1
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 PMCID: PMC11881347 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
2
|
Shahbazi AS, Irandoost F, Mahdavian R, Shojaeilangari S, Allahvardi A, Naderi-Manesh H. A multi-stage weakly supervised design for spheroid segmentation to explore mesenchymal stem cell differentiation dynamics. BMC Bioinformatics 2025; 26:20. [PMID: 39825265 PMCID: PMC11742216 DOI: 10.1186/s12859-024-06031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025] Open
Abstract
There is a growing interest in utilizing 3D culture models for stem cell and cancer cell research due to their closer resemblance to in vivo environments. In this study, human mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as differentiative mediums on varying concentrations of chitosan substrate. Light microscopy was employed to capture cell images from the first day to the 21st day of differentiation. Accurate image segmentation is crucial for analyzing the morphological features of the spheroids during the experimental period and for understanding MSC differentiation dynamics for therapeutic applications. Therefore, we developed an innovative, weakly supervised model, aided by convolutional neural networks, to perform label-free spheroid segmentation. Since obtaining pixel-level ground truth labels through manual annotation is labor-intensive, our approach improves the overall quality of the ground-truth map by incorporating a multi-stage process within a weakly supervised learning framework. Additionally, we developed a robust learning scheme for spheroid detection, providing a reliable foundation to study MSC differentiation dynamics. The proposed framework was systematically evaluated using low-resolution microscopic data and challenging, noisy backgrounds. The experimental results demonstrate the effectiveness of our segmentation approach in accurately separating the spheroid from the background. Furthermore, it achieves performance comparable to fully supervised state-of-the-art approaches. To quantitatively evaluate our algorithm, extensive experiments were conducted using available annotated data, confirming the reliability and robustness of our method. Our computationally extracted features can confirm the experimental results regarding alterations in MSC viability, attachment, and differentiation dynamics among the substrates with three concentrations of chitosan used. We observed the formation of more compact spheroids with higher solidity and convex area, resulting improved cell attachment and viability on the 2% chitosan substrate. Additionally, this substrate exhibited a higher propensity for differentiation into osteocytes, as evidenced by the formation of smaller and more ellipsoid spheroids. "Chitosan biofilms mimic in vivo environments for stem cell culture, advancing therapeutic and fundamental applications.” "Innovative weakly supervised model enables label-free spheroid segmentation in stem cell differentiation studies.” "Robust learning scheme achieves accurate spheroid separation, comparable to state-of-the-art approaches.”
Collapse
Affiliation(s)
- Arash Shahbazpoor Shahbazi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Farzin Irandoost
- Department of Physics, Shahid Beheshti University (SBU Physics), Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Seyedehsamaneh Shojaeilangari
- Biomedical Engineering Group, Department of Electrical and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, 33535111, Iran.
| | - Abdollah Allahvardi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
| |
Collapse
|
3
|
Han D, Wang W, Gong J, Ma Y, Li Y. Controlled delivery of mesenchymal stem cells via biodegradable scaffolds for fracture healing. Nanomedicine (Lond) 2025; 20:207-224. [PMID: 39686770 PMCID: PMC11731254 DOI: 10.1080/17435889.2024.2439242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Biodegradable controlled delivery systems for mesenchymal stem cells (MSCs) have emerged as novel advancements in the field of regenerative medicine, particularly for accelerating bone fracture healing. This detailed study emphasizes the importance of quick and adequate fracture treatment and the limitations of existing methods. New approaches employing biodegradable scaffolds can be placed within a fracture to serve as a mechanical support and allow controlled release of in situ MSCs and bioactive agents. They are made up of polymers and composites which degrade over time, aiding in natural tissue regrowth. The fabrication methods, including 3D printing, electrospinning, and solvent casting, with particulate leaching that enable precise control over scaffold architecture and properties, are discussed. Progress in controlled drug delivery systems including encapsulation techniques and release kinetics is described, highlighting the potential of such strategies to maintain therapeutic benefits over a prolonged time as well as improving outcomes for fracture repair. MSCs play a role in bone regeneration through differentiation using biodegradable scaffolds, paracrine effects, and regulation of inflammation focusing on fracture healing. Current trends and future directions in scaffold technology and MSC delivery, including smart scaffolds with growth factor incorporation and innovative delivery approaches for fracture healing are also discussed.
Collapse
Affiliation(s)
- Dong Han
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Otolaryngology Department, Yantaishan Hospital, Yantai, China
| | - Jinpeng Gong
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yupeng Ma
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| | - Yu Li
- Trauma Orthopedics Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
4
|
Teufelsbauer M, Stickler S, Hammond DC, Hamilton G. Vascular Endothelial Growth Factor Expression of Adipose-Derived Stromal Cells and Adipocytes Initiated from Fat Aspirations. Aesthetic Plast Surg 2024:10.1007/s00266-024-04587-w. [PMID: 39658669 DOI: 10.1007/s00266-024-04587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Fat grafting is frequently employed in aesthetic and reconstructive plastic surgery with a low complication rate. However, fat necrosis may occur in dependence of the mode of fat aspiration, processing of the tissue and graft size. Graft survival is critically dependent on the contained adipose-derived stromal cells (ADSCs), adipocyte precursors and their potential for vascular supply. This work investigated the potential role of the expression of vascular endothelial growth factor A (VEGF) and various cytokines by ADSCs and differentiated adipocytes as key factors of fat grafting. METHODS Adipokine expression of ADSCs and differentiated adipocytes were assessed using Proteome Profiler Arrays that detect 58 relevant proteins. RESULTS Collected fat grafts could be categorized according to their adipokine expression into VEGFhigh and VEGFlow ADSCs groups, the former exhibiting higher content of VEGF-related angiopoietin-like 2, nidogen-1/entactin, CCL2/MCP-1 and elevated expression of IGFBPs in association with a fourfold higher VEGF expression. Differentiation of ADSCs into adipocytes increased VEGF concentrations in VEGFlow ADSCs but not in ADSCs exhibiting initial high VEGF concentrations. The adipocytes revealed high expression of HGF, leptin, CCL2/MCP-1, nidogen-1/entactin, M-CSF but lower induction of angiopoietin-like 2. CONCLUSION Half of the ADSCs from fat grafts express high concentrations of VEGF and other adipokines that support angiogenesis and survival of this tissues following transfer. Differentiation of ADSClow cells to adipocytes may make up for the initially low VEGF expression, but this activation is 7-10 days delayed compared to the VEGFhigh ADSC cells and may fail to support angiogenesis from the beginning. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Clinics of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Waehringerstraße 13a, 1090, Vienna, Austria
| | - Dennis C Hammond
- Center for Breast and Body Contouring, Grand Rapids, MI, 49546, USA
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Waehringerstraße 13a, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Wang Y, Sun C, Liu Z, Zhang S, Gao K, Yi F, Zhou W, Liu H. Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202410714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 01/05/2025]
Abstract
AbstractStem cells, ideal for the tissue repair and regeneration, possess extraordinary capabilities of multidirectional differentiation and self‐renewal. However, the limited spontaneous differentiation potential makes it challenging to harness them for tissue repair without external intervention. Although conventional approaches using biomolecules, small organic molecules, and ions have shown specific and effective functions, they face challenges such as in vivo diffusion and degradation, poor internalization, and side effects on adjacent cells. Nanoengineered biomaterials offer a solution by solidifying and nanosizing these soluble regulating molecules and ions, facilitating their uptake by stem cells. Once inside lysosomes, these nanoparticles release their contents in a controlled “molecule or ion storm,” efficiently altering the intracellular biological and chemical microenvironment to tune the differentiation of stem cells. This newly emerged approach for regulating stem cell fate has attracted much attention in recent years. This method has shown promising results and is poised to enhance clinical stem cell therapy. This review provides an overview of the design principles for nanoengineered biomaterials, discusses the categories and characteristics of nanoparticles, summarizes the application of nanoparticles in tissue repair and regeneration, and discusses the direction of nanoparticle‐enhanced stem cell therapy and prospects for its clinical application in regenerative medicine.
Collapse
Affiliation(s)
- Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoying Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Ke Gao
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Fan Yi
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Wenjuan Zhou
- School of Basic Medical Sciences Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
6
|
Siddiqui IFS, Muthu ML, Reinhardt DP. Isolation and adipogenic differentiation of murine mesenchymal stem cells harvested from macrophage-depleted bone marrow and adipose tissue. Adipocyte 2024; 13:2350751. [PMID: 38860452 PMCID: PMC11174124 DOI: 10.1080/21623945.2024.2350751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION AND PURPOSE Mouse mesenchymal stem cells (MSCs) provide a resourceful tool to study physiological and pathological aspects of adipogenesis. Bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (ASCs) are widely used for these studies. Since there is a wide spectrum of methods available, the purpose is to provide a focused hands-on procedural guide for isolation and characterization of murine BM-MSCs and ASCs and to effectively differentiate them into adipocytes. METHODS AND RESULTS Optimized harvesting procedures for murine BM-MSCs and ASCs are described and graphically documented. Since macrophages reside in bone-marrow and fat tissues and regulate the biological behaviour of BM-MSCs and ASCs, we included a procedure to deplete macrophages from the MSC preparations. The identity and stemness of BM-MSCs and ASCs were confirmed by flow cytometry using established markers. Since the composition and concentrations of adipogenic differentiation cocktails differ widely, we present a standardized four-component adipogenic cocktail, consisting of insulin, dexamethasone, 3-isobutyl-1-methylxanthine, and indomethacin to efficiently differentiate freshly isolated or frozen/thawed BM-MSCs and ASCs into adipocytes. We further included visualization and quantification protocols of the differentiated adipocytes. CONCLUSION This laboratory protocol was designed as a step-by-step procedure for harvesting murine BM-MSCs and ASCs and differentiating them into adipocytes.
Collapse
Affiliation(s)
| | - Muthu L. Muthu
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Dieter P. Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
7
|
Liu PP, Yang ZJ, Song WJ, Ding SJ, Li HX, Li CB. Optimization of differentiation conditions for porcine adipose-derived mesenchymal stem cells and analysis of fatty acids in cultured fat. Food Res Int 2024; 194:114853. [PMID: 39232503 DOI: 10.1016/j.foodres.2024.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
Cultured fat is an important part of cultured meat, and the ability of adipose-derived mesenchymal stem cells (ADSCs) to differentiate into mature adipose tissue affects the quality of cultured fat. Thus, the primary aim of this study was to screen for combinations of differentiation-inducing factors (DIF) using single-factor experiment and orthogonal experimental design under two-dimensional culture conditions for ADSCs. The results showed that a combination of DIF consisting of 1 μmol/L dexamethasone, 0.1 mmol/L 3-isobutyl-1-methylxanthine, 10 μg/mL insulin, 0.1 mmol/L indomethacin, and 2 μmol/L rosiglitazone was a good choice for the differentiation of ADSCs. An combination of DIF was applied to the preparation of cultured fat with collagen as scaffolds. Forty-eight fatty acids were detected in cultured fat by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Among them, the content of twenty-one fatty acids in cultured fat was significantly higher than that of conventional porcine subcutaneous adipose tissue (P < 0.05), and the content of 14 fatty acids was not significantly different (P > 0.05). The ratio of ω-6 polyunsaturated fatty acids content to ω-3 polyunsaturated fatty acids content was 1.23:1, which meant cultured fat was beneficial for human health. This study provides a method to improve the differentiation ability of ADSCs while also providing a reference for indicating the nutritional value of cultured fat.
Collapse
Affiliation(s)
- Pei-Pei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi-Jiang Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Juan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shi-Jie Ding
- Nanjing Joes Future Food Technology Co., Ltd., Nanjing 211225, China
| | - Hui-Xia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chun-Bao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Jiangsu Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Ozhava D, Lee K, Bektas C, Jackson A, Patel K, Mao Y. Optimized Adipogenic Differentiation and Delivery of Bovine Umbilical Cord Stem Cells for Cultivated Meat. Gels 2024; 10:488. [PMID: 39195017 DOI: 10.3390/gels10080488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Cultivated meat, also known as cell-based or clean meat, utilizes mesenchymal stem cells to cultivate mature cell types like adipocytes, which are pivotal for imparting the desired taste and texture. The delivery of differentiated cells, crucial in cultivated meat production, is facilitated through extensive exploration of 3D culturing techniques mimicking physiological environments. In this study, we investigated the adipogenic differentiation potential of bovine umbilical cord stem cells (BUSCs), sourced from discarded birth tissue, and assessed the feasibility of delivering differentiated cells for cultivated meat using gelatin methacrylate (GelMA) as a carrier for adipose tissue. Various adipogenic inducers, previously reported to be effective for human mesenchymal stem cells (hMSCs), were evaluated individually or in combination for their efficacy in promoting the adipogenesis of BUSCs. Surprisingly, while the traditional adipogenic inducers, including insulin, dexamethasone, isobutylmethylxantine (IBMX), indomethacin, and rosiglitazone, showed no significant effect on the adipogenic differentiation of BUSCs, efficient differentiation was achieved in the presence of a fatty acid cocktail. Furthermore, we explored methods for the delivery of BUSCs. Differentiated cells were delivered either encapsulated in GelMA hydrogel or populated on the surface of GelMA microparticles (MPs) as the adipose component of cultivated meat. Our findings reveal that after adipogenic induction, the lipid production per cell was comparable when cultured either within hydrogel or on MPs. However, GelMA-MPs supported better cell growth compared to hydrogel encapsulation. Consequently, the overall lipid production is higher when BUSCs are delivered via GelMA-MPs rather than encapsulation. This study not only systematically evaluated the impact of common adipogenic inducers on BUSCs, but also identified GelMA-MPs as a promising carrier for delivering bovine adipocytes for cultivated meat production.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Krishi Patel
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Tan JWH, Wylie-Sears J, Seebauer CT, Mulliken JB, Francois M, Holm A, Bischoff J. R(+) Propranolol decreases lipid accumulation in hemangioma-derived stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601621. [PMID: 39005472 PMCID: PMC11245031 DOI: 10.1101/2024.07.01.601621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Infantile hemangioma (IH) is a benign vascular tumor that undergoes an initial rapid growth phase followed by spontaneous involution. A fibrofatty residuum remains in many tumors and often necessitates resection. We recently discovered that R(+) propranolol, the non-β blocker enantiomer, inhibits blood vessel formation of IH patient-derived hemangioma stem cells (HemSC) xenografted in mice. HemSC are multipotent cells with the ability to differentiate into endothelial cells, pericytes, and adipocytes. Objectives We investigated how R(+) propranolol affects HemSC adipogenic differentiation and lipid accumulation, in vitro and in a preclinical murine model for IH. Methods We conducted a 10-day adipogenesis assay on 4 IH patient-derived HemSCs. Oil Red O (ORO) staining was used to identify the onset and level of lipid accumulation in HemSC while quantitative real-time polymerase chain reaction was conducted to determine the temporal expression of key factors implicated in adipogenesis. 5-20µM R(+) propranolol treatment was added to HemSC induced to undergo adiogenesis for 4 and 8 days, followed by quantification of lipid-stained areas and transcript levels of key adipogenic factors. We immunostained for lipid droplet-associated protein Perilipin 1 (PLIN1) in HemSC-xenograft sections from mice treated with R(+) propranolol and quantified the area using ImageJ. Results We found that different patient-derived HemSC exhibit a robust and heterogenous adipogenic capacity when induced for adipogenic differentiation in vitro. Consistently across four IH patient-derived HemSC isolates, R(+) propranolol reduced ORO-stained areas and lipoprotein lipase (LPL) transcript levels in HemSC after 4 and 8 days of adipogenic induction. In contrast, R(+) propranolol had no significant inhibitory effect on transcript levels encoding adipogenic transcription factors. In a pre-clinical HemSC xenograft model, PLIN1-positive area was significantly reduced in xenograft sections from mice treated with R(+) propranolol, signifying reduced lipid accumulation. Conclusions Our findings suggest a novel regulatory role for the R(+) enantiomer of propranolol in modulating lipid accumulation in HemSC. This highlights a novel role of R(+) propranolol in the involuting phase of IH and a strategy to reduce fibrofatty residua in IH. What is already known about this topic? Propranolol is the mainstay treatment for infantile hemangioma (IH), the most common tumor of infancy, but its use can be associated with concerning β-blocker side effects.R(+) propranolol, the enantiomer largely devoid of β-blocker activity, was recently shown to inhibit endothelial differentiation of hemangioma-derived stem cells (HemSC) in vitro and reduce blood vessel formation in a HemSC-derived xenograft murine model of IH. What does this study add? R(+) propranolol inhibits lipid accumulation in HemSC in vitro.R(+) propranolol does not affect mRNA transcript levels of key adipogenic transcription factors in differentiating HemSC in vitro.R(+) propranolol reduces lipid accumulation in a pre-clinical xenograft murine model of IH. What is the translational message? The R(+) enantiomer of propranolol could be advantageous in terms of reduction in β-adrenergic side effects and fibrofatty tissue formation in the involuting phase of IH.Less fibrofatty residua might reduce the need for surgical resection.Disfigurement and associated psychosocial impacts might be improved in this young patient cohort.
Collapse
|
10
|
Kaczmarek I, Suchý T, Strnadová M, Thor D. Qualitative and quantitative analysis of lipid droplets in mature 3T3-L1 adipocytes using oil red O. STAR Protoc 2024; 5:102977. [PMID: 38875117 PMCID: PMC11225905 DOI: 10.1016/j.xpro.2024.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 06/16/2024] Open
Abstract
By differentiating into mature adipocytes, 3T3-L1 cells can be utilized as a model cell line to investigate (pre)adipocyte function in vitro. Here, we present a protocol for combining qualitative and quantitative analysis of lipid droplets in mature 3T3-L1 adipocytes using oil red O. We describe steps to differentiate 3T3-L1 preadipocytes to adipocytes and give detailed procedures to determine total lipid amount as well as lipid droplet size and number using microscopic devices and an ImageJ macro. For complete details on the use and execution of this protocol, please refer to Kaczmarek et al.1.
Collapse
Affiliation(s)
- Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany.
| | - Tomáš Suchý
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany
| | - Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany.
| |
Collapse
|
11
|
Strnadová M, Thor D, Kaczmarek I. Protocol for changing gene expression in 3T3-L1 (pre)adipocytes using siRNA-mediated knockdown. STAR Protoc 2024; 5:103075. [PMID: 38805394 PMCID: PMC11153903 DOI: 10.1016/j.xpro.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
3T3-L1 is a model cell line which can be differentiated from preadipocytes into mature adipocytes. Here, we present a protocol for changing gene expression in 3T3-L1 (pre)adipocytes using small interfering RNA (siRNA)-mediated knockdown. We describe steps to perform the knockdown of a certain gene prior to differentiation (day 4) to analyze the impact on adipogenesis. We then detail procedures for knockdown on day 8 of differentiation to study the role of a certain gene in mature adipocyte function. For complete details on the use and execution of this protocol, please refer to Kaczmarek et al.1.
Collapse
Affiliation(s)
- Martina Strnadová
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany.
| | - Isabell Kaczmarek
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Leipzig, 04103 Saxony, Germany.
| |
Collapse
|
12
|
Liu Y, Hong J. Mesenchymal Stem Cell-Laden In Situ-Forming Hydrogel for Preventing Corneal Stromal Opacity. Cornea 2024; 43:609-626. [PMID: 38289027 PMCID: PMC10980177 DOI: 10.1097/ico.0000000000003475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 04/01/2024]
Abstract
PURPOSE The aims of this study were to construct a mesenchymal stem cell (MSC)-laden in situ-forming hydrogel and study its effects on preventing corneal stromal opacity. METHODS The native gellan gum was modified by high temperature and pressure, and the rabbit bone marrow MSCs were encapsulated before adding Ca 2+ to initiate cross-linking. The effects of the hydrogel on 3D culture and gene expression of the rabbit bone marrow MSCs were observed in vitro. Then, the MSC-hydrogel was used to repair corneal stromal injury in New Zealand white rabbits within 28 days postoperation. RESULTS The short-chain gellan gum solution has a very low viscosity (<0.1 Pa·s) that is ideal for encapsulating cells. Moreover, mRNA expressions of 3D-cultured MSCs coding for corneal stromal components (decorin, lumican, and keratocan) were upregulated (by 127.8, 165.5, and 25.4 times, respectively) ( P < 0.05) on day 21 in vitro and were verified by Western blotting results. For the in vivo study, the corneal densitometry of the experimental group was (20.73 ± 1.85) grayscale units which was lower than the other groups ( P < 0.05). The MSC-hydrogel downregulated mRNA expression coding for fibrosis markers (α-smooth muscle actin, vimentin, collagen type 5-α1, and collagen type 1-α1) in the rabbit corneal stroma. Furthermore, some of the 5-ethynyl-2'-deoxyuridine (EdU)-labeled MSCs integrated into the upper corneal stroma and expressed keratocyte-specific antigens on day 28 postoperation. CONCLUSIONS The short-chain gellan gum allows MSCs to slowly release to the corneal stromal defect and prevent corneal stromal opacity. Some of the implanted MSCs can integrate into the corneal stroma and differentiate into keratocytes.
Collapse
Affiliation(s)
- Yinan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China; and
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing, China
| |
Collapse
|
13
|
Kathami N, Moreno-Vicente C, Martín P, Vergara-Arce JA, Ruiz-Hernández R, Gerovska D, Aransay AM, Araúzo-Bravo MJ, Camarero-Espinosa S, Abarrategi A. rhBMP-2 induces terminal differentiation of human bone marrow mesenchymal stromal cells only by synergizing with other signals. Stem Cell Res Ther 2024; 15:124. [PMID: 38679735 PMCID: PMC11057131 DOI: 10.1186/s13287-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.
Collapse
Affiliation(s)
- Neda Kathami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
| | | | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Jhonatan A Vergara-Arce
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Sandra Camarero-Espinosa
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
- Regenerative Medicine and Disease Models Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo Miramón, 194, 20014, Donostia, Gipuzkoa, Spain.
| |
Collapse
|
14
|
Choi YR, Na HJ, Lee J, Kim YS, Kim MJ. Isoeugenol Inhibits Adipogenesis in 3T3-L1 Preadipocytes with Impaired Mitotic Clonal Expansion. Nutrients 2024; 16:1262. [PMID: 38732509 PMCID: PMC11085592 DOI: 10.3390/nu16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Jaekwang Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| |
Collapse
|
15
|
Senthilkumar S, Solan ME, Fernandez-Luna MT, Lavado R. Cannabidiol and Indole-3-carbinol Reduce Intracellular Lipid Droplet
Accumulation in HepaRG, A Human Liver Cell Line, as well as in Human
Adipocytes. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/2210315513666230526100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 01/03/2025]
Abstract
Introduction:
An increase in obesity-related diseases is becoming an alarming worldwide problem. Therefore, new therapeutic methods are constantly sought to prevent, treat, and alleviate symptoms of the diseases associated with obesity.
Method:
This study investigates the effects of two natural compounds (indole-3-carbinol, I3C, a bioactive indolic compound found in cruciferous vegetables; cannabidiol, CBD, the active ingredient derived from the hemp plant) on the fatty acid accumulation in the human liver cell line HepaRG, a well-established model for non-alcoholic fatty liver disease (NAFLD) and in human pre-adipocytes (adipose-derived mesenchymal stem cells, MSC).
Results:
EC50s of each compound were in the high µM range (approximately 30 mg/L), showing the low toxicity of these compounds. Determination of the selected compounds in cell media showed no significant differences during the exposure, suggesting that no significant metabolism or degradation happened during the exposure time. Quantification of the bioaccumulation of lipid droplets on exposed HepaRG revealed a significant reduction and mitigation of fatty acid accumulation when exposed to 1 nM of I3C and 100 nM of CBD.). On MSC cells a significant inhibition of lipogenesis and adipocyte differentiation was observed in cells exposed to 0.1 nM of I3C and 1 nM of CBD.
Conclusion:
This study provides a significant contribution to advancing the understanding of preventative dietary strategies that target adipocyte differentiation and NAFLD.
Collapse
Affiliation(s)
| | - Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
16
|
Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, Lin K, Shang X, Jiang S, Spring DJ, Xia Y, Chen P, Shen JP, Kopetz S, DePinho RA. Oncogenic KRAS Drives Lipofibrogenesis to Promote Angiogenesis and Colon Cancer Progression. Cancer Discov 2023; 13:2652-2673. [PMID: 37768068 PMCID: PMC10807546 DOI: 10.1158/2159-8290.cd-22-1467] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyle A. LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cheng-En Hsieh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Yang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashley Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M. Blecher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J. Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peiwen Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Gamwell JM, Paphiti K, Hodson L, Karpe F, Pinnick KE, Todorčević M. An optimised protocol for the investigation of insulin signalling in a human cell culture model of adipogenesis. Adipocyte 2023; 12:2179339. [PMID: 36763512 PMCID: PMC9980465 DOI: 10.1080/21623945.2023.2179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
While there is no standardized protocol for the differentiation of human adipocytes in culture, common themes exist in the use of supra-physiological glucose and hormone concentrations, and an absence of exogenous fatty acids. These factors can have detrimental effects on some aspects of adipogenesis and adipocyte function. Here, we present methods for modifying the adipogenic differentiation protocol to overcome impaired glucose uptake and insulin signalling in human adipose-derived stem cell lines derived from the stromal vascular fraction of abdominal and gluteal subcutaneous adipose tissue. By reducing the length of exposure to adipogenic hormones, in combination with a physiological glucose concentration (5 mM), and the provision of exogenous fatty acids (reflecting typical dietary fatty acids), we were able to restore early insulin signalling events and glucose uptake, which were impaired by extended use of hormones and a high glucose concentration, respectively. Furthermore, the addition of exogenous fatty acids greatly increased the storage of triglycerides and removed the artificial demand to synthesize all fatty acids by de novo lipogenesis. Thus, modifying the adipogenic cocktail can enhance functional aspects of human adipocytes in vitro and is an important variable to consider prior to in vitro investigations into adipocyte biology.
Collapse
Affiliation(s)
- Jonathan M. Gamwell
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Keanu Paphiti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Katherine E. Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Headington, UK
| |
Collapse
|
18
|
Liao B, Cui Y, Yu S, He J, Yang X, Zou S, Li S, Zhao P, Xu H, Long M, Wang X. Histological characteristics of hair follicles at different hair cycle and in vitro modeling of hair follicle-associated cells of yak ( Bos grunniens). Front Vet Sci 2023; 10:1277586. [PMID: 38046572 PMCID: PMC10691264 DOI: 10.3389/fvets.2023.1277586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
To adapt to the extreme conditions of plateau environments, yaks have evolved thick hair, making them an ideal model for investigating the mechanisms involved in hair growth. We can gain valuable insights into how hair follicles develop and their cyclic growth in challenging environments by studying yaks. However, the lack of essential data on yak hair follicle histology and the absence of in vitro cell models for hair follicles serve as a limitation to such research objectives. In this study, we investigated the structure of skin tissue during different hair follicle cycles using the yak model. Additionally, we successfully established in vitro models of hair follicle-associated cells derived from yak skin, including dermal papilla cells (DPCs), preadipocytes, and fibroblasts. We optimized the microdissection technique for DPCs culture by simplifying the procedure and reducing the time required. Furthermore, we improved the methodology used to differentiate yak preadipocytes into mature adipocytes, thus increasing the differentiation efficiency. The introduction of yak as a natural model provides valuable research resources for exploring the mechanisms of hair growth and contributes to a deeper understanding of hair follicle biology and the development of regenerative medicine strategies.
Collapse
Affiliation(s)
- Bo Liao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xue Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shengnan Zou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijie Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hongwei Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
19
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
20
|
Heimann M, Elashry MI, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. Optimizing the Adipogenic Induction Protocol Using Rosiglitazone Improves the Physiological Parameters and Differentiation Capacity of Adipose Tissue-Derived Mesenchymal Stem Cells for Horses, Sheep, Dogs, Murines, and Humans. Animals (Basel) 2023; 13:3224. [PMID: 37893949 PMCID: PMC10603751 DOI: 10.3390/ani13203224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of adipose tissue-derived mesenchymal stem cells (ASCs) has received considerable interest in regenerative medicine. A nontoxic adipogenic induction protocol valid for cells of different mammalian species has not been described. This study aims to establish an adipogenic differentiation protocol suitable for horses, sheep, dogs, murines, and human cells. An optimized rosiglitazone protocol, consisting of 5% fetal calf serum in Dulbecco's Modified Eagle's Medium, 10 μg/mL insulin, 0.55 μg/mL transferrin, 6.8 ng sodium selenite, 1 μM dexamethasone, and 1-5 μM of rosiglitazone, is compared to the 3-isobutyl-1-methylxantine (IBMX) protocol, where rosiglitazone was replaced with 0.5 mM IBMX and 0.2 mM indomethacin. Cell viability, cytotoxicity, a morphometric analysis of the lipid, and the expression of adipogenic markers for 14 days were assessed. The data revealed that using 5 µM of rosiglitazone promotes the adipogenic differentiation capacity in horse, sheep, and dog cells compared to IBMX induction. Meanwhile, marked reductions in the cell viability and cell number with the IBMX protocol were detected, and rosiglitazone increased the cell number and lipid droplet size, prevented apoptosis, and upregulated FABP-4 and Leptin expression in the cells of most of the species. Our data revealed that the rosiglitazone protocol improves the adipogenesis of ASCs, together with having less toxicity, and should be considered for cell reproducibility and clinical applications targeting obesity.
Collapse
Affiliation(s)
- Manuela Heimann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.H.); (M.C.K.); (S.A.)
| | - Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.H.); (M.C.K.); (S.A.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.H.); (M.C.K.); (S.A.)
| | - Asmaa Eldaey
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (A.E.); (S.W.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (A.E.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (M.H.); (M.C.K.); (S.A.)
| |
Collapse
|
21
|
Grun LK, Maurmann RM, Scholl JN, Fogaça ME, Schmitz CRR, Dias CK, Gasparotto J, Padoin AV, Mottin CC, Klamt F, Figueiró F, Jones MH, Filippi-Chiela EC, Guma FCR, Barbé-Tuana FM. Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis. Immun Ageing 2023; 20:51. [PMID: 37821967 PMCID: PMC10566105 DOI: 10.1186/s12979-023-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) are multipotent cells implicated in tissue homeostasis. Obesity represents a chronic inflammatory disease associated with metabolic dysfunction and age-related mechanisms, with progressive accumulation of senescent cells and compromised ADSC function. In this study, we aimed to explore mechanisms associated with the inflammatory environment present in obesity in modulating ADSC to a senescent phenotype. We evaluated phenotypic and functional alterations through 18 days of treatment. ADSC were cultivated with a conditioned medium supplemented with a pool of plasma from eutrophic individuals (PE, n = 15) or with obesity (PO, n = 14), and compared to the control. RESULTS Our results showed that PO-treated ADSC exhibited decreased proliferative capacity with G2/M cycle arrest and CDKN1A (p21WAF1/Cip1) up-regulation. We also observed increased senescence-associated β-galactosidase (SA-β-gal) activity, which was positively correlated with TRF1 protein expression. After 18 days, ADSC treated with PO showed augmented CDKN2A (p16INK4A) expression, which was accompanied by a cumulative nuclear enlargement. After 10 days, ADSC treated with PO showed an increase in NF-κB phosphorylation, while PE and PO showed an increase in p38MAPK activation. PE and PO treatment also induced an increase in senescence-associated secretory phenotype (SASP) cytokines IL-6 and IL-8. PO-treated cells exhibited decreased metabolic activity, reduced oxygen consumption related to basal respiration, increased mitochondrial depolarization and biomass, and mitochondrial network remodeling, with no superoxide overproduction. Finally, we observed an accumulation of lipid droplets in PO-treated ADSC, implying an adaptive cellular mechanism induced by the obesogenic stimuli. CONCLUSIONS Taken together, our data suggest that the inflammatory environment observed in obesity induces a senescent phenotype associated with p38MAPK/NF-κB axis, which stimulates and amplifies the SASP and is associated with impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- L K Grun
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - R M Maurmann
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J N Scholl
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M E Fogaça
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C R R Schmitz
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C K Dias
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J Gasparotto
- Institute of Biomedical Sciences, Federal University at Alfenas, Alfenas, Brazil
| | - A V Padoin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C C Mottin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - F Klamt
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M H Jones
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - E C Filippi-Chiela
- Institute of Basic Health Sciences, Department of Morphological Sciences, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Center for Biotechnology, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F C R Guma
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F M Barbé-Tuana
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
22
|
Soumya SJ, Abhinand CS, Nair AS, Sonu PS, Mohanadasan Nair G, Gangaprasad AN, Nair AS, Nair AJ. Chrysin inhibits adipogenesis by modulating PPARγ: in silico and in vitro studies. J Biomol Struct Dyn 2023; 42:11425-11434. [PMID: 37794770 DOI: 10.1080/07391102.2023.2262596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
Adipose tissue is the major storage site of lipids and plays a vital role in energy homeostasis. Adipogenesis is a well-regulated process wherein preadipocytes differentiate into adipocytes. It requires the sequential activation of numerous transcription factors, including peroxisome proliferator activated receptor-γ (PPAR-γ). Phytochemicals have been reported to regulate adipogenesis and flavonoids represent the most researched groups of phytochemicals with regard to their effect on adipogenesis. Chrysin is a naturally occurring flavone and is reported to have anti-inflammatory effects in obese conditions. The present study was aimed to examine the effect of chrysin on adipogenesis. In silico Molecular docking, dynamic simulation studies and in vitro cell-based assays showed that chrysin inhibited adipogenesis by modulating key adipogenic transcription factor PPARγ. Enhanced adipogenesis leads to obesity and targeting adipogenesis is potential in regulating adipose tissue development. So, these investigations may provide important information for designing therapeutic interventions to control adiposity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sasikumar Jalajakumari Soumya
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Chandran Sheela Abhinand
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Arya Saseendran Nair
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Priji Sathyan Sonu
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Govindapillai Mohanadasan Nair
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Appukuttan Nair Gangaprasad
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ananthakrishnan Jayakumaran Nair
- Inter University Centre for Genomics and Gene Technology (IUCGGT), Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
23
|
Endo K, Sato T, Umetsu A, Watanabe M, Hikage F, Ida Y, Ohguro H, Furuhashi M. 3D culture induction of adipogenic differentiation in 3T3-L1 preadipocytes exhibits adipocyte-specific molecular expression patterns and metabolic functions. Heliyon 2023; 9:e20713. [PMID: 37867843 PMCID: PMC10585234 DOI: 10.1016/j.heliyon.2023.e20713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Adipose tissues are closely related to physiological functions and pathological conditions in most organs. Although differentiated 3T3-L1 preadipocytes have been used for in vitro adipose studies, the difference in cellular characteristics of adipogenic differentiation in two-dimensional (2D) culture and three-dimensional (3D) culture remain unclear. In this study, we evaluated gene expression patterns using RNA sequencing and metabolic functions using an extracellular flux analyzer in 3T3-L1 preadipocytes with and without adipogenic induction in 2D culture and 3D culture. In 2D culture, 565 up-regulated genes and 391 down-regulated genes were identified as differentially expressed genes (DEGs) by adipogenic induction of 3T3-L1 preadipocytes, whereas only 69 up-regulated genes and 59 down-regulated genes were identified as DEGs in 3D culture. Ingenuity Pathway Analysis (IPA) revealed that genes associated with lipid metabolism were identified as 2 out of the top 3 causal networks related to diseases and function in 3D spheroids, whereas only one network related to lipid metabolism was identified within the top 9 of these causal networks in the 2D planar cells, suggesting that adipogenic induction in the 3D culture condition exhibits a more adipocyte-specific gene expression pattern in 3T3-L1 preadipocytes. Real-time metabolic analysis revealed that the metabolic capacity shifted from glycolysis to mitochondrial respiration in differentiated 3T3-L1 cells in the 3D culture condition but not in those in the 2D cultured condition, suggesting that adipogenic differentiation in 3D culture induces a metabolic phenotype of well-differentiated adipocytes. Consistently, expression levels of mitochondria-encoded genes including mt-Nd6, mt-Cytb, and mt-Co1 were significantly increased by adipogenic induction of 3T3-L1 preadipocytes in 3D culture compared with those in 2D culture. Taken together, the findings suggest that induction of adipogenesis in 3D culture provides a more adipocyte-specific gene expression pattern and enhances mitochondrial respiration, resulting in more adipocyte-like cellular properties.
Collapse
Affiliation(s)
- Keisuke Endo
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yosuke Ida
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
24
|
James AW, Thottappillil N, Péault B, Zhang X. Editorial: Chondrogenic potentials, protocols and mechanisms of mesenchymal progenitor cells. Front Cell Dev Biol 2023; 11:1289438. [PMID: 37786809 PMCID: PMC10541955 DOI: 10.3389/fcell.2023.1289438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Bruno Péault
- Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xinli Zhang
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
25
|
Petrova V, Yonkova P, Simeonova G, Vachkova E. Horse serum potentiates cellular viability and improves indomethacin-induced adipogenesis in equine subcutaneous adipose-derived stem cells (ASCs). Int J Vet Sci Med 2023; 11:94-105. [PMID: 37655053 PMCID: PMC10467519 DOI: 10.1080/23144599.2023.2248805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 08/05/2023] [Indexed: 09/02/2023] Open
Abstract
Subcutaneous fat tissue is an accessible and abundant source of multipotent stem cells for cell therapy in regenerative medicine. Successful trilineage differentiation is required to define the stemness features of the obtained mesenchymal cells, and adipogenesis is a part of it. Since indomethacin is bound to serum albumin, replacing foetal bovine serum (FBS) with horse serum (HS) in adipogenic induction protocols would suppress its cytotoxic effect and reveal a better adipogenic potential in equine MSCs. The equine subcutaneous adipose-derived stem cells (ASCs) were separately induced in adipogenesis by three different concentrations of 3-isobutyl-1-methylxanthine, IBMX (0.5 mM; 0.25 mM and 0.1 mM) and indomethacin (0.1 mM; 0.05 mM and 0.02 mM) for 48 h. In contrast to the IBMX, indomethacin in all concentrations caused dramatic cellular detachment. Further, the same induction concentrations were used in FBS and HS conditions for adipogenic induction. The MTT assay revealed that the culture media supplemented with HS raised cellular vitality by about 35% compared to those cultured in FBS. Based on those results, an adipogenic cocktail containing indomethacin (0.05 mM) and IBMX (0.5 mM), supplemented with HS and FBS, respectively, was applied for 18 days. The adiponectin gene expression was significantly up-regulated in HS-supplemented media since established changes in PPAR-gamma were insignificant. The tri-lineage differentiation was successful, and a cross-sectional area of adipocytes was performed. The albumin concentration was higher in HS than in FBS. In conclusion, our study revealed that HS is an appropriate supplement in induced adipogenesis since it probably suppresses the indomethacin-related cytotoxic effect and increases adipogenic ability in equine subcutaneous ASCs.
Collapse
Affiliation(s)
- Valeria Petrova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Penka Yonkova
- Department of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Galina Simeonova
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Ekaterina Vachkova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
26
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
27
|
Robledo F, González-Hodar L, Tapia P, Figueroa AM, Ezquer F, Cortés V. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther 2023; 14:70. [PMID: 37024989 PMCID: PMC10080976 DOI: 10.1186/s13287-023-03262-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.
Collapse
Affiliation(s)
- Fermín Robledo
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lila González-Hodar
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Tapia
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Yuen Jr JSK, Saad MK, Xiang N, Barrick BM, DiCindio H, Li C, Zhang SW, Rittenberg M, Lew ET, Zhang KL, Leung G, Pietropinto JA, Kaplan DL. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. eLife 2023; 12:e82120. [PMID: 37014056 PMCID: PMC10072877 DOI: 10.7554/elife.82120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
We present a method of producing bulk cell-cultured fat tissue for food applications. Mass transport limitations (nutrients, oxygen, waste diffusion) of macroscale 3D tissue culture are circumvented by initially culturing murine or porcine adipocytes in 2D, after which bulk fat tissue is produced by mechanically harvesting and aggregating the lipid-filled adipocytes into 3D constructs using alginate or transglutaminase binders. The 3D fat tissues were visually similar to fat tissue harvested from animals, with matching textures based on uniaxial compression tests. The mechanical properties of cultured fat tissues were based on binder choice and concentration, and changes in the fatty acid compositions of cellular triacylglyceride and phospholipids were observed after lipid supplementation (soybean oil) during in vitro culture. This approach of aggregating individual adipocytes into a bulk 3D tissue provides a scalable and versatile strategy to produce cultured fat tissue for food-related applications, thereby addressing a key obstacle in cultivated meat production.
Collapse
Affiliation(s)
- John Se Kit Yuen Jr
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Ning Xiang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Chunmei Li
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | | | - Emily T Lew
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Kevin Lin Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Glenn Leung
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts UniversityMedfordUnited States
| |
Collapse
|
29
|
Dexamethasone Is Not Sufficient to Facilitate Tenogenic Differentiation of Dermal Fibroblasts in a 3D Organoid Model. Biomedicines 2023; 11:biomedicines11030772. [PMID: 36979751 PMCID: PMC10044928 DOI: 10.3390/biomedicines11030772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Self-assembling three-dimensional organoids that do not rely on an exogenous scaffold but maintain their native cell-to-cell and cell-to-matrix interactions represent a promising model in the field of tendon tissue engineering. We have identified dermal fibroblasts (DFs) as a potential cell type for generating functional tendon-like tissue. The glucocorticoid dexamethasone (DEX) has been shown to regulate cell proliferation and facilitate differentiation towards other mesenchymal lineages. Therefore, we hypothesized that the administration of DEX could reduce excessive DF proliferation and thus, facilitate the tenogenic differentiation of DFs using a previously established 3D organoid model combined with dose-dependent application of DEX. Interestingly, the results demonstrated that DEX, in all tested concentrations, was not sufficient to notably induce the tenogenic differentiation of human DFs and DEX-treated organoids did not have clear advantages over untreated control organoids. Moreover, high concentrations of DEX exerted a negative impact on the organoid phenotype. Nevertheless, the expression profile of tendon-related genes of untreated and 10 nM DEX-treated DF organoids was largely comparable to organoids formed by tendon-derived cells, which is encouraging for further investigations on utilizing DFs for tendon tissue engineering.
Collapse
|
30
|
Evaluation the food safety of cultured fat via detection of residues of adipogenic differentiation cocktail in cultured fat with high performance liquid chromatography and enzyme-linked immunosorbent assay. Food Res Int 2023; 165:112486. [PMID: 36869499 DOI: 10.1016/j.foodres.2023.112486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Cultured fat is inducing adipose progenitor cells (APCs) to differentiate into mature adipocytes for consumption. The traditional adipogenic differentiation cocktail, including insulin, dexamethasone, indomethacin, isobutylmethylxanthine and rosiglitazone, has potential food safety problems in cultured fat. Therefore, the detection of these residues is necessary to ensure food safety. In this research, a method of high performance liquid chromatography (HPLC) was established to quantitatively analyze the potential residual content of dexamethasone, indomethacin, isobutylmethylxanthine and rosiglitazone in cultured fat and medium. Quantitative analysis showed that the content of four residues in cultured fat decreased to zero on Day 10. Subsequently, enzyme-linked immunosorbent assay (ELISA) was performed to detect the insulin content in the cultured fat and found that the insulin content in the cultured fat on Day 10 was 2.78 ± 0.21 μg/kg. After soaking with phosphate buffered saline (PBS), the insulin content decreased to 1.88 ± 0.54 μg/kg. In conclusion, this research provided an effective approach to clarify the content of potential residual components in cultured fat and it will provide reference for the safety of cultured fat in the future.
Collapse
|
31
|
Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Translat 2023; 39:63-73. [PMID: 37188000 PMCID: PMC10175706 DOI: 10.1016/j.jot.2022.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause huge economic losses every year. The healing process after an injury is complex and is dependent on the surrounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their phenotypes progressively transform as they regenerate. As the "sensor and switch of the immune system", mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex transitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing. Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective therapeutic strategy for TBI injuries. The Translational potential of this article This paper reviewed the important functions of macrophages and mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing after restoration surgery.
Collapse
|
32
|
Regulatory Mechanism between Ferritin and Mitochondrial Reactive Oxygen Species in Spinal Ligament-Derived Cells from Ossification of Posterior Longitudinal Ligament Patient. Int J Mol Sci 2023; 24:ijms24032872. [PMID: 36769191 PMCID: PMC9917908 DOI: 10.3390/ijms24032872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Primary spinal ligament-derived cells (SLDCs) from cervical herniated nucleus pulposus tissue (control, Ctrl) and ossification of the posterior longitudinal ligament (OPLL) tissue of surgical patients were analyzed for pathogenesis elucidation. Here, we found that decreased levels of ferritin and increased levels of alkaline phosphatase (ALP), a bone formation marker, provoked osteogenesis in SLDCs in OPLL. SLDCs from the Ctrl and OPLL groups satisfied the definition of mesenchymal stem/stromal cells. RNA sequencing revealed that oxidative phosphorylation and the citric acid cycle pathway were upregulated in the OPLL group. SLDCs in the OPLL group showed increased mitochondrial mass, increased mitochondrial reactive oxygen species (ROS) production, decreased levels of ROS scavengers including ferritin. ROS and ferritin levels were upregulated and downregulated in a time-dependent manner, and both types of molecules repressed ALP. Osteogenesis was mitigated by apoferritin addition. We propose that enhancing ferritin levels might alleviate osteogenesis in OPLL.
Collapse
|
33
|
Lei Y, Li F, Mortimer M, Li Z, Peng BX, Li M, Guo LH, Zhuang G. Antibiotics disrupt lipid metabolism in zebrafish (Danio rerio) larvae and 3T3-L1 preadipocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159755. [PMID: 36349636 DOI: 10.1016/j.scitotenv.2022.159755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are emerging environmental contaminants with wide attention due to their high consumption and pseudo-persistence in the environment. They have been shown to induce obesity or obesity-related metabolic diseases in experimental animals, but the underlying toxicological mechanisms remain unclear. Here, the disruptive effects of four commonly used antibiotics, namely doxycycline (DC), enrofloxacin (ENR), florfenicol (FF) and sulfamethazine (SMT) on lipid metabolism were investigated in zebrafish (Danio rerio) larvae and murine preadipocyte cell line. Triglyceride (TG) content was reduced after 1 ng/L DC or ENR exposure but was increased at higher concentrations up to 100 mg/L. FF increased and SMT reduced TG content but did not show any concentration dependence. None of the antibiotics had any significant effect on total cholesterol (TC) content in zebrafish except 100 μg/L SMT. Expression levels of 8 lipid metabolism-related genes were also quantified. SMT was most disruptive by up-regulating six genes, followed by FF which up-regulated four genes and down-regulated one gene, whereas DC and ENR both up-regulated one gene. In 3T3-L1 preadipocytes, ENR, FF, and SMT in general increased TG content, while 100 mg/L FF reduced TG substantially. DC did not show any effect up to 10 mg/L, at which TG increased significantly. FF and SMT increased TC slightly at low concentrations but reduced it at high concentrations, whereas TC, DC and ENR had no effect at any tested concentrations. Gene expression measurement also indicated that SMT was most disruptive, followed by FF, DC, and ENR. Reporter gene assays showed that only SMT inhibited the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ). The above experimental results and clustering analysis demonstrate that the four antibiotics exerted disruption on lipid metabolism through different mechanisms, and one of the mechanisms for SMT may be inhibition of PPARγ transcriptional activity.
Collapse
Affiliation(s)
- Yuyang Lei
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Zhi Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Bi-Xia Peng
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| |
Collapse
|
34
|
Ernst AM, Bauer H, Bauer HC, Steiner M, Malfertheiner A, Lipp AT. Lipedema Research-Quo Vadis? J Pers Med 2022; 13:98. [PMID: 36675759 PMCID: PMC9860653 DOI: 10.3390/jpm13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
When studying the current literature, one might get the impression that lipedema is a "modern" disease, with increasing incidence and augmenting prevalence throughout Western countries during the last decade. However, a quick look into older textbooks shows that disproportionate accumulation of fat in female bodies has long been known without being recognized as an independent disease. Nevertheless, it was not until 1940 that Allen and Hines described a "syndrome characterized by fat legs and orthostatic edema" in a seminal publication. The mere awareness that people who have lipedema are not just overweight but suffer from a yet poorly defined pathological condition, may be considered a decisive leap forward in the understanding of lipedema. A number of comprehensive publications have since dealt with the clinical presentation of lipedema and have provided the first clues towards the potential pathological mechanisms underlying its initiation and progression. Nevertheless, despite all effort that has been undertaken to unravel lipedema pathology, many questions have remained unanswered. What can be deduced with certainty from all experimental and medical evidence available so far is that lipedema is neither a cosmetic problem nor is it a problem of lifestyle but should be accepted as a serious disease with yet undetermined genetic background, which makes women's lives unbearable from both a physical and psychological point of view. To date, results from clinical inspections have led to the categorization of various types and stages of lipedema, describing how the extremities are affected and evaluating its progression, as demonstrated by skin alterations, adipose tissue volume increase and physical and everyday-behavioral impediments. There is accumulating evidence showing that advanced stages of lipedema are usually accompanied by excessive weight or obesity. Thus, it is not unreasonable to assume that the progression of lipedema is largely driven by weight gain and the pathological alterations associated with it. Similarly, secondary lymphedema is frequently found in lipedema patients at advanced stages. Needless to say, both conditions considerably blur the clinical presentation of lipedema, making diagnosis difficult and scientific research challenging. The present literature review will focus on lipedema research, based on evidence fromex vivo and in vitro data, which has accumulated throughout the last few decades. We will also open the discussion as to whether the currently used categorization of lipedema stages is still sufficient and up-to-date for the accurate description of this enigmatic disease, whose name, strangely enough, does not match its pathologic correlate.
Collapse
Affiliation(s)
- Anna M. Ernst
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Hannelore Bauer
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Hans-Christian Bauer
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Institute for Tendon and Bone Regeneration, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Marianne Steiner
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Anna Malfertheiner
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| | | |
Collapse
|
35
|
Alternative Methods as Tools for Obesity Research: In Vitro and In Silico Approaches. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010108. [PMID: 36676057 PMCID: PMC9860640 DOI: 10.3390/life13010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
The study of adipogenesis is essential for understanding and treating obesity, a multifactorial problem related to body fat accumulation that leads to several life-threatening diseases, becoming one of the most critical public health problems worldwide. In this review, we propose to provide the highlights of the adipogenesis study based on in vitro differentiation of human mesenchymal stem cells (hMSCs). We list in silico methods, such as molecular docking for identification of molecular targets, and in vitro approaches, from 2D, more straightforward and applied for screening large libraries of substances, to more representative physiological models, such as 3D and bioprinting models. We also describe the development of physiological models based on microfluidic systems applied to investigate adipogenesis in vitro. We intend to identify the main alternative models for adipogenesis evaluation, contributing to the direction of preclinical research in obesity. Future directions indicate the association of in silico and in vitro techniques to bring a clear picture of alternative methods based on adipogenesis as a tool for obesity research.
Collapse
|
36
|
Mitić R, Cantoni F, Börlin CS, Post MJ, Jackisch L. A simplified and defined serum-free medium for cultivating fat across species. iScience 2022; 26:105822. [PMID: 36636339 PMCID: PMC9830212 DOI: 10.1016/j.isci.2022.105822] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cultivated meat is a promising technology with the potential to mitigate the ethical and environmental issues associated with traditional meat. Fat plays a key role in the meat flavor; therefore, development of suitable adipogenic protocols for livestock is essential. The traditional adipogenic cocktail containing IBMX, dexamethasone, insulin and rosiglitazone is not food-compatible. Here, we demonstrate that of the four inducers only insulin and rosiglitazone are necessary in both serum-free (DMAD) and serum-containing media, with DMAD outperforming FBS. Two glucocorticoid receptor activators, progesterone and hydrocortisone, found in DMAD and FBS, affect differentiation homogeneity, without playing an essential role in activating adipogenic genes. Importantly, this protocol leads to mature adipocytes in 3D culture. This was demonstrated in both media types and in four species: ruminant and monogastric. We therefore propose a simplified one-step adipogenic protocol which, given the replacement of rosiglitazone by a food-compatible PPARγ agonist, is suitable for making cultivated fat.
Collapse
Affiliation(s)
- Rada Mitić
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg 6211 LK, the Netherlands
| | | | | | - Mark J. Post
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg 6211 LK, the Netherlands
| | - Laura Jackisch
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Corresponding author
| |
Collapse
|
37
|
Armanmehr A, Jafari Khamirani H, Zoghi S, Dianatpour M. Analysis of DYRK1B, PPARG, and CEBPB Expression Patterns in Adipose-Derived Stem Cells from Patients Carrying DYRK1B R102C and Healthy Individuals During Adipogenesis. Metab Syndr Relat Disord 2022; 20:576-583. [PMID: 36318489 DOI: 10.1089/met.2021.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Metabolic syndrome (MetS) is a group of signs and symptoms that are associated with a higher risk of type 2 diabetes mellitus and cardiovascular diseases. The major risk factor for developing MetS is abdominal obesity, which is caused by an increase in adipocyte size or quantity. Increased adipocyte quantity is a result of differentiation of stem cells into adipose tissue. Numerous studies have investigated the expression of key transcription factors, including PPARG and CEBPB during adipocyte differentiation in murine cells such as 3T3-L1 cell lines. To better understand the expression changes during the process of fat accumulation in adipose-derived stem cells (ASCs), we compared the expression of DYRK1B, PPARG, and ẟB in ASCs between the patient (harboring DYRK1B R102C) and control (healthy individuals) groups. Methods: Gene expression was evaluated on the eighth day before induction and days 1, 5, and 15 postinduction. The pluripotent capacity of ASCs and the potential for differentiation into adipocytes were confirmed by flow cytometry analysis of surface markers (CD34, CD44, CD105, and CD90), and Oil Red O staining, respectively. The Expression of DYRK1B, PPARG, and CEBPB were assessed by real-time-polymerase chain reaction in patients and normal individuals. The effects of AZ191, a potent small molecule inhibitor on DYRK1B and CEBPB expression in patients' samples were studied. Result: The expression of DYRK1B kinase and transcription factors (CEBPB and PPARG) are higher in ASCs harboring DYRK1B R102C compared with noncarriers on days 5 and 15 during adipocyte differentiation. These proteins may be helpful to elucidate the mechanisms underlying obesity and obesity-related disorders like MetS. Furthermore, the new compound AZ191 exhibited inhibitory activity toward DYRK1B and CEBPB. We suggest that AZ191 may be helpful in defining the potential roles of DYRK1B and CEBPB in adipogenesis.
Collapse
Affiliation(s)
- Azam Armanmehr
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Basini G, Bussolati S, Andriani L, Grolli S, Bertini S, Iemmi T, Menozzi A, Quintavalla F, Ramoni R, Serventi P, Grasselli F. The effects of nanoplastics on adipose stromal cells from swine tissues. Domest Anim Endocrinol 2022; 81:106747. [PMID: 35728298 DOI: 10.1016/j.domaniend.2022.106747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Plastic is one of the main sources of marine and terrestrial pollution. This material can fragment into micro- (<-5 mm) and nanoplastics (NPs) (<100 nm) following degradation. Animals are exposed to these particles by ingesting contaminated food, respiration or filtration, and transdermally. In organisms, NPs can cross biological membranes, and cause oxidative stress, cell damage, apoptosis, and endocrine interference. We previously demonstrated that polystyrene - NPs interfered with ovarian cell functions. Since reproduction involves a high energy expenditure and a crucial role is played by adipose tissue, the aim of the present study was to evaluate the effects of NPs on primary adipose stromal cells (ASCs) isolated from swine adipose tissues. In particular, the effects on cell viability, proliferation, metabolic activity, inflammatory process mediators and oxidative stress markers were assessed. The obtained results did not reveal a significant variation in cell proliferation, metabolic activity was increased (P < 0.01) but only at the lowest concentration, while viability showed a significant decrease after prolonged exposure to NPs (P < 0.01). TNF-α was increased (P < 0.05), while PAI-1 was inhibited (P < 0.001). Redox status was significantly modified; in particular, the production of O2-, H2O2 and NO was stimulated (P < 0.05), the non-enzymatic antioxidant power was reduced (P < 0.05) while catalase activity was significantly (P < 0.01) increased.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - L Andriani
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - S Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - T Iemmi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - A Menozzi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - P Serventi
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
39
|
Song WJ, Liu PP, Zheng YY, Meng ZQ, Zhu HZ, Tang CB, Li HX, Ding SJ, Zhou GH. Production of cultured fat with peanut wire-drawing protein scaffold and quality evaluation based on texture and volatile compounds analysis. Food Res Int 2022; 160:111636. [DOI: 10.1016/j.foodres.2022.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
|
40
|
Das R, Giri J, K Paul P, Froelich N, Chinnadurai R, McCoy S, Bushman W, Galipeau J. A STAT5-Smad3 dyad regulates adipogenic plasticity of visceral adipose mesenchymal stromal cells during chronic inflammation. NPJ Regen Med 2022; 7:41. [PMID: 36045134 PMCID: PMC9433418 DOI: 10.1038/s41536-022-00244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Adipogenic differentiation of visceral adipose tissue-resident multipotent mesenchymal stromal cells (VA-MSC) into adipocytes is metabolically protective. Under chronic inflammatory stress, this neoadipogenesis process is suppressed by various pro-inflammatory cytokines and growth factors. However, the underlying mechanism(s) regulating VA-MSC plasticity remains largely unexplored. Using an adipogenic differentiation screen, we identified IFNγ and TGFβ as key inhibitors of primary human VA-MSC differentiation. Further studies using human and mouse VA-MSCs and a chronic high-fat diet-fed murine model revealed that IFNγ/JAK2-activated STAT5 transcription factor is a central regulator of VA-MSC differentiation under chronic inflammatory conditions. Furthermore, our results indicate that under such conditions, IFNγ-activated STAT5 and TGFβ-activated Smad3 physically interact via Smad4. This STAT5-Smad4-Smad3 complex plays a crucial role in preventing the early adipogenic commitment of VA-MSCs by suppressing key pro-adipogenic transcription factors, including CEBPδ, CEBPα, and PPARγ. Genetic or pharmacological disruption of IFNγ-TGFβ synergy by inhibiting either STAT5 or Smad3 rescued adipogenesis under chronic inflammatory stress. Overall, our study delineates a central mechanism of MSC plasticity regulation by the convergence of multiple inflammatory signaling pathways.
Collapse
Affiliation(s)
- Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jayeeta Giri
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nicole Froelich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Medicine, Mercer University, Savannah, GA, 31404, USA
| | - Sara McCoy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wade Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
41
|
Chechekhin VI, Kulebyakin KY, Kokaev RI, Tyurin-Kuzmin PA. GPCRs in the regulation of the functional activity of multipotent mesenchymal stromal cells. Front Cell Dev Biol 2022; 10:953374. [PMID: 36046341 PMCID: PMC9421028 DOI: 10.3389/fcell.2022.953374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue is one of the tissues in the human body that is renewed during the whole life. Dysregulation of this process leads to conditions such as obesity, metabolic syndrome, and type 2 diabetes. The key role in maintaining the healthy state of adipose tissue is played by a specific group of postnatal stem cells called multipotent mesenchymal stromal cells (MSCs). They are both precursors for new adipocytes and key paracrine regulators of adipose tissue homeostasis. The activity of MSCs is tightly adjusted to the needs of the organism. To ensure such coordination, MSCs are put under strict regulation which is realized through a wide variety of signaling mechanisms. They control aspects of MSC activity such as proliferation, differentiation, and production of signal molecules via alteration of MSC sensitivity to hormonal stimuli. In this regard, MSCs use all the main mechanisms of hormonal sensitivity regulation observed in differentiated cells, but at the same time, several unique regulatory mechanisms have been found in MSCs. In the presented review, we will cover these unique mechanisms as well as specifics of common mechanisms of regulation of hormonal sensitivity in stem cells.
Collapse
Affiliation(s)
- Vadim I. Chechekhin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Yu. Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Romesh I. Kokaev
- Institute of Biomedical Investigations, The Affiliate of Vladikavkaz Scientific Centre of Russian Academy of Sciences, Vladikavkaz, Russia
| | - Pyotr A. Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Pyotr A. Tyurin-Kuzmin,
| |
Collapse
|
42
|
Stanek E, Pacia MZ, Kaczor A, Czamara K. The distinct phenotype of primary adipocytes and adipocytes derived from stem cells of white adipose tissue as assessed by Raman and fluorescence imaging. Cell Mol Life Sci 2022; 79:383. [PMID: 35752714 PMCID: PMC9233632 DOI: 10.1007/s00018-022-04391-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Spectroscopy-based analysis of chemical composition of cells is a tool still scarcely used in biological sciences, although it provides unique information about the cell identity accessible in vivo and in situ. Through time-lapse spectroscopic monitoring of adipogenesis in brown and white adipose tissue-derived stem cells we have demonstrated that considerable chemical and functional changes occur along with cells differentiation and maturation, yet yielding mature adipocytes with a similar chemical composition, independent of the cellular origin (white or brown adipose tissue). However, in essence, these stem cell-derived adipocytes have a markedly different chemical composition compared to mature primary adipocytes. The consequences of this different chemical (and, hence, functional) identity have great importance in the context of selecting a suitable methodology for adipogenesis studies, particularly in obesity-related research.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Marta Z Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Kraków, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland.
| |
Collapse
|
43
|
Cho JH, Lee JH, Lee KM, Lee CK, Shin DM. BMP-2 Induced Signaling Pathways and Phenotypes: Comparisons Between Senescent and Non-senescent Bone Marrow Mesenchymal Stem Cells. Calcif Tissue Int 2022; 110:489-503. [PMID: 34714366 DOI: 10.1007/s00223-021-00923-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
The use of BMP-2 in orthopedic surgery is limited by uncertainty surrounding its effects on the differentiation of mesenchymal stem cells (MSCs) and how this is affected by cellular aging. This study compared the effects of recombinant human BMP-2 (rhBMP-2) on osteogenic and adipogenic differentiation between senescent and non-senescent MSCs. Senescent and non-senescent MSCs were cultured in osteogenic and adipogenic differentiation medium containing various concentrations of rhBMP-2. The phenotypes of these cells were compared by performing a calcium assay, adipogenesis assay, staining, real-time PCR, western blotting, and microarray analysis. rhBMP-2 induced osteogenic differentiation to a lesser extent (P < 0.001 and P = 0.005 for alkaline phosphatase activity and Ca2+ release) in senescent MSCs regardless of dose-dependent increase in both cells. However, the induction of adipogenic differentiation by rhBMP-2 was comparable between them. There was no difference between these two groups of cells in the adipogenesis assay (P = 0.279) and their expression levels of PPARγ were similar. Several genes such as CHRDL1, NOG, SMAD1, SMAD7, and FST encoding transcription factors were proposed to underlie the different responses of senescent and non-senescent MSCs to rhBMP-2 in microarray analyses. Furthermore, inflammatory, adipogenic, or cell death-related signaling pathways such as NF-kB or p38-MAPK pathways were upregulated by BMP-2 in senescent MSCs, whereas bone forming signaling pathways involving BMP, SMAD, and TGF- ß were upregulated in non-senescent MSCs as expected. This phenomenon explains bone forming dominance by non-senescent MSCs and possible frequent complications such as seroma, osteolysis, or neuritis in senescent MSCs during BMP-2 use in orthopedic surgery.
Collapse
Affiliation(s)
- Jae Hwan Cho
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Boramae-ro 5-gil, Dongjak-Gu, Seoul, Republic of Korea.
| | - Kyung Mee Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Choon-Ki Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Dong-Myung Shin
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
44
|
Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F, Mei A, Hueber R, Mitic R, Remmers D, Moutsatsou P, Post MJ, Jackisch L, Flack JE. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Sci Food 2022; 6:6. [PMID: 35075125 PMCID: PMC8786866 DOI: 10.1038/s41538-021-00122-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cultured meat is an emergent technology with the potential for significant environmental and animal welfare benefits. Accurate mimicry of traditional meat requires fat tissue; a key contributor to both the flavour and texture of meat. Here, we show that fibro-adipogenic progenitor cells (FAPs) are present in bovine muscle, and are transcriptionally and immunophenotypically distinct from satellite cells. These two cell types can be purified from a single muscle sample using a simple fluorescence-activated cell sorting (FACS) strategy. FAPs demonstrate high levels of adipogenic potential, as measured by gene expression changes and lipid accumulation, and can be proliferated for a large number of population doublings, demonstrating their suitability for a scalable cultured meat production process. Crucially, FAPs reach a mature level of adipogenic differentiation in three-dimensional, edible hydrogels. The resultant tissue accurately mimics traditional beef fat in terms of lipid profile and taste, and FAPs thus represent a promising candidate cell type for the production of cultured fat.
Collapse
Affiliation(s)
- Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Sophie Hubalek
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands
| | - Rada Mitic
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Mark J Post
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
45
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
46
|
McColloch A, Liu H, Cho M. Reversal of stem cell‐derived hypertrophic adipocytes mediated by photobiomodulation (1064 nm). TRANSLATIONAL BIOPHOTONICS 2021. [DOI: 10.1002/tbio.202100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Andrew McColloch
- Department of Bioengineering The University of Texas at Arlington Arlington Texas USA
| | - Hanli Liu
- Department of Bioengineering The University of Texas at Arlington Arlington Texas USA
| | - Michael Cho
- Department of Bioengineering The University of Texas at Arlington Arlington Texas USA
| |
Collapse
|
47
|
Casado-Díaz A, Rodríguez-Ramos Á, Torrecillas-Baena B, Dorado G, Quesada-Gómez JM, Gálvez-Moreno MÁ. Flavonoid Phloretin Inhibits Adipogenesis and Increases OPG Expression in Adipocytes Derived from Human Bone-Marrow Mesenchymal Stromal-Cells. Nutrients 2021; 13:4185. [PMID: 34836440 PMCID: PMC8623874 DOI: 10.3390/nu13114185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Phloretin (a flavonoid abundant in apple), has antioxidant, anti-inflammatory, and glucose-transporter inhibitory properties. Thus, it has interesting pharmacological and nutraceutical potential. Bone-marrow mesenchymal stem cells (MSC) have high differentiation capacity, being essential for maintaining homeostasis and regenerative capacity in the organism. Yet, they preferentially differentiate into adipocytes instead of osteoblasts with aging. This has a negative impact on bone turnover, remodeling, and formation. We have evaluated the effects of phloretin on human adipogenesis, analyzing MSC induced to differentiate into adipocytes. Expression of adipogenic genes, as well as genes encoding OPG and RANKL (involved in osteoclastogenesis), protein synthesis, lipid-droplets formation, and apoptosis, were studied. Results showed that 10 and 20 µM phloretin inhibited adipogenesis. This effect was mediated by increasing beta-catenin, as well as increasing apoptosis in adipocytes, at late stages of differentiation. In addition, this chemical increased OPG gene expression and OPG/RANKL ratio in adipocytes. These results suggest that this flavonoid (including phloretin-rich foods) has interesting potential for clinical and regenerative-medicine applications. Thus, such chemicals could be used to counteract obesity and prevent bone-marrow adiposity. That is particularly useful to protect bone mass and treat diseases like osteoporosis, which is an epidemic worldwide.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Ángel Rodríguez-Ramos
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Bárbara Torrecillas-Baena
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, 14071 Córdoba, Spain;
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| | - María Ángeles Gálvez-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición—GC17, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, CIBERFES, 14004 Córdoba, Spain; (Á.R.-R.); (B.T.-B.); (J.M.Q.-G.); (M.Á.G.-M.)
| |
Collapse
|
48
|
Gemperle C, Tran S, Schmid M, Rimann N, Marti-Jaun J, Hartling I, Wawrzyniak P, Hersberger M. Resolvin D1 reduces inflammation in co-cultures of primary human macrophages and adipocytes by triggering macrophages. Prostaglandins Leukot Essent Fatty Acids 2021; 174:102363. [PMID: 34740032 DOI: 10.1016/j.plefa.2021.102363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
Obesity leads to chronic inflammation of the adipose tissue which is tightly associated with the metabolic syndrome, type 2 diabetes and cardiovascular disease. Inflammation of the adipose tissue is mainly characterized by the presence of crown-like structures composed of inflammatory macrophages in the neighborhood of adipocytes. Resolvin D1 (RvD1), a potent anti-inflammatory and pro-resolving lipid mediator derived from the omega-3 fatty acid docosahexaenoic acid, has been shown to reduce the inflammatory tone of adipose tissue in animal models but the underlying mechanism is not clear. We investigated the effect of RvD1 on the inflammatory state of a human co-culture system of adipocytes and macrophages. For this, human mesenchymal stem cells were differentiated into mature adipocytes and overlaid with human primary macrophages. In this co-culture, 10-500 nM RvD1 dose-dependently reduced the secretion of the pro-inflammatory cytokine IL-6 (-21%) and its soluble receptor IL-6Rα (-22%), of the chemokine MCP-1 (-13%), and of the adipokine leptin (-22%). Similarly, we observed a reduction in secretion of the soluble receptor IL-6Rα (-20%), and TNF-α (-11%) when macrophages alone were treated with RvD1, while no change of cytokine secretion was observed when adipocytes were treated with RvD1. We conclude that RvD1 polarizes macrophages to an anti-inflammatory phenotype, which in turn modulates inflammation in adipocytes.
Collapse
Affiliation(s)
- Claudio Gemperle
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Syndi Tran
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mattia Schmid
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicole Rimann
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Marti-Jaun
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ivan Hartling
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Pant T, Juric M, Bosnjak ZJ, Dhanasekaran A. Recent Insight on the Non-coding RNAs in Mesenchymal Stem Cell-Derived Exosomes: Regulatory and Therapeutic Role in Regenerative Medicine and Tissue Engineering. Front Cardiovasc Med 2021; 8:737512. [PMID: 34660740 PMCID: PMC8517144 DOI: 10.3389/fcvm.2021.737512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in the field of regenerative medicine and tissue engineering over the past few decades have paved the path for cell-free therapy. Numerous stem cell types, including mesenchymal stem cells (MSCs), have been reported to impart therapeutic effects via paracrine secretion of exosomes. The underlying factors and the associated mechanisms contributing to these MSC-derived exosomes' protective effects are, however, poorly understood, limiting their application in the clinic. The exosomes exhibit a diversified repertoire of functional non-coding RNAs (ncRNAs) and have the potential to transfer these biologically active transcripts to the recipient cells, where they are found to modulate a diverse array of functions. Altered expression of the ncRNAs in the exosomes has been linked with the regenerative potential and development of various diseases, including cardiac, neurological, skeletal, and cancer. Also, modulating the expression of ncRNAs in these exosomes has been found to improve their therapeutic impact. Moreover, many of these ncRNAs are expressed explicitly in the MSC-derived exosomes, making them ideal candidates for regenerative medicine, including tissue engineering research. In this review, we detail the recent advances in regenerative medicine and summarize the evidence supporting the altered expression of the ncRNA repertoire specific to MSCs under different degenerative diseases. We also discuss the therapeutic role of these ncRNA for the prevention of these various degenerative diseases and their future in translational medicine.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zeljko J. Bosnjak
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
50
|
Gupta S, Mishra T, Varshney S, Kushawaha V, Khandelwal N, Rai P, Garg R, Dev K, Gupta A, Kumar D, Balaramnavar VM, Arya KR, Gayen JR, Narender T, Gaikwad AN. Coelogin ameliorates metabolic dyshomeostasis by regulating adipogenesis and enhancing energy expenditure in adipose tissue. Pharmacol Res 2021; 172:105776. [PMID: 34450319 DOI: 10.1016/j.phrs.2021.105776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 01/09/2023]
Abstract
Obesity and associated metabolic disorders are heading up with an alarming rate in developing nations. One of highly sought solution for metabolic disorders is to identify natural molecule with an ability to reduce obesity and increase insulin sensitivity. Coelogin (CLN) is a phenanthrene derivative isolated from the ethanolic extract of Coelogyne cristata. In our constant efforts to identify novel anti-dyslipidemic and anti-adipogenic compounds using CFPMA (common feature pharmacophore model using known anti-adipogenic compounds) model, predicted possible anti-adipogenic activity of CLN. In vitro results showed significant inhibition of adipogenesis in 3T3-L1 and C3H10T1/2 cell by CLN. It arrests the cell cycle in G1 phase of interphase and inhibits mitotic clonal expansion to regulate adipogenesis. CLN elicits insulin sensitizing effect in mature adipocytes. During extracellular flux assessment studies, it increases oxidative respiration and energy expenditure in adipocytes. In vivo, CLN reversed HFD-induced dyslipidemia as well as insulin resistance in C57BL/6 mice. It promoted the expression of genes involved in improved mitochondrial function and fatty acid oxidation in eWAT. CLN restored energy expenditure and increased the capacity of energy utilization in HFD fed mice. Taken together, the study indicated beneficial effects of CLN in combating obesity-associated metabolic complications.
Collapse
Affiliation(s)
- Sanchita Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovative Research (AcSIR) Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Tripti Mishra
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovative Research (AcSIR) Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Vinita Kushawaha
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovative Research (AcSIR) Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Nilesh Khandelwal
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovative Research (AcSIR) Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Prashant Rai
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Richa Garg
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovative Research (AcSIR) Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Kapil Dev
- Ethnobotany Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India; Academy of Scientific and Innovative Research (AcSIR) Headquarters, CSIR-HRDC Campus Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | | | - Kamal Ram Arya
- Ethnobotany Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|