei University of Traditional Chinese Medicine, Shijiazhuang 050200, China
| | - Li Wang
- The Research Center for Preclinical Medicine, Luzhou Medical College, Luzhou 646000, China
- State Key Laboratory of Biotherapy of Human Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Wen
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiong Zhang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Luzhou Medical College, Luzhou 646000, China
| | - Qiong-dan Hu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Luzhou Medical College, Luzhou 646000, China
| | - Jun-ming Fan
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Luzhou Medical College, Luzhou 646000, China
- State Key Laboratory of Biotherapy of Human Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Tiribuzi R, Crispoltoni L, Porcellati S, Di Lullo M, Florenzano F, Pirro M, Bagaglia F, Kawarai T, Zampolini M, Orlacchio A, Orlacchio A. miR128 up-regulation correlates with impaired amyloid β(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol Aging 2014; 35:345-56. [DOI: 10.1016/j.neurobiolaging.2013.08.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 07/23/2013] [Accepted: 08/03/2013] [Indexed: 11/26/2022]
|
10
|
Luo T, Park Y, Sun X, Liu C, Hu B. Protein misfolding, aggregation, and autophagy after brain ischemia. Transl Stroke Res 2013; 4:581-8. [PMID: 24323413 DOI: 10.1007/s12975-013-0299-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 01/02/2023]
Abstract
Ischemic brain injury is a common disorder linked to a variety of diseases. Significant progress has been made in our understanding of the underlying mechanisms. Previous studies show that protein misfolding, aggregation, and multiple organelle damage are major pathological events in postischemic neurons. The autophagy pathway is the chief route for bulk degradation of protein aggregates and damaged organelles. The latest studies suggest that impairment of autophagy contributes to abnormal protein aggregation and organelle damages after brain ischemia. This article reviews recent studies of protein misfolding, aggregation, and impairment of autophagy after brain ischemia.
Collapse
Affiliation(s)
- Tianfei Luo
- Shock, Trauma and Anesthesiology Research Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | |
Collapse
|
11
|
Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2013; 2:e000191. [PMID: 23608608 PMCID: PMC3647266 DOI: 10.1161/jaha.113.000191] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autophagy is critical in the maintenance of cellular protein quality control, the final step of which involves the fusion of autophagosomes with lysosomes. Cathepsin-L (CTSL) is a key member of the lysosomal protease family that is expressed in the murine and human heart, and it may play an important role in protein turnover. We hypothesized that CTSL is important in regulating protein processing in the heart, particularly under pathological stress. METHODS AND RESULTS Phenylephrine-induced cardiac hypertrophy in vitro was more pronounced in CTSL-deficient neonatal cardiomyocytes than in in controls. This was accompanied by a significant accumulation of autophagosomes, increased levels of ubiquitin-conjugated protein, as well as impaired protein degradation and decreased cell viability. These effects were partially rescued with CTSL1 replacement via adeno-associated virus-mediated gene transfer. In the in vivo murine model of aortic banding (AB), a deficiency in CTSL markedly exacerbated cardiac hypertrophy, worsened cardiac function, and increased mortality. Ctsl(-/-) AB mice demonstrated significantly decreased lysosomal activity and increased sarcomere-associated protein aggregation. Homeostasis of the endoplasmic reticulum was also altered by CTSL deficiency, with increases in Bip and GRP94 proteins, accompanied by increased ubiquitin-proteasome system activity and higher levels of ubiquitinated proteins in response to AB. These changes ultimately led to a decrease in cellular ATP production, enhanced oxidative stress, and increased cellular apoptosis. CONCLUSIONS Lysosomal CTSL attenuates cardiac hypertrophy and preserves cardiac function through facilitation of autophagy and proteasomal protein processing.
Collapse
Affiliation(s)
- Mei Sun
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Maral Ouzounian
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Geoffrey de Couto
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Manyin Chen
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Ran Yan
- McMaster University Medical School, Hamilton, Ontario, Canada (R.Y.)
| | - Masahiro Fukuoka
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Guohua Li
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Mark Moon
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Youan Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Anthony Gramolini
- Department of Physiology, University of Toronto and University Health Network, Toronto, Ontario, Canada (A.G.)
| | - George J. Wells
- Department of Epidemiology and Statistics, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (G.J.W.)
| | - Peter P. Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada (P.P.L.)
- Correspondence to: Peter P. Liu, MD, University of Ottawa Heart Institute, Ottawa, Ontario, Canada. E‐mail:
| |
Collapse
|
12
|
Differential cytotoxicity responses by dog and rat hepatocytes to phospholipogenic treatments. J Toxicol 2013; 2013:956404. [PMID: 23577025 PMCID: PMC3610344 DOI: 10.1155/2013/956404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 01/28/2013] [Indexed: 11/18/2022] Open
Abstract
Dog and rat hepatocytes were treated with phospholipogenics to identify the more sensitive species and to determine whether lysosomal or mitochondrial changes were the primary cause of cytotoxicity. Endpoints included cell death, lysosome membrane integrity, mitochondrial membrane polarization, and fluorescent phospholipid (NBD-PE). Dog cells exhibited lower survival IC50 values than did rat cells with all phospholipogenic treatments and exhibited a lower capacity to accumulate NBD-PE in 4 of 5 phospholipogenic test conditions. The lysosomal modulator Bafilomycin A1 (Baf) rescued dog cells from cytotoxicity caused by 3 phospholipogenic 5HT1b antagonists and hydroxychloroquine, but not fluoxetine, and rescued rat cells from hydroxychloroquine and NMTMB, a 5HT1b antagonist. Following NMTMB treatment, rat mitochondrial membrane hyperpolarization was observed at modestly cytotoxic concentrations and depolarization at the highest concentration. At the highest test concentration, lysosomal loss of acridine orange occurred by 30 min, mitochondrial polarity changes by 1 hr, and NBD-PE accumulation by 2 hr, respectively. Baf shifted mitochondrial polarity from a depolarized state to a hyperpolarized state. These data demonstrate that (a) dog hepatocytes were generally less capable of mounting an adaptive, protective phospholipidotic response than rat hepatocytes, (b) effects on mitochondria and survival were preventable by lysosomal protection, and (c) destabilizing changes in both organelles are involved causally in cytotoxicity.
Collapse
|
13
|
Viswanathan K, Hoover DJ, Hwang J, Wisniewski ML, Ikonne US, Bahr BA, Wright DL. Nonpeptidic lysosomal modulators derived from z-phe-ala-diazomethylketone for treating protein accumulation diseases. ACS Med Chem Lett 2012; 3:920-4. [PMID: 24900408 DOI: 10.1021/ml300197h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/09/2012] [Indexed: 11/29/2022] Open
Abstract
Lysosomes are involved in protein turnover and removing misfolded species, and their enzymes have the potential to offset the defect in proteolytic clearance that contributes to the age-related dementia Alzheimer's disease (AD). The weak cathepsin B and L inhibitor Z-Phe-Ala-diazomethylketone (PADK) enhances lysosomal cathepsin levels at low concentrations, thereby eliciting protective clearance of PHF-τ and Aβ42 in the hippocampus and other brain regions. Here, a class of positive modulators is established with compounds decoupled from the cathepsin inhibitory properties. We utilized PADK as a departure point to develop nonpeptidic structures with the hydroxyethyl isostere. The first-in-class modulators SD1002 and SD1003 exhibit improved levels of cathepsin up-regulation but almost complete removal of cathepsin inhibitory properties as compared to PADK. Isomers of the lead compound SD1002 were synthesized, and the modulatory activity was determined to be stereoselective. In addition, the lead compound was tested in transgenic mice with results indicating protection against AD-type protein accumulation pathology.
Collapse
Affiliation(s)
- Kishore Viswanathan
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
| | - Dennis J. Hoover
- Synaptic Dynamics Inc., Farmington, Connecticut 06032, United States
| | - Jeannie Hwang
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Meagan L. Wisniewski
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Uzoma S. Ikonne
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Ben A. Bahr
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
- William C. Friday Laboratory,
Biotechnology Research and Training Center, University of North Carolina—Pembroke, Pembroke, North Carolina
28372, United States
| | - Dennis L. Wright
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs,
Connecticut 06269, United States
- Synaptic Dynamics Inc., Farmington, Connecticut 06032, United States
| |
Collapse
|
14
|
Bahr BA, Wisniewski ML, Butler D. Positive lysosomal modulation as a unique strategy to treat age-related protein accumulation diseases. Rejuvenation Res 2012; 15:189-97. [PMID: 22533430 DOI: 10.1089/rej.2011.1282] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lysosomes are involved in degrading and recycling cellular ingredients, and their disruption with age may contribute to amyloidogenesis, paired helical filaments (PHFs), and α-synuclein and mutant huntingtin aggregation. Lysosomal cathepsins are upregulated by accumulating proteins and more so by the modulator Z-Phe-Ala-diazomethylketone (PADK). Such positive modulators of the lysosomal system have been studied in the well-characterized hippocampal slice model of protein accumulation that exhibits the pathogenic cascade of tau aggregation, tubulin breakdown, microtubule destabilization, transport failure, and synaptic decline. Active cathepsins were upregulated by PADK; Rab proteins were modified as well, indicating enhanced trafficking, whereas lysosome-associated membrane protein and proteasome markers were unchanged. Lysosomal modulation reduced the pre-existing PHF deposits, restored tubulin structure and transport, and recovered synaptic components. Further proof-of-principle studies used Alzheimer disease mouse models. It was recently reported that systemic PADK administration caused dramatic increases in cathepsin B protein and activity levels, whereas neprilysin, insulin-degrading enzyme, α-secretase, and β-secretase were unaffected by PADK. In the transgenic models, PADK treatment resulted in clearance of intracellular amyloid beta (Aβ) peptide and concomitant reduction of extracellular deposits. Production of the less pathogenic Aβ(1-38) peptide corresponded with decreased levels of Aβ(1-42), supporting the lysosome's antiamyloidogenic role through intracellular truncation. Amelioration of synaptic and behavioral deficits also indicates a neuroprotective function of the lysosomal system, identifying lysosomal modulation as an avenue for disease-modifying therapies. From the in vitro and in vivo findings, unique lysosomal modulators represent a minimally invasive, pharmacologically controlled strategy against protein accumulation disorders to enhance protein clearance, promote synaptic integrity, and slow the progression of dementia.
Collapse
Affiliation(s)
- Ben A Bahr
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina 28372-1510, USA.
| | | | | |
Collapse
|
15
|
Abstract
Dementias are a varied group of disorders typically associated with memory loss, impaired judgment and/or language and by symptoms affecting other cognitive and social abilities to a degree that interferes with daily functioning. Alzheimer's disease (AD) is the most common cause of a progressive dementia, followed by dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), (VaD) and HIV-associated neurocognitive disorders (HAND). The pathogenesis of this group of disorders has been linked to the abnormal accumulation of proteins in the brains of affected individuals, which in turn has been related to deficits in protein clearance. Autophagy is a key cellular protein clearance pathway with proteolytic cleavage and degradation via the ubiquitin-proteasome pathway representing another important clearance mechanism. Alterations in the levels of autophagy and the proteins associated with the autophagocytic pathway have been reported in various types of dementias. This review will examine recent literature across these disorders and highlight a common theme of altered autophagy across the spectrum of the dementias.
Collapse
|
16
|
Abstract
Alzheimer's disease (AD) is poised to become the most serious healthcare issue of our generation. The leading theory of AD pathophysiology is the Amyloid Cascade Hypothesis, and clinical trials are now proceeding based on this hypothesis. Here, we review the original evidence for the Amyloid Hypothesis, which was originally focused on the extracellular deposition of beta amyloid peptides (Aβ) in large fibrillar aggregates, as well as how this theory has been extended in recent years to focus on highly toxic small soluble amyloid oligomers. We will also examine emerging evidence that Aβ may actually begin to accumulate intracellularly in lysosomes, and the role for intracellular Aβ and lysosomal dysfunction may play in AD pathophysiology. Finally, we will review the clinical implications of these findings.
Collapse
|
17
|
Wisniewski ML, Hwang J, Bahr BA. Submicromolar Aβ42 reduces hippocampal glutamate receptors and presynaptic markers in an aggregation-dependent manner. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1664-74. [PMID: 21978994 DOI: 10.1016/j.bbadis.2011.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/31/2011] [Accepted: 09/19/2011] [Indexed: 01/01/2023]
Abstract
Synaptic pathology in Alzheimer's disease brains is thought to involve soluble Aβ42 peptide. Here, sterile incubation in PBS caused small Aβ42 oligomer formation as well as heterogeneous, 6E10-immunopositive aggregates of 80-100kDa. The high molecular weight aggregates (H-agg) formed in a time-dependent manner over an extended 30-day period. Interestingly, an inverse relationship between dimeric and H-agg formation was more evident when incubations were performed at 37°C as compared to 23°C, thus providing an experimental strategy with which to address synaptic compromise produced by the different Aβ aggregates. H-agg species formed faster and to higher levels at 37°C compared to 23°C, and the two aggregate preparations were evaluated in hippocampal slice cultures, a sensitive system for monitoring synaptic integrity. Applied daily at 80-600nM for 7days, the Aβ42 preparations caused dose-dependent and aggregation-dependent declines in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptor subunits as well as in presynaptic components. Unlike the synaptic effects, Aβ42 induced only trace cellular degeneration that was CA1 specific. The 37°C preparation was less effective at decreasing synaptic markers, corresponding with its reduced levels of Aβ42 monomers and dimers. Aβ42 dimers decayed significantly faster at 37°C than 23°C, and more rapidly than monomers at either temperature. These findings indicate that Aβ42 can self-aggregate into potent synaptotoxic oligomers as well as into larger aggregates that may serve to neutralize the toxic formations. These results will add to the growing debate concerning whether high molecular weight Aβ complexes that form amyloid plaques are protective through the sequestration of oligomeric species.
Collapse
|
18
|
Butler D, Hwang J, Estick C, Nishiyama A, Kumar SS, Baveghems C, Young-Oxendine HB, Wisniewski ML, Charalambides A, Bahr BA. Protective effects of positive lysosomal modulation in Alzheimer's disease transgenic mouse models. PLoS One 2011; 6:e20501. [PMID: 21695208 PMCID: PMC3112200 DOI: 10.1371/journal.pone.0020501] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/03/2011] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative pathology in which defects in proteolytic clearance of amyloid β peptide (Aβ) likely contribute to the progressive nature of the disorder. Lysosomal proteases of the cathepsin family exhibit up-regulation in response to accumulating proteins including Aβ1–42. Here, the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK) was used to test whether proteolytic activity can be enhanced to reduce the accumulation events in AD mouse models expressing different levels of Aβ pathology. Systemic PADK injections in APPSwInd and APPswe/PS1ΔE9 mice caused 3- to 8-fold increases in cathepsin B protein levels and 3- to 10-fold increases in the enzyme's activity in lysosomal fractions, while neprilysin and insulin-degrading enzyme remained unchanged. Biochemical analyses indicated the modulation predominantly targeted the active mature forms of cathepsin B and markedly changed Rab proteins but not LAMP1, suggesting the involvement of enhanced trafficking. The modulated lysosomal system led to reductions in both Aβ immunostaining as well as Aβx-42 sandwich ELISA measures in APPSwInd mice of 10–11 months. More extensive Aβ deposition in 20-22-month APPswe/PS1ΔE9 mice was also reduced by PADK. Selective ELISAs found that a corresponding production of the less pathogenic Aβ1–38 occurs as Aβ1–42 levels decrease in the mouse models, indicating that PADK treatment leads to Aβ truncation. Associated with Aβ clearance was the elimination of behavioral and synaptic protein deficits evident in the two transgenic models. These findings indicate that pharmacologically-controlled lysosomal modulation reduces Aβ1–42 accumulation, possibly through intracellular truncation that also influences extracellular deposition, and in turn offsets the defects in synaptic composition and cognitive functions. The selective modulation promotes clearance at different levels of Aβ pathology and provides proof-of-principle for small molecule therapeutic development for AD and possibly other protein accumulation disorders.
Collapse
Affiliation(s)
- David Butler
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jeannie Hwang
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Candice Estick
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Saranya Santhosh Kumar
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Clive Baveghems
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
| | - Hollie B. Young-Oxendine
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Meagan L. Wisniewski
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Ana Charalambides
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
| | - Ben A. Bahr
- Neurosciences Program, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- William C. Friday Laboratory, Biotechnology Research and Training Center, University of North Carolina Pembroke, Pembroke, North Carolina, United States of America
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
Schneider L, Zhang J. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease. Mol Neurodegener 2010; 5:14. [PMID: 20388210 PMCID: PMC2867960 DOI: 10.1186/1750-1326-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 04/13/2010] [Indexed: 12/21/2022] Open
Abstract
The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1) the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2) evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3) the possibility that enhancing lysosomal function may provide a disease modifying therapy.
Collapse
Affiliation(s)
- Lonnie Schneider
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA.
| | | |
Collapse
|
20
|
|
21
|
Amritraj A, Peake K, Kodam A, Salio C, Merighi A, Vance JE, Kar S. Increased activity and altered subcellular distribution of lysosomal enzymes determine neuronal vulnerability in Niemann-Pick type C1-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2540-56. [PMID: 19893049 DOI: 10.2353/ajpath.2009.081096] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Niemann-Pick disease type C (NPC), caused by mutations in the Npc1 or Npc2 genes, is a progressive neurodegenerative disorder characterized by intracellular accumulation/redistribution of cholesterol in a number of tissues including the brain. This is accompanied by a severe loss of neurons in selected brain regions. In this study, we evaluated the role of lysosomal enzymes, cathepsins B and D, in determining neuronal vulnerability in NPC1-deficient (Npc1(-/-)) mouse brains. Our results showed that Npc1(-/-) mice exhibit an age-dependent degeneration of neurons in the cerebellum but not in the hippocampus. The cellular level/expression and activity of cathepsins B and D are increased more predominantly in the cerebellum than in the hippocampus of Npc1(-/-) mice. In addition, the cytosolic levels of cathepsins, cytochrome c, and Bax2 are higher in the cerebellum than in the hippocampus of Npc1(-/-) mice, suggesting a role for these enzymes in the degeneration of neurons. This suggestion is supported by our observation that degeneration of cultured cortical neurons treated with U18666A, which induces an NPC1-like phenotype at the cellular level, can be attenuated by inhibition of cathepsin B or D enzyme activity. These results suggest that the increased level/activity and altered subcellular distribution of cathepsins may be associated with the underlying cause of neuronal vulnerability in Npc1(-/-) brains. Therefore, their inhibitors may have therapeutic potential in attenuating NPC pathology.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 2009; 625:220-33. [PMID: 19836374 DOI: 10.1016/j.ejphar.2009.06.063] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/12/2009] [Accepted: 06/22/2009] [Indexed: 02/03/2023]
Abstract
Chloroquine (CQ), N'-(7-chloroquinolin-4-yl)-N,N-diethyl-pentane-1,4-diamine, is widely used as an effective and safe anti-malarial and anti-rheumatoid agent. CQ was discovered 1934 as "Resochin" by Andersag and co-workers at the Bayer laboratories. Ironically, CQ was initially ignored for a decade because it was considered too toxic to use in humans. CQ was "re-discovered" during World War II in the United States in the course of anti-malarial drug development. The US government-sponsored clinical trials during this period showed unequivocally that CQ has a significant therapeutic value as an anti-malarial drug. Consequently, CQ was introduced into clinical practice in 1947 for the prophylaxis treatment of malaria (Plasmodium vivax, ovale and malariae). CQ still remains the drug of choice for malaria chemotherapy because it is highly effective and well tolerated by humans. In addition, CQ is widely used as an anti-inflammatory agent for the treatment of rheumatoid arthritis, lupus erythematosus and amoebic hepatitis. More recently, CQ has been studied for its potential as an enhancing agent in cancer therapies. Accumulating lines of evidence now suggest that CQ can effectively sensitize cell-killing effects by ionizing radiation and chemotherapeutic agents in a cancer-specific manner. The lysosomotrophic property of CQ appears to be important for the increase in efficacy and specificity. Although more studies are needed, CQ may be one of the most effective and safe sensitizers for cancer therapies. Taken together, it appears that the efficacy of conventional cancer therapies can be dramatically enhanced if used in combination with CQ and its analogs.
Collapse
Affiliation(s)
- V Raja Solomon
- Tumor Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 5J1
| | | |
Collapse
|
23
|
Meredith GE, Totterdell S, Beales M, Meshul CK. Impaired glutamate homeostasis and programmed cell death in a chronic MPTP mouse model of Parkinson's disease. Exp Neurol 2009; 219:334-40. [PMID: 19523952 PMCID: PMC2728791 DOI: 10.1016/j.expneurol.2009.06.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/31/2009] [Accepted: 06/04/2009] [Indexed: 01/22/2023]
Abstract
The pathogenesis of Parkinson's disease is not fully understood, but there is evidence that excitotoxic mechanisms contribute to the pathology. However, data supporting a role for excitotoxicity in the pathophysiology of the disease are controversial and sparse. The goal of this study was to determine whether changes in glutamate signaling and uptake contribute to the demise of dopaminergic neurons in the substantia nigra. Mice were treated chronically with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid or vehicle (probenecid or saline alone). Extracellular levels of glutamate in the substantia nigra were substantially increased, and there was an increase in the affinity, but no change in the velocity, of glutamate transport after MPTP/probenecid treatment compared to vehicle controls. In addition, the substantia nigra showed two types of programmed death, apoptosis (type I) and autophagic (type II) cell death. These data suggest that increased glutamate signaling could be an important mechanism for the death of dopaminergic neurons and trigger the induction of programmed cell death in the chronic MPTP/probenecid model.
Collapse
Affiliation(s)
- G E Meredith
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | | | |
Collapse
|
24
|
Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z. Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 2009; 297:F244-56. [PMID: 19279132 PMCID: PMC5243206 DOI: 10.1152/ajprenal.00033.2009] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cellular process of "self-eating." During autophagy, a portion of cytoplasm is enveloped in double membrane-bound structures called autophagosomes, which undergo maturation and fusion with lysosomes for degradation. At the core of the molecular machinery of autophagy is a specific family of genes or proteins called Atg. Originally identified in yeast, Atg orthologs are now being discovered in mammalian cells and have been shown to play critical roles in autophagy. Traditionally, autophagy is recognized as a cellular response to nutrient deprivation or starvation whereby cells digest cytoplasmic organelles and macromolecules to recycle nutrients for self-support. However, studies during the last few years have indicated that autophagy is a general cellular response to stress. Interestingly, depending on experimental conditions, especially stress levels, autophagy can directly induce cell death or act as a mechanism of cell survival. In this review, we discuss the molecular machinery, regulation, and function of autophagy. In addition, we analyze the recent findings of autophagy in renal systems and its possible role in renal pathophysiology.
Collapse
Affiliation(s)
- Sudharsan Periyasamy-Thandavan
- Department of Cellular Biology and Anatomy, Medical College of Georgia and
Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, Georgia
| | - Man Jiang
- Department of Cellular Biology and Anatomy, Medical College of Georgia and
Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, Georgia
| | - Patricia Schoenlein
- Department of Cellular Biology and Anatomy, Medical College of Georgia and
Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia and
Charlie Norwood Department of Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
25
|
Amyloid-beta accumulation caused by chloroquine injections precedes ER stress and autophagosome formation in rat skeletal muscle. Acta Neuropathol 2009; 117:575-82. [PMID: 19198858 DOI: 10.1007/s00401-009-0488-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 01/12/2009] [Accepted: 01/22/2009] [Indexed: 12/19/2022]
Abstract
Chloroquine, an anti-malaria drug, is known to cause myopathy with rimmed vacuole formation. Although it disrupts the lysosomal degradation of proteins, the precise mechanism underlying muscle fiber degeneration has remained unclear. We investigated the temporal profiles of muscle fiber degeneration in chloroquine-treated rats, paying special attention to endoplasmic reticulum (ER) stress and autophagy. Male Wistar rats were intraperitoneally injected with chloroquine diphosphate at a dosage of 50 mg/kg body weight every day. We examined the localization and levels of proteins related to ER stress and autophagy in soleus muscle by means of immunohistochemistry and Western blotting at 3, 5, and 7 weeks after the beginning of the treatment. At 3 weeks, the levels of LC3-II and amyloid-beta (Abeta) were increased. At 5 weeks, an unfolded protein response took place. At 7 weeks, rimmed vacuole formation became obvious. Interestingly, SERCA2, a Ca2+ -pump ATPase located in the endoplasmic/sarcoplasmic reticulum membrane was up-regulated at 5 weeks after treatment, but declined to the control level by 7 weeks. Taken together, these findings suggest that Abeta accumulation (at 3 weeks) caused by the disruption of lysosomal enzymes precedes an unfolded protein response (at 5 weeks). Next, activation of autophagy occurs (at 7 weeks), probably using sarcoplasmic reticulum membrane, the amount of which was increased. Chloroquine-treated rats could be useful for investigating the pathogenesis of diseases related to Abeta accumulation.
Collapse
|
26
|
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 2009; 11:481-96. [PMID: 18764739 PMCID: PMC2933567 DOI: 10.1089/ars.2008.2263] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
27
|
Holden LJ, Coleman MD. Further preliminary assessment of three human glioma cell lines as models of human astrocytic toxicity in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:290-296. [PMID: 21791377 DOI: 10.1016/j.etap.2008.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 05/31/2023]
Abstract
Three human astroglioma lines U251-MG, U373-MG and CCF-STTG1 have been evaluated further as possible models for astrocytotoxicity (GFAP and IL-6 release). The effects of bacterial lipopolysaccharide, chloroquine diphosphate and acrylamide were studied on GFAP expression and LPS, chloroquine diphosphate, ethanol, trimethyltin chloride (TMTC) and acrylamide were examined on interleukin-6 (IL-6) release in the U373-MG line only. At 4-h LPS elevated GFAP (17.0±5.0% P<0.05) above control in the U251-MG cell line only. Chloroquine diphosphate over 4h in the U251-MG line resulted in an increase in GFAP-IR to 20.3±4.2% and 21.1±4.1% above control levels 0.1μM (P<0.05) and 1μM (P<0.05) respectively. CQD was associated with decreases in MTT turnover, particularly after 24h incubation. With the U373-MG line, LPS (0.5μg/ml) increased IL-6 expression 640% above control (P<0.001), whilst chloroquine diphosphate (100μM), ethanol (10mM) and TMTC chloride (1μM) also increased IL-6. It is possible that batteries of astrocytic human glioma cell lines may be applicable to the sensitive evaluation of toxicants on astrogliotic expression markers such as GFAP and IL-6.
Collapse
Affiliation(s)
- Lindsay J Holden
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | |
Collapse
|
28
|
Kaasinen SK, Harvey L, Reynolds AJ, Hendry IA. Autophagy generates retrogradely transported organelles: a hypothesis. Int J Dev Neurosci 2008; 26:625-34. [PMID: 18499388 DOI: 10.1016/j.ijdevneu.2008.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 12/15/2022] Open
Abstract
Nerve cells require trophic signals transmitted from the nerve terminal via the axon in order to survive and develop normally. As the axon may be more than a meter long, specialised mechanisms are needed to transmit these signals. This involves the retrograde axonal transport of signalling endosomes containing nerve growth factor (NGF) and other synaptically derived molecules. These are large, double membrane multivesicular bodies containing a mixture of all vesicle types seen in the nerve terminal. How this signalling endosome is formed and targeted for retrograde axonal transport, however, remains an open question. Here we show that members of the Rab family of proteins that are retrogradely transported indicate that the signalling endosome contains both early and recycling endosomes. In addition, we show that retrogradely transported labelled antibody to dopamine beta-hydroxylase, a marker for synaptic vesicles, co-localizes within the same signalling endosome as NGF. We further show that LC3, a marker for autophagosomes, is retrogradely transported and associates with retrogradely transported NGF. We propose that neurons have exploited the mechanism of autophagy to engulf a sample of the cytoplasmic contents of the nerve terminal to transport back to the cell body. This sample of cytoplasmic contents relays a reliable snapshot of the totality of signalling events occurring in the nerve terminal at that instant in time.
Collapse
Affiliation(s)
- Selma K Kaasinen
- Developmental Neurobiology Group, John Curtin School of Medical Research, Australian National University, Box 334, Canberra ACT 2601, Australia.
| | | | | | | |
Collapse
|
29
|
Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, DeTure M, Ko LW. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008; 27:1119-30. [DOI: 10.1111/j.1460-9568.2008.06084.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Kanju PM, Parameshwaran K, Vaithianathan T, Sims CM, Huggins K, Bendiske J, Ryzhikov S, Bahr BA, Suppiramaniam V. Lysosomal dysfunction produces distinct alterations in synaptic alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid and N-methyl-D-aspartate receptor currents in hippocampus. J Neuropathol Exp Neurol 2007; 66:779-88. [PMID: 17805008 DOI: 10.1097/nen.0b013e3181461ae7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The early processes that lead to synaptic dysfunction during aging are not clearly understood. Dysregulation of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors may cause age-related cognitive decline. Using hippocampal slice cultures exhibiting lysosomal dysfunction, an early marker of brain aging that is linked to protein accumulation, we identified alterations to AMPA and NMDA receptor-mediated synaptic currents. The miniature and spontaneous excitatory postsynaptic currents that were examined after 3, 6, and 9 days of lysosomal disruption showed progressive changes in amplitude, frequency, and rise and decay kinetics. To investigate whether modifications in specific channel properties of single synaptic receptors contributed to changes in the amplitude and time course of synaptic currents, we examined the single channel properties of synaptic AMPA and NMDA receptors. The channel open probability and the mean open times showed decreases in both receptor populations, whereas the closed times were increased without any change in the channel conductance. The Western blot analysis revealed a progressive decline in synaptic markers including glutamate receptor subunits. These results indicate that lysosomal dysfunction leads to progressive functional perturbation of AMPA and NMDA receptors in this slice model of protein accumulation, suggesting that age-related cognitive decline could result from altered glutamate receptor function before reductions in synaptic density.
Collapse
Affiliation(s)
- Patrick M Kanju
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ryzhikov S, Bahr BA. Gephyrin alterations due to protein accumulation stress are reduced by the lysosomal modulator Z-Phe-Ala-diazomethylketone. J Mol Neurosci 2007; 34:131-9. [PMID: 18204977 DOI: 10.1007/s12031-007-9009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 08/22/2007] [Indexed: 11/25/2022]
Abstract
Inhibitory neurotransmission is important for brain function and requires specific transmitter receptors that are organized in synaptic domains. Gephyrin is a cytoskeletal organization protein that binds tubulin and plays an important role in clustering and organizing select inhibitory neurotransmitter receptors. Here, we tested if gephyrin is altered by protein accumulation stress that is common in age-related neurodegenerative disorders. For this, we used the hippocampal slice model that has been shown to exhibit chloroquine (CQN)-induced protein accumulation, microtubule destabilization, transport failure, and declines in excitatory neurotransmitter receptors and their responses. In addition to the decreases in excitatory receptor subunits and other glutamatergic markers, we found that gephyrin isoforms were reduced across the CQN treatment period. Associated with this decline in gephyrin levels was the production of three gephyrin breakdown products (GBDPs) of 30, 38, and 48 kDa. The induced effects on gephyrin were tested for evidence of recovery through enhancement of lysosomal function that is known to promote protein clearance and microtubule integrity. Using the lysosomal modulator Z-Phe-Ala-diazomethylketone (PADK), gephyrin levels were completely restored in correspondence with the recovery of excitatory glutamatergic components. In addition, GBDPs were significantly reduced after the 2-day PADK treatment, to levels that were at or below those measured in control cultures. These findings suggest that receptor-clustering mechanisms for inhibitory synapses are compromised during protein accumulation events. They also indicate that a lysosomal enhancement strategy can protect gephyrin integrity, which may be vital for the balance between inhibitory and excitatory signaling during age-related diseases.
Collapse
Affiliation(s)
- Sophia Ryzhikov
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
32
|
Agu CA, Klein R, Lengler J, Schilcher F, Gregor W, Peterbauer T, Bläsi U, Salmons B, Günzburg WH, Hohenadl C. Bacteriophage-encoded toxins: the ?-holin protein causes caspase-independent non-apoptotic cell death of eukaryotic cells. Cell Microbiol 2007; 9:1753-65. [PMID: 17346308 DOI: 10.1111/j.1462-5822.2007.00911.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacteriophage-encoded holin proteins are known to promote bacterial cell lysis by forming lesions within the cytoplasmic membrane. Recently, we have shown that the bacteriophage lambda-holin protein exerts cytotoxic activity also in eukaryotic cells accounting for a reduced tumour growth in vivo. In order to elucidate the mechanisms of lambda-holin-induced mammalian cell death, detailed biochemical and morphological analyses were performed. Colocalization analyses by subcellular fractionation and organelle-specific fluorescence immunocytochemistry indicated the presence of the lambda-holin protein in the endoplasmic reticulum and in mitochondria. Functional studies using the mitochondria-specific fluorochrome JC-1 demonstrated a loss of mitochondrial transmembrane potential in response to lambda-holin expression. Morphologically, these cells exhibited unfragmented nuclei but severe cytoplasmic vacuolization representing signs of oncosis/necrosis rather than apoptosis. Consistently, Western blot analyses indicated neither an activation of effector caspases 3 and 7 nor cleavage of the respective substrate poly(ADP-ribose) polymerase (PARP) in an apoptosis-specific manner. These findings suggest that the lambda-holin protein mediates a caspase-independent non-apoptotic mode of cell death.
Collapse
Affiliation(s)
- Chukwuma A Agu
- Research Institute of Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Amritraj A, Hawkes C, Phinney AL, Mount HT, Scott CD, Westaway D, Kar S. Altered levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP and APP + PS1 transgenic mouse brains. Neurobiol Aging 2007; 30:54-70. [PMID: 17561313 DOI: 10.1016/j.neurobiolaging.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 03/30/2007] [Accepted: 05/02/2007] [Indexed: 11/21/2022]
Abstract
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor participates in the trafficking of lysosomal enzymes from the trans-Golgi network or the cell surface to lysosomes. In Alzheimer's disease (AD) brains, marked up-regulation of the lysosomal system in vulnerable neuronal populations has been correlated with altered metabolic functions. To establish whether IGF-II/M6P receptors and lysosomal enzymes are altered in the brain of transgenic mice harboring different familial AD mutations, we measured the levels and distribution of the receptor and lysosomal enzymes cathepsins B and D in select brain regions of transgenic mice overexpressing either mutant presenilin 1 (PS1; PS1(M146L+L286V)), amyloid precursor protein (APP; APP(KM670/671NL+V717F)) or APP+PS1 (APP(KM670/671NL+V717F)+PS1(M146L+L286V)) transgenes. Our results revealed that levels and expression of the IGF-II/M6P receptor and lysosomal enzymes are increased in the hippocampus and frontal cortex of APP and APP+PS1, but not in PS1, transgenic mouse brains compared with wild-type controls. The changes were more prominent in APP+PS1 than in APP single transgenic mice. Additionally, all beta-amyloid-containing neuritic plaques in the hippocampal and cortical regions of APP and APP+PS1 transgenic mice were immunopositive for both lysosomal enzymes, whereas only a subset of the plaques displayed IGF-II/M6P receptor immunoreactivity. These results suggest that up-regulation of the IGF-II/M6P receptor and lysosomal enzymes in neurons located in vulnerable regions reflects an altered functioning of the endosomal-lysosomal system which may be associated with the increased intracellular and/or extracellular A beta deposits observed in APP and APP+PS1 transgenic mouse brains.
Collapse
Affiliation(s)
- A Amritraj
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007; 110:313-22. [PMID: 17363733 PMCID: PMC1896119 DOI: 10.1182/blood-2006-10-050260] [Citation(s) in RCA: 383] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel therapeutic strategies are needed to address the emerging problem of imatinib resistance. The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) is being evaluated for imatinib-resistant chronic myelogenous leukemia (CML) and has multiple cellular effects, including the induction of autophagy and apoptosis. Considering that autophagy may promote cancer cell survival, we hypothesized that disrupting autophagy would augment the anticancer activity of SAHA. Here we report that drugs that disrupt the autophagy pathway dramatically augment the antineoplastic effects of SAHA in CML cell lines and primary CML cells expressing wild-type and imatinib-resistant mutant forms of Bcr-Abl, including T315I. This regimen has selectivity for malignant cells and its efficacy was not diminished by impairing p53 function, another contributing factor in imatinib resistance. Disrupting autophagy by chloroquine treatment enhances SAHA-induced superoxide generation, triggers relocalization and marked increases in the lysosomal protease cathepsin D, and reduces the expression of the cathepsin-D substrate thioredoxin. Finally, knockdown of cathepsin D diminishes the potency of this combination, demonstrating its role as a mediator of this therapeutic response. Our data suggest that, when combined with HDAC inhibitors, agents that disrupt autophagy are a promising new strategy to treat imatinib-refractory patients who fail conventional therapy.
Collapse
Affiliation(s)
- Jennifer S Carew
- Departments of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Butler D, Bendiske J, Michaelis ML, Karanian DA, Bahr BA. Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 2007; 562:20-7. [PMID: 17336290 DOI: 10.1016/j.ejphar.2007.01.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
Synaptic pathology is associated with protein accumulation events, and is thought by many to be the best correlate of cognitive impairment in normal aging and different types of dementia including Alzheimer's disease. Numerous studies point to the disruption of microtubule-based transport mechanisms as a contributor to synaptic degeneration. Reported reductions in a microtubule stability marker, acetylated alpha-tubulin, suggest that disrupted transport occurs in Alzheimer's disease neurons, and such a reduction is known to be associated with transport failure and synaptic compromise in a hippocampal slice model of protein accumulation. The slice model exhibits accumulated proteins in response to chloroquine-mediated lysosomal dysfunction, resulting in corresponding decreases in acetylated tubulin and pre- and postsynaptic markers (synaptophysin and glutamate receptors). To test whether the protein deposition-induced loss of synaptic proteins is due to disruption of microtubule integrity, a potent microtubule-stabilizing agent, the taxol derivative TX67 (10-succinyl paclitaxel), was applied to the hippocampal slice cultures. In the absence of lysosomal stress, TX67 (100-300 nM) provided microtubule stabilization as indicated by markedly increased levels of acetylated tubulin. When TX67 was applied to the slices during the chloroquine treatment period, pre- and postsynaptic markers were maintained at control levels. In addition, a correlation was evident across slice samples between levels of acetylated tubulin and glutamate receptor subunit GluR1. These data indicate that disruption of microtubule integrity accounts for protein deposition-induced synaptic decline. They also suggest that microtubule-stabilizing drugs can be used to slow or halt the progressive synaptic deterioration linked to Alzheimer-type pathogenesis.
Collapse
Affiliation(s)
- David Butler
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT 06269-3092, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Macroautophagy, a lysosomal pathway responsible for the turnover of organelles and long-lived proteins, has been regarded mainly as an inducible process in neurons, which is mobilized in states of stress and injury. New studies show, however, that macroautophagy is also constitutively active in healthy neurons and is vital to cell survival. Neurons in the brain, unlike cells in the periphery, are protected from large-scale autophagy induction because they can use several different energy sources optimally, receive additional nutrients and neurotrophin support from glial cells, and benefit from hypothalamic regulation of peripheral nutrient supplies. Due to its exceptional efficiency, constitutive autophagy in healthy neurons proceeds in the absence of easily detectable autophagic vacuole intermediates. These intermediates can accumulate rapidly, however, when late steps in the autophagic process are blocked. Autophagic vacuoles also accumulate abnormally in affected neurons of several major neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, where they have been linked to various aspects of disease pathogenesis including neuronal cell death. The build-up of autophagic vacuoles in these neurological disorders and others may reflect either heightened autophagy induction, impairment in later digestive steps in the autophagy pathway, or both. Determining the basis for AV accumulation is critical for understanding the pathogenic significance of autophagy in a given pathologic state and for designing possible therapies based on modulating autophagy. In this review, we discuss the special features of autophagy regulation in the brain, its suspected roles in neurodevelopment and plasticity, and recent progress toward understanding how dysfunctional autophagy contributes to neurodegenerative disease.
Collapse
Affiliation(s)
- Barry Boland
- Department of Pharmacology, Oxford University, Oxford OX13QT, United Kingdom
| | | |
Collapse
|
37
|
|