1
|
Penny TR, Jenkin G, Miller SL, McDonald CA. Umbilical cord blood derived cell expansion: a potential neuroprotective therapy. Stem Cell Res Ther 2024; 15:234. [PMID: 39075614 PMCID: PMC11287950 DOI: 10.1186/s13287-024-03830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examining the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analysis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angiogenic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence demonstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been shown to improve multiple indices of injury in rodent models of stroke, Parkinson's disease and neonatal hypoxic ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions in children and adults.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Lyu H, Sun DM, Ng CP, Cheng WS, Chen JF, He YZ, Lam SY, Zheng ZY, Huang GD, Wang CC, Young W, Poon WS. Umbilical Cord Blood Mononuclear Cell Treatment for Neonatal Rats With Hypoxic Ischemia. Front Cell Neurosci 2022; 16:823320. [PMID: 35308119 PMCID: PMC8924590 DOI: 10.3389/fncel.2022.823320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) occurs when an infant’s brain has not received adequate oxygen and blood supply, resulting in ischemic and hypoxic damage. Currently, supportive care and hypothermia therapy have been the standard treatment for HIE. However, there are still over 20% of treated infants died and 19–30% survived with significant disability. HIE animal model was first established by Rice et al., involving the ligation of one common carotid artery followed by hypoxia. In this study, we investigated human umbilical cord blood (HUCB) and its two components mononuclear cell (MNC) and red cell fraction (RCF) in both short and long term study using a modified HIE rat model. Methods In this modified HIE model, both common carotid arteries were occluded, breathing 8% oxygen in a hypoxic chamber for 60-min, followed by the release of the common carotid arteries ligature, mimicking reperfusion injury. For cell therapeutic study, cells were intravenously injected to HIE rat pups, and both behavioral and histological changes were assessed at selected time points. Result Statistically significant behavioral improvements were demonstrated on Day 7 and 1 month between saline treated HIE rats and UCB/MNC treated rats. However, at 3 months, the therapeutic improvements were only showed between saline treated HIE animals and MNC treated HIE rats. For histological analysis 1 month after cell injection, the number of functional neurons were statistically increased between saline treated HIE and UCB/MNC/RCF treated HIE rats. At 3 months, the significant increase in functional neurons was only present in MNC treated HIE rats. Conclusion We have used a bilateral temporary occlusion of 60 min, a moderately brain damaged model, for cell therapeutic studies. HUCB mononuclear cell (MNC) therapy showed benefits in neonatal HIE rats in both short and long term behavioral and histological assessments.
Collapse
Affiliation(s)
- Hao Lyu
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dong Ming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Chi Ping Ng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wendy S. Cheng
- Mononuclear Therapeutics Limited, Hong Kong, Hong Kong SAR, China
| | - Jun Fan Chen
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yu Zhong He
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sin Yu Lam
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhi Yuan Zheng
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Neurosurgery, Hainan Hospital of People’s Liberation Army General Hospital, Sanya, China
| | - Guo Dong Huang
- Shenzhen Key Laboratory of Neurosurgery, Department of Neurosurgery, The Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Shatin, Hong Kong SAR, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- *Correspondence: Wise Young,
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Wise Young,
| |
Collapse
|
4
|
Wang X, Zang J, Yang Y, Lu S, Guan Q, Ye D, Wang Z, Zhou H, Li K, Wang Q, Wu Y, Luan Z. Transplanted Human Oligodendrocyte Progenitor Cells Restore Neurobehavioral Deficits in a Rat Model of Preterm White Matter Injury. Front Neurol 2021; 12:749244. [PMID: 34858313 PMCID: PMC8631304 DOI: 10.3389/fneur.2021.749244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm white matter injury (PWMI) is a common brain injury and a leading cause of life-long neurological deficits in premature infants; however, no effective treatment is available yet. This study aimed to investigate the fate and effectiveness of transplanted human oligodendrocyte progenitor cells (hOPCs) in a rat model of PWMI. Methods: Hypoxia-ischemia was induced in rats at postnatal day 3, and hOPCs (6 × 105 cells/5 μL) were intracerebroventricularly transplanted at postnatal day 7. Neurobehavior was assessed 12 weeks post-transplant using the CatWalk test and Morris water maze test. Histological analyses, as well as immunohistochemical and transmission electron microscopy, were performed after transcardial perfusion. Results: Transplanted hOPCs survived for 13 weeks in PWMI brains. They were widely distributed in the injured white matter, and migrated along the corpus callosum to the contralateral hemisphere. Notably, 82.77 ± 3.27% of transplanted cells differentiated into mature oligodendrocytes, which produced myelin around the axons. Transplantation of hOPCs increased the fluorescence intensity of myelin basic protein and the thickness of myelin sheaths as observed in immunostaining and transmission electron microscopy, while it reduced white matter atrophy at the level of gross morphology. With regard to neurobehavior, the CatWalk test revealed improved locomotor function and inter-paw coordination after transplantation, and the cognitive functions of hOPC-transplanted rats were restored as revealed by the Morris water maze test. Conclusions: Myelin restoration through the transplantation of hOPCs led to neurobehavioral improvements in PWMI rats, suggesting that transplanting hOPCs may provide an effective and promising therapeutic strategy in children with PWMI.
Collapse
Affiliation(s)
- Xiaohua Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China.,Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Zang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Yinxiang Yang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Siliang Lu
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Guan
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dou Ye
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaoyan Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Haipeng Zhou
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Ke Li
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Zuo Luan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Gamage TKJB, Fraser M. The Role of Extracellular Vesicles in the Developing Brain: Current Perspective and Promising Source of Biomarkers and Therapy for Perinatal Brain Injury. Front Neurosci 2021; 15:744840. [PMID: 34630028 PMCID: PMC8498217 DOI: 10.3389/fnins.2021.744840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review focuses on our current understanding of the proposed physiological and pathological functions of extracellular vesicles (EVs) in the developing brain. Furthermore, since EVs have attracted great interest as potential novel cell-free therapeutics, we discuss advances in the knowledge of stem cell- and astrocyte-derived EVs in relation to their potential for protection and repair following perinatal brain injury. This review identified 13 peer-reviewed studies evaluating the efficacy of EVs in animal models of perinatal brain injury; 12/13 utilized mesenchymal stem cell-derived EVs (MSC-EVs) and 1/13 utilized astrocyte-derived EVs. Animal model, method of EV isolation and size, route, timing, and dose administered varied between studies. Notwithstanding, EV treatment either improved and/or preserved perinatal brain structures both macroscopically and microscopically. Additionally, EV treatment modulated inflammatory responses and improved brain function. Collectively this suggests EVs can ameliorate, or repair damage associated with perinatal brain injury. These findings warrant further investigation to identify the optimal cell numbers, source, and dosage regimens of EVs, including long-term effects on functional outcomes.
Collapse
|
6
|
Nair S, Rocha‐Ferreira E, Fleiss B, Nijboer CH, Gressens P, Mallard C, Hagberg H. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J Neurochem 2021; 158:59-73. [PMID: 33314066 PMCID: PMC8359360 DOI: 10.1111/jnc.15267] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury. Mesenchymal stem cells have immunomodulatory action and exert mitoprotective effects which attenuate production of reactive oxygen species and promote restoration of tissue function and metabolism after perinatal insults. This review summarizes the present state, the underlying causes, challenges and possibilities for effective clinical translation of mesenchymal stem cell therapy.
Collapse
Affiliation(s)
- Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Eridan Rocha‐Ferreira
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Bobbi Fleiss
- School of Health and Biomedical SciencesRMIT UniversityBundooraVictoriaAustralia
- Université de Paris, NeuroDiderotParisFrance
| | - Cora H Nijboer
- Department for Developmental Origins of DiseaseUniversity Medical Center Utrecht Brain Center and Wilhelmina Children’s Hospital, Utrecht UniversityUtrechtNetherlands
| | | | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Neuroscience and PhysiologySahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
7
|
A Biomarker for Predicting Responsiveness to Stem Cell Therapy Based on Mechanism-of-Action: Evidence from Cerebral Injury. Cell Rep 2021; 31:107622. [PMID: 32402283 DOI: 10.1016/j.celrep.2020.107622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
To date, no stem cell therapy has been directed to specific recipients-and, conversely, withheld from others-based on a clinical or molecular profile congruent with that cell's therapeutic mechanism-of-action (MOA) for that condition. We address this challenge preclinically with a prototypical scenario: human neural stem cells (hNSCs) against perinatal/neonatal cerebral hypoxic-ischemic injury (HII). We demonstrate that a clinically translatable magnetic resonance imaging (MRI) algorithm, hierarchical region splitting, provides a rigorous, expeditious, prospective, noninvasive "biomarker" for identifying subjects with lesions bearing a molecular profile indicative of responsiveness to hNSCs' neuroprotective MOA. Implanted hNSCs improve lesional, motor, and/or cognitive outcomes only when there is an MRI-measurable penumbra that can be forestalled from evolving into necrotic core; the core never improves. Unlike the core, a penumbra is characterized by a molecular profile associated with salvageability. Hence, only lesions characterized by penumbral > core volumes should be treated with cells, making such measurements arguably a regenerative medicine selection biomarker.
Collapse
|
8
|
The effect of magnetic guiding BMSCs on hypoxic-ischemic brain damage via magnetic resonance imaging evaluation. Magn Reson Imaging 2021; 79:59-65. [PMID: 33727146 DOI: 10.1016/j.mri.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/16/2020] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a critical disease in pediatric neurosurgery with high mortality rate and frequently leads to neurological sequelae. The role of bone marrow mesenchymal stem cells (BMSCs) in neuroprotection has been recognized. However, using the imaging methods to dynamically assess the neuroprotective effects of BMSCs is rarely reported. In this study, BMSCs were isolated, cultured and identified. Flow cytometry assay had shown the specific surface molecular markers of BMSCs, which indicated that the cultivated cells were purified BMSCs. The results demonstrated that CD29 and CD90 were highly expressed, whilst CD45 and CD11b were negatively expressed. Further, BMSCs were transplanted into Sprague Dawley (SD) rats established HIBD via three ways, including lateral ventricle (LV) injection, tail vein (TV) injection, and LV injection with magnetic guiding. Magnetic resonance imaging (MRI) was used to monitor and assess the treatment effect of super paramagnetic iron oxide (SPIO)-labeled BMSCs. The mean kurtosis (MK) values from diffusion kurtosis imaging (DKI) exhibited the significant differences. It was found that the MK value of HIBD group increased compared with that in Sham. At the meantime, the MK values of LV + HIBD, TV + HIBD and Magnetic+LV + HIBD groups decreased compared with that in HIBD group. Among these, the MK value reduced most significantly in Magnetic+LV + HIBD group. MRI illustrated that the treatment effect of Magnetic+LV + HIBD group was best. In addition, HE staining and TUNEL assay measured the pathological changes and apoptosis of brain tissues, which further verified the MRI results. All data suggest that magnetic guiding BMSCs, a targeted delivery way, is a new strategic theory for HIBD treatment. The DKI technology of MRI can dynamically evaluate the neuroprotective effects of transplanted BMSCs in HIBD.
Collapse
|
9
|
Segler A, Braun T, Fischer HS, Dukatz R, Weiss CR, Schwickert A, Jäger C, Bührer C, Henrich W. Feasibility of Umbilical Cord Blood Collection in Neonates at Risk of Brain Damage-A Step Toward Autologous Cell Therapy for a High-risk Population. Cell Transplant 2021; 30:963689721992065. [PMID: 33631961 PMCID: PMC7917411 DOI: 10.1177/0963689721992065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evidence for umbilical cord blood (UCB) cell therapies as a potential intervention for neurological diseases is emerging. To date, most existing trials worked with allogenic cells, as the collection of autologous UCB from high-risk patients is challenging. In obstetric emergencies the collection cannot be planned. In preterm infants, late cord clamping and anatomic conditions may reduce the availability. The aim of the present study was to assess the feasibility of UCB collection in neonates at increased risk of brain damage. Infants from four high-risk groups were included: newborns with perinatal hypoxemia, gestational age (GA) ≤30 + 0 weeks and/or birthweight <1,500 g, intrauterine growth restriction (IUGR), or monochorionic twins with twin-to-twin transfusion syndrome (TTTS). Feasibility of collection, quantity and quality of obtained UCB [total nucleated cell count (TNC), volume, sterility, and cell viability], and neonatal outcome were assessed. UCB collection was successful in 141 of 177 enrolled patients (hypoxemia n = 10; GA ≤30 + 0 weeks n = 54; IUGR n = 71; TTTS n = 6). Twenty-six cases were missed. The amount of missed cases per month declined over the time. Volume of collected UCB ranged widely (median: 24.5 ml, range: 5.0–102 ml) and contained a median of 0.77 × 108 TNC (range: 0.01–13.0 × 108). TNC and UCB volume correlated significantly with GA. A total of 10.7% (19/177) of included neonates developed brain lesions. To conclude, collection of UCB in neonates at high risk of brain damage is feasible with a multidisciplinary approach and intensive training. High prevalence of brain damage makes UCB collection worthwhile. Collected autologous UCB from mature neonates harbors a sufficient cell count for potential therapy. However, quality and quantity of obtained UCB are critical for potential therapy in preterm infants. Therefore, for extremely preterm infants alternative cell sources such as UCB tissue should be investigated for autologous treatment options because of the low yield of UCB.
Collapse
Affiliation(s)
- Angela Segler
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Braun
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of "Experimental Obstetrics" and Study group "Perinatal Programming", Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hendrik Stefan Fischer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ricarda Dukatz
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claire-Rachel Weiss
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Schwickert
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technische Universitaüt Muünchen, Munich, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Xiong LL, Chen J, Du RL, Liu J, Chen YJ, Hawwas MA, Zhou XF, Wang TH, Yang SJ, Bai X. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage. Neural Regen Res 2021; 16:1453-1459. [PMID: 33433458 PMCID: PMC8323702 DOI: 10.4103/1673-5374.303033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment. Rats with hypoxic-ischemic brain damage presented deficits in both sensory and motor functions, and obvious pathological changes could be detected in brain tissues. The mRNA expression levels of BDNF and its processing enzymes and receptors (Furin, matrix metallopeptidase 9, tissue-type plasminogen activator, tyrosine Kinase receptor B, plasminogen activator inhibitor-1, and Sortilin) were upregulated in the ipsilateral hippocampus and cerebral cortex 6 hours after injury; however, the expression levels of these mRNAs were found to be downregulated in the contralateral hippocampus and cerebral cortex. These findings suggest that BDNF and its processing enzymes and receptors may play important roles in the pathogenesis and recovery from neonatal hypoxic-ischemic brain damage. This study was approved by the Animal Ethics Committee of the University of South Australia (approval No. U12-18) on July 30, 2018.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jie Chen
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yan-Jun Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mohammed Al Hawwas
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ting-Hua Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
11
|
Li WX, Tang J, Zou R, Zeng Y, Yue Y, Qiu X, Qu Y, Mu DZ. [A visualization analysis of current research on stem cell transplantation in the treatment of neonatal hypoxic-ischemic encephalopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:1002-1007. [PMID: 30572988 PMCID: PMC7389493 DOI: 10.7499/j.issn.1008-8830.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To reveal the current research status on stem cell transplantation in the treatment of neonates with hypoxic-ischemic encephalopathy (HIE), and to summarize the recent hotspots of the research in this field. METHODS Using the key words of "stem cells" and "HIE", a computerized search was performed for the articles in English published before June 1, 2018 in PubMed, EMBASE, and Web of Science. Microsoft Office Excel 2013 was used for the statistical analysis of key words. Bicomb 2.0 and VOSviewer 1.6.6 were used for the cluster analysis of hot words and plotting of knowledge maps, respectively. RESULTS A total of 106 articles were included and 43 high-frequency key words were extracted. The words of "cell transplantation" and "hypoxia-ischemia" were in the core position of the co-word map. The cluster analysis showed that the studies of stem cell transplantation in the treatment of neonatal HIE mainly focused on umbilical cord blood cell transplantation (32.6%), mesenchymal stem cells and neural stem cells (29.5%), perinatal brain injury (28.1%), and other topics (9.8%). CONCLUSIONS In the current studies of stem cell transplantation in the treatment of neonatal HIE, umbilical cord blood cell transplantation, mesenchymal stem cells, neural stem cells, and perinatal brain injury are popular research topics at different levels.
Collapse
Affiliation(s)
- Wen-Xing Li
- Department of Pediatrics, West China Second University Hospital/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Muhammad SA, Nordin N, Fakurazi S. Regenerative potential of secretome from dental stem cells: a systematic review of preclinical studies. Rev Neurosci 2018; 29:321-332. [PMID: 29220331 DOI: 10.1515/revneuro-2017-0069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
Injury to tissues is a major clinical challenge due to the limited regenerative capacity of endogenous cells. Stem cell therapy is evolving rapidly as an alternative for tissue regeneration. However, increasing evidence suggests that the regenerative ability of stem cells is mainly mediated by paracrine actions of secretome that are generally secreted by the cells. We aimed to systematically evaluate the efficacy of dental stem cell (DSC)-conditioned medium in in vivo animal models of various tissue defects. A total of 15 eligible studies was included by searching Pubmed, Scopus and Medline databases up to August 2017. The risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias tool. Of 15 studies, seven reported the therapeutic benefit of the conditioned medium on neurological diseases and three reported on joint/bone-related defects. Two interventions were on liver diseases, whereas the remaining three addressed myocardial infarction and reperfusion, lung injury and diabetes. Nine studies were performed using mouse models and the remaining six studies used rat models. The methodological quality of the studies was low, as most of the key elements required in reports of preclinical studies were not reported. The findings of this review suggested that conditioned medium from DSCs improved tissue regeneration and functional recovery. This current review strengthens the therapeutic benefit of cell-free product for tissue repair in animal models. A well-planned study utilizing validated outcome measures and long-term safety studies are required for possible translation to clinical trials.
Collapse
Affiliation(s)
| | - Norshariza Nordin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Institute of Bioscience and Pharmacology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Sanches EF, Valentim L, de Almeida Sassi F, Bernardi L, Arteni N, Weis SN, Odorcyk FK, Pranke P, Netto CA. Intracardiac Injection of Dental Pulp Stem Cells After Neonatal Hypoxia-Ischemia Prevents Cognitive Deficits in Rats. Neurochem Res 2018; 43:2268-2276. [PMID: 30255215 DOI: 10.1007/s11064-018-2647-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is associated to cognitive and motor impairments and until the moment there is no proven treatment. The underlying neuroprotective mechanisms of stem cells are partially understood and include decrease in excitotoxicity, apoptosis and inflammation suppression. This study was conducted in order to test the effects of intracardiac transplantation of human dental pulp stem cells (hDPSCs) for treating HI damage. Seven-day-old Wistar rats were divided into four groups: sham-saline, sham-hDPSCs, HI-saline, and HI-hDPSCs. Motor and cognitive tasks were performed from postnatal day 30. HI-induced cognitive deficits in the novel-object recognition test and in spatial reference memory impairment which were prevented by hDPSCs. No motor impairments were observed in HI animals. Immunofluorescence analysis showed human-positive nuclei in hDPSC-treated animals closely associated with anti-GFAP staining in the lesion scar tissue, suggesting that these cells were able to migrate to the injury site and could be providing support to CNS cells. Our study evidence novel evidence that hDPSC can contribute to the recovery following hypoxia-ischemia and highlight the need of further investigation in order to better understand the exact mechanisms underlying its neuroprotective effects.
Collapse
Affiliation(s)
- Eduardo Farias Sanches
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil.
| | - Lauren Valentim
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Felipe de Almeida Sassi
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Lisiane Bernardi
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nice Arteni
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Simone Nardin Weis
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Felipe Kawa Odorcyk
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| | - Patricia Pranke
- Haematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Stem Cell Research Institute, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Brain Ischemia and Neuroprotection Laboratory, Departament of Biochemistry, Universidade Federal do Rio Grande do Sul, Av. Ramiro Barcelos, 2600, Porto Alegre, RS, CEP 91035-003, Brazil
| |
Collapse
|
14
|
Kim TK, Park D, Ban YH, Cha Y, An ES, Choi J, Choi EK, Kim YB. Improvement by Human Oligodendrocyte Progenitor Cells of Neurobehavioral Disorders in an Experimental Model of Neonatal Periventricular Leukomalacia. Cell Transplant 2018; 27:1168-1177. [PMID: 29978719 PMCID: PMC6158554 DOI: 10.1177/0963689718781330] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 11/17/2022] Open
Abstract
The effects of human oligodendrocyte progenitor (F3.olig2) cells on improving neurobehavioral deficits were investigated in an experimental model of periventricular leukomalacia (PVL). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide injection (HIL), and intracerebroventricularly transplanted with F3.olig2 (4 × 105 cells/rat) once at post-natal day (PND) 10 or repeatedly at PND10, 17, 27, and 37. Neurobehavioral disorders were evaluated at PND14, 20, 30, and 40 via cylinder test, locomotor activity, and rotarod performance, and cognitive function was evaluated at PND41-45 through passive avoidance and Morris water-maze performances. F3.olig2 cells recovered the rate of use of the forelimb contralateral to the injured brain, improved locomotor activity, and restored rotarod performance of PVL animals; in addition, marked improvement of learning and memory function was seen. It was confirmed that transplanted F3·olig2 cells migrated to injured areas, matured to oligodendrocytes expressing myelin basic protein (MBP), and markedly attenuated the loss of host MBP in the corpus callosum. The results indicate that the transplanted F3.olig2 cells restored neurobehavioral functions by preventing axonal demyelination, and that human oligodendrocyte progenitor cells could be a candidate for cell therapy of perinatal hypoxic-ischemic and infectious brain injuries including PVL and cerebral palsy.
Collapse
Affiliation(s)
- Tae-Kyun Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Dongsun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Young-Hwan Ban
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yeseul Cha
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Eun Suk An
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jieun Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Korea
| |
Collapse
|
15
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
16
|
Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatr Res 2018; 83:214-222. [PMID: 28972960 DOI: 10.1038/pr.2017.249] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation represents the next breakthrough in the treatment of currently intractable and devastating neonatal disorders with complex multifactorial etiologies, including bronchopulmonary dysplasia, hypoxic ischemic encephalopathy, and intraventricular hemorrhage. Absent engraftment and direct differentiation of transplanted MSCs, and the "hit-and-run" therapeutic effects of these MSCs suggest that their pleiotropic protection might be attributable to paracrine activity via the secretion of various biologic factors rather than to regenerative activity. The transplanted MSCs, therefore, exert their therapeutic effects not by acting as "stem cells," but rather by acting as "paracrine factors factory." The MSCs sense the microenvironment of the injury site and secrete various paracrine factors that serve several reparative functions, including antiapoptotic, anti-inflammatory, antioxidative, antifibrotic, and/or antibacterial effects in response to environmental cues to enhance regeneration of the damaged tissue. Therefore, the therapeutic efficacy of MSCs might be dependent on their paracrine potency. In this review, we focus on recent investigations that elucidate the specifically regulated paracrine mechanisms of MSCs by injury type and discuss potential strategies to enhance paracrine potency, and thus therapeutic efficacy, of transplanted MSCs, including determining the appropriate source and preconditioning strategy for MSCs and the route and timing of their administration.
Collapse
|
17
|
Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Transl Stroke Res 2017; 9:356-374. [PMID: 29075984 DOI: 10.1007/s12975-017-0580-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Stem cell therapy for ischemic stroke has widely been explored. Results from both preclinical and clinical studies have immensely supported the judicious use of stem cells as therapy. These provide an attractive means for preserving and replacing the damaged brain tissues following an ischemic attack. Since the past few years, researchers have used various types of stem cells to replenish insulted neuronal and glial cells in neurological disorders. In the present review, we discuss different types of stem cells employed for the treatment of ischemic stroke and mechanisms and challenges these cells face once introduced into the living system. Further, we also present different ways to maneuver and overcome challenges to translate the advances made at the preclinical level to clinics.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Avirag Goswami
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, Gujarat, 382355, India.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Grandvuillemin I, Garrigue P, Ramdani A, Boubred F, Simeoni U, Dignat-George F, Sabatier F, Guillet B. Long-Term Recovery After Endothelial Colony-Forming Cells or Human Umbilical Cord Blood Cells Administration in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Stem Cells Transl Med 2017; 6:1987-1996. [PMID: 28980775 PMCID: PMC6430056 DOI: 10.1002/sctm.17-0074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neonatal hypoxic‐ischemic encephalopathy (NHIE) is a dramatic perinatal complication, associated with poor neurological prognosis despite neuroprotection by therapeutic hypothermia, in the absence of an available curative therapy. We evaluated and compared ready‐to‐use human umbilical cord blood cells (HUCBC) and bankable but allogeneic endothelial progenitors (ECFC) as cell therapy candidate for NHIE. We compared benefits of HUCBC and ECFC transplantation 48 hours after injury in male rat NHIE model, based on the Rice‐Vannucci approach. Based on behavioral tests, immune‐histological assessment and metabolic imaging of brain perfusion using single photon emission computed tomography (SPECT), HUCBC, or ECFC administration provided equally early and sustained functional benefits, up to 8 weeks after injury. These results were associated with total normalization of injured hemisphere cerebral blood flow assessed by SPECT/CT imaging. In conclusion, even if ECFC represent an efficient candidate, HUCBC autologous criteria and easier availability make them the ideal candidate for hypoxic‐ischemic cell therapy. Stem Cells Translational Medicine2017;6:1987–1996
Collapse
Affiliation(s)
- Isabelle Grandvuillemin
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, CHU La Conception, Department of Neonatology, Marseille, France
| | - Philippe Garrigue
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, Radiopharmacy, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| | - Alaa Ramdani
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France
| | - Farid Boubred
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, CHU La Conception, Department of Neonatology, Marseille, France
| | - Umberto Simeoni
- Division of Pediatrics, CHUV & University of Lausanne, Switzerland
| | | | - Florence Sabatier
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, CHU La Conception, Cell Culture and Therapy Laboratory, INSERM CBT-1409, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, Radiopharmacy, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| |
Collapse
|
19
|
Effects of neural stem cell media on hypoxic injury in rat hippocampal slice cultures. Brain Res 2017; 1677:20-25. [PMID: 28941572 DOI: 10.1016/j.brainres.2017.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022]
Abstract
Neonatal hypoxic-ischemic brain injuries cause serious neurological sequelae, yet there is currently no effective treatment for them. We hypothesized that neurotrophic factors released into the medium by stem cells could supply hypoxia-damaged organotypic hippocampal slice cultures with regenerative abilities. We prepared organotypic slice cultures of the hippocampus of 7-day-old Sprague-Dawley rats based on the modified Stoppini method; slices were cultured for 14days in vitro using either Gahwiler's medium (G-medium) or stem cell-conditioned medium (S-medium) as culture medium. At day 14 in vitro, hippocampal slice cultures were exposed to 95% N2 and 5% CO2 for 3h to induce hypoxic damage, the extent of which was then measured using propidium iodide fluorescence and immunohistochemistry images. We performed dot blotting to estimate neurotrophic/growth factor levels in the G- and S-media. Organotypic hippocampal slices cultured using S-medium after hypoxic injury were significantly less damaged than those cultured using G-medium. GLUT1, NGF, GDNF, VEGF, GCSF, and IGF2 levels were higher in S-medium than in G-medium, whereas FGF1, HIF, and MCP3 levels were not significantly different between media. In conclusion, we found that stem cell-conditioned medium had a neuroprotective effect against hypoxic injury, and that, of the various neurotrophic factors in S-medium, NGF, GDNF, and VEGF can contribute to neuroprotection.
Collapse
|
20
|
Dai Y, Li W, Zhong M, Chen J, Cheng Q, Liu Y, Li T. The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behav Brain Res 2017; 332:99-109. [PMID: 28576310 DOI: 10.1016/j.bbr.2017.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI)-induced perinatal encephalopathy frequently causes chronic neurological morbidities and acute mortality. Bone mesenchymal stem cell (BMSC) transplantation could potentially promote functional and anatomical recovery of ischemic tissue. In vitro hypoxic preconditioning is an effective strategy to improve the survival of BMSCs in ischemic tissue. In this study, cobalt chloride (CoCl2) preconditioned medium from BMSC cultures was injected into the left lateral ventricle of HI rats using a micro-osmotic pump at a flow rate 1.0μl/h for 7 days. The protein levels of HIF-1α and its target genes, vascular endothelial growth factor and erythropoietin, markedly increased after CoCl2 preconditioning in BMSCs. In 7-week-old rats that received CoCl2 preconditioned BMSC medium, results of the Morris water maze test indicated ameliorated spatial working memory function following hypoxia-ischemia damage. Neuronal loss, cellular disorganization, and shrinkage in brain tissue were also ameliorated. Extracellular field excitatory postsynaptic potentials (fEPSPs) in the brain slices of 8-week-old rats were recorded; administration of CoCl2 preconditioned BMSC culture medium induced a progressive increment of baseline and amplitude of the fEPSPs. Immunohistochemical quantification showed that GluR2 protein expression increased. In conclusion, CoCl2 activates HIF-1α signals in BMSCs. CoCl2 preconditioned BMSC culture medium likely effects neuroprotection by inducing long-term potentiation (LTP), which could be associated with GluR2 expression. The paracrine effects of hypoxia preconditioning on BMSCs could have applications in novel cell-based therapeutic strategies for hypoxic and ischemic brain injury.
Collapse
MESH Headings
- Animals
- Brain/pathology
- Brain/physiopathology
- Cells, Cultured
- Cobalt/pharmacology
- Culture Media, Conditioned
- Disease Models, Animal
- Excitatory Postsynaptic Potentials
- Female
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/physiopathology
- Hypoxia-Ischemia, Brain/psychology
- Hypoxia-Ischemia, Brain/therapy
- Male
- Maze Learning/physiology
- Memory, Short-Term/physiology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/physiology
- Neuroprotection/physiology
- Protective Agents/pharmacology
- Rats, Sprague-Dawley
- Receptors, AMPA/metabolism
- Spatial Memory/physiology
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Ying Dai
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Wendi Li
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Min Zhong
- Department of Neurology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China
| | - Qian Cheng
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Youxue Liu
- Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| | - Tingyu Li
- Department of Primary Child Health Care, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Pediatric Research Institute, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China.
| |
Collapse
|
21
|
Systemic Transplantation of Bone Marrow Mononuclear Cells Promotes Axonal Regeneration and Analgesia in a Model of Wallerian Degeneration. Transplantation 2017; 101:1573-1586. [DOI: 10.1097/tp.0000000000001478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Mesenchymal Stromal Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy. STEM CELLS IN CLINICAL APPLICATIONS 2017. [DOI: 10.1007/978-3-319-33720-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Hoon AH, Vasconcellos Faria A. Pathogenesis, neuroimaging and management in children with cerebral palsy born preterm. ACTA ACUST UNITED AC 2016; 16:302-12. [PMID: 25708073 DOI: 10.1002/ddrr.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/26/2011] [Indexed: 12/12/2022]
Abstract
With advances in obstetric and perinatal management, the incidence of intraventricular hemorrhage in premature infants has declined, while periventricular leukomalacia remains a significant concern. It is now known that brain injury in children born preterm also involves neuronal-axonal disease in supratentorial and infratentorial structures. The developing brain is especially vulnerable to white matter (WM) injury from 23 to 34 weeks gestation when blood vessels serving the periventricular WM are immature. Oligodendrocyte progenitors, which are beginning to form myelin during this time, are susceptible to attack from oxygen free radicals, glutamate, and inflammatory cytokines. Advances in imaging techniques such as diffusion tensor imaging provide a more complete picture of the location and extent of injury. Effective management of children born preterm with cerebral palsy is predicated on an understanding of sequential links from etiological antecedents to brain neuropathology as revealed with neuroimaging techniques to clinical phenotypes, toward focused interventions with measurable outcomes.
Collapse
Affiliation(s)
- Alexander H Hoon
- Johns Hopkins University School of Medicine, Phelps Center for Cerebral Palsy and Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland.
| | | |
Collapse
|
24
|
Kwak M, Lim S, Kang E, Furmanski O, Song H, Ryu YK, Mintz CD. Effects of Neonatal Hypoxic-Ischemic Injury and Hypothermic Neuroprotection on Neural Progenitor Cells in the Mouse Hippocampus. Dev Neurosci 2016; 37:428-39. [PMID: 26087836 DOI: 10.1159/000430862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/21/2015] [Indexed: 12/27/2022] Open
Abstract
Neonatal hypoxic-ischemic injury (HI) results in widespread cerebral encephalopathy and affects structures that are essential for neurocognitive function, such as the hippocampus. The dentate gyrus contains a reservoir of neural stem and progenitor cells (NSPCs) that are critical for postnatal development and normal adult function of the hippocampus, and may also facilitate the recovery of function after injury. Using a neonatal mouse model of mild-to-moderate HI and immunohistochemical analysis of NSPC development markers, we asked whether these cells are vulnerable to HI and how they respond to both injury and hypothermic therapy. We found that cleaved caspase-3 labeling in the subgranular zone, where NSPCs are located, is increased by more than 30-fold after HI. The population of cells positive for both proliferating cell nuclear antigen and nestin (PCNA+Nes+), which represent primarily actively proliferating NSPCs, are acutely decreased by 68% after HI. The NSPC population expressing NeuroD1, a marker for NSPCs transitioning to become fate-committed neural progenitors, was decreased by 47%. One week after HI, there was a decrease in neuroblasts and immature neurons in the dentate gyrus, as measured by doublecortin (DCX) immunolabeling, and at the same time PCNA+Nes+ cell density was increased by 71%. NSPCs expressing Tbr2, which identifies a highly proliferative intermediate neural progenitor population, increased by 107%. Hypothermia treatment after HI partially rescues both the acute decrease in PCNA+Nes+ cell density at 1 day after injury and the chronic loss of DCX immunoreactivity and reduction in NeuroD1 cell density measured at 1 week after injury. Thus, we conclude that HI causes an acute loss of dentate gyrus NSPCs, and that hypothermia partially protects NSPCs from HI.
Collapse
Affiliation(s)
- Minhye Kwak
- Department of Anesthesiology and Critical Care Medicinee, Johns Hopkins Medical Institutes, Baltimore, Md., USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fortin JM, Azari H, Zheng T, Darioosh RP, Schmoll ME, Vedam-Mai V, Deleyrolle LP, Reynolds BA. Transplantation of Defined Populations of Differentiated Human Neural Stem Cell Progeny. Sci Rep 2016; 6:23579. [PMID: 27030542 PMCID: PMC4814839 DOI: 10.1038/srep23579] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/08/2016] [Indexed: 12/18/2022] Open
Abstract
Many neurological injuries are likely too extensive for the limited repair capacity of endogenous neural stem cells (NSCs). An alternative is to isolate NSCs from a donor, and expand them in vitro as transplantation material. Numerous groups have already transplanted neural stem and precursor cells. A caveat to this approach is the undefined phenotypic distribution of the donor cells, which has three principle drawbacks: (1) Stem-like cells retain the capacity to proliferate in vivo. (2) There is little control over the cells' terminal differentiation, e.g., a graft intended to replace neurons might choose a predominantly glial fate. (3) There is limited ability of researchers to alter the combination of cell types in pursuit of a precise treatment. We demonstrate a procedure for differentiating human neural precursor cells (hNPCs) in vitro, followed by isolation of the neuronal progeny. We transplanted undifferentiated hNPCs or a defined concentration of hNPC-derived neurons into mice, then compared these two groups with regard to their survival, proliferation and phenotypic fate. We present evidence suggesting that in vitro-differentiated-and-purified neurons survive as well in vivo as their undifferentiated progenitors, and undergo less proliferation and less astrocytic differentiation. We also describe techniques for optimizing low-temperature cell preservation and portability.
Collapse
Affiliation(s)
- Jeff M. Fortin
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| | - Hassan Azari
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
- Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences &Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tong Zheng
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| | - Roya P. Darioosh
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| | - Michael E. Schmoll
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| | - Vinata Vedam-Mai
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| | - Loic P. Deleyrolle
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| | - Brent A. Reynolds
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0261, USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Hypoxic-ischemic brain injury is a leading cause of mortality and morbidity in neonates. Treating such injury by interrupting the excitotoxic-oxidative cascade is of immense importance. This review will focus on novel techniques of neuroprotection and describe the latest advances in established therapeutic methods. KEY FINDINGS Although the primacy of therapeutic hypothermia in treating hypoxic-ischemic encephalopathy is well established, recent research establishes that the arbitrarily chosen regimen of cooling to 33°C for 72 h may indeed be the most appropriate method. The optimal duration of antenatal magnesium therapy for neuroprotection remains unsettled, though it is reassuring that even 12 h or less of magnesium therapy results in comparable neurological outcomes. Combining adjuvant therapies such as melatonin or erythropoietin with therapeutic hypothermia results in favorable neurological outcomes compared with hypothermia alone. Finally, stem cell-based therapies show considerable potential in preclinical studies. SUMMARY Significant advances have occurred in the management of neonatal brain injury. With establishment of the optimal temperature and duration of hypothermia, combinatory therapies using adjuncts hold the greatest promise. Promising preclinical approaches such as stem cell-based therapy and use of noble gases need to be confirmed with clinical trials.
Collapse
|
27
|
Aridas JDS, McDonald CA, Paton MCB, Yawno T, Sutherland AE, Nitsos I, Pham Y, Ditchfield M, Fahey MC, Wong F, Malhotra A, Castillo-Melendez M, Bhakoo K, Wallace EM, Jenkin G, Miller SL. Cord blood mononuclear cells prevent neuronal apoptosis in response to perinatal asphyxia in the newborn lamb. J Physiol 2015; 594:1421-35. [PMID: 26527561 DOI: 10.1113/jp271104] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/23/2015] [Indexed: 11/08/2022] Open
Abstract
Perinatal asphyxia is a significant cause of death or long-term neurodevelopmental impairment. Hypothermia, currently the only effective treatment, leads to modest improvements, but new therapeutic strategies are required. Umbilical cord blood (UCB) mononuclear cells have potent anti-inflammatory properties and may reduce neuropathology. This study examined whether autologous UCB mononuclear cells were neuroprotective when administered to newborn lambs at 12 h after birth asphyxia. At caesarean section, birth asphyxia was induced by clamping the umbilical cord until mean arterial blood pressure decreased to 18-20 mmHg. Asphyxia (n = 20) or control (n = 11) lambs were resuscitated and maintained, with magnetic resonance spectroscropy (MRS) performed at 12 and 72 h, and were then killed at 72 h. Cord blood was collected once the cord was clamped, and mononuclear cells were isolated and labelled fluorescently and administered to control (n = 3) or asphyxia (n = 8) lambs. Asphyxia induced a significant increase in cellular apoptosis (caspase-3 immunopositive) within all brain regions examined, including cortex, hippocampus, thalamus, striatum and subcortical white matter (P < 0.01 vs. control). Additionally, asphyxia induced significant and widespread astrogliosis and increased inflammatory cells (activated microglia and macrophages). The administration of UCB mononuclear cells (asphyxia+UCB) significantly decreased neuronal apoptosis, astrogliosis and inflammation (P < 0.05 vs. asphyxia alone). Asphyxia+UCB lambs also demonstrated decreased brain metabolites lactate:choline (P = 0.01) and lactate:N-acetylaspartate (P < 0.01) from 12 to 72 h, detected using MRS. Autologous UCB mononuclear cell treatment restores normal brain metabolism following perinatal asphyxia, and reduces brain inflammation, astrogliosis and neuronal apoptosis, supporting its use as a neuroprotective therapy following asphyxia.
Collapse
Affiliation(s)
- James D S Aridas
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Madison C B Paton
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Michael Ditchfield
- Monash Children's, Monash Health, and Department of Paediatrics, Monash University, Clayton, Victoria, Australia.,Diagnostic Imaging, Monash Health, Clayton, Victoria, Australia
| | - Michael C Fahey
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Monash Children's, Monash Health, and Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Monash Children's, Monash Health, and Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Monash Children's, Monash Health, and Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kishore Bhakoo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis Way, Singapore
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Perinatal brain damage: The term infant. Neurobiol Dis 2015; 92:102-12. [PMID: 26409031 PMCID: PMC4915441 DOI: 10.1016/j.nbd.2015.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
|
29
|
Kadam SD, Chen H, Markowitz GJ, Raja S, George S, Verina T, Shotwell E, Loechelt B, Johnston MV, Kamani N, Fatemi A, Comi AM. Systemic injection of CD34(+)-enriched human cord blood cells modulates poststroke neural and glial response in a sex-dependent manner in CD1 mice. Stem Cells Dev 2015; 24:51-66. [PMID: 25121827 DOI: 10.1089/scd.2014.0135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke in the developing brain is an important cause of neurological morbidity. We determined the impact of human cord blood-derived CD34(+)-enriched mononuclear cells (CBSC) intraperitoneally injected 48 h after an ischemic stroke at postnatal day 12 by evaluating poststroke neurogenic niche proliferation, glial response, and recovery in CD1 mice. Percent brain atrophy was quantified from Nissl-stained sections. Density of BrdU, Iba-1, and GFAP staining were quantified in the dentate gyrus and the subventricular zone (SVZ). Immunohistochemistry for human nuclear antibody, human mitochondrial antibody, and human CD34(+) cells was done on injured and uninjured brains from CBSC- and vehicle-treated mice. Developmental neurobehavioral milestones were evaluated pre- and post-treatment. No significant differences in stroke severity were noted between CBSC and vehicle-treated injured animals. With a 1×10(5) CBSC dose, there was a significant increase in subgranular zone (SGZ) proliferation in the CBSC-versus vehicle-treated stroke-injured male mice. SVZ glial fibrillary acidic protein (GFAP) expression was increased contralaterally in injured females treated with CBSC but suppressed in injured males. Significant negative correlations between severity of the stroke-injury and spleen weights, and between spleen weights and SGZ proliferation, and a positive correlation between GFAP expression and severity of brain injury were noted in the vehicle-treated injured mice but not in the CBSC-treated mice. GFAP expression and SVZ proliferation were positively correlated. In conclusion, neurogenic niche proliferation and glial brain responses to CBSC after neonatal stroke may involve interactions with the spleen and are sex dependent.
Collapse
Affiliation(s)
- Shilpa D Kadam
- 1 Department of Neurology and Developmental Medicine, Kennedy Krieger Research Institute , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Im GH, Choi SJ, Park WS. Optimal Route for Mesenchymal Stem Cells Transplantation after Severe Intraventricular Hemorrhage in Newborn Rats. PLoS One 2015. [PMID: 26208299 PMCID: PMC4514759 DOI: 10.1371/journal.pone.0132919] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, we showed that intracerebroventricular (IC) transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) significantly attenuates posthemorrhagic hydrocephalus (PHH) and brain damage after severe IVH in newborn rats. This study was performed to determine the optimal route for transplanting MSCs for severe IVH by comparing IC transplantation, intravenous (IV) transplantation, and IV transplantation plus mannitol infusion. Severe IVH was induced by injecting 100 uL of blood into each ventricle of Sprague-Dawley rats on postnatal day 4 (P4). After confirming severe IVH with brain magnetic resonance imaging (MRI) at P5, human UCB-derived MSCs were transplanted at P6 by an IC route (1×105), an IV route (5×105), or an IV route with mannitol infused. Follow-up brain MRIs and rotarod tests were performed. At P32, brain tissue samples were obtained for biochemical and histological analyses. Although more MSCs localized to the brain after IC than after IV delivery, both methods were equally effective in preventing PHH; attenuating impaired rotarod test; increasing the number of TUNEL-positive cells, inflammatory cytokines, and astrogliosis; and reducing corpus callosal thickness and myelin basic protein expression after severe IVH regardless of mannitol co-infusion. Despite the superior delivery efficacy with IC than with the IV route, both IC and IV transplantation of MSCs had equal therapeutic efficacy in protecting against severe IVH. These findings suggest that the less invasive IV route might be a good alternative for clinically unstable, very preterm infants that cannot tolerate a more invasive IC delivery of MSCs.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geun Ho Im
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Li YB, Wang Y, Tang JP, Chen D, Wang SL. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy. Neural Regen Res 2015; 10:753-9. [PMID: 26109949 PMCID: PMC4468766 DOI: 10.4103/1673-5374.156971] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2015] [Indexed: 12/23/2022] Open
Abstract
Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Ying-Bo Li
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ji-Ping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Di Chen
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Sha-Li Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Ma SM, Chen LX, Lin YF, Yan H, Lv JW, Xiong M, Li J, Cheng GQ, Yang Y, Qiu ZL, Zhou WH. Periostin Promotes Neural Stem Cell Proliferation and Differentiation following Hypoxic-Ischemic Injury. PLoS One 2015; 10:e0123585. [PMID: 25894199 PMCID: PMC4404137 DOI: 10.1371/journal.pone.0123585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/04/2015] [Indexed: 11/24/2022] Open
Abstract
Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Si-Min Ma
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Long-Xia Chen
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi-Feng Lin
- Key Laboratory of Birth Defect, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Hu Yan
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing-Wen Lv
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Man Xiong
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Jin Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Qiang Cheng
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yi Yang
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Zi-Long Qiu
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Merchant NM, Azzopardi DV, Edwards AD. Neonatal hypoxic ischaemic encephalopathy: current and future treatment options. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1021776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Romanov YA, Tarakanov OP, Radaev SM, Dugina TN, Ryaskina SS, Darevskaya AN, Morozova YV, Khachatryan WA, Lebedev KE, Zotova NS, Burkova AS, Sukhikh GT, Smirnov VN. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy 2015; 17:969-78. [PMID: 25791070 DOI: 10.1016/j.jcyt.2015.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND AIMS The term "cerebral palsy" (CP) encompasses many syndromes that emerge from brain damage at early stages of ontogenesis and manifest as the inability to retain a normal body position or perform controlled movements. Existing methods of CP treatment, including various rehabilitation strategies and surgical and pharmacological interventions, are mostly palliative, and there is no specific therapy focused on restoring injured brain function. METHODS During a post-registration clinical investigation, the safety and efficacy of intravenous infusion of allogeneic human leukocyte antigen (HLA)-unmatched umbilical cord blood (UCB) cells were studied in 80 pediatric patients with cerebral palsy and associated neurological complications. Patients received up to 6 intravenous infusions of AB0/Rh-identical, red blood cell-depleted UCB cells at an average dose of 250 × 10(6) viable cells per infusion. RESULTS Patients were followed for 3-36 months, and multiple cell infusions did not cause any adverse effects. In contrast, in most patients who received four or more UCB cell infusions, positive dynamics related to significant improvements in neurological status and/or cognitive functions were observed. CONCLUSIONS The results confirm that multiple intravenous infusions of allogeneic AB0/Rh-identical UCB cells may be a safe and effective procedure and could be included in treatment and rehabilitation programs for juvenile patients with cerebral palsy.
Collapse
Affiliation(s)
- Yury A Romanov
- Laboratory of Human Stem Cells, National Cardiology Research Center, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | - Nelli S Zotova
- Kulakov Federal Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation
| | - Anna S Burkova
- Kulakov Federal Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Kulakov Federal Center of Obstetrics, Gynecology and Perinatology, Moscow, Russian Federation
| | - Vladimir N Smirnov
- Laboratory of Human Stem Cells, National Cardiology Research Center, Moscow, Russian Federation
| |
Collapse
|
35
|
Yu Q, Liu L, Lin J, Wang Y, Xuan X, Guo Y, Hu S. SDF-1α/CXCR4 Axis Mediates The Migration of Mesenchymal Stem Cells to The Hypoxic-Ischemic Brain Lesion in A Rat Model. CELL JOURNAL 2015; 16:440-7. [PMID: 25685734 PMCID: PMC4297482 DOI: 10.22074/cellj.2015.504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/06/2013] [Indexed: 12/16/2022]
Abstract
Objective Transplantation of mesenchymal stem cells (MSCs) can promote functional
recovery of the brain after hypoxic-ischemic brain damage (HIBD). However, the mechanism regulating MSC migration to a hypoxic-ischemic lesion is poorly understood. Interaction between stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXC
chemokine receptor 4 (CXCR4) is crucial for homing and migration of multiple stem cell
types. In this study, we investigate the potential role of SDF-1α/CXCR4 axis in mediating
MSC migration in an HIBD model.
Materials and Methods In this experimental study, we first established the animal model of HIBD using the neonatal rat. Bone marrow MSCs were cultured and labeled with
5-bromo-21-deoxyuridine (BrdU) after which 6×106 cells were intravenously injected into
the rat. BrdU positive MSCs in the hippocampus were detected by immunohistochemical
analyses. The expression of hypoxia-inducible factor-1α (HIF-1α) and SDF-1α in the hippocampus of hypoxic-ischemic rats was detected by Western blotting. To investigate the
role of hypoxia and SDF-1α on migration of MSCs in vitro, MSCs isolated from normal
rats were cultured in a hypoxic environment (PO2=1%). Migration of MSCs was detected
by the transwell assay. The expression of CXCR4 was tested using Western blotting and
flow cytometry.
Results BrdU-labeled MSCs were found in the rat brain, which suggested that transplanted MSCs migrated to the site of the hypoxic-ischemic brain tissue. HIF-1α and SDF-1α significantly increased in the hippocampal formations of HIBD rats in a time-dependent
manner. They peaked on day 7 and were stably expressed until day 21. Migration of MSCs
in vitro was promoted by SDF-1α under hypoxia and inhibited by the CXCR4 inhibitor
AMD3100. The expression of CXCR4 on MSCs was elevated by hypoxia stimulation as
well as microdosage treatment of SDF-1α. Conclusion This observation illustrates that SDF-1α/CXCR4 axis mediate the migration
of MSCs to a hypoxic-ischemic brain lesion in a rat model.
Collapse
Affiliation(s)
- Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China ; Institute of Bioengineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Lin
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Wang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobo Xuan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Guo
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaojun Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Tan J, Zheng X, Zhang S, Yang Y, Wang X, Yu X, Zhong L. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells. Neural Regen Res 2014; 9:1763-9. [PMID: 25422637 PMCID: PMC4238164 DOI: 10.4103/1673-5374.141785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/19/2023] Open
Abstract
Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into five groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular endothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. The cerebral palsy model was established by ligating the left common carotid artery followed by exposure to hypoxia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. After transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vascular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for finding water and the finding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. These findings indicate that the transplantation of vascular endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deficits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.
Collapse
Affiliation(s)
- Jielu Tan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shanshan Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yujia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaohe Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Le Zhong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
37
|
Li Y, Hua X, Hua F, Mao W, Wan L, Li S. Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia? Neural Regen Res 2014; 8:1201-9. [PMID: 25206414 PMCID: PMC4107607 DOI: 10.3969/j.issn.1673-5374.2013.13.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/27/2013] [Indexed: 01/16/2023] Open
Abstract
Bone marrow cells for the treatment of ischemic brain injury may depend on the secretion of a large number of neurotrophic factors. Bone marrow regenerative cells are capable of increasing the secretion of neurotrophic factors. In this study, after tail vein injection of 5-fluorouracil for 7 days, bone marrow cells and bone marrow regenerative cells were isolated from the tibias and femurs of rats, and then administered intravenously via the tail vein after focal cerebral ischemia. Immunohistological staining and reverse transcription-PCR detection showed that transplanted bone marrow cells and bone marrow regenerative cells could migrate and survive in the ischemic regions, such as the cortical and striatal infarction zone. These cells promote vascular endothelial cell growth factor mRNA expression in the ischemic marginal zone surrounding the ischemic penumbra of the cortical and striatal infarction zone, and have great advantages in promoting the recovery of neurological function, reducing infarct size and promoting angiogenesis. Bone marrow regenerative cells exhibited stronger neuroprotective effects than bone marrow cells. Our experimental findings indicate that bone marrow regenerative cells are preferable over bone marrow cells for cell therapy for neural regeneration after cerebral ischemia. Their neuroprotective effect is largely due to their ability to induce the secretion of factors that promote vascular regeneration, such as vascular endothelial growth factor.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xuming Hua
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fang Hua
- Department of Emergency Medicine, Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenwei Mao
- Laboratory of Microbiology and Biochemical Pharmaceutics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Wan
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
38
|
van Velthoven CTJ, Gonzalez F, Vexler ZS, Ferriero DM. Stem cells for neonatal stroke- the future is here. Front Cell Neurosci 2014; 8:207. [PMID: 25120432 PMCID: PMC4110439 DOI: 10.3389/fncel.2014.00207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/09/2014] [Indexed: 01/27/2023] Open
Affiliation(s)
- Cindy T J van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht Utrecht, Netherlands
| | - Fernando Gonzalez
- Departments of Pediatrics and Neurology, UCSF San Francisco, CA, USA
| | - Zinaida S Vexler
- Departments of Pediatrics and Neurology, UCSF San Francisco, CA, USA
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, UCSF San Francisco, CA, USA
| |
Collapse
|
39
|
Radiopharmaceutical stem cell tracking for neurological diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:417091. [PMID: 24982880 PMCID: PMC4055613 DOI: 10.1155/2014/417091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/03/2014] [Indexed: 01/27/2023]
Abstract
Although neurological ailments continue to be some of the main causes of disease burden in the world, current therapies such as pharmacological agents have limited potential in the restoration of neural functions. Cell therapies, firstly applied to treat different hematological diseases, are now being investigated in preclinical and clinical studies for neurological illnesses. However, the potential applications and mechanisms for such treatments are still poorly comprehended and are the focus of permanent research. In this setting, noninvasive in vivo imaging allows better understanding of several aspects of stem cell therapies. Amongst the various methods available, radioisotope cell labeling has become one of the most promising since it permits tracking of cells after injection by different routes to investigate their biodistribution. A significant increase in the number of studies utilizing this method has occurred in the last years. Here, we review the different radiopharmaceuticals, imaging techniques, and findings of the preclinical and clinical reports published up to now. Moreover, we discuss the limitations and future applications of radioisotope cell labeling in the field of cell transplantation for neurological diseases.
Collapse
|
40
|
Park D, Lee SH, Bae DK, Yang YH, Yang G, Kyung J, Kim D, Choi EK, Hong JT, Shin IS, Kang SK, Ra JC, Kim YB. Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Restores the Neurobehavioral Disorders of Rats With Neonatal Hypoxic-Ischemic Encephalopathy. CELL MEDICINE 2013; 5:17-28. [PMID: 26858861 PMCID: PMC4733914 DOI: 10.3727/215517913x658936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Improving the effects of human adipose tissue-derived mesenchymal stem cells (ASCs) on the demyelination and neurobehavioral function was investigated in an experimental model of neonatal hypoxic-ischemic encephalopathy (HIE). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide and intracerebroventricularly transplanted with human ASCs (4 × 10(5) cells/rat) once at postnatal day 10 (PND10) or repeatedly at PND10, 17, 27, and 37. Neurobehavioral abnormalities (at PND20, 30, and 40) and cognitive functions (at PND41-44) were evaluated using multiple test systems. Human ASCs recovered the using ratio of forelimb contralateral to the injured brain, improved locomotor activity, and restored rota-rod performance of HIE animals, in addition to showing a marked improvement of cognitive functions. It was confirmed that transplanted human ASCs migrated to injured areas and differentiated into oligodendrocytes expressing myelin basic protein (MBP). Moreover, transplanted ASCs restored production of growth and neurotrophic factors and expression of decreased inflammatory cytokines, leading to attenuation of host MBP loss. The results indicate that transplanted ASCs restored neurobehavioral functions by producing MBP as well as by preserving host myelins, which might be mediated by ASCs' anti-inflammatory activity and release of growth and neurotrophic factors.
Collapse
Affiliation(s)
- Dongsun Park
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Sun Hee Lee
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dae Kwon Bae
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun-Hui Yang
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Goeun Yang
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jangbeen Kyung
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dajeong Kim
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Ehn-Kyoung Choi
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Tae Hong
- †College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Il Seob Shin
- ‡Stem Cell Research Center, RNL BIO Co., Ltd., Seoul, Republic of Korea
| | - Sung Keun Kang
- ‡Stem Cell Research Center, RNL BIO Co., Ltd., Seoul, Republic of Korea
| | - Jeong Chan Ra
- ‡Stem Cell Research Center, RNL BIO Co., Ltd., Seoul, Republic of Korea
| | - Yun-Bae Kim
- *College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
41
|
Fang CZ, Yang YJ, Wang QH, Yao Y, Zhang XY, He XH. Intraventricular injection of human dental pulp stem cells improves hypoxic-ischemic brain damage in neonatal rats. PLoS One 2013; 8:e66748. [PMID: 23799131 PMCID: PMC3682969 DOI: 10.1371/journal.pone.0066748] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/10/2013] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate the effect of intraventricular injection of human dental pulp stem cells (DPSCs) on hypoxic-ischemic brain damage (HIBD) in neonatal rats. METHODS Thirty-six neonatal rats (postnatal day 7) were assigned to control, HIBD, or HIBD+DPSC groups (n = 12 each group). For induction of HIBD, rats underwent left carotid artery ligation and were exposed to 8% to 10% oxygen for 2 h. Hoechst 33324-labeled human DPSCs were injected into the left lateral ventricle 3 days after HIBD. Behavioral assays were performed to assess hypoxic-ischemic encephalopathy (HIE), and on postnatal day 45, DPSC survival was assessed and expression of neural and glial markers was evaluated by immunohistochemistry and Western blot. RESULTS The HIBD group showed significant deficiencies compared to control on T-maze, radial water maze, and postural reflex tests, and the HIBD+DPSC group showed significant improvement on all behavioral tests. On postnatal day 45, Hoechst 33324-labeled DPSC nuclei were visible in the injected region and left cortex. Subsets of DPSCs showed immunostaining for neuronal (neuron-specific enolase [NSE], Nestin) and glial markers (glial fibrillary acidic protein [GFAP], O4). Significantly decreased staining/expression for NSE, GFAP, and O4 was found in the HBID group compared to control, and this was significantly increased in the HBID+DPSC group. CONCLUSION Intraventricular injection of human DPSCs improves HIBD in neonatal rats.
Collapse
Affiliation(s)
- Cheng-zhi Fang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Department of Neonatology, Wuhan Children's Hospital, Wuhan, China
| | - Yu-jia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- * E-mail:
| | - Qin-hong Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-ying Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-hua He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
42
|
Kim HO, Choi SM, Kim HS. Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-0010-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
43
|
Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol 2013; 48:346-54. [PMID: 23583051 DOI: 10.1016/j.pediatrneurol.2012.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/29/2012] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxic-ischemic brain injury and stroke in the developing brain remain important causes of chronic neurologic morbidity. Emerging data suggest that transplantation of umbilical cord blood-derived stem cells may have therapeutic potential for neuroregeneration and improved functional outcome. The pluripotent capacity of stem cells from the human umbilical cord blood provides simultaneous targeting of multiple neuropathologic events initiated by a hypoxic-ischemic insult. Their high regenerative potential and naïve immunologic phenotype makes them a preferable choice for transplantation. A multiplicity of transplantation protocols have been studied with a variety of brain injury models; however, only a few have been conducted on immature animals. Biological recipient characteristics, such as age and sex, appear to differentially modulate responses of the animals to the transplanted cord blood stem cells. Survival, migration, and function of the transplanted cells have also been studied and reveal insights into the mechanisms of cord blood stem cell effects. Data from preclinical studies have informed current clinical safety trials of human cord blood in neonates, and further work is needed to continue progress in this field.
Collapse
|
44
|
Bi Y, Gong M, He Y, Wei X, Chen J, Li T. Adenovirus-mediated RAR-β over-expression enhances ATRA-induced neuronal differentiation of rat mesenchymal stem cells. Arch Med Sci 2013; 9:314-322. [PMID: 23671444 PMCID: PMC3648816 DOI: 10.5114/aoms.2012.31410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/28/2011] [Accepted: 02/22/2012] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION The retinoic acid (RA) signaling pathway plays important roles in neural development. All-trans retinoic acid (ATRA) activates the RA signal by regulating RAR-β in mesenchymal stem cell (MSC)-derived neuron cells. Here, we try to investigate whether RAR-β over-expression can affect neuronal differentiation of MSCs. MATERIAL AND METHODS The RAR-β gene was constructed into adenovirus Ad-RAR-β by using the AdEasy system. The MSCs were infected with Ad-RAR-β. Real time-polymerase chain reaction (RT-PCR), Western blot and immunofluorescence were performed to detect the expression and localization of RAR-β. The MSCs were treated with 1 µmol/l ATRA and modified neuronal induction medium (MNM). Soma size and axon length of induced neurons were measured. Neural specific markers were detected by RT-PCR, western blot and immunofluorescence to evaluate neuronal differentiation. RESULTS The 1300 bp fragment of RAR-β gene was confirmed to be correctly cloned in the adenovirus vector. Cloudiness amplification of Ad-RAR-β was observed in HEK293 cells during package. After 48 h of Ad-RAR-β infection, about 70% of MSCs were RFP-positive. RAR-β expression was increased by about 1988-fold and located in the nucleus. RAR-β over-expression did not affect neuronal differentiation efficiency; however, soma size of induced neuron cells enlarged from 716.25 ±95.96 µm(2) to 1160.12 ±352.65 µm(2) and axon length from 64.17 ±11.88 µm to 83.98 ±13.69 µm. Neural markers other than nestin - NSE, MAP-2, Tau, and Tuj1 - were increased by 4- to 11-fold in RAR-β over-expressed neuron cells with ATRA/MNM induction compared with the Ad-null control group. CONCLUSIONS Our results have demonstrated that adenovirus-mediated RAR-β over-expression could facilitate neuron cell types of MSCs in vitro, indicating that the RAR-β-activated RA signal might be a vital factor in neuronal differentiation.
Collapse
Affiliation(s)
- Yang Bi
- Nutritional Research Center and Key Laboratory of Developmental Diseases in Childhood, Ministry of Education, Children's Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
45
|
Gubert F, Zaverucha-do-Valle C, Figueiredo FR, Bargas-Rega M, Paredes BD, Mencalha AL, Abdelhay E, Gutfilen B, Barbosa da Fonseca LM, Mendez-Otero R, Santiago MF. Bone-marrow cell therapy induces differentiation of radial glia-like cells and rescues the number of oligodendrocyte progenitors in the subventricular zone after global cerebral ischemia. Stem Cell Res 2013; 10:241-56. [DOI: 10.1016/j.scr.2012.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/29/2012] [Accepted: 11/30/2012] [Indexed: 01/17/2023] Open
|
46
|
Wu CC, Chen YC, Chang YC, Wang LW, Lin YC, Chiang YL, Ho CJ, Huang CC. Human umbilical vein endothelial cells protect against hypoxic-ischemic damage in neonatal brain via stromal cell-derived factor 1/C-X-C chemokine receptor type 4. Stroke 2013; 44:1402-9. [PMID: 23449265 DOI: 10.1161/strokeaha.111.000719] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Agents that protect against neurovascular damage provide a powerful neuroprotective strategy. Human umbilical vein endothelial cells (HUVECs) may be used to treat neonates with hypoxic-ischemia (HI) because of its autologous capability. We hypothesized that peripherally injected HUVECs entered the brain after HI, protected against neurovascular damage, and provided protection via stromal cell-derived factor 1/C-X-C chemokine receptor type 4 pathway in neonatal brain. METHODS Postpartum day 7 rat pups received intraperitoneal injections of low-passage HUVEC-P4, high-passage HUVEC-P8, or conditioned medium before and immediately after HI. HUVECs were transfected with adenovirus-green fluorescent protein for cell tracing. Oxygen-glucose deprivation was established by coculturing HUVEC-P4 with mouse neuroblastoma neuronal cells (Neuro-2a) and with mouse immortalized cerebral vascular endothelial cells (b.End3). RESULTS HUVEC-P4-treated group had more blood levels of green fluorescent protein-positive cells than HUVEC-P8-treated group 3 hours postinjection. Intraperitoneally injected HUVEC-P4, but not HUVEC-P8, entered the cortex after HI and positioned closed to the neurons and microvessels. Compared with the condition medium-treated group, the HUVEC-P4-treated but not the HUVEC-P8-treated group showed significantly less neuronal apoptosis and blood-brain barrier damage and more preservation of microvessels in the cortex 24 hours after HI. On postpartum day 14, the HUVEC-P4-treated group showed significant neuroprotection compared with the condition medium-treated group. Stromal cell-derived factor 1 was upregulated in the ipsilateral cortex 3 hours after HI, and inhibiting the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 reduced the protective effect of HUVEC-P4. In vitro transwell coculturing of HUVEC-P4 also significantly protected against oxygen-glucose deprivation cell death in neurons and endothelial cells. CONCLUSIONS Cell therapy using HUVECs may provide a powerful therapeutic strategy in treating neonates with HI.
Collapse
Affiliation(s)
- Chia-Ching Wu
- Department of Cell Biology and Anatomy, National Cheng Kung University Hospital, No. 138 Sheng-Li Rd, Tainan City 704, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Donega V, van Velthoven CTJ, Nijboer CH, van Bel F, Kas MJH, Kavelaars A, Heijnen CJ. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement. PLoS One 2013; 8:e51253. [PMID: 23300948 PMCID: PMC3536775 DOI: 10.1371/journal.pone.0051253] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/30/2012] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI). Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5×106 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.
Collapse
Affiliation(s)
- Vanessa Donega
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cindy T. J. van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cora H. Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank van Bel
- Department of Neonatology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martien J. H. Kas
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Cobi J. Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Symptom Research, MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Abstract
Hypoxic-ischemic encephalopathy in neonates often causes long-term disabilities. Stem cell therapy may be a successful treatment for HIE. Neurogenic astrocytes with characteristics of neural stem cells (NSCs) can be cultured as adherent monolayers. Following reintroduction into the NSC niche of both neonatal and adult hosts, these astrocytes can be induced to generate neuronal progeny in vitro and in vivo. Thus, neurogenic astrocytes represent promising candidates for cell replacement therapy in HIE. Such an approach requires optimized cell cultivation protocols as well as extensive testing of donor cells to assess their capacity for engraftment, survival, and integration in the HIE animal models. In this chapter, we describe methods of generating the HIE model, generating and culturing monolayer neurogenic astrocytes, and transplanting these cells into HIE animal models.
Collapse
Affiliation(s)
- Tong Zheng
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
49
|
Park KI, Goo K, Jung K, Kim M, Kim IS, Yun S, Lee IS, Shin JE, Yu HY, Eun HS, Kim JE, Namgung R, Lee C. Therapeutic Application of Neural Stem Cells for Neonatal Hypoxic-ischemic Brain Injury. NEONATAL MEDICINE 2013. [DOI: 10.5385/nm.2013.20.3.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Kook In Park
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoyeon Goo
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangsoo Jung
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Miri Kim
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Il-Sun Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Seokhwan Yun
- BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Il-Shin Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Eun Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Yang Yu
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Seon Eun
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Eun Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Namgung
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Rescuing the neonatal brain from hypoxic injury with autologous cord blood. Bone Marrow Transplant 2012; 48:890-900. [PMID: 22964590 DOI: 10.1038/bmt.2012.169] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 12/28/2022]
Abstract
Brain injury resulting from perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of acute mortality in infants and chronic neurologic disability in surviving children. Recent multicenter clinical trials demonstrated the effectiveness of hypothermia initiated within the first 6 postnatal hours to reduce the risk of death or major neurological disabilities among neonates with HIE. However, in these trials, approximately 40% of cooled infants died or survived with significant impairments. Therefore, adjunct therapies are required to improve the outcome in neonates with HIE. Cord blood (CB) is a rich source of stem cells. Administration of human CB cells in animal models of HIE has generally resulted in improved outcomes and multiple mechanisms have been suggested including anti-inflammation, release of neurotrophic factors and stimulation of endogenous neurogenesis. Investigators at Duke are conducting studies of autologous CB infusion in neonates with HIE and in children with cerebral palsy. These pilot studies indicate no added risk from the regimens used, but results of ongoing placebo-controlled trials are needed to assess efficacy. Meanwhile, further investigations are warranted to determine the best strategies, that is, timing, dosing, route of delivery, choice of stem cells and ex vivo modulations, to attain long-term benefits of CB stem cell therapy.
Collapse
|