1
|
Aibara D, Sakaguchi A, Matsusue K. Transmembrane and coiled-coil domain family 3 gene is a novel target of hepatic peroxisome proliferator-activated receptor γ in fatty liver disease. Mol Cell Endocrinol 2024; 594:112379. [PMID: 39326649 DOI: 10.1016/j.mce.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor abundantly expressed in the nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the mechanism by which PPARγ regulates the transmembrane and coiled-coil domain family 3 (Tmcc3) gene in the liver. We found that TMCC3 is highly expressed in the fatty liver of humans and mice with NAFLD and alcoholic fatty liver disease. Three exon 1 variants (Tmcc3-1a, -1b, and -1c) of mouse Tmcc3 were identified. TMCC3-1B was highly expressed in the fatty liver of type 2 diabetic ob/ob mice; however, this increase in expression was ameliorated by liver-specific knockout of PPARγ. Reporter assays and electrophoretic mobility shift assays showed that PPARγ positively regulates Tmcc3-1b and -1c transcription through the same PPARγ-responsive element present in the 5'-region of each Tmcc3. Altogether, our results indicate that Tmcc3 is a novel PPARγ target in the fatty liver disease.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Ai Sakaguchi
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
2
|
Kim HY, Jang HJ, Muthamil S, Shin UC, Lyu JH, Kim SW, Go Y, Park SH, Lee HG, Park JH. Novel insights into regulators and functional modulators of adipogenesis. Biomed Pharmacother 2024; 177:117073. [PMID: 38981239 DOI: 10.1016/j.biopha.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024] Open
Abstract
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Collapse
Affiliation(s)
- Hyun-Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Seon-Wook Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea.
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea.
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea.
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Jiang Y, Zhuang Z, Jia W, Wen Z, Xie M, Bai H, Bi Y, Wang Z, Chang G, Hou S, Chen G. Proteomic and phosphoproteomic analysis reveal threonine deficiency increases hepatic lipid deposition in Pekin ducks via reducing STAT phosphorylation. ANIMAL NUTRITION 2023; 13:249-260. [PMID: 37168449 PMCID: PMC10164787 DOI: 10.1016/j.aninu.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Dietary threonine (Thr) deficiency enhances triglyceride (TG) deposition in the liver of Pekin ducks, which injures hepatic function and impairs growth performance. However, the underlying molecular mechanisms remain unclear. In the present study, we investigated the effects of dietary Thr deficiency on the expressions of proteins and phosphoproteins in liver of Pekin ducks, to identify the underlying molecular changes. A total of 300 one-day-old ducklings were divided into 3 groups with 10 replicates of 10 birds. All ducks were fed corn-wheat-peanut meal diets containing 0.46%, 0.71%, and 0.96% Thr, respectively, from 1 to 21 days of age. Growth performance, serum parameters, hepatic TG content, and expression of genes involved in lipid metabolism of Pekin ducks were determined. A Thr deficiency group (Thr-D, 0.46% Thr) and a Thr sufficiency group (Thr-S, 0.71% Thr) were selected for subsequent proteomic and phosphoproteomic analysis. The results showed that Thr-D reduced the growth performance (P < 0.001), and increased the plasma concentrations of cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and hepatic TG (P < 0.05). Thr-D increased gene expression related to fatty acid and TG synthesis (P < 0.05). A total of 176 proteins and 259 phosphosites (containing 198 phosphoproteins) were observed to be differentially expressed as a result of Thr-D. The upregulated proteins were enriched in the pathway related to amino acid metabolism, peroxisome. The downregulated proteins were enriched in linolenic and arachidonic acid metabolism, and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. The upregulated phosphoproteins were enriched in the pathways related to fatty acid biosynthesis, fructose and mannose metabolism, and glycolysis/gluconeogenesis. Thr-D reduced the phosphorylation of STAT1 at S729 and STAT3 at S728, and expression of STAT5B. In contrast, Thr-D increased non-receptor tyrosine-protein kinase (TYK2) expression and STAT1 phosphorylation at S649. Taken together, dietary Thr-D increased hepatic TG accumulation by upregulating the expression of genes and proteins, and phosphoproteins related to fatty acid and triglyceride synthesis. Furthermore, these processes might be regulated by the JAK-STAT signaling pathway, especially the phosphorylation of STAT1 and STAT3.
Collapse
|
4
|
Richard AJ, Hang H, Allerton TD, Zhao P, Mendoza T, Ghosh S, Elks CM, Stephens JM. Loss of Adipocyte STAT5 Confers Increased Depot-Specific Adiposity in Male and Female Mice That Is Not Associated With Altered Adipose Tissue Lipolysis. Front Endocrinol (Lausanne) 2022; 13:812802. [PMID: 35464049 PMCID: PMC9022209 DOI: 10.3389/fendo.2022.812802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 01/05/2023] Open
Abstract
STATs (Signal Transducers and Activators of Transcription) 5A and 5B are induced during adipocyte differentiation and are primarily activated by growth hormone (GH) and prolactin in fat cells. Previous studies in mice lacking adipocyte GH receptor or STAT5 support their roles in lipolysis-mediated reduction of adipose tissue mass. Male and female mice harboring adipocyte-specific deletion of both STAT5 genes (STAT5AKO) exhibit increased subcutaneous or inguinal adipose tissue mass, but no changes in visceral or gonadal fat mass. Both depots display substantial increases in adipocyte size with no changes in lipolysis in adipose tissue explants. RNA sequencing analysis of subcutaneous adipose tissue and indirect calorimetry experiments reveal sex-dependent differences in adipose gene expression and whole-body energy expenditure, respectively, resulting from the loss of adipocyte STAT5.
Collapse
Affiliation(s)
- Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Hardy Hang
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Timothy D. Allerton
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Peng Zhao
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Tamra Mendoza
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Carrie M. Elks
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
5
|
Alternative regulatory mechanism for the maintenance of bone homeostasis via STAT5-mediated regulation of the differentiation of BMSCs into adipocytes. Exp Mol Med 2021; 53:848-863. [PMID: 33990690 PMCID: PMC8178345 DOI: 10.1038/s12276-021-00616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
STAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5fl/fl;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases. A protein connected with bone maintenance and fat cell differentiation could provide a novel therapeutic target for both obesity and osteoporosis. The processes of healthy bone remodeling and fat cell (adipocyte) differentiation from bone marrow stem cells (BMSCs) are intrinsically connected. The transcription factor protein STAT5 plays roles in maintaining bone homeostasis and adipocyte differentiation, but its role in the latter is unclear. Nacksung Kim at Chonnam National University Medical School in Gwangju, South Korea, and co-workers examined the role of STAT5 in mice. Mice without the Stat5 gene had increased fat tissue in their bone marrow, suggesting increased BMSC differentiation into adipocytes. The mice also had reduced bone mass due to increased numbers of bone-degrading cells. Further investigations showed that STAT5 regulates the differentiation of BMSCs into adipocytes via activation of a regulatory gene.
Collapse
|
6
|
Kaltenecker D, Spirk K, Ruge F, Grebien F, Herling M, Rupprecht A, Kenner L, Pohl EE, Mueller KM, Moriggl R. STAT5 is required for lipid breakdown and beta-adrenergic responsiveness of brown adipose tissue. Mol Metab 2020; 40:101026. [PMID: 32473405 PMCID: PMC7322099 DOI: 10.1016/j.molmet.2020.101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 12/02/2022] Open
Abstract
Objective Increasing energy expenditure through activation of brown adipose tissue (BAT) thermogenesis is an attractive approach to counteract obesity. It is therefore essential to understand the molecular mechanisms that control BAT functions. Until now several members of the Janus kinase (JAK) - signal transducer and activator of transcription (STAT) pathway have been implicated as being relevant for BAT physiology. However, whether the STAT family member STAT5 is important for the thermogenic property of adipose tissues is unknown. Therefore, we have investigated the role of STAT5 in thermogenic fat in this paper. Methods We performed metabolic and molecular analyses using mice that harbor an adipocyte-specific deletion of Stat5a/b alleles. Results We found that STAT5 is necessary for acute cold-induced temperature maintenance and the induction of lipid mobilization in BAT following β3-adrenergic stimulation. Moreover, mitochondrial respiration of primary differentiated brown adipocytes lacking STAT5 was diminished. Increased sensitivity to cold stress upon STAT5 deficiency was associated with reduced expression of thermogenic markers including uncoupling protein 1 (UCP1), while decreased stimulated lipolysis was linked to decreased protein kinase A (PKA) activity. Additionally, brown remodeling of white adipose tissue was diminished following chronic β3-adrenergic stimulation, which was accompanied by a decrease in mitochondrial performance. Conclusion We conclude that STAT5 is essential for the functionality and the β-adrenergic responsiveness of thermogenic adipose tissue. Impaired temperature maintenance in mice deficient in adipocyte STAT5 after acute cold exposure. Blocked β3-adrenergic induction of lipolysis and PKA activity in BAT upon STAT5 deficiency. Reduced respiratory capacity in primary differentiated brown adipocytes lacking STAT5. Diminished brown remodeling of STAT5 deficient ScWAT after chronic β3-adrenergic stimulation.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria; Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katrin Spirk
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Frank Ruge
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria; Institute for Medical Biochemistry, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, CIO Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Anne Rupprecht
- Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Lukas Kenner
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, 1210, Vienna, Austria; Department of Pathology, Medical University Vienna, 1090, Vienna, Austria; Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090, Vienna, Austria
| | - Elena E Pohl
- Unit of Physiology and Biophysics, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Kristina M Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Liu W, Ji Y, Zhang B, Chu H, Yin C, Xiao Y. Stat5a promotes brown adipocyte differentiation and thermogenic program through binding and transactivating the Kdm6a promoter. Cell Cycle 2020; 19:895-905. [PMID: 32207362 DOI: 10.1080/15384101.2020.1731644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previous studies reported that Stat5 promotes adipogenesis and white adipocyte differentiation. However, the role of Stat5 in brown adipocyte development is poorly understood. We found Stat5a was higher expressed in brown adipocytes than in white adipocytes, and its level was increased during the process of brown adipocyte differentiation. In addition, Stat5a expression was affected by cold stress and high-fat diet-feeding, suggesting a potential role in thermogenesis. Knockdown of Stat5a induced downregulation of brown fat specific genes (UCP1, PGC-1α, Acox-1 and Cidea), while overexpression of Stat5a did the opposite effect. What is more, bioinformatics analysis, ChIP assay and Luciferase activity assay all verified that Stat5a directly bind and transactivate Kdm6a promoter (Lysine-specific demethylase 6A). Further, we found that Stat5a overexpression promoted the expression of Kdm6a and inhibited the trimethylation of H3K27. While inhibiting of Kdm6a reversed the promoting effect of Stat5a overexpression on the expression of brown fat specific genes. Therefore, we conclude that Stat5a participated in brown adipocyte differentiation and thermogenic program through binding and transactivating the Kdm6a promoter.Abbreviations: Stat5: Signal transducers and activators of transcription 5; BAT: brown adipose tissue; WAT; white adipose tissue; eWAT: epididymal white adipose tissue; sWAT: subcutaneous white adipose tissue; SVFs: stromal vascular fractions; UCP1: Uncoupling protein 1; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; Acox-1: Peroxisomal acyl-coenzyme A oxidase 1; Cidea: Cell death activator CIDE-A; ChIP: Chromatin Immunoprecipitation; HFD: High fat diet; FBS: Fetal bovine serum; siStat5a: Stat5a siRNA; siKdm6: Kdm6a siRNA; pcDNA-Stat5a: over expression of Stat5a pcDNA3.1 vector; IgG: mouse immunoglobulin G; Kdm6a: Lysine-specific demethylase 6A; H3K27me3: trimethylated H3K27.
Collapse
Affiliation(s)
- Weihua Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.,Department of Pediatrics, The NO.1 Hospital of Xi'an, Xi'an, China
| | - Yuqiang Ji
- Central Laboratory, The NO.1 Hospital of Xi'an, Xi'an, China
| | - Beining Zhang
- Department of Pediatrics, The NO.1 Hospital of Xi'an, Xi'an, China
| | - Haiping Chu
- Department of Pediatrics, The NO.1 Hospital of Xi'an, Xi'an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| |
Collapse
|
8
|
Overexpression of DNMT3A promotes proliferation and inhibits differentiation of porcine intramuscular preadipocytes by methylating p21 and PPARg promoters. Gene 2019; 696:54-62. [DOI: 10.1016/j.gene.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
|
9
|
Chen L, Zhang Y, Chen H, Zhang X, Liu X, He Z, Cong P, Chen Y, Mo D. Comparative Transcriptome Analysis Reveals a More Complicated Adipogenic Process in Intramuscular Stem Cells than That of Subcutaneous Vascular Stem Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4700-4708. [PMID: 30929441 DOI: 10.1021/acs.jafc.9b00856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fat-related traits have great influences on pork quality. As different fat tissues have different biochemical profiles depending on their location, intramuscular fat contributes to gustatory qualities, while subcutaneous fat is considered as a negative factor associated with growth performance. In this study, both primary intramuscular and subcutaneous vascular stem cells (IVSCs and SVSCs) could be differentiated into mature adipocytes, though the IVSC differentiation efficiency was lower. By comparative analysis of transcriptomes, 2524 differentially expressed genes (DEGs) were found between two VSCs before differentiation, while only 551 DEGs were found and enriched in two pathways including biosynthesis of unsaturated fatty acids after differentiation. This result indicated that differentiated VSCs were more similar. During differentiation, more DEGs existed in IVSCs than that in SVSCs, suggesting that adipogenesis of IVSCs might be more complex. Additionally, the expression level of DEGs involved in the adipogenic process helps to explain the difference of differentiation efficiency between IVSCs and SVSCs.
Collapse
Affiliation(s)
- Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Yue Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , Guangdong 510006 , P.R. China
| |
Collapse
|
10
|
Lee KM, Park KH, Hwang JS, Lee M, Yoon DS, Ryu HA, Jung HS, Park KW, Kim J, Park SW, Kim SH, Chun YM, Choi WJ, Lee JW. Inhibition of STAT5A promotes osteogenesis by DLX5 regulation. Cell Death Dis 2018; 9:1136. [PMID: 30429452 PMCID: PMC6235898 DOI: 10.1038/s41419-018-1184-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The regulation of osteogenesis is important for bone formation and fracture healing. Despite advances in understanding the molecular mechanisms of osteogenesis, crucial modulators in this process are not well-characterized. Here we demonstrate that suppression of signal transducer and activator of transcription 5A (STAT5A) activates distal-less homeobox 5 (DLX5) in human bone marrow-derived stromal cells (hBMSCs) and enhances osteogenesis in vitro and in vivo. We show that STAT5A negatively regulates expression of Dlx5 in vitro and that STAT5A deletion results in increased trabecular and cortical bone mass and bone mineral density in mice. Additionally, STAT5A deletion prevents age-related bone loss. In a murine fracture model, STAT5A deletion was found to significantly enhance bone remodeling by stimulating the formation of a fracture callus. Our findings indicate that STAT5A inhibition enhances bone formation by promoting osteogenesis of BMSCs.
Collapse
Affiliation(s)
- Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji Suk Hwang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Moses Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Dong Suk Yoon
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Hyun Aae Ryu
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Sun Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ki Won Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jihyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sung-Hwan Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong-Min Chun
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Woo Jin Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
11
|
Liu Y, Wang Y, He X, Zhang S, Wang K, Wu H, Chen L. LncRNA TINCR/miR-31-5p/C/EBP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res 2018; 32:35-42. [PMID: 30172905 DOI: 10.1016/j.scr.2018.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
The adipogenic differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) is a critical issue in many obesity-related disorders and it can be regulated by a crucial transcription factor, CCAAT enhancer binding protein α (C/EBP-α). Apart from, the involvement of non-coding RNAs in adipogenic differentiation has also been reported. As we know, Terminal differentiation-induced ncRNA (TINCR) is required in somatic tissue differentiation. Recently, we found that TINCR could modulate adipogenic differentiation in hADSCs. As predicted by JASPAR and further confirmed by luciferase reporter gene and ChIP assays, C/EBP-α could bind to the promoter region of lncRNA TINCR to activate its expression. Further, miR-31 was confirmed as a direct target of TINCR and could be negatively regulated by TINCR via competing endogenous RNA (ceRNA) mechanism; miR-31 inhibition enhanced the adipogenic differentiation in hADSCs. More importantly, we found that miR-31 directly bound to the 3'-UTR of C/EBP-α to inhibit its expression. Taken together, in hADSCs, lncRNA TINCR, miR-31 and C/EBP-α formed a feedback loop to modulate the adipogenic differentiation process. From the perspective of lncRNA-miRNA-mRNA regulation, we provided a novel regulatory mechanism of hADSCs adipogenic differentiation.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Yiqun Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Xifan He
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Kai Wang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Hanjiang Wu
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Lin Chen
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, PR China.
| |
Collapse
|
12
|
Xia J, Yang L, Dong L, Niu M, Zhang S, Yang Z, Wumaier G, Li Y, Wei X, Gong Y, Zhu N, Li S. Cefminox, a Dual Agonist of Prostacyclin Receptor and Peroxisome Proliferator-Activated Receptor-Gamma Identified by Virtual Screening, Has Therapeutic Efficacy against Hypoxia-Induced Pulmonary Hypertension in Rats. Front Pharmacol 2018. [PMID: 29527168 PMCID: PMC5829529 DOI: 10.3389/fphar.2018.00134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Prostacyclin receptor (IP) and peroxisome proliferator-activated receptor-gamma (PPARγ) are both potential targets for treatment of pulmonary arterial hypertension (PAH). Expression of IP and PPARγ decreases in PAH, suggesting that screening of dual agonists of IP and PPARγ might be an efficient method for drug discovery. Virtual screening (VS) of potential IP-PPARγ dual-targeting agonists was performed in the ZINC database. Ten of the identified compounds were further screened, and cefminox was found to dramatically inhibit growth of PASMCs with no obvious cytotoxicity. Growth inhibition by cefminox was partially reversed by both the IP antagonist RO113842 and the PPARγ antagonist GW9662. Investigation of the underlying mechanisms of action demonstrated that cefminox inhibits the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway through up-regulation of the expression of phosphatase and tensin homolog (PTEN, which is inhibited by GW9662), and enhances cyclic adenosine monophosphate (cAMP) production in PASMCs (which is inhibited by RO113842). In a rat model of hypoxia-induced pulmonary hypertension, cefminox displayed therapeutic efficacy not inferior to that of the prostacyclin analog iloprost or the PPARγ agonist rosiglitazone. Our results identified cefminox as a dual agonist of IP and PPARγ that significantly inhibits PASMC proliferation by up-regulation of PTEN and cAMP, suggesting that it has potential for treatment of PAH.
Collapse
Affiliation(s)
- Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Yang
- Department of Anesthesiology, Chongqing Medical University, Chongqing, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjie Niu
- Department of Gastroenterology Medicine, Xi'an Third Hospital, Xi'an, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
| | - Zhiwei Yang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Li
- Department of Respiratory Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, China
| | - Xiaomin Wei
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Gong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Kaltenecker D, Mueller KM, Benedikt P, Feiler U, Themanns M, Schlederer M, Kenner L, Schweiger M, Haemmerle G, Moriggl R. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia 2017; 60:296-305. [PMID: 27858140 PMCID: PMC6518368 DOI: 10.1007/s00125-016-4152-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/12/2016] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Dysfunction of lipid metabolism in white adipose tissue can substantially interfere with health and quality of life, for example in obesity and associated metabolic diseases. Therefore, it is important to characterise pathways that regulate lipid handling in adipocytes and determine how they affect metabolic homeostasis. Components of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway are involved in adipocyte physiology and pathophysiology. However, the exact physiological importance of the STAT family member STAT5 in white adipose tissue is yet to be determined. Here, we aimed to delineate adipocyte STAT5 functions in the context of lipid metabolism in white adipose tissue. METHODS We generated an adipocyte specific knockout of Stat5 in mice using the Adipoq-Cre recombinase transgene followed by in vivo and in vitro biochemical and molecular studies. RESULTS Adipocyte-specific deletion of Stat5 resulted in increased adiposity, while insulin resistance and gluconeogenic capacity was decreased, indicating that glucose metabolism can be improved by interfering with adipose STAT5 function. Basal lipolysis and fasting-induced lipid mobilisation were diminished upon STAT5 deficiency, which coincided with reduced levels of the rate-limiting lipase of triacylglycerol hydrolysis, adipose triglyceride lipase (ATGL, encoded by Pnpla2) and its coactivator comparative gene identification 58 (CGI-58). In a mechanistic analysis, we identified a functional STAT5 response element within the Pnpla2 promoter, indicating that Pnpla2 is transcriptionally regulated by STAT5. CONCLUSIONS/INTERPRETATION Our findings reveal an essential role for STAT5 in maintaining lipid homeostasis in white adipose tissue and provide a rationale for future studies into the potential of STAT5 manipulation to improve outcomes in metabolic diseases.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Kristina M Mueller
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Pia Benedikt
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ursula Feiler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Madeleine Themanns
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Wei X, Cheng X, Peng Y, Zheng R, Chai J, Jiang S. STAT5a promotes the transcription of mature mmu-miR-135a in 3T3-L1 cells by binding to both miR-135a-1 and miR-135a-2 promoter elements. Int J Biochem Cell Biol 2016; 77:109-119. [PMID: 27276245 DOI: 10.1016/j.biocel.2016.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/21/2016] [Accepted: 06/03/2016] [Indexed: 01/10/2023]
Abstract
Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis.
Collapse
Affiliation(s)
- Xiajie Wei
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyan Cheng
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China
| | - Yongdong Peng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004 Hebei, China
| | - Rong Zheng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jin Chai
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
15
|
Strakovsky RS, Lezmi S, Shkoda I, Flaws JA, Helferich WG, Pan YX. In utero growth restriction and catch-up adipogenesis after developmental di (2-ethylhexyl) phthalate exposure cause glucose intolerance in adult male rats following a high-fat dietary challenge. J Nutr Biochem 2015; 26:1208-20. [PMID: 26188368 PMCID: PMC4631689 DOI: 10.1016/j.jnutbio.2015.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/02/2015] [Accepted: 05/26/2015] [Indexed: 12/24/2022]
Abstract
Phthalates impact adipocyte morphology in vitro, but the sex-specific adipogenic signature immediately after perinatal di(2-ethylhexyl) phthalate (DEHP) exposure and adulthood physiology following a high-fat (HF) dietary challenge are unknown. In the current study, pregnant and lactating dams received DEHP (300 mg/kg body weight) or oil. At weaning [postnatal day (PND) 21], adipose tissue was sampled for real-time polymerase chain reaction. The remaining offspring consumed a control or HF diet. DEHP decreased % fat in males at birth from 13.9%±0.2 to 11.8%±0.6 (mean±S.E.M.), representing a 15.1% decrease in fat by DEHP, and these males caught up in adiposity to controls by PND21. Adult DEHP-exposed males had a 27.5% increase in fat (12.5%±0.9% in controls vs. 15.9%±1.5% in the DEHP group); adipocyte perimeter was increased as well, with fewer small/medium-sized adipocytes, and decreased cell number compared to oil controls. HF diet intake in DEHP-exposed males further increased male energy intake and body weight and led to glucose intolerance. In PND21 males, DEHP increased the expression of adipogenic markers (Pparg1, Cebpa, Adipoq, Ppard, Fabp4, Fasn, Igf1), decreased Lep, and decreased markers of mesenchymal stem cell commitment to the adipogenic lineage (Bmp2, Bmp4, Stat1, Stat5a) compared to oil controls. These data suggest that DEHP may decrease the adipocyte pool at birth, which initially increases adaptive adipocyte maturation and lipid accumulation, but leads to adipose tissue dysfunction in adulthood, decreasing the capacity to adapt to a HF diet, and leading to systemic glucose intolerance.
Collapse
Affiliation(s)
- Rita S Strakovsky
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Stéphane Lezmi
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Ielyzaveta Shkoda
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
16
|
Wang Y, Li R, Ji C, Shi S, Cheng Y, Sun H, Li Y. Quantitative dynamic modelling of the gene regulatory network controlling adipogenesis. PLoS One 2014; 9:e110563. [PMID: 25333650 PMCID: PMC4204895 DOI: 10.1371/journal.pone.0110563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/20/2014] [Indexed: 11/27/2022] Open
Abstract
Gene regulatory networks (GRNs) coherently coordinate the expressions of genes and control the behaviors of cellular systems. The complexity in modeling a quantitative GRN usually results from inaccurate parameter estimation, which is mostly due to small sample sizes. For better modeling of GRNs, we have designed a small-sample iterative optimization algorithm (SSIO) to quantitatively model GRNs with nonlinear regulatory relationships. The algorithm utilizes gene expression data as the primary input and it can be applied in case of small-sized samples. Using SSIO, we have quantitatively constructed the dynamic models for the GRNs controlling human and mouse adipogenesis. Compared with two other commonly-used methods, SSIO shows better performance with relatively lower residual errors, and it generates rational predictions on the adipocyte responses to external signals and steady-states. Sensitivity analysis further indicates the validity of our method. Several differences are observed between the GRNs of human and mouse adipocyte differentiations, suggesting the differences in regulatory efficiencies of the transcription factors between the two species. In addition, we use SSIO to quantitatively determine the strengths of the regulatory interactions as well as to optimize regulatory models. The results indicate that SSIO facilitates better investigation and understanding of gene regulatory processes.
Collapse
Affiliation(s)
- Yin Wang
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | - Rudong Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunguang Ji
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuliang Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yufan Cheng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong Sun
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (HS); (YL)
| | - Yixue Li
- College of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Bioinformation Technology, Shanghai, China
- * E-mail: (HS); (YL)
| |
Collapse
|
17
|
The role of JAK-STAT signaling in adipose tissue function. Biochim Biophys Acta Mol Basis Dis 2013; 1842:431-9. [PMID: 23735217 DOI: 10.1016/j.bbadis.2013.05.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/14/2023]
Abstract
Adipocytes play important roles in lipid storage, energy homeostasis and whole body insulin sensitivity. The JAK-STAT (Janus Kinase-Signal Transducer and Activator of Transcription) pathway mediates a variety of physiological processes including development, hematopoiesis, and inflammation. Although the JAK-STAT signaling pathway occurs in all cells, this pathway can mediate cell specific responses. Studies in the last two decades have identified hormones and cytokines that activate the JAK-STAT signaling pathway. These cytokines and hormones have profound effects on adipocytes. The content of this review will introduce the types of adipocytes and immune cells that make up adipose tissue, the impact of obesity on adipose cellular composition and function, and the general constituents of the JAK-STAT pathway and how its activators regulate adipose tissue development and physiology. A summary of the identification of STAT target genes in adipocytes reveals how these transcription factors impact various areas of adipocyte metabolism including insulin action, modulation of lipid stores, and glucose homeostasis. Lastly, we will evaluate exciting new data linking the JAK-STAT pathway and brown adipose tissue and consider the future outlook in this area of investigation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
|
18
|
Expression and Function of PPARs in Placenta. PPAR Res 2013; 2013:256508. [PMID: 23476631 PMCID: PMC3583145 DOI: 10.1155/2013/256508] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPAR) are members of the superfamily of nuclear hormone receptors involved in embryonic development and differentiation of several tissues including placenta, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. The PPARs also control a variety of target genes involved in lipid homeostasis. Similar to other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation but also by crosstalk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, several mechanisms underlying negative regulation of gene expression by PPARs have been shown. It is suggested that PPARs are key messengers responsible for the translation of nutritional stimuli into changes in gene expression pathways for placental development.
Collapse
|