1
|
Oh D, Choi H, Kim M, Jawad A, Lee J, Oh BC, Hyun SH. Interleukin-7 promotes porcine early embryogenesis in vitro and inner cell mass development through PI3K/AKT pathway after parthenogenetic activation. Sci Rep 2025; 15:13850. [PMID: 40263539 PMCID: PMC12015589 DOI: 10.1038/s41598-025-98574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/14/2025] [Indexed: 04/24/2025] Open
Abstract
Interleukin-7 (IL-7) plays a crucial role in cell survival and proliferation through the phosphatidylinositol-3-kinase (PI3K)/AKT signaling. While we previously demonstrated the beneficial role of IL-7 in early porcine embryonic development, the underlying molecular mechanisms remained unclear. We hypothesized that IL-7 would enhance early embryogenesis and promote inner cell mass (ICM) formation via PI3K/AKT pathway activation. To test this, embryos were cultured with wortmannin (Wort), a PI3K inhibitor, with or without IL-7 after parthenogenetic activation. IL-7 supplementation significantly increased cleavage and blastocyst formation rates compared to the control (p < 0.05), while mitigating Wort-induced developmental impairment. Moreover, IL-7 significantly reduced blastocyst apoptosis and increased total cell numbers compared to the control (p < 0.05), thereby counteracting pro-apoptotic effects of Wort. Furthermore, IL-7 treatment significantly promoted ICM formation through the PI3K/AKT pathway, as demonstrated by increased SOX2 + cell numbers and ICM-specific gene expression, with elevated phosphorylated AKT levels compared to the control (p < 0.05). Notably, IL-7 significantly improved mitochondrial function and biogenesis-related gene expression compared to the control (p < 0.05) through a PI3K/AKT-independent pathway. These findings suggest that IL-7-mediated PI3K/AKT signaling enhances porcine early embryonic development in vitro, providing insights into mechanisms that regulate early embryonic development in mammals.
Collapse
Affiliation(s)
- Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea
- Department of Companion Animal Industry, Semyung University, Jecheon, 27136, Republic of Korea
| | - Byoung Chol Oh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea.
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, South Korea.
- Vet-ICT Convergence Education and Research Center (VICERC), Chungbuk National University, Cheongju, Republic of Korea.
- Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
2
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
3
|
Bessonnard S, Vandormael-Pournin S, Coqueran S, Cohen-Tannoudji M, Artus J. PDGF Signaling in Primitive Endoderm Cell Survival Is Mediated by PI3K-mTOR Through p53-Independent Mechanism. Stem Cells 2019; 37:888-898. [PMID: 30913328 DOI: 10.1002/stem.3008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Receptor tyrosine kinase signaling pathways are key regulators for the formation of the primitive endoderm (PrE) and the epiblast (Epi) from the inner cell mass (ICM) of the mouse preimplantation embryo. Among them, FGF signaling is critical for PrE cell specification, whereas PDGF signaling is critical for the survival of committed PrE cells. Here, we investigated possible functional redundancies among FGF, PDGF, and KIT signaling and showed that only PDGF signaling is involved in PrE cell survival. In addition, we analyzed the effectors downstream of PDGFRα. Our results suggest that the role of PDGF signaling in PrE cell survival is mediated through PI3K-mTOR and independently from p53. Lastly, we uncovered a role for PI3K-mTOR signaling in the survival of Epi cells. Taken together, we propose that survival of ICM cell lineages relies on the regulation of PI3K-mTOR signaling through the regulation of multiple signaling pathways. Stem Cells 2019;37:888-898.
Collapse
Affiliation(s)
- Sylvain Bessonnard
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | | | - Sabrina Coqueran
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Michel Cohen-Tannoudji
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Jérôme Artus
- Early Mammalian Development and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Paris, France
| |
Collapse
|
4
|
Faulds KJ, Egelston JN, Sedivy LJ, Mitchell MK, Garimella S, Kozlowski H, D'Alessandro A, Hansen KC, Balsbaugh JL, Phiel CJ. Glycogen synthase kinase-3 (GSK-3) activity regulates mRNA methylation in mouse embryonic stem cells. J Biol Chem 2018; 293:10731-10743. [PMID: 29777057 DOI: 10.1074/jbc.ra117.001298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/09/2018] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) activity regulates multiple signal transduction pathways and is also a key component of the network responsible for maintaining stem cell pluripotency. Genetic deletion of Gsk-3α and Gsk-3β or inhibition of GSK-3 activity via small molecules promotes stem cell pluripotency, yet the mechanism underlying the role for GSK-3 in this process remains ambiguous. Another cellular process that has been shown to affect stem cell pluripotency is mRNA methylation (m6A). Here, we describe an intersection between these components, the regulation of m6A by GSK-3. We find that protein levels for the RNA demethylase, FTO (fat mass and obesity-associated protein), are elevated in Gsk-3α;Gsk-3β-deficient mouse embryonic stem cells (ESCs). FTO is normally phosphorylated by GSK-3, and MS identified the sites on FTO that are phosphorylated in a GSK-3-dependent fashion. GSK-3 phosphorylation of FTO leads to polyubiquitination, but in Gsk-3 knockout ESCs, that process is impaired, resulting in elevated levels of FTO protein. As a consequence of altered FTO protein levels, mRNAs in Gsk-3 knockout ESCs have 50% less m6A than WT ESCs, and m6A-Seq analysis reveals the specific mRNAs that have reduced m6A modifications. Taken together, we provide the first evidence for how m6A demethylation is regulated in mammalian cells and identify a putative novel mechanism by which GSK-3 activity regulates stem cell pluripotency.
Collapse
Affiliation(s)
- Kelsie J Faulds
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Jennifer N Egelston
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Laura J Sedivy
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Matthew K Mitchell
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Sanjana Garimella
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Hanna Kozlowski
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204
| | - Angelo D'Alessandro
- the Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Kirk C Hansen
- the Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, and
| | - Jeremy L Balsbaugh
- the Mass Spectrometry Core Facility, Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309
| | - Christopher J Phiel
- From the Department of Integrative Biology, University of Colorado Denver, Denver, Colorado 80204,
| |
Collapse
|
5
|
Furuta T, Joo HJ, Trimmer KA, Chen SY, Arur S. GSK-3 promotes S-phase entry and progression in C. elegans germline stem cells to maintain tissue output. Development 2018; 145:dev.161042. [PMID: 29695611 DOI: 10.1242/dev.161042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/17/2018] [Indexed: 12/26/2022]
Abstract
Adult C. elegans germline stem cells (GSCs) and mouse embryonic stem cells (mESCs) exhibit a non-canonical cell cycle structure with an abbreviated G1 phase and phase-independent expression of Cdk2 and cyclin E. Mechanisms that promote the abbreviated cell cycle remain unknown, as do the consequences of not maintaining an abbreviated cell cycle in these tissues. In GSCs, we discovered that loss of gsk-3 results in reduced GSC proliferation without changes in differentiation or responsiveness to GLP-1/Notch signaling. We find that DPL-1 transcriptional activity inhibits CDK-2 mRNA accumulation in GSCs, which leads to slower S-phase entry and progression. Inhibition of dpl-1 or transgenic expression of CDK-2 via a heterologous germline promoter rescues the S-phase entry and progression defects of the gsk-3 mutants, demonstrating that transcriptional regulation rather than post-translational control of CDK-2 establishes the abbreviated cell cycle structure in GSCs. This highlights an inhibitory cascade wherein GSK-3 inhibits DPL-1 and DPL-1 inhibits cdk-2 transcription. Constitutive GSK-3 activity through this cascade maintains an abbreviated cell cycle structure to permit the efficient proliferation of GSCs necessary for continuous tissue output.
Collapse
Affiliation(s)
- Tokiko Furuta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyoe-Jin Joo
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth A Trimmer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Genes and Development Graduate Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA .,Genes and Development Graduate Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
6
|
Exogenous growth factors do not affect the development of individually cultured murine embryos. J Assist Reprod Genet 2017; 35:523-531. [PMID: 29270871 DOI: 10.1007/s10815-017-1103-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The objective of this study was to evaluate the effects of multiple growth factors on the development of individually cultured murine embryos. METHODS Embryos produced by in vitro fertilization using in vitro (IVM) or in vivo (IVO) matured oocytes from three strains of mice (CF1, Swiss Webster, B6D2F1) were cultured individually (10 μl) in the absence (control) or presence of growth factors (paf, epidermal growth factor [EGF], insulin-like growth factor 1 [IGF-1], and granulocyte-macrophage colony-stimulating factor [GM-CSF]). Blastocyst formation, hatching, and blastocyst cell numbers (trophectoderm, inner cell mass, and total) were evaluated on days 4 and 5 of culture. Post-hatching development of CF1 IVO embryos was also evaluated in vitro and in vivo. RESULTS The presence of growth factors did not improve the proportion of embryos forming blastocysts or initiating hatching for any of the types of embryos tested. The only significant (P < 0.05) effect of growth factors was a decrease in the proportion of embryos that formed blastocysts by day 5 in CF1 IVM embryos. The presence of growth factors also did not affect blastocyst cell numbers. For CF1 IVO embryos, the presence of growth factors during culture did not affect the proportion of embryos that attached to fibronectin-coated dishes, the size of the resulting outgrowths, or in vivo development following transfer. CONCLUSION Combinations of paf, EGF, GM-CSF, and IGF-1 did not improve development of murine embryos cultured individually in a sequential medium containing a defined protein source.
Collapse
|
7
|
Velazquez MA, Sheth B, Smith SJ, Eckert JJ, Osmond C, Fleming TP. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life. Biochim Biophys Acta Mol Basis Dis 2017; 1864:590-600. [PMID: 29196239 PMCID: PMC5764225 DOI: 10.1016/j.bbadis.2017.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/09/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin + N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin + N-bcaa, N-insulin + L-bcaa, and L-insulin + N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Chronic disease may derive from maternal undernutrition during pregnancy, including the periconceptional period. Mouse embryos cultured in medium low in insulin and select amino acids gave rise to offspring with disease symptoms. We propose these metabolite deficiencies around conception induce adverse programming of the early embryo leading to increased disease risk in later life.
Collapse
Affiliation(s)
- Miguel A Velazquez
- Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Bhavwanti Sheth
- Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Stephanie J Smith
- Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Judith J Eckert
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
8
|
Integrating insulin into single-step culture medium regulates human embryo development in vitro. Fertil Steril 2017; 107:405-412. [DOI: 10.1016/j.fertnstert.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/08/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022]
|
9
|
Youssef A, Han VKM. Low Oxygen Tension Modulates the Insulin-Like Growth Factor-1 or -2 Signaling via Both Insulin-Like Growth Factor-1 Receptor and Insulin Receptor to Maintain Stem Cell Identity in Placental Mesenchymal Stem Cells. Endocrinology 2016; 157:1163-74. [PMID: 26760116 DOI: 10.1210/en.2015-1297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Placental mesenchymal stem cells (PMSCs) are readily available multipotent stem cells for potential use in regenerative therapies. For this purpose, PMSCs must be maintained in culture conditions that mimic the in vivo microenvironment. IGFs (IGF-1 and IGF-2) and oxygen tension are low in the placenta in early gestation and increase as pregnancy progresses. IGFs bind to two receptor tyrosine kinases, the IGF-1 receptor (IGF-1R) and the insulin receptor (IR), and their hybrid receptors. We hypothesized that IGF-1 and IGF-2 signal via distinct signaling pathways under low-oxygen tension to maintain PMSC multipotency. In preterm PMSCs, low-oxygen tension increased the expression of IGF-2 and reduced IGF-1. IGF-1 stimulated higher phosphorylation of IGF-1Rβ, ERK1/2, and AKT, which was maintained at steady lower levels by low oxygen tension. PMSC proliferation was increased by IGF-1 more than IGF-2,and was potentiated by low-oxygen tension. This IGF/low oxygen tension-mediated proliferation was receptor dependent because neutralization of the IGF-1R inhibited PMSC proliferation in the presence of IGF-1 and the IR in presence of IGF-2. These findings suggest that both IGF-1R and the IR can participate in mediating IGF signaling in maintaining PMSCs multipotency. We conclude that low-oxygen tension can modify the IGF-1 or IGF-2 signaling via the IGF-1R and IR in PMSCs.
Collapse
Affiliation(s)
- Amer Youssef
- Departments of Biochemistry (A.Y., V.K.M.H.) and Paediatrics (V.K.M.H.), Schulich School of Medicine and Dentistry, Children's Health Research Institute (A.Y., V.K.M.H.), and Lawson Health Research Institute (A.Y., V.K.M.H.), Western University, London, Ontario, Canada N6C 2V5
| | - Victor K M Han
- Departments of Biochemistry (A.Y., V.K.M.H.) and Paediatrics (V.K.M.H.), Schulich School of Medicine and Dentistry, Children's Health Research Institute (A.Y., V.K.M.H.), and Lawson Health Research Institute (A.Y., V.K.M.H.), Western University, London, Ontario, Canada N6C 2V5
| |
Collapse
|
10
|
Harvey AJ, Rathjen J, Gardner DK. Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells Int 2015; 2016:1816525. [PMID: 26839556 PMCID: PMC4709785 DOI: 10.1155/2016/1816525] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022] Open
Abstract
The differentiation of pluripotent stem cells is associated with extensive changes in metabolism, as well as widespread remodeling of the epigenetic landscape. Epigenetic regulation is essential for the modulation of differentiation, being responsible for cell type specific gene expression patterns through the modification of DNA and histones, thereby establishing cell identity. Each cell type has its own idiosyncratic pattern regarding the use of specific metabolic pathways. Rather than simply being perceived as a means of generating ATP and building blocks for cell growth and division, cellular metabolism can directly influence cellular regulation and the epigenome. Consequently, the significance of nutrients and metabolites as regulators of differentiation is central to understanding how cells interact with their immediate environment. This review serves to integrate studies on pluripotent stem cell metabolism, and the regulation of DNA methylation and acetylation and identifies areas in which current knowledge is limited.
Collapse
Affiliation(s)
- Alexandra J. Harvey
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joy Rathjen
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - David K. Gardner
- Stem Cells Australia, Parkville, VIC 3010, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
11
|
McPherson NO, Bell VG, Zander-Fox DL, Fullston T, Wu LL, Robker RL, Lane M. When two obese parents are worse than one! Impacts on embryo and fetal development. Am J Physiol Endocrinol Metab 2015. [PMID: 26199280 DOI: 10.1152/ajpendo.00230.2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prevalence of overweight and obesity in reproductive-age adults is increasing worldwide. While the effects of either paternal or maternal obesity on gamete health and subsequent fertility and pregnancy have been reported independently, the combination of having both parents overweight/obese on fecundity and offspring health has received minimal attention. Using a 2 × 2 study design in rodents we established the relative contributions of paternal and maternal obesity on fetal and embryo development and whether combined paternal and maternal obesity had an additive effect. Here, we show that parental obesity reduces fetal and placental weights without altering pregnancy establishment and is not dependent on an in utero exposure to a high-fat diet. Interestingly combined parental obesity seemed to accumulate both the negative influences of paternal and maternal obesity had alone on embryo and fetal health rather than an amplification, manifested as reduced embryo developmental competency, reduced blastocyst cell numbers, impaired mitochondrial function, and alterations to active and repressive embryonic chromatin marks, resulting in aberrant placental gene expression and reduced fetal liver mtDNA copy numbers. Further understanding both the maternal cytoplasmic and paternal genetic interactions during this early developmental time frame will be vital for understanding how developmental programming is regulated and for the proposition of interventions to mitigate their effects.
Collapse
Affiliation(s)
- N O McPherson
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Freemasons Centre for Men's Health, University of Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia; and
| | - V G Bell
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Freemasons Centre for Men's Health, University of Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia; and
| | - D L Zander-Fox
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Repromed, Dulwich, South Australia, Australia; and
| | - T Fullston
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - L L Wu
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - R L Robker
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - M Lane
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia; Monash In Vitro Fertilisation Group, Richmond, Australia
| |
Collapse
|
12
|
Ghimire S, Heindryckx B, Van der Jeught M, Neupane J, O'Leary T, Lierman S, De Vos WH, Chuva de Sousa Lopes S, Deroo T, De Sutter P. Inhibition of transforming growth factor β signaling promotes epiblast formation in mouse embryos. Stem Cells Dev 2015; 24:497-506. [PMID: 25245024 DOI: 10.1089/scd.2014.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early lineage segregation in preimplantation embryos and maintenance of pluripotency in embryonic stem cells (ESCs) are both regulated by specific signaling pathways. Small molecules have been shown to modulate these signaling pathways. We examined the influence of several small molecules and growth factors on second-lineage segregation of the inner cell mass toward hypoblast and epiblast lineage during mouse embryonic preimplantation development. We found that the second-lineage segregation is influenced by activation or inhibition of the transforming growth factor (TGF)β pathway. Inhibition of the TGFβ pathway from the two-cell, four-cell, and morula stages onward up to the blastocyst stage significantly increased the epiblast cell proliferation. The epiblast formed in the embryos in which TGFβ signaling was inhibited was fully functional as demonstrated by the potential of these epiblast cells to give rise to pluripotent ESCs. Conversely, activating the TGFβ pathway reduced epiblast formation. Inhibition of the glycogen synthase kinase (GSK)3 pathway and activation of bone morphogenetic protein 4 signaling reduced the formation of both epiblast and hypoblast cells. Activation of the protein kinase A pathway and of the Janus kinase/signal transducer and activator of transcription 3 pathway did not influence the second-lineage segregation in mouse embryos. The simultaneous inhibition of three pathways--TGFβ, GSK3β, and the fibroblast growth factor (FGF)/extracellular signal-regulated kinases (Erk)--significantly enhanced the proliferation of epiblast cells than that caused by inhibition of either TGFβ pathway alone or by combined inhibition of the GSK3β and FGF/Erk pathways only.
Collapse
Affiliation(s)
- Sabitri Ghimire
- 1 Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital , Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gardner DK, Harvey AJ. Blastocyst metabolism. Reprod Fertil Dev 2015; 27:638-54. [DOI: 10.1071/rd14421] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/10/2015] [Indexed: 12/15/2022] Open
Abstract
The mammalian blastocyst exhibits an idiosyncratic metabolism, reflecting its unique physiology and its ability to undergo implantation. Glucose is the primary nutrient of the blastocyst, and is metabolised both oxidatively and through aerobic glycolysis. The production of significant quantities of lactate by the blastocyst reflects specific metabolic requirements and mitochondrial regulation; it is further proposed that lactate production serves to facilitate several key functions during implantation, including biosynthesis, endometrial tissue breakdown, the promotion of new blood vessel formation and induction of local immune-modulation of the uterine environment. Nutrient availability, oxygen concentration and the redox state of the blastocyst tightly regulate the relative activities of specific metabolic pathways. Notably, a loss of metabolic normality is associated with a reduction in implantation potential and subsequent fetal development. Even a transient metabolic stress at the blastocyst stage culminates in low fetal weights after transfer. Further, it is evident that there are differences between male and female embryos, with female embryos being characterised by higher glucose consumption and differences in their amino acid turnover, reflecting the presence of two active X-chromosomes before implantation, which results in differences in the proteomes between the sexes. In addition to the role of Hypoxia-Inducible Factors, the signalling pathways involved in regulating blastocyst metabolism are currently under intense analysis, with the roles of sirtuins, mTOR, AMP-activated protein kinase and specific amino acids being scrutinised. It is evident that blastocyst metabolism regulates more than the production of ATP; rather, it is apparent that metabolites and cofactors are important regulators of the epigenome, putting metabolism at centre stage when considering the interactions of the blastocyst with its environment.
Collapse
|
14
|
Stimulation of mitochondrial embryo metabolism by dichloroacetic acid in an aged mouse model improves embryo development and viability. Fertil Steril 2014; 101:1458-66. [DOI: 10.1016/j.fertnstert.2013.12.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 12/05/2013] [Accepted: 12/26/2013] [Indexed: 01/25/2023]
|
15
|
Hassani SN, Totonchi M, Gourabi H, Schöler HR, Baharvand H. Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells Dev 2014; 23:193-208. [DOI: 10.1089/scd.2013.0368] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Teo AKK, Wagers AJ, Kulkarni RN. New opportunities: harnessing induced pluripotency for discovery in diabetes and metabolism. Cell Metab 2013; 18:775-91. [PMID: 24035588 PMCID: PMC3858409 DOI: 10.1016/j.cmet.2013.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The landmark discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka has transformed regenerative biology. Previously, insights into the pathogenesis of chronic human diseases have been hindered by the inaccessibility of patient samples. However, scientists are now able to convert patient fibroblasts into iPSCs and differentiate them into disease-relevant cell types. This ability opens new avenues for investigating disease pathogenesis and designing novel treatments. In this review, we highlight the uses of human iPSCs to uncover the underlying causes and pathological consequences of diabetes and metabolic syndromes, multifactorial diseases whose etiologies have been difficult to unravel using traditional methodologies.
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
17
|
McPherson NO, Bakos HW, Owens JA, Setchell BP, Lane M. Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth. PLoS One 2013; 8:e71459. [PMID: 23977045 PMCID: PMC3747240 DOI: 10.1371/journal.pone.0071459] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health.
Collapse
Affiliation(s)
- Nicole O. McPherson
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
- * E-mail:
| | - Hassan W. Bakos
- School of Medicine, Discipline of Medicine, University of Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| | - Julie A. Owens
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
| | - Brian P. Setchell
- School of Medical Sciences, Discipline of Anatomy, University of Adelaide, South Australia, Australia
| | - Michelle Lane
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, South Australia, Australia
- Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
18
|
Zander-Fox D, Lane M, Hamilton H. Slow freezing and vitrification of mouse morula and early blastocysts. J Assist Reprod Genet 2013; 30:1091-8. [PMID: 23888311 DOI: 10.1007/s10815-013-0056-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022] Open
Abstract
PURPOSE To assess the relative success of morula and early blastocyst slow freezing and vitrification in regards to survival and implantation rates utilising protocols which could be clinically implemented as a viable alternative to expanded blastocyst stage freezing. METHODS Mouse morula and early blastocysts were either slow frozen/thawed or vitrified/warmed. Their subsequent survival, blastocyst development and blastocyst cell number and allocation to either the inner cell mass, trophectoderm or epiblast was assessed. In addition blastocysts were also transferred to pseudopregnant recipients and implantation and fetal development was determined. RESULTS Vitrification of both morula and early blastocysts resulted in significantly higher rates of survival and blastocyst development compared to slow freezing. In addition slow frozen early blastocysts had significantly reduced blastocyst cell number compared to control however vitrified morula and early blasocyts and slow frozen morula had equivocal blastocyst cell numbers. Transfer of blastocysts from both methods of cryopreservation resulted in similar implantation rates however the placentas created from slow frozen early blastocysts were significantly lighter than control (95.5 g ± 5.4 vs. 122.0 g ± 4.2 respectively). CONCLUSIONS Vitrification resulted in significantly higher rates of morula and early blastocyst survival and blastocyst development compared to slow freezing. In addition this study has validated the use of a closed DMSO free vitrification protocol which could then be investigated for use in the clinical setting as an alternative to expanded blastocyst freezing.
Collapse
Affiliation(s)
- Deirdre Zander-Fox
- Repromed Department of R&D, 180 Fullarton Road, Dulwich, South Australia, Australia,
| | | | | |
Collapse
|
19
|
Use of insulin to increase epiblast cell number: towards a new approach for improving ESC isolation from human embryos. BIOMED RESEARCH INTERNATIONAL 2013; 2013:150901. [PMID: 23509681 PMCID: PMC3583077 DOI: 10.1155/2013/150901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
Human embryos donated for embryonic stem cell (ESC) derivation have often been cryopreserved for 5-10 years. As a consequence, many of these embryos have been cultured in media now known to affect embryo viability and the number of ESC progenitor epiblast cells. Historically, these conditions supported only low levels of blastocyst development necessitating their transfer or cryopreservation at the 4-8-cell stage. As such, these embryos are donated at the cleavage stage and require further culture to the blastocyst stage before hESC derivation can be attempted. These are generally of poor quality, and, consequently, the efficiency of hESC derivation is low. Recent work using a mouse model has shown that the culture of embryos from the cleavage stage with insulin to day 6 increases the blastocyst epiblast cell number, which in turn increases the number of pluripotent cells in outgrowths following plating, and results in an increased capacity to give rise to ESCs. These findings suggest that culture with insulin may provide a strategy to improve the efficiency with which hESCs are derived from embryos donated at the cleavage stage.
Collapse
|
20
|
Campbell JM, Lane M, Vassiliev I, Nottle MB. Epiblast cell number and primary embryonic stem cell colony generation are increased by culture of cleavage stage embryos in insulin. J Reprod Dev 2012; 59:131-8. [PMID: 23171593 PMCID: PMC3934205 DOI: 10.1262/jrd.2012-103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human embryos for hESC derivation are often donated at the cleavage stage and of reduced
quality. Poor quality embryos have lower efficiency for hESC derivation. However, cleavage
stage mouse embryos develop into higher quality expanded blastocysts if they are cultured
with insulin, suggesting that this approach could be used to improve hESC derivation from
poor quality cleavage stage embryos. The present study used a mouse model to examine this
approach. In particular we examined the effect of insulin on the number of epiblast cells
in blastocysts on days 4, 5 and 6 using Oct4 and Nanog co-expression. Second we examined
the effect of insulin on the frequency with which outgrowths can be derived from these.
Finally, we tested whether prior culture in the presence of insulin results in blastocysts
with increased capacity to generate ESC colonies. Culture of cleavage stage embryos with
insulin increased the number of Oct4 and Nanog positive cells in blastocysts at all time
points examined. Prior culture with insulin had no effect on outgrowths generated from
blastocysts plated on days 4 or 5. However, insulin treatment of blastocysts plated on day
6 resulted in increased numbers of outgrowths with larger epiblasts compared with
controls. 13% of insulin treated day 6 blastocysts produced primary ESC colonies compared
with 6% of controls. In conclusion, treatment with insulin can improve epiblast cell
number in mice leading to an increase with which primary ESC colonies can be generated and
may improve hESC isolation from reduced quality embryos donated at the cleavage stage.
Collapse
Affiliation(s)
- Jared M Campbell
- School of Paediatrics and Reproductive Health, Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|