1
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
2
|
Teng L, Qin Q, Zhou Z, Zhou F, Cao C, Yang J, Ding J. Glutamate secretion by embryonic stem cells as an autocrine signal to promote proliferation. Sci Rep 2023; 13:19069. [PMID: 37925518 PMCID: PMC10625544 DOI: 10.1038/s41598-023-46477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, has also been found to play a role in embryonic stem (ES) cells. However, the exact mechanism and function of glutamatergic signaling in ES cells remain poorly understood. In this study, we identified a glutamatergic transmission circuit in ES cells that operates through an autocrine mechanism and regulates cell proliferation. We performed biological analyses to identify the key components involved in glutamate biosynthesis, packaging for secretion, reaction, and reuptake in ES cells, including glutaminase, vesicular glutamate transporter, glutamate N-methyl-D-aspartate (NMDA) receptor, and cell membrane excitatory amino-acid transporter (EAAT). We directly quantified the released glutamate signal using microdialysis-high performance liquid chromatography-tandem mass spectrometry (MD-HPLC-MS-MS). Pharmacological inhibition of endogenous glutamate release and the resulting tonic activation of NMDA receptors significantly affected ES cell proliferation, suggesting that ES cells establish a glutamatergic autocrine niche via releasing and responding to the transmitter for their own regulation.
Collapse
Affiliation(s)
- Lin Teng
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Qin Qin
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Ziyi Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Fei Zhou
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Chunyu Cao
- College of Basic Medical Sciences, Hubei Key Laboratory of Tumor Microencironment and Immunotherapy, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Jian Yang
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China
| | - Jiawang Ding
- Department of Cardiology, Yichang Central People's Hospital/The First College of Clinical Medical Sciences, China Three Gorges University, No. 183 Yiling Road, Yichang, 443003, Hubei, China.
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, 443003, Hubei, China.
| |
Collapse
|
3
|
Mannully CT, Bruck-Haimson R, Zacharia A, Orih P, Shehadeh A, Saidemberg D, Kogan NM, Alfandary S, Serruya R, Dagan A, Petit I, Moussaieff A. Lipid desaturation regulates the balance between self-renewal and differentiation in mouse blastocyst-derived stem cells. Cell Death Dis 2022; 13:1027. [PMID: 36477438 PMCID: PMC9729213 DOI: 10.1038/s41419-022-05263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Stem cells are defined by their ability to self-renew and differentiate, both shown in multiple studies to be regulated by metabolic processes. To decipher metabolic signatures of self-renewal in blastocyst-derived stem cells, we compared early differentiating embryonic stem cells (ESCs) and their extra-embryonic counterparts, trophoblast (T)SCs to their self-renewing counterparts. A metabolomics analysis pointed to the desaturation of fatty acyl chains as a metabolic signature of differentiating blastocyst-derived SCs via the upregulation of delta-6 desaturase (D6D; FADS2) and delta-5 desaturase (D5D; FADS1), key enzymes in the biosynthesis of polyunsaturated fatty acids (PUFAs). The inhibition of D6D or D5D by specific inhibitors or SiRNA retained stemness in ESCs and TSCs, and attenuated endoplasmic reticulum (ER) stress-related apoptosis. D6D inhibition in ESCs upregulated stearoyl-CoA desaturase-1 (Scd1), essential to maintain ER homeostasis. In TSCs, however, D6D inhibition downregulated Scd1. TSCs show higher Scd1 mRNA expression and high levels of monounsaturated fatty acyl chain products in comparison to ESCs. The addition of oleic acid, the product of Scd1 (essential for ESCs), to culture medium, was detrimental to TSCs. Interestingly, TSCs express a high molecular mass variant of Scd1 protein, hardly expressed by ESCs. Taken together, our data suggest that lipid desaturation is a metabolic regulator of the balance between differentiation and self-renewal of ESCs and TSCs. They point to lipid polydesaturation as a driver of differentiation in both cell types. Monounsaturated fatty acids (MUFAs), essential for ESCs are detrimental to TSCs.
Collapse
Affiliation(s)
- Chanchal Thomas Mannully
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anish Zacharia
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Orih
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Shehadeh
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M. Kogan
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alfandary
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Serruya
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arie Dagan
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Petit
- grid.465261.20000 0004 1793 5929Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Arieh Moussaieff
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Piersma AH, Baker NC, Daston GP, Flick B, Fujiwara M, Knudsen TB, Spielmann H, Suzuki N, Tsaioun K, Kojima H. Pluripotent stem cell assays: Modalities and applications for predictive developmental toxicity. Curr Res Toxicol 2022; 3:100074. [PMID: 35633891 PMCID: PMC9130094 DOI: 10.1016/j.crtox.2022.100074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
This manuscript provides a review focused on embryonic stem cell-based models and their place within the landscape of alternative developmental toxicity assays. Against the background of the principles of developmental toxicology, the wide diversity of alternative methods using pluripotent stem cells developed in this area over the past half century is reviewed. In order to provide an overview of available models, a systematic scoping review was conducted following a published protocol with inclusion criteria, which were applied to select the assays. Critical aspects including biological domain, readout endpoint, availability of standardized protocols, chemical domain, reproducibility and predictive power of each assay are described in detail, in order to review the applicability and limitations of the platform in general and progress moving forward to implementation. The horizon of innovative routes of promoting regulatory implementation of alternative methods is scanned, and recommendations for further work are given.
Collapse
Affiliation(s)
- Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - George P. Daston
- Global Product Stewardship, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Burkhard Flick
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba-shi, Japan
| | - Thomas B. Knudsen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, USA
| | - Horst Spielmann
- Institute for Pharmacy, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität, Berlin, Germany
| | - Noriyuki Suzuki
- Cell Science Group Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Katya Tsaioun
- Evidence-Based Toxicology Collaboration at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hajime Kojima
- National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
5
|
Wang L, Man S, Bian Y. Bioinformatics analysis of biomarkers of aristolochic acid-induced early nephrotoxicity in embryonic stem cells. Exp Ther Med 2021; 21:508. [PMID: 33791017 PMCID: PMC8005694 DOI: 10.3892/etm.2021.9939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/25/2021] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to identify key genes as potential biomarkers for early nephrotoxicity induced by aristolochic acid (AA) in embryonic stem cells (ESCs). An MTT assay was performed to determine the cytotoxicity of AA in ESCs. Differentially expressed genes (DEGs) were identified using the DNA-Chip Analyzer following microarray analysis. Gene Ontology analysis was performed to determine functional terms enriched by the DEGs in the categories biological process, cellular component and molecular function. Furthermore, the DEGs were subjected to Kyoto Encyclopedia of Genes and Genomes analysis to determine pathways they were accumulated in. Furthermore, a protein-protein interaction network was constructed using Cytoscape 3.2 software. Tumor protein 53 apoptosis effector (Perp), cation transport regulator-like 1 (Chac1), adrenoceptor β2 and Wnt6 were selected for confirmation by reverse transcription-quantitative (RT-q) PCR analysis. A total of 72 DEGs (49 upregulated and 23 downregulated) were identified. The DEGs were enriched in functional terms and pathways associated with nephrotoxicity and participated in 92 pathways. A total of two hub genes, fructose-1,6-bisphosphatase (Fbp)1 and Fbp2, were filtered out from the interaction network. Perp and phorbol-12-myristate-13-acetate-induced protein 1 were demonstrated to have vital roles in the p53 signaling pathway which was indicated in the interaction network. The results of the RT-qPCR analysis were consistent with the microarray data. Taken together, the present study suggested that hub genes involved in the p53 pathway, including Fbp1, Fbp2 and Perp, may serve as potential biomarkers for early nephrotoxicity induced by AA.
Collapse
Affiliation(s)
- Li Wang
- Pharmaceutical Sector, Tianjin Second People's Hospital, Tianjin Institute of Liver Disease, Tianjin 300192, P.R. China
| | - Shanshan Man
- Pharmaceutical Sector, Tianjin Second People's Hospital, Tianjin Institute of Liver Disease, Tianjin 300192, P.R. China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
6
|
Metabolomic Analysis Reveals That the Mechanism of Astaxanthin Improves the Osteogenic Differentiation Potential in Bone Marrow Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3427430. [PMID: 32308800 PMCID: PMC7132583 DOI: 10.1155/2020/3427430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/09/2020] [Accepted: 02/25/2020] [Indexed: 01/06/2023]
Abstract
At present, little research has been done on the metabolic phenotype of the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. In this study, the effect of astaxanthin on improving osteogenic differentiation potential of mesenchymal stem cells was studied by metabolomics. Results showed that L-methionine, L-tyrosine, and 2-hydroxycinnamic acid were upregulated in MSCs treated with astaxanthin, while L-lysine, L-pipecolic acid, L-histidine, L-arginine, D-fructose, and L-aspartic acid were downregulated in samples treated with astaxanthin. In addition, astaxanthin exhibited a significant dose-dependent relationship with these markers. Metabolic pathway enrichment analysis revealed that AST mainly regulated phenylalanine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; and pantothenate and CoA biosynthesis during the process of osteogenic differentiation of MSCs. Furthermore, the staining results showed that astaxanthin could actively promote the osteogenic differentiation of mesenchymal stem cells. These findings clearly indicate that astaxanthin plays an important role in inducing osteogenic differentiation of mesenchymal stem cells. In addition, the changed metabolites can be used to monitor the differentiation process.
Collapse
|
7
|
Mussap M, Loddo C, Fanni C, Fanos V. Metabolomics in pharmacology - a delve into the novel field of pharmacometabolomics. Expert Rev Clin Pharmacol 2020; 13:115-134. [PMID: 31958027 DOI: 10.1080/17512433.2020.1713750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Pharmacometabolomics is an emerging science pursuing the application of precision medicine. Combining both genetic and environmental factors, the so-called pharmacometabolomic approach guides patient selection and stratification in clinical trials and optimizes personalized drug dosage, improving efficacy and safety.Areas covered: This review illustrates the progressive introduction of pharmacometabolomics as an innovative solution for enhancing the discovery of novel drugs and improving research and development (R&D) productivity of the pharmaceutical industry. An extended analysis on published pharmacometabolomics studies both in animal models and humans includes results obtained in several areas such as hepatology, gastroenterology, nephrology, neuropsychiatry, oncology, drug addiction, embryonic cells, neonatology, and microbiomics.Expert opinion: a tailored, individualized therapy based on the optimization of pharmacokinetics and pharmacodynamics, the improvement of drug efficacy, and the abolition of drug toxicity and adverse drug reactions is a key issue in precision medicine. Genetics alone has become insufficient for deciphring intra- and inter-individual variations in drug-response, since they originate both from genetic and environmental factors, including human microbiota composition. The association between pharmacogenomics and pharmacometabolomics may be considered the new strategy for an in-deep knowledge on changes and alterations in human and microbial metabolic pathways due to the action of a drug.
Collapse
Affiliation(s)
- Michele Mussap
- Laboratory Unit, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Claudia Fanni
- Division of Pediatrics, Rovigo Hospital, Rovigo, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Little D, Ketteler R, Gissen P, Devine MJ. Using stem cell-derived neurons in drug screening for neurological diseases. Neurobiol Aging 2019; 78:130-141. [PMID: 30925301 DOI: 10.1016/j.neurobiolaging.2019.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells and their derivatives have become an important tool for researching disease mechanisms. It is hoped that they could be used to discover new therapies by providing the most reliable and relevant human in vitro disease models for drug discovery. This review will summarize recent efforts to use stem cell-derived neurons for drug screening. We also explain the current hurdles to using these cells for high-throughput pharmaceutical screening and developments that may help overcome these hurdles. Finally, we critically discuss whether induced pluripotent stem cell-derived neurons will come to fruition as a model that is regularly used to screen for drugs to treat neurological diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
9
|
Shi B, Wei W, Qin X, Zhao F, Duan Y, Sun W, Li D, Cao Y. Mapping theme trends and knowledge structure on adipose-derived stem cells: a bibliometric analysis from 2003 to 2017. Regen Med 2018; 14:33-48. [PMID: 30547725 DOI: 10.2217/rme-2018-0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the theme trends and knowledge structure of adipose-derived stem cells (ADSCs) related literatures by using bibliometric analysis. MATERIALS & METHODS Co-word analysis, strategic diagram and social network analysis were employed. RESULTS In line with strategic diagrams, ADSC differentiation and transplantation as main undeveloped themes in 2003-2007 were partially replaced by regeneration medicine and ADSCs for myocardial infarction in 2008 to 2012, and then partially replaced by miRNAs in ADSC genetics and nerve regeneration in 2013 to 2017. Based on social network analysis, regenerative medicine/methods, myocardial infarction/therapy, as well as miRNAs/genetics, and nerve regeneration/physiology were considered the emerging hot spots in 2008 to 2012 and 2013 to 2017. CONCLUSION The undeveloped themes and emerging hot spots could be considered as new research topics.
Collapse
Affiliation(s)
- Bei Shi
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China.,Functional Laboratory Center, College of Basic Medical Science, China Medical University, Shenyang 110122, PR China
| | - Wenjuan Wei
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.,Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Xin Qin
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China.,Biomedical Technology Cluster, Hong Kong Science and Technology Parks Corporation, 2 Science Park West Avenue, Hong Kong
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, PR China
| | - Yucen Duan
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| | - Weinan Sun
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| | - Da Li
- Centerof Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yu Cao
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| |
Collapse
|
10
|
Luz AL, Tokar EJ. Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicol Sci 2018; 165:31-39. [PMID: 30169765 PMCID: PMC6111785 DOI: 10.1093/toxsci/kfy174] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Millions of children are born each year with a birth defect. Many of these defects are caused by environmental factors, although the underlying etiology is often unknown. In vivo mammalian models are frequently used to determine if a chemical poses a risk to the developing fetus. However, there are over 80 000 chemicals registered for use in the United States, many of which have undergone little safety testing, necessitating the need for higher-throughput methods to assess developmental toxicity. Pluripotent stem cells (PSCs) are an ideal in vitro model to investigate developmental toxicity as they possess the capacity to differentiate into nearly any cell type in the human body. Indeed, a burst of research has occurred in the field of stem cell toxicology over the past decade, which has resulted in numerous methodological advances that utilize both mouse and human PSCs, as well as cutting-edge technology in the fields of metabolomics, transcriptomics, transgenics, and high-throughput imaging. Here, we review the wide array of approaches used to detect developmental toxicants, suggest areas for further research, and highlight critical aspects of stem cell biology that should be considered when utilizing PSCs in developmental toxicity testing.
Collapse
Affiliation(s)
- Anthony L Luz
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
11
|
Zhou L, Yin P, Luo P, Tang L, Wang Z, Gao P, Piao H, Lu X, Xu G. High-throughput metabolic profiling based on small amount of hepatic cells. Electrophoresis 2017; 38:2296-2303. [PMID: 28500646 DOI: 10.1002/elps.201600539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022]
Abstract
Common metabolomics platforms require about 106 cells, which has a limited throughput due to the time-consuming steps of cell culture and preparation. There is a demand for metabolic profiling methods to improve analytical throughput and detection sensitivity based on small amount of cells. In this study, we proposed a high-throughput scheme, integrating 96-well plate cell cultivation, in-situ cell pretreatment, and sensitive dansylation labeling coupled with LC-MS analysis of metabolites inside HepG2 cells (of the order of magnitude of 103 cells in each well). A simple and rapid cell pretreatment was performed showing good extraction efficiency and good precision (the RSDs smaller than 5%) for polar metabolites. The recovery in metabolite extraction evaluated with three isotope-labeled amino acids was from 89.7 to 106.3% at low, medium, and high concentrations. The suitability of the method was illustrated by exploring influences of different fatty acids on HepG2 cells.
Collapse
Affiliation(s)
- Lina Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Peiyuan Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Ping Luo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Ling Tang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Zhichao Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Peng Gao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Hailong Piao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
12
|
Design and evaluation of surface functionalized superparamagneto-plasmonic nanoparticles for cancer therapeutics. Int J Pharm 2017; 524:16-29. [DOI: 10.1016/j.ijpharm.2017.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/18/2017] [Accepted: 03/26/2017] [Indexed: 01/19/2023]
|
13
|
Klontzas ME, Vernardis SI, Heliotis M, Tsiridis E, Mantalaris A. Metabolomics Analysis of the Osteogenic Differentiation of Umbilical Cord Blood Mesenchymal Stem Cells Reveals Differential Sensitivity to Osteogenic Agents. Stem Cells Dev 2017; 26:723-733. [PMID: 28418785 PMCID: PMC5439454 DOI: 10.1089/scd.2016.0315] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) of fetal origin, such as umbilical cord blood MSCs (UCB MSCs), have emerged as a promising cell source for musculoskeletal tissue regeneration because of their higher proliferation potential, lack of donor site morbidity, and their off-the-shelf potential. MSCs differentiated toward the osteogenic lineage exhibit a specific metabolic phenotype characterized by reliance to oxidative phosphorylation for energy production and reduced glycolytic rates. Currently, limited information exists on the metabolic transitions at different stages of the osteogenic process after osteoinduction with different agents. Herein, the osteoinduction efficiency of BMP-2 and dexamethasone on UCB MSCs was assessed using gas chromatography-mass spectrometry (GC-MS) metabolomics analysis, revealing metabolic discrepancies at 7, 14, and 21 days of induction. Whereas both agents when administered individually were able to induce collagen I, osteocalcin, and osteonectin expression, BMP-2 was less effective than dexamethasone in promoting alkaline phosphatase expression. The metabolomics analysis revealed that each agent induced distinct metabolic alterations, including changes in amino acid pools, glutaminolysis, one-carbon metabolism, glycolysis, and tricarboxylic acid cycle. Importantly, we showed that in vitro-differentiated UCB MSCs acquire a metabolic physiology similar to primary osteoblasts when induced with dexamethasone but not with BMP-2, highlighting the fact that metabolomics analysis is sensitive enough to reveal potential differences in the osteogenic efficiency and can be used as a quality control assay for evaluating the osteogenic process.
Collapse
Affiliation(s)
- Michail E Klontzas
- 1 Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London , London, United Kingdom
| | - Spyros I Vernardis
- 1 Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London , London, United Kingdom
| | - Manolis Heliotis
- 2 Department of Oral and Maxillofacial Surgery, London North West Healthcare NHS Trust, Northwick Park Hospital , London, United Kingdom
| | - Eleftherios Tsiridis
- 3 Academic Orthopaedic Unit, Aristotle University Medical School , Thessaloniki, Greece .,4 Department of Surgery and Cancer, Division of Surgery, Imperial College London , London, United Kingdom
| | - Athanasios Mantalaris
- 1 Biological Systems Engineering Laboratory, Department of Chemical Engineering and Chemical Technology, Imperial College London , London, United Kingdom
| |
Collapse
|
14
|
Yao X, Yin N, Faiola F. Stem cell toxicology: a powerful tool to assess pollution effects on human health. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractEnvironmental pollution is a global problem; the lack of comprehensive toxicological assessments may lead to increased health risks. To fully understand the health effects of pollution, it is paramount to implement fast, efficient and specific toxicity screening that relies on human models rather than on time-consuming, expensive and often inaccurate tests involving live animals. Human stem cell toxicology represents a valid alternative to traditional toxicity assays because it takes advantage of the ability of stem cells to differentiate into multiple cell types and tissues of the human body. Thus, this branch of toxicology provides a possibility to assess cellular, embryonic, developmental, reproductive and functional toxicity in vitro within a single system highly relevant to human physiology. In this review, we describe the development, performance and future perspectives of stem cell toxicology, with an emphasis on how it can meet the increasing challenges posed by environmental pollution in the modern world.
Collapse
Affiliation(s)
- Xinglei Yao
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Schmidt BZ, Lehmann M, Gutbier S, Nembo E, Noel S, Smirnova L, Forsby A, Hescheler J, Avci HX, Hartung T, Leist M, Kobolák J, Dinnyés A. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 2016; 91:1-33. [PMID: 27492622 DOI: 10.1007/s00204-016-1805-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023]
Abstract
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Collapse
Affiliation(s)
- Béla Z Schmidt
- BioTalentum Ltd., Gödöllő, Hungary.,Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Martin Lehmann
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Gutbier
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Erastus Nembo
- BioTalentum Ltd., Gödöllő, Hungary.,Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anna Forsby
- Swedish Toxicology Research Center (Swetox), Södertälje, Sweden.,Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Jürgen Hescheler
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hasan X Avci
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | | | - András Dinnyés
- BioTalentum Ltd., Gödöllő, Hungary. .,Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100, Hungary.
| |
Collapse
|
16
|
Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 2015; 21:392-402. [PMID: 25738455 DOI: 10.1016/j.cmet.2015.02.002] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 11/16/2014] [Accepted: 02/06/2015] [Indexed: 02/07/2023]
Abstract
Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here we report the earliest metabolic changes induced during the first hours of differentiation. High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring during early differentiation. Metabolic and transcriptional analyses showed that pluripotent cells produced acetyl-CoA through glycolysis and rapidly lost this function during differentiation. Importantly, modulation of glycolysis blocked histone deacetylation and differentiation in human and mouse embryonic stem cells. Acetate, a precursor of acetyl-CoA, delayed differentiation and blocked early histone deacetylation in a dose-dependent manner. Inhibitors upstream of acetyl-CoA caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our results show a metabolic switch causing a loss of histone acetylation and pluripotent state during the first hours of differentiation. Our data highlight the important role metabolism plays in pluripotency and suggest that a glycolytic switch controlling histone acetylation can release stem cells from pluripotency.
Collapse
|
17
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
18
|
McGivern JV, Ebert AD. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments. Adv Drug Deliv Rev 2014; 69-70:170-8. [PMID: 24309014 DOI: 10.1016/j.addr.2013.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/11/2013] [Accepted: 11/24/2013] [Indexed: 02/06/2023]
Abstract
In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
Collapse
|
19
|
Application of “Omics” Technologies to In Vitro Toxicology. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
20
|
Faustino RS, Arrell DK, Folmes CDL, Terzic A, Perez-Terzic C. Stem cell systems informatics for advanced clinical biodiagnostics: tracing molecular signatures from bench to bedside. Croat Med J 2013. [PMID: 23986272 PMCID: PMC3760656 DOI: 10.3325//cmj.2013.54.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Development of innovative high throughput technologies has enabled a variety of molecular landscapes to be interrogated with an unprecedented degree of detail. Emergence of next generation nucleotide sequencing methods, advanced proteomic techniques, and metabolic profiling approaches continue to produce a wealth of biological data that captures molecular frameworks underlying phenotype. The advent of these novel technologies has significant translational applications, as investigators can now explore molecular underpinnings of developmental states with a high degree of resolution. Application of these leading-edge techniques to patient samples has been successfully used to unmask nuanced molecular details of disease vs healthy tissue, which may provide novel targets for palliative intervention. To enhance such approaches, concomitant development of algorithms to reprogram differentiated cells in order to recapitulate pluripotent capacity offers a distinct advantage to advancing diagnostic methodology. Bioinformatic deconvolution of several “-omic” layers extracted from reprogrammed patient cells, could, in principle, provide a means by which the evolution of individual pathology can be developmentally monitored. Significant logistic challenges face current implementation of this novel paradigm of patient treatment and care, however, several of these limitations have been successfully addressed through continuous development of cutting edge in silico archiving and processing methods. Comprehensive elucidation of genomic, transcriptomic, proteomic, and metabolomic networks that define normal and pathological states, in combination with reprogrammed patient cells are thus poised to become high value resources in modern diagnosis and prognosis of patient disease.
Collapse
Affiliation(s)
- Randolph S Faustino
- C. Perez-Terzic, Mayo Clinic, 200 First Street SW, Rochester, MN, USA 55905,
| | | | | | | | | |
Collapse
|
21
|
Bouhifd M, Hartung T, Hogberg HT, Kleensang A, Zhao L. Review: toxicometabolomics. J Appl Toxicol 2013; 33:1365-83. [PMID: 23722930 PMCID: PMC3808515 DOI: 10.1002/jat.2874] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/19/2022]
Abstract
Metabolomics use in toxicology is rapidly increasing, particularly owing to advances in mass spectroscopy, which is widely used in the life sciences for phenotyping disease states. Toxicology has the advantage of having the disease agent, the toxicant, available for experimental induction of metabolomics changes monitored over time and dose. This review summarizes the different technologies employed and gives examples of their use in various areas of toxicology. A prominent use of metabolomics is the identification of signatures of toxicity - patterns of metabolite changes predictive of a hazard manifestation. Increasingly, such signatures indicative of a certain hazard manifestation are identified, suggesting that certain modes of action result in specific derangements of the metabolism. This might enable the deduction of underlying pathways of toxicity, which, in their entirety, form the Human Toxome, a key concept for implementing the vision of Toxicity Testing for the 21st century. This review summarizes the current state of metabolomics technologies and principles, their uses in toxicology and gives a thorough overview on metabolomics bioinformatics, pathway identification and quality assurance. In addition, this review lays out the prospects for further metabolomics application also in a regulatory context.
Collapse
Affiliation(s)
| | - Thomas Hartung
- Correspondence to: T. Hartung, Johns Hopkins Bloomberg School of Public Health, Environmental Health Sciences, Chair for Evidence-based Toxicology, Center for Alternatives to Animal Testing, 615 N. Wolfe St., Baltimore, MD, 21205, USA.
| | | | | | | |
Collapse
|
22
|
Sun M, Miao Y, Wang P, Miao L, Liu L, Liu J. Urinary Metabonomics Study of Heart Failure Patients with HILIC and RPLC Separation Coupled to TOF–MS. Chromatographia 2013. [DOI: 10.1007/s10337-013-2585-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Abstract
The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.
Collapse
Affiliation(s)
- Simon P. Jones
- St. Vincent’s Centre for Applied Medical Research, The University of New South Wales, Sydney, Australia
| | - Gilles J. Guillemin
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Bruce J. Brew
- St. Vincent’s Centre for Applied Medical Research, The University of New South Wales, Sydney, Australia
- Department of Neurology, St. Vincent’s Hospital, Sydney, Australia
| |
Collapse
|
24
|
Faustino RS, Arrell DK, Folmes CD, Terzic A, Perez-Terzic C. Stem cell systems informatics for advanced clinical biodiagnostics: tracing molecular signatures from bench to bedside. Croat Med J 2013; 54:319-29. [PMID: 23986272 PMCID: PMC3760656 DOI: 10.3325/cmj.2013.54.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Development of innovative high throughput technologies has enabled a variety of molecular landscapes to be interrogated with an unprecedented degree of detail. Emergence of next generation nucleotide sequencing methods, advanced proteomic techniques, and metabolic profiling approaches continue to produce a wealth of biological data that captures molecular frameworks underlying phenotype. The advent of these novel technologies has significant translational applications, as investigators can now explore molecular underpinnings of developmental states with a high degree of resolution. Application of these leading-edge techniques to patient samples has been successfully used to unmask nuanced molecular details of disease vs healthy tissue, which may provide novel targets for palliative intervention. To enhance such approaches, concomitant development of algorithms to reprogram differentiated cells in order to recapitulate pluripotent capacity offers a distinct advantage to advancing diagnostic methodology. Bioinformatic deconvolution of several "-omic" layers extracted from reprogrammed patient cells, could, in principle, provide a means by which the evolution of individual pathology can be developmentally monitored. Significant logistic challenges face current implementation of this novel paradigm of patient treatment and care, however, several of these limitations have been successfully addressed through continuous development of cutting edge in silico archiving and processing methods. Comprehensive elucidation of genomic, transcriptomic, proteomic, and metabolomic networks that define normal and pathological states, in combination with reprogrammed patient cells are thus poised to become high value resources in modern diagnosis and prognosis of patient disease.
Collapse
Affiliation(s)
- Randolph S. Faustino
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D. Kent Arrell
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Clifford D.L. Folmes
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Carmen Perez-Terzic
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA,Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
25
|
Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie 2013; 95:2271-85. [PMID: 23827856 PMCID: PMC4061727 DOI: 10.1016/j.biochi.2013.06.020] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022]
Abstract
Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS.
Collapse
Affiliation(s)
- Denise Drago
- CNS Repair Unit, Institute of Experimental Neurology, Division of Neurosciences, San Raffaele Scientific Institute, 20132 Milan, Italy; Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Modeling neurodegenerative diseases using stem cells: is it accelerating drug discovery? Future Med Chem 2012; 4:1651-3. [DOI: 10.4155/fmc.12.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
McNamara LE, Sjöström T, Meek RMD, Oreffo ROC, Su B, Dalby MJ, Burgess KEV. Metabolomics: a valuable tool for stem cell monitoring in regenerative medicine. J R Soc Interface 2012; 9:1713-24. [PMID: 22628210 PMCID: PMC3385772 DOI: 10.1098/rsif.2012.0169] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/01/2012] [Indexed: 02/06/2023] Open
Abstract
Metabolomics is a method for investigation of changes in the global metabolite profile of cells. This paper discusses the technical application of the approach, considering metabolite extraction, separation, mass spectrometry and data interpretation. A particular focus is on the application of metabolomics to the study of stem cell physiology in the context of biomaterials and regenerative medicine. Case studies are used to illustrate key points, focusing on the use of metabolomics in the examination of mesenchymal stem cell responses to titania-nanopillared substrata designed for orthopaedic applications.
Collapse
Affiliation(s)
- Laura E McNamara
- Centre for Cell Engineering, Division of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abu Dawud R, Schreiber K, Schomburg D, Adjaye J. Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures. PLoS One 2012; 7:e39896. [PMID: 22768158 PMCID: PMC3387229 DOI: 10.1371/journal.pone.0039896] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/28/2012] [Indexed: 11/17/2022] Open
Abstract
While human embryonic stem cells (hESCs) and human embryonal carcinoma cells (hECCs) have been studied extensively at the levels of the genome, transcriptome, proteome and epigenome our knowledge of their corresponding metabolomes is limited. Here, we present the metabolic signatures of hESCs and hESCs obtained by untargeted gas chromatography coupled to mass spectrometry (GC-MS). Whilst some metabolites are common to both cell types, representing the self-renewal and house-keeping signatures, others were either higher (e.g., octadecenoic acid, glycerol-3-phosphate, 4-hydroxyproline) or lower (e.g., glutamic acid, mannitol, malic acid, GABA) in hESCs (H9) compared to hECCs (NTERA2), these represent cell type specific signatures. Further, our combined results of GC-MS and microarray based gene expression profiling of undifferentiated and OCT4-depleted hESCs are consistent with the Warburg effect which is increased glycolysis in embryonic cells and tumor cells in the presence of O2 while oxidative phosphorylation (OXPHOS) is impaired or even shut down. RNAi-based OCT4 knock down mediated differentiation resulted in the activation of the poised OXPHOS machinery by expressing missing key proteins such as NDUFC1, UQCRB and COX, increase in TCA cycle activity and decreased lactate metabolism. These results shed light on the metabolite layer of pluripotent stem cells and could potentially establish novel metabolic markers of self renewal and pluripotency.
Collapse
Affiliation(s)
- Raed Abu Dawud
- Department of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Balmer NV, Weng MK, Zimmer B, Ivanova VN, Chambers SM, Nikolaeva E, Jagtap S, Sachinidis A, Hescheler J, Waldmann T, Leist M. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 2012; 21:4104-14. [DOI: 10.1093/hmg/dds239] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
30
|
Li J, Xin J, Hao S, Zhang L, Jiang L, Chen D, Xie Q, Xu W, Cao H, Li L. Return of the metabolic trajectory to the original area after human bone marrow mesenchymal stem cell transplantation for the treatment of fulminant hepatic failure. J Proteome Res 2012; 11:3414-3422. [PMID: 22582960 DOI: 10.1021/pr3002639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our recent study first demonstrated that human bone marrow mesenchymal stem cell (hBMSC) transplantation could prevent death from fulminant hepatic failure (FHF) in pigs. To further clarify the metabolic mechanism of hBMSC transplantation in FHF, the plasma collected from FHF pigs that received transplantation of hBMSCs was examined using metabolic analysis to identify the key molecular markers that regulate recovery. The results showed that obvious metabolic disturbance occurred during FHF, whereas the hBMSC transplantation group showed less severe liver injury. The metabolic trajectory returns to its original state at week 3 following the hBMSC transplantation. In total, the concentration of 26 metabolites, including conjugated bile acids, phosphatidylcholines, lysophosphatidylcholines, fatty acids, amino acid and sphingomyelin, are significantly different between the FHF group and the hBMSC transplantation group. Moreover, the time course of changes in the metabolites corresponded with that of the biochemical and histological analyses. Real-time PCR further confirmed that the gene expression of phospholipase A1, lecithin-cholesterol acyltransferase and lysophosphatidylcholine acyltransferase 1 decreased significantly, whereas that of phospholipase A2 remained stable, which explains the decrease of the phosphatidylcholines and lysophosphatidylcholines. These novel results have revealed a metabolic mechanism for the hBMSC transplantation in FHF, which could lead to the future development of treatment strategies for stem cell therapies.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University , 79 Qingchun Rd., Hangzhou 310003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ouedraogo M, Baudoux T, Stévigny C, Nortier J, Colet JM, Efferth T, Qu F, Zhou J, Chan K, Shaw D, Pelkonen O, Duez P. Review of current and "omics" methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. JOURNAL OF ETHNOPHARMACOLOGY 2012; 140:492-512. [PMID: 22386524 DOI: 10.1016/j.jep.2012.01.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing use of traditional herbal medicines around the world requires more scientific evidence for their putative harmlessness. To this end, a plethora of methods exist, more or less satisfying. In this post-genome era, recent reviews are however scarce, not only on the use of new "omics" methods (transcriptomics, proteomics, metabonomics) for genotoxicity, teratogenicity, and nephrotoxicity assessment, but also on conventional ones. METHODS The present work aims (i) to review conventional methods used to assess genotoxicity, teratogenicity and nephrotoxicity of medicinal plants and mushrooms; (ii) to report recent progress in the use of "omics" technologies in this field; (iii) to underline advantages and limitations of promising methods; and lastly (iv) to suggest ways whereby the genotoxicity, teratogenicity, and nephrotoxicity assessment of traditional herbal medicines could be more predictive. RESULTS Literature and safety reports show that structural alerts, in silico and classical in vitro and in vivo predictive methods are often used. The current trend to develop "omics" technologies to assess genotoxicity, teratogenicity and nephrotoxicity is promising but most often relies on methods that are still not standardized and validated. CONCLUSION Hence, it is critical that toxicologists in industry, regulatory agencies and academic institutions develop a consensus, based on rigorous methods, about the reliability and interpretation of endpoints. It will also be important to regulate the integration of conventional methods for toxicity assessments with new "omics" technologies.
Collapse
Affiliation(s)
- Moustapha Ouedraogo
- Laboratory of Pharmacology and Toxicology, Health Sciences Faculty, University of Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso. mustapha
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Nuclear reprogramming with stemness factors enables resetting of somatic differentiated tissue back to the pluripotent ground state. Recent evidence implicates mitochondrial restructuring and bioenergetic plasticity as key components underlying execution of orchestrated dedifferentiation and derivation of induced pluripotent stem cells. Aerobic to anaerobic transition of somatic oxidative energy metabolism into a glycolytic metabotype promotes proficient reprogramming, establishing a novel regulator of acquired stemness. Metabolomic profiling has further identified specific metabolic remodeling traits defining lineage redifferentiation of pluripotent cells. Therefore, mitochondrial biogenesis and energy metabolism comprise a vital axis for biomarker discovery, intimately reflecting the molecular dynamics fundamental for the resetting and redirection of cell fate.
Collapse
Affiliation(s)
- Clifford D L Folmes
- Center for Regenerative Medicine and Marriott Heart Disease Research Program, MN, USA
| | | | | |
Collapse
|
33
|
Palmer JA, Poenitzsch AM, Smith SM, Conard KR, West PR, Cezar GG. Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages. Alcohol Clin Exp Res 2012; 36:1314-24. [PMID: 22324771 DOI: 10.1111/j.1530-0277.2011.01732.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/24/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) are a leading cause of neurodevelopmental disability. The mechanisms underlying FASD are incompletely understood, and biomarkers to identify those at risk are lacking. Here, we perform metabolomic analysis of embryoid bodies and neural lineages derived from human embryonic stem (hES) cells to identify the neural secretome produced in response to ethanol (EtOH) exposure. METHODS WA01 and WA09 hES cells were differentiated into embryoid bodies, neural progenitors, or neurons. Cells along this progression were cultured for 4 days with 0, 0.1, or 0.3% EtOH. Supernatants were subjected to C18 chromatography followed by ESI-QTOF-MS. Features were annotated using public databases, and the identities of 4 putative biomarkers were confirmed with purified standards and comparative MS/MS. RESULTS EtOH treatment induced statistically significant changes to metabolite abundance in human embryoid bodies (180 features), neural progenitors (76 features), and neurons (42 features). There were no shared significant features between different cell types. Fifteen features showed a dose-response to EtOH. Four chemical identities were confirmed: L-thyroxine, 5'-methylthioadenosine, and the tryptophan metabolites, L-kynurenine and indoleacetaldehyde. One feature with a putative annotation of succinyladenosine was significantly increased in both EtOH treatments. Additional features were selective to EtOH treatment but were not annotated in public databases. CONCLUSIONS EtOH exposure induces statistically significant changes to the metabolome profile of human embryoid bodies, neural progenitors, and neurons. Several of these metabolites are normally present in human serum, suggesting their usefulness as potential serum FASD biomarkers. These findings suggest the biochemical pathways that are affected by EtOH in the developing nervous system and delineate mechanisms of alcohol injury during human development.
Collapse
Affiliation(s)
- Jessica A Palmer
- Department of Animal Sciences, University of Wisconsin-Madison, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pistollato F, Bremer-Hoffmann S, Healy L, Young L, Stacey G. Standardization of pluripotent stem cell cultures for toxicity testing. Expert Opin Drug Metab Toxicol 2012; 8:239-57. [PMID: 22248265 DOI: 10.1517/17425255.2012.639763] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Pluripotent stem cell (PSC) lines offer a unique opportunity to derive various human cell types that can be exploited for human safety assessments in vitro and as such contribute to modern mechanistically oriented toxicity testing. AREAS COVERED This article reviews the two major types of PSC cultures that are currently most promising for toxicological applications: human embryonic stem cell lines and human induced PSC lines. Through the review, the article explains how these cell types will improve the current safety evaluations of chemicals and will allow a more efficient selection of drug candidates. Additionally, the article discusses the important issues of maintaining PSCs as well as their differentiation efficiency. EXPERT OPINION The demonstration of the reliability and relevance of in vitro toxicity tests for a given purpose is mandatory for their use in regulatory toxicity testing. Given the peculiar nature of PSCs, a high level of standardization of undifferentiated cell cultures as well as of the differentiation process is required in order to ensure the establishment of robust test systems. It is, therefore, of pivotal importance to define and internationally agree on crucial parameters to judge the quality of the cellular models before enrolling them for toxicity testing.
Collapse
Affiliation(s)
- Francesca Pistollato
- Institute for Health & Consumer Protection, Systems Toxicology Unit, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | | | | |
Collapse
|
35
|
Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays? Arch Toxicol 2011; 85:1361-72. [DOI: 10.1007/s00204-011-0767-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/06/2011] [Indexed: 01/31/2023]
|
36
|
Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 2011; 257:111-21. [PMID: 21925528 DOI: 10.1016/j.taap.2011.08.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/28/2011] [Indexed: 11/23/2022]
Abstract
Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity.
Collapse
|
37
|
Han SSW, Williams LA, Eggan KC. Constructing and deconstructing stem cell models of neurological disease. Neuron 2011; 70:626-44. [PMID: 21609821 DOI: 10.1016/j.neuron.2011.05.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 02/07/2023]
Abstract
Among the disciplines of medicine, the study of neurological disorders is particularly challenging. The fundamental inaccessibility of the human neural types affected by disease prevents their isolation for in vitro studies of degenerative mechanisms or for drug screening efforts. However, the ability to reprogram readily accessible tissue from patients into pluripotent stem (iPS) cells may now provide a general solution to this shortage of human neurons. Gradually improving methods for directing the differentiation of patient-specific stem cells has enabled the production of several neural cell types affected by disease. Furthermore, initial studies with stem cell lines derived from individuals with pediatric, monogenic disorders have validated the stem cell approach to disease modeling, allowing relevant neural phenotypes to be observed and studied. Whether iPS cell-derived neurons will always faithfully recapitulate the same degenerative processes observed in patients and serve as platforms for drug discovery relevant to common late-onset diseases remains to be determined.
Collapse
Affiliation(s)
- Steve S W Han
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
38
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hozyasz KK, Mostowska A, Wojcicki P, Lianeri M, Jagodzinski PP. Polymorphic variants of genes related to arginine metabolism and the risk of orofacial clefts. Arch Oral Biol 2010; 55:861-6. [PMID: 20739017 DOI: 10.1016/j.archoralbio.2010.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/23/2010] [Accepted: 07/27/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Maternal mid-pregnancy low levels of symmetric dimethylarginine and newborn low levels of citrulline are suspected to be risk factors for orofacial clefts. This study was undertaken to investigate the involvement of polymorphic variants of genes related to arginine metabolism in the susceptibility of clefting. DESIGN PCR-RFLP and HRM analyses were used to analyze single nucleotide polymorphisms (SNPs) of ASS1, ASL, and SLC25A13 in 172 children with non-syndromic cleft lip with or without cleft palate (CL/P) and 188 controls without congenital anomalies. The differences in allele and genotype frequencies between cases and controls were determined using standard Chi-square and Fisher exact tests. The odds ratio (OR) and associated 95% confidence intervals (95% CI) for individuals with CL/P versus controls were also calculated. Associations between the investigated polymorphisms and the risk of being born with an orofacial cleft were tested using the nonparametric and genetic model-free Multifactor Dimensionality Reduction (MDR) approach. RESULTS Analysis of five SNPs of the ASS1 gene revealed that the G allele of rs7860909 is associated with increased CL/P risk. Compared to individuals with the AA genotype, the G allele carriers had an OR of 1.768 (95% CI: 1.133-2.759; p=0.012). For the remaining SNPs of all analysed genes, there was no overall evidence for cleft association considering the allele and genotype distribution. However, gene-by-gene interaction analysis conducted using the MDR approach revealed a significant interactive genetic effect of ASS1 (rs666174) and SLC25A13 (rs10252573) on the occurrence of clefting (p=0.002). CONCLUSION Our results demonstrate moderate evidence for the association of polymorphic variants of genes related to arginine metabolism with abnormal palatogenesis.
Collapse
Affiliation(s)
- Kamil K Hozyasz
- Department of Paediatrics, Institute of Mother and Child, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
40
|
Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 2010; 40:387-426. [PMID: 20717559 DOI: 10.1039/b906712b] [Citation(s) in RCA: 575] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).
Collapse
Affiliation(s)
- Warwick B Dunn
- Manchester Centre for Integrative Systems Biology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | |
Collapse
|
41
|
West PR, Weir AM, Smith AM, Donley EL, Cezar GG. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 2010; 247:18-27. [DOI: 10.1016/j.taap.2010.05.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
|
42
|
Ichida JK, Kiskinis E, Eggan K. Shushing down the epigenetic landscape towards stem cell differentiation. Development 2010; 137:2455-60. [DOI: 10.1242/dev.049130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In February 2010, researchers interested in stem cell biology gathered in Keystone, Colorado, USA to discuss their findings on the origins and behaviors of pluripotent and multipotent stem cells, and their therapeutic potential. Here, we review the presentations at that meeting and the questions that emerged concerning how a stem cell `decides' to self-renew or differentiate, what their distinct properties are and how this information can be used to develop novel therapies.
Collapse
Affiliation(s)
- Justin K. Ichida
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Evangelos Kiskinis
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Eggan
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
43
|
Endoh T, Shintani R, Mie M, Kobatake E, Ohtsuki T, Sisido M. Detection of bioactive small molecules by fluorescent resonance energy transfer (FRET) in RNA-protein conjugates. Bioconjug Chem 2010; 20:2242-6. [PMID: 19928953 DOI: 10.1021/bc9002184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bioactive small molecules such as metabolites and drugs play important roles in regulating biological functions. A technique for visualizing such small molecules is very useful to understand their molecular mechanisms. In this study, an RNA-protein conjugate, which consists of an RRE-RNA sensor protein (EYFP-Rev-ECFP) and an altered RRE-RNA, was constructed to detect bioactive small molecules by fluorescent resonance energy transfer (FRET). We designed a theophylline-aptamer-inserted RRE-RNA (Theo-RRE) to detect theophylline as a model target molecule. Theo-RRE formed an RNA-protein conjugate with EYFP-Rev-ECFP in the presence of theophylline. As a result, theophylline was specifically detected down to 10 microM by the FRET increase in distinction from theophylline analogue, caffeine, in cell lysates.
Collapse
Affiliation(s)
- Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojimaminamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
High-throughput screening technologies are widely used in the early stages of drug discovery to rapidly evaluate the properties of thousands of compounds. However, they generally rely on testing compound libraries on highly proliferative immortalized or cancerous cell lines, which do not necessarily provide an accurate indication of the effects of compounds in normal human cells or the specific cell type under study. Recent advances in stem cell technology have the potential to allow production of a virtually limitless supply of normal human cells that can be differentiated into any specific cell type. Moreover, using induced pluripotent stem cell technology, they can also be generated from patients with specific disease traits, enabling more relevant modelling and drug screens. This article discusses the opportunities and challenges for the use of stem cells in drug screening with a focus on induced pluripotent stem cells.
Collapse
|
45
|
Trosko JE, Chang CC. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment. Toxicology 2009; 270:18-34. [PMID: 19948204 DOI: 10.1016/j.tox.2009.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 11/23/2009] [Indexed: 12/15/2022]
Abstract
Given the reality of the inadequacies of current concepts of the mechanisms of chemical toxicities, of the various assays to predict toxicities from current molecular, biochemical, in vitro and animal bioassays, and of the failure to generate efficacious and safe chemicals for medicines, food supplements, industrial, consumer and agricultural chemicals, the recent NAS Report, "Toxicity Testing in the 21st Century: A Vision and a Strategy", has drawn attention to a renewed examination of what needs to be done to improve our current approach for better assessment of potential risk to human health. This "Commentary" provides a major paradigm challenge to the current concepts of how chemicals induce toxicities and how these various mechanisms of toxicities can contribute to the pathogenesis of some human diseases, such as birth defects and cancer. In concordance with the NAS Report to take "... advantage of the on-going revolution in biology and biotechnology", this "Commentary" supports the use of human embryonic and adult stem cells, grown in vitro under simulated "in vivo niche conditions". The human being should be viewed "as greater than the sum of its parts". Homeostatic control of the "emergent properties" of the human hierarchy, needed to maintain human health, requires complex integration of endogenous and exogenous signaling molecules that control cell proliferation, differentiation, apoptosis and senescence of stem, progenitor and differentiated cells. Currently, in vitro toxicity assays (mutagenesis, cytotoxicity, epigenetic modulation), done on 2-dimensional primary rodent or human cells (which are always mixtures of cells), on immortalized or tumorigenic rodent or human cell lines do not represent normal human cells in vivo [which do not grow on plastic and which are in micro-environments representing 3 dimensions and constantly interacting factors]. In addition, with the known genetic, gender, and developmental state of cells in vivo, any in vitro toxicity assay will need to mimic these conditions in vitro. More specifically, while tissues contain a few stem cells, many progenitor/transit cells and terminally differentiated cells, it should be obvious that both embryonic and adult stem cells would be critical "target" cells for toxicity testing. The ultimate potential for in vitro testing of human stem cells will to try to mimic a 3-D in vitro micro-environment on multiple "organ-specific and multiple genotypic/gender "adult stem cells. The role of stem cells in many chronic diseases, such as cancer, birth defects, and possibly adult diseases after pre-natal and early post-natal exposures (Barker hypothesis), demands toxicity studies of stem cells. While alteration of gene expression ("toxico-epigenomics") is a legitimate endpoint of these toxicity studies, alteration of the quantity of stem cells during development must be serious considered. If the future utility of human stem cells proves to be valid, the elimination of less relevant, expensive and time-consuming rodent and 2-D human in vitro assays will be eliminated.
Collapse
Affiliation(s)
- James Edward Trosko
- Center for Integrative Toxicology, Food Safety and Toxicology Center, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
46
|
Chong WPK, Goh LT, Reddy SG, Yusufi FNK, Lee DY, Wong NSC, Heng CK, Yap MGS, Ho YS. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3763-3771. [PMID: 19902412 DOI: 10.1002/rcm.4328] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A metabolomics-based approach was used to time profile extracellular metabolites in duplicate fed-batch bioreactor cultures of recombinant Chinese Hamster Ovary (CHO) cells producing monoclonal IgG antibody. Culture medium was collected and analysed using a high-performance liquid chromatography (HPLC) system in tandem with an LTQ-Orbitrap mass spectrometer. An in-house software was developed to pre-process the LC/MS data in terms of filtering and peak detection. This was followed by principal component analysis (PCA) to assess variance amongst the samples, and hierarchical clustering to categorize mass peaks by their time profiles. Finally, LC/MS2 experiments using the LTQ-Orbitrap (where standard was available) and SYNAPT HDMS (where standard was unavailable) were performed to confirm the identities of the metabolites. Two groups of identified metabolites were of particular interest; the first consisted of metabolites that began to accumulate when the culture entered stationary phase. The majority of them were amino acid derivatives and they were likely to be derived from the amino acids in the feed media. Examples included acetylphenylalanine and dimethylarginine which are known to be detrimental to cell growth. The second group of metabolites showed a downward trend as the culture progressed. Two of them were medium components--tryptophan and choline, and these became depleted midway into the culture despite the addition of feed media. The findings demonstrated the potential of utilizing metabolomics to guide medium design for fed-batch culture to potentially improve cell growth and product titer.
Collapse
Affiliation(s)
- William P K Chong
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, Centros #06-01, Singapore 138668.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Marchetto MCN, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 2009; 4:e7076. [PMID: 19763270 PMCID: PMC2741600 DOI: 10.1371/journal.pone.0007076] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/20/2009] [Indexed: 12/15/2022] Open
Abstract
Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research.
Collapse
Affiliation(s)
- Maria C. N. Marchetto
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California, United States of America
| | - Gene W. Yeo
- University of California San Diego, School of Medicine, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, California, United States of America
| | - Osamu Kainohana
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, California, United States of America
| | - Martin Marsala
- University of California, San Diego, School of Medicine, Department of Anesthesiology, La Jolla, California, United States of America
| | - Fred H. Gage
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California, United States of America
| | - Alysson R. Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Nirmalanandhan VS, Sittampalam GS. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges. ACTA ACUST UNITED AC 2009; 14:755-68. [PMID: 19675315 DOI: 10.1177/1087057109336591] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.
Collapse
Affiliation(s)
- Victor Sanjit Nirmalanandhan
- University of Kansas Medical Center & Kansas Masonic Cancer Research Center, Department of Pharmacology Toxicology and Therapeutics, The Institute for Advancing Medical Innovation, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
49
|
Muotri AR. Modeling epilepsy with pluripotent human cells. Epilepsy Behav 2009; 14 Suppl 1:81-5. [PMID: 18845273 DOI: 10.1016/j.yebeh.2008.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 01/09/2023]
Abstract
Pluripotency is generally defined by the ability to differentiate into cell types representing all three germ layers: ectoderm, mesoderm, and endoderm. Human pluripotent stem cells hold great promise in regenerative medicine and in cell replacement therapies because of their ability to self-renew and their developmental potential to become all cell types in the body. Moreover, pluripotent cells represent a unique system in which to study the normal development of the human nervous system and the several instances where the process may fail. Here, I propose several strategies for how pluripotent stem cells, both human embryonic stem cells and induced pluripotent stem cells, can potentially be used to gain insights into the biology of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alysson Renato Muotri
- Department of Pediatrics, Division of Genetics, VCSD Stem Cell Initiative, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Panetta R, Greenwood MT. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov Today 2008; 13:1059-66. [DOI: 10.1016/j.drudis.2008.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/21/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022]
|