1
|
Tao Y, Nishio Ayre W, Jiang L, Chen S, Dong Y, Wu L, Jiao Y, Liu X. Enhanced functionalities of biomaterials through metal ion surface modification. Front Bioeng Biotechnol 2025; 13:1522442. [PMID: 40297280 PMCID: PMC12034657 DOI: 10.3389/fbioe.2025.1522442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The development of new artificial biomaterials for bone defect repair is an ongoing area of clinical research. Metal ions such as zinc, copper, magnesium, calcium, strontium, silver, and cerium play various roles in bone tissue regeneration in the human body and possess a range of biochemical functions. Studies have demonstrated that appropriate concentrations of these metal ions can promote osteogenesis and angiogenesis, inhibit osteoclast activity, and deter bacterial infections. Researchers have incorporated metal ions into biomaterials using various methods to create artificial bone materials with enhanced osteogenic and antibacterial capabilities. In addition to the osteogenic properties of all the aforementioned metal ions, Zn, Sr, and Ce can indirectly promote osteogenesis by inhibiting osteoclast activity. Cu, Mg, and Sr significantly enhance angiogenesis, while the antibacterial properties of Zn, Cu, Ag, and Ce can reduce the likelihood of infection and inflammation caused by implanted materials. This paper reviews the mechanisms through which metal ions promote bone tissue growth and improve the antibacterial activity of biomaterials. It also summarizes common loading methods on the surface of biomaterials with different metals and highlights the potential clinical applications of these new artificial bone materials.
Collapse
Affiliation(s)
- Yujie Tao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Liming Jiang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Siyu Chen
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yuqi Dong
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Lin Wu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yilai Jiao
- Chinese Academy of Sciences Shenyang Branch, Shenyang, China
| | - Xiaohan Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
2
|
Zhang Z, Gong N, Wang Y, Xu L, Zhao S, Liu Y, Tan F. Impact of Strontium, Magnesium, and Zinc Ions on the In Vitro Osteogenesis of Maxillary Sinus Membrane Stem Cells. Biol Trace Elem Res 2025; 203:1922-1933. [PMID: 39150638 DOI: 10.1007/s12011-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024]
Abstract
Human Maxillary Sinus Membrane Stem Cells (hMSMSCs) contribute significantly to bone formation following maxillary sinus floor augmentation (MSFA). The biological behavior of mesenchymal stem cells is notably influenced by varying concentrations of magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+) ions; however, their specific effects on hMSMSCs have not been comprehensively studied. We isolated hMSMSCs and identified their mesenchymal stem cell characteristics by flow cytometry and multilineage differentiation experiments. Subsequently, the hMSMSCs were cultured in media containing different concentrations of these metal ions. The proliferation and viability of hMSMSCs were assessed using CCK-8 and Calcein AM/PI staining. After osteogenic induction, cells were evaluated for alkaline phosphatase (ALP) activity, ALP staining, and Alizarin Red staining. Additionally, qRT-PCR was used to detect differences in osteogenic gene expression, and immunofluorescence staining was used to observe variations in OCN protein levels. The results indicated that 1 mM Mg2+, 0.01 mM Sr2+, and 0.001 mM Zn2+ significantly improved the proliferation and activity of hMSMSCs. These concentrations also notably enhanced ALP secretion, increased bone-related gene expression, and augmented osteocalcin expression and formation of extracellular calcium nodules, thereby improving osteogenic differentiation. However, higher concentrations of Mg2+, Sr2+, and Zn2+ decreased cell viability and osteogenic differentiation. Mg2+, Sr2+, and Zn2+ promote osteogenic differentiation and proliferation of hMSMSCs in a concentration-dependent manner, indicating that the type and concentration of ions in the extracellular environment can significantly alter hMSMSCs behavior, which is a crucial consideration for material design in maxillary sinus elevation applications.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ning Gong
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ying Wang
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Lei Xu
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Sinan Zhao
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yanshan Liu
- School of Stomatology, Qingdao University, Qingdao, 266023, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fei Tan
- Department of Prosthodontic, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
3
|
Parisi L, Mansour F, Rihs S, Schnyder I, La Scala GC, Katsaros C, Degen M. The Skin-to-Mucosa Ratio Defines the Osteogenic Potential of Lip Fibroblasts. J Dent Res 2025:220345251321806. [PMID: 40108556 DOI: 10.1177/00220345251321806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Fibroblasts isolated from discarded lip tissue obtained during cheiloplasty in patients with cleft lip/palate (CLP) show promising osteogenic potential and may be an appealing cell source for autologous bone regeneration. As the lip is a mucocutaneous junction, explant cultures from unseparated lip biopsies produce mesenchymal outgrowths composed of skin- and mucosa-derived fibroblasts. The proportions of the 2 fibroblast populations, however, differ among CLP patients and depend on the morphology of the excised sample, which is unique for each donor. Understanding the osteogenic activities of CLP fibroblast populations with varying skin-to-mucosa ratios is critical for their therapeutic application. We isolated CLP fibroblasts from 10 unseparated lip biopsies and comprehensively evaluated them for their bone differentiation capacities in vitro, demonstrating heterogeneous osteogenic potentials. Because there are no markers that can distinguish skin from mucosa fibroblasts, we used the respective and matching CLP keratinocytes to ascertain the skin-to-mucosa ratio of the 10 specimens. Thus, we found that CLP fibroblasts isolated from biopsies with high skin-to-mucosa ratios had a much higher osteogenic capacity than those derived from biopsies with low skin-to-mucosa ratios. To validate and solidify these findings, we carefully separated skin and mucosa tissues during corrective lip surgery to isolate pure skin and mucosa CLP lip fibroblasts. Indeed, skin had a higher osteogenic potential than their mucosal counterparts did. Furthermore, we discovered that the high osteogenic activity in skin was limited to specific subpopulations of yet unknown identities. Our findings indicate that skin fibroblasts perform better than their mucosal counterparts do, even though both types of fibroblasts can differentiate into bone-forming cells.
Collapse
Affiliation(s)
- L Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - F Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - S Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - I Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - G C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - C Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - M Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Liu L, Chen H, Zhao X, Han Q, Xu Y, Liu Y, Zhang A, Li Y, Zhang W, Chen B, Wang J. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater Today Bio 2025; 30:101410. [PMID: 39811613 PMCID: PMC11731593 DOI: 10.1016/j.mtbio.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair. Then, the contributions of different biomaterials, including metals, bioceramics, and polymers, in promoting osteogenesis through immune regulation, as well as their future development directions, are discussed. Finally, various design strategies, such as modifying the physicochemical properties of biomaterials and integrating bioactive substances, to optimize material design and create an immune environment conducive to bone formation, are explored. In summary, this review comprehensively covers strategies and approaches for promoting bone tissue regeneration through immune modulation. It offers a thorough understanding of current research trends in biomaterial-based immune regulation, serving as a theoretical reference for the further development and clinical application of biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Li Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xue Zhao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Qing Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongjun Xu
- Department of Orthopedics Surgery, Wangqing County People's Hospital, Yanbian, 133000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongyue Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Weilong Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Bingpeng Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| |
Collapse
|
5
|
Mouzoura P, Marazioti A, Gkartziou F, Metsiou DN, Antimisiaris SG. Potential of Liposomal FTY720 for Bone Regeneration: Proliferative, Osteoinductive, Chemoattractive, and Angiogenic Properties Compared to Free Bioactive Lipid. Int J Nanomedicine 2025; 20:239-265. [PMID: 39802384 PMCID: PMC11724662 DOI: 10.2147/ijn.s494512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses). Methods FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells. The angiogenic activity of free and liposomal FTY720 was investigated using a chick chorioallantoic membrane assay. NBD-FTY720 cellular uptake was quantitated using flow cytometry and morphologically assessed by confocal microscopy. Implicated cellular signaling mechanisms were investigated by quantifying phosphorylated MAPK and CREB proteins. Results FTY720 liposomes (~80-110 nm) with low polydispersity and ~100% loading were prepared using both methods. FTY720 demonstrated the ability to increase cell proliferation at 10-300nM doses but was cytotoxic at doses>400nM while the corresponding liposomal-FTY720 doses were non-cytotoxic, proving its reduced toxicity. In several cases (cells and doses), FTY720 liposomes demonstrated increased osteogenic differentiation of cells, proliferation, and migration compared to free FTY720, whereas both FTY720 forms demonstrated substantial angiogenic activity. Liposomal FTY720 cellular uptake was substantially higher than that of free FTY720 in some cases, a fact that may be connected to its higher bioactivity. Increased phosphorylated MAPK and CREB protein concentrations provided information about the potential cellular signaling mechanisms involved in FTY720-induced osteogenesis. Discussion The current results confirm the high potential of FTY720 bioactive lipid, especially in its liposomal form, that demonstrated substantial reduction of cytotoxicity and prolonged preservation of the lipids bioactivity (compared to the free lipid), for accelerated treatment of bone defects. Interestingly, the current studies prove the potential of FTY720, especially in its liposomal form, to promote reprogramming of L929 fibroblasts into osteoblasts, a novel finding deserving future exploitation.
Collapse
Affiliation(s)
- Panagiota Mouzoura
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
| | - Antonia Marazioti
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
- Laboratory of Basic Sciences, Department of Physiotherapy, University of the Peloponnese, Sparti, 23100, Greece
| | - Foteini Gkartziou
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
| | - Despoina-Nektaria Metsiou
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
| | - Sophia G Antimisiaris
- Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece
- FORTH/ICE‑ΗΤ, Institute of Chemical Engineering Sciences, Platani, 26504, Greece
| |
Collapse
|
6
|
Lu Y, Liu A, Jin S, Dai J, Yu Y, Wen P, Zheng Y, Xia D. Additively Manufactured Biodegradable Zn-Based Porous Scaffolds to Suppress Osteosarcoma and Promote Osteogenesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410589. [PMID: 39564691 DOI: 10.1002/adma.202410589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Indexed: 11/21/2024]
Abstract
Postoperative therapies for osteosarcoma present substantial challenges due to tumor recurrence and extensive bone defects. To tackle these challenges, laser powder bed fusion is utilized to fabricate biodegradable Zn-Li porous scaffolds that supress tumors and promote osteogenesis. After the structure design and composition selection, the Zn-0.8Li porous scaffold with Gyroid unit optimally balances the co-release of Zn2+ and Li+ during degradation, resulting in favorable antitumor and osteogenic effects. In vitro, the Zn-0.8Li scaffold significantly inhibits osteosarcoma progression by suppressing tumor cell proliferation, promoting apoptosis, alleviating migration, and simultaneously promotes osteogenic differentiation through the enhanced expression of osteogenic markers. In vivo, the Zn-0.8Li scaffold inhibits the malignant osteosarcoma behavior and facilitates bone regeneration in areas with bone defects. Transcriptomic analysis further reveals that the simultaneous release of Zn2+ and Li+ from the biodegradable Zn-0.8Li scaffold contributes to anti-osteosarcoma activity by downregulating PI3K/Akt signaling pathways. Taken together, the Zn-0.8Li porous scaffold fabricated using laser powder bed fusion with enhanced antitumor and osteogenic properties is a promising alternative for the postoperative management of osteosarcoma.
Collapse
Affiliation(s)
- Yupu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Jiabao Dai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
7
|
Li J, Zhang X, Peng ZX, Chen JH, Liang JH, Ke LQ, Huang D, Cheng WX, Lin S, Li G, Hou R, Zhong WZ, Lin ZJ, Qin L, Chen GQ, Zhang P. Metabolically activated energetic materials mediate cellular anabolism for bone regeneration. Trends Biotechnol 2024; 42:1745-1776. [PMID: 39237385 DOI: 10.1016/j.tibtech.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation. Additionally, it raises citrate levels in the tricarboxylic acid (TCA) cycle, facilitating the synthesis of citrate-containing apatite during hBMSCs osteogenesis. Furthermore, 3HB administration significantly increased bone mass in rats with osteoporosis induced by ovariectomy. The findings also showed that P(3HB-co-4HB) scaffold substantially enhances long-term vascularized bone regeneration in rat cranial defect models. These findings reveal a previously unknown role of 3HB in promoting osteogenesis of hBMSCs and highlight the metabolic activation of P(3HB-co-4HB) scaffold for bone regeneration.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China.
| | - Xu Zhang
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Zi-Xin Peng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Hai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Hui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li-Qing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Dan Huang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wen-Xiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rui Hou
- Nam Yue Natural Medicine Co., Ltd., Macau, China
| | | | - Zheng-Jie Lin
- Department of Stomatology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, 518067, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Guo-Qiang Chen
- School of Life Sciences, Center of Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Balogh E, Tóth A, Csiki DM, Jeney V. Zinc Ameliorates High Pi and Ca-Mediated Osteogenic Differentiation of Mesenchymal Stem Cells. Nutrients 2024; 16:4012. [PMID: 39683406 DOI: 10.3390/nu16234012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Zinc is the second most abundant trace element in the human body, stored mainly in the bones. Zinc is required for bone growth and homeostasis and is also a crucial cofactor for numerous proteins that play key roles in maintaining microstructural integrity and bone remodeling. Bone marrow-derived mesenchymal stem cells (BMSCs) are multipotent progenitors found in the bone marrow stroma and can differentiate along multiple lineage pathways. In this study, we investigated the effect of zinc on the osteogenic differentiation of BMSCs. We stimulated the osteogenic differentiation of BMSCs with high phosphate and Ca-containing osteogenic medium (PiCa) in the presence or absence of zinc. We followed calcification by measuring ECM mineralization, the Ca content of the ECM, mRNA, and the protein expression of the osteo-chondrogenic transcription factor RUNX2 and SOX9 and its targets OCN and ALP. Zinc dose-dependently abolished PiCa-induced ECM mineralization and decreased the expression of RUNX2, SOX9, OCN, and ALP. Serum albumin did not alter the inhibitory effect of zinc on BMSC mineralization. Our further analysis with the zinc-chelator TPEN and ZnCl2 confirmed the specific inhibitory effect of free zinc ions on BMSC mineralization. Zinc inhibited phosphate uptake and PiCa-induced upregulation of the sodium-dependent phosphate cotransporters (PiT-1 and PiT-2). Zinc attenuated the PiCa-induced increase in ROS production. Taken together, these data suggest that zinc inhibits PiCa-induced BMSC calcification by regulating phosphate uptake and ROS production.
Collapse
Affiliation(s)
- Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dávid Máté Csiki
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
9
|
Mao J, Sun Z, Wang S, Bi J, Xue L, Wang L, Wang H, Jiao G, Chen Y. Multifunctional Bionic Periosteum with Ion Sustained-Release for Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403976. [PMID: 39225563 PMCID: PMC11497021 DOI: 10.1002/advs.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel bionic periosteum (BP)-bioactive glass fiber membrane (BGFM) is designed. The introduction of magnesium ion (Mg2+) and zinc ion (Zn2+) change the phase separation during the electrospinning (ES) jet stretching process. The fiber's pore structure transitions from connected to closed pores, resulting in a decrease in the rapid release of metal ions while also improving degradation via reducing filling quality. Additionally, the introduction of magnesium (Mg) and zinc (Zn) lead to the formation of negative charged tetrahedral units (MgO4 2- and ZnO4 2-) in the glass network. These units effectively trap positive charged metal ions, further inhibiting ion release. In vitro experiments reveal that the deigned bionic periosteum regulates the polarization of macrophages toward M2 type, thereby establishing a conducive immune environment for osteogenic differentiation. Bioinformatics analysis indicate that BP enhanced bone repair via the JAK-STAT signaling pathway. The slow release of metal ions from the bionic periosteum can directly enhance osteogenic differentiation and vascularization, thereby accelerating bone regeneration. Finally, the bionic periosteum exhibits remarkable capabilities in angiogenesis and osteogenesis, demonstrating its potential for bone repair in a rat calvarial defect model.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Zhenqian Sun
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
- The First Clinical Medical SchoolShandong UniversityJinanShandong250012P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor CenterPeking University People's HospitalBeijing100044P. R. China
| | - Jianqiang Bi
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Lu Xue
- Shandong Second Medical UniversityWeifangShandong261000P. R. China
- Shanxian Central HospitalHezeShandong274300P. R. China
| | - Lu Wang
- Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education)School of Materials Science and EngineeringShandong UniversityJinanShandong250061P. R. China
| | - Hongliang Wang
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Guangjun Jiao
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| | - Yunzhen Chen
- Department of OrthopaedicsQilu Hospital of Shandong UniversityJinanShandong250012P. R. China
| |
Collapse
|
10
|
Liu J, Linsley CS, Su Y, Abd-Elaziem W, Pan S, Sokoluk M, Griebel A, Chen G, Zeng Y, Murali N, Bialo S, Jiang A, Wu BM, Zhu D, Li X. Nanoparticle-Enabled Zn-0.1Mg Alloy with Long-Term Stability, Refined Degradation, and Favorable Biocompatibility for Biodegradable Implant Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50125-50138. [PMID: 39284011 DOI: 10.1021/acsami.4c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Zinc-based alloys, specifically Zn-Mg, have garnered considerable attention as promising materials for biodegradable implants due to their favorable mechanical strength, appropriate corrosion rate, and biocompatibility. Nevertheless, the alloy's lack of mechanical stability and integrity, resulting from ductility loss induced by age hardening at room temperature, hampers its practical bioapplication. In this study, ceramic nanoparticles have been successfully incorporated into the Zn-Mg alloy system, leading to a significant improvement in long-term stability as well as mechanical strength and ductility. In addition, this study represents the first investigation of Zn-based nanocomposites both in vitro and in vivo to comprehend the influence of nanoparticles on the degradation behavior and biocompatibility of the Zn system. The findings indicate that the incorporation of WC nanoparticles effectively refines and stabilizes the degradation behavior of Zn-Mg without negatively impacting the cytocompatibility of the alloy. The subcutaneous implantation and femoral implantation further prove the benefits of nanoparticle incorporation and found no negative effects. Collectively, Zn-Mg-WC nanocomposites yield great potential for implant usage.
Collapse
Affiliation(s)
- Jingke Liu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- ZanoMed Inc, Los Angeles, California 90731, United States
| | - Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
| | - Yingchao Su
- Department of Biomedical Engineering, the State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Walaa Abd-Elaziem
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shuaihang Pan
- Department of Mechanical and Aerospace Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Maximilian Sokoluk
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- ZanoMed Inc, Los Angeles, California 90731, United States
| | - Adam Griebel
- Fort Wayne Metals, Fort Wayne, Indiana 46809, United States
| | - Guancheng Chen
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Narayanan Murali
- Department of Material Science and Engineering, University of California, Los Angeles, California 90024, United States
| | - Sarah Bialo
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Andrew Jiang
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90024, United States
- Department of Orthopedic Surgery, University of California, Los Angeles, California 90024, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, the State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- Department of Material Science and Engineering, University of California, Los Angeles, California 90024, United States
| |
Collapse
|
11
|
Peters K, Staehlke S, Rebl H, Jonitz-Heincke A, Hahn O. Impact of Metal Ions on Cellular Functions: A Focus on Mesenchymal Stem/Stromal Cell Differentiation. Int J Mol Sci 2024; 25:10127. [PMID: 39337612 PMCID: PMC11432215 DOI: 10.3390/ijms251810127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Metals play a crucial role in the human body, especially as ions in metalloproteins. Essential metals, such as calcium, iron, and zinc are crucial for various physiological functions, but their interactions within biological networks are complex and not fully understood. Mesenchymal stem/stromal cells (MSCs) are essential for tissue regeneration due to their ability to differentiate into various cell types. This review article addresses the effects of physiological and unphysiological, but not directly toxic, metal ion concentrations, particularly concerning MSCs. Overloading or unbalancing of metal ion concentrations can significantly impair the function and differentiation capacity of MSCs. In addition, excessive or unbalanced metal ion concentrations can lead to oxidative stress, which can affect viability or inflammation. Data on the effects of metal ions on MSC differentiation are limited and often contradictory. Future research should, therefore, aim to clarify the mechanisms by which metal ions affect MSC differentiation, focusing on aspects such as metal ion interactions, ion concentrations, exposure duration, and other environmental conditions. Understanding these interactions could ultimately improve the design of biomaterials and implants to promote MSC-mediated tissue regeneration. It could also lead to the development of innovative therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Susanne Staehlke
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Henrike Rebl
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Strasse 142, 18057 Rostock, Germany;
| | - Olga Hahn
- Institute of Cell Biology, Rostock University Medical Center Rostock, Schillingallee 69, 18057 Rostock, Germany; (S.S.); (H.R.); (O.H.)
| |
Collapse
|
12
|
Yuan X, Wu T, Lu T, Ye J. Si and Zn dual ions upregulate the osteogenic differentiation of mBMSCs: mRNA transcriptomic sequencing analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:54. [PMID: 39251504 PMCID: PMC11383841 DOI: 10.1007/s10856-024-06825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
Both silicon (Si) and zinc (Zn) ions are essential elements to bone health and their mechanisms for promoting osteogenesis have aroused the extensive attention of researchers. Thereinto, the mechanism by which dual ions promote osteogenic differentiation remains to be elucidated. Herein, the effects of Si and Zn ions on the cytological behaviors of mBMSCs were firstly studied. Then, the molecular mechanism of Si-Zn dual ions regulating the osteogenic differentiation of mBMSCs was investigated via transcriptome sequencing technology. In the single-ion system, Si ion at the concentration of 1.5 mM (Si-1.5) had better comprehensive effects of cell proliferation, ALP activity and osteogenesis-related gene expression levels (ALP, Runx2, OCN, Col-I and BSP); Zn ion at the concentration of 50 μM (Zn-50) demonstrated better combining effects of cell proliferation, ALP activity and same osteogenic genes expression levels. In the dual-ion system, the Si (1.5 mM)-Zn (50 μM) group (Si1.5-Zn50) synthetically enhanced ALP activity and osteogenesis genes compared with single-ion groups. Analysis of the transcriptome sequencing results showed that Si ion had a certain effect on promoting the osteogenic differentiation of mBMSCs; Zn ion had a stronger effect of contributing to a better osteogenic differentiation of mBMSCs than that of Si ion; the Si-Zn dual ions had a synergistic enhancement on conducting to the osteogenic differentiation of mBMSCs compared to single ion (Si or Zn). This study offers a blueprint for exploring the regulation mechanism of osteogenic differentiation by dual ions.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, PR China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Teliang Lu
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, PR China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, PR China.
| |
Collapse
|
13
|
Kim D, Kim NW, Kim TG, Lee J, Jung JY, Hur S, Lee J, Lee K, Park SA. Surface Functionalization of 3D-Printed Scaffolds with Seed-Assisted Hydrothermally Grown ZnO Nanoarrays for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45389-45398. [PMID: 39150145 DOI: 10.1021/acsami.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers. To address these issues, we propose a metal-assisted hydrothermal synthesis method to modify 3D printed polycaprolactone (PCL) scaffolds with ZnO nanoparticles (NPs), facilitating the growth of ZnO nanoarrays (NAs) at a low-temperature (55 °C). Physicochemical characterizations revealed that the ZnO NPs form both physical and chemical bonds with the PCL surface; chemical bonding occurs between the carboxylate groups of PCL and Zn(OH)2 during seed deposition and hydrothermal synthesis. The ZnO NPs and NAs grown for a longer time (18 h) on the surface of PCL scaffolds exhibit significant proliferation and early differentiation of osteoblast-like cells. The proposed method is suitable for the surface modification of thermally degradable polymers, opening up new possibilities for the deposition of diverse metals.
Collapse
Affiliation(s)
- Dahong Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam Woon Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Tae Gun Kim
- Center for Analysis and Evaluation, National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea
| | - Jihye Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Joo-Yun Jung
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Shin Hur
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Jaejong Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea
| |
Collapse
|
14
|
Zhou Q, Chen X, Chen Q, Hao L. Independent and combined associations of dietary antioxidant intake with bone mineral density and risk of osteoporosis among elderly population in United States. J Orthop Sci 2024; 29:1064-1072. [PMID: 37537112 DOI: 10.1016/j.jos.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND The influence of dietary antioxidant intake on the occurrence and progression of osteoporosis may be significant. However, to date, evidence on the link between combined effect of dietary antioxidants on bone mineral density (BMD) level and risk of osteoporosis is limited. We aimed to assess the independent and combined association of dietary antioxidant intake with BMD level and risk of osteoporosis among elderly population in United States through analysis of data in the National Health and Nutrition Examination Survey. METHODS The dietary antioxidant intake was assessed based on six antioxidants, including vitamin A, vitamin C, vitamin E, zinc, selenium, and total carotenoid. A composite dietary antioxidant index (CDAI) was used to evaluate the combined exposure of dietary antioxidant intake. RESULTS A total of 5618 participants were included. Higher dietary vitamin A, vitamin C, vitamin E, zinc, selenium, and total carotenoid, were positively associated with BMD level. Compared with participants in the first quartile, those in the higher quartile of vitamin E (Q4: OR 0.652; 95% CI 0.463-0.918), zinc (Q4: OR 0.581; 95% CI 0.408-0.826), and selenium (Q3: OR 0.673; 95% CI 0.503-0.899) were associated with decreased risk of overall osteoporosis. Furthermore, compared to those in the first quartile, participants in the highest quartile of CDAI were associated with increased total femur (β 0.019; 95% CI 0.007-0.032), femur neck (β 0.020; 95% CI 0.009-0.032), trochanter (β 0.012; 95% CI 0.001-0.023), and intertrochanter BMD level (β 0.022; 95% CI 0.007-0.037); participants in the highest quartile of CDAI were associated with decreased risk of overall osteoporosis (OR 0.536; 95% CI 0.376-0.763). Furthermore, the associations of CDAI with the BMD level and osteoporosis risk were more significant among female participants. CONCLUSION Our study provides evidence that a combination of dietary antioxidants intake was associated increased BMD level and decreased osteoporosis risk.
Collapse
Affiliation(s)
- Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China.
| |
Collapse
|
15
|
Steyl SK, Jeyapalina S, Griffin A, Krishnamoorthi V, Beck JP, Agarwal J, Shea J. Efficacy of sintered Zinc-doped fluorapatite scaffold as an antimicrobial regenerative bone filler for dental applications. J Dent 2024; 146:105070. [PMID: 38740251 PMCID: PMC11180563 DOI: 10.1016/j.jdent.2024.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVES The objective of this study was to assess whether zinc-doped fluorapatite (ZnFA) could serve as an effective antimicrobial dental bone filler for bone regeneration compared to autografts. METHODS FA and 2 % zinc-doped FA (2ZnFA) were synthesized and characterized in-house. Compressed and sintered FA and 2ZnFA disks were incubated with bacteria to assess antimicrobial properties. Adipose-derived stem cells were cultured on these discs to evaluate the surfaces' ability to support cell growth and promote osteogenic differentiation. Surfaces exhibiting the highest expressions of the bone markers osteopontin and osteocalcin were selected for an in vivo study in a rat mandibular defect model. Twenty rats were divided into 5 groups, equally, and a 5 mm surgical defect of the jaw was left untreated or filled with 2ZnFA, FA, autograft, or demineralized bone matrix (DBM). At 12 weeks, the defects and surrounding tissues were harvested and subjected to microCT and histological evaluations. RESULTS Standard techniques such as FTIR, ICP-MS, fluoride probe, and XRD revealed the sintered FA and ZnFA's chemical compositions and structures. Bacterial studies revealed no significant differences in surface bacterial adhesion properties between FA and 2ZnFA, but significantly fewer bacterial loads than control titanium discs (p < 0.05). Cell culture data confirmed that both surfaces could support cell growth and promote the osteogenic differentiation of stem cells. MicroCT analysis confirmed statistical similarities in bone regeneration within FA, 2ZnFA, and autograft groups. CONCLUSION The data suggests that both FA and 2ZnFA could serve as alternatives to autograft materials, which are the current gold standard. Moreover, these bone fillers outperformed DBM, an allograft material commonly used as a dental bone void filler. CLINICAL SIGNIFICANCE The use of FA or 2ZnFA for treating mandibular defects led to bone regeneration statistically similar to autograft repair and significantly outperformed the widely used dental bone filler, DBM. Additional translational research may confirm FA-based materials as superior substitutes for existing synthetic bone fillers, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Samantha K Steyl
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA; Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100. Salt Lake City, UT 84112, USA
| | - Sujee Jeyapalina
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA; Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100. Salt Lake City, UT 84112, USA
| | - Alec Griffin
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA
| | - Vishnu Krishnamoorthi
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA
| | - James Peter Beck
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Department of Orthopaedics, University of Utah School of Medicine, 590 Wakara Way Salt Lake City, UT 84108, USA
| | - Jay Agarwal
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Jill Shea
- Orthopaedic and Plastic Surgery Research Laboratory, George E. Wahlen Department of Veterans Affairs Medical Center, 500 Foothill Drive Salt Lake City, UT 84148, USA; Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA; Department of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Rm. 3100. Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Zhang Y, Li Z, Guo B, Wang Q, Chen L, Zhu L, Zhang T, Wang R, Li W, Luo D, Liu Y. A Zinc Oxide Nanowire-Modified Mineralized Collagen Scaffold Promotes Infectious Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309230. [PMID: 38112271 DOI: 10.1002/smll.202309230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zixin Li
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Bowen Guo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Qibo Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Liyuan Chen
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Lisha Zhu
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting Zhang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ruoxi Wang
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Weiran Li
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yan Liu
- Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
17
|
Nakanishi T, Yamazaki M, Tachikawa K, Ueta A, Kawai M, Ozono K, Michigami T. Complex intrinsic abnormalities in osteoblast lineage cells of X-linked hypophosphatemia: Analysis of human iPS cell models generated by CRISPR/Cas9-mediated gene ablation. Bone 2024; 181:117044. [PMID: 38331306 DOI: 10.1016/j.bone.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
X-linked hypophosphatemia (XLH) is caused by inactivating variants of the phosphate regulating endopeptidase homolog X-linked (PHEX) gene. Although the overproduction of fibroblast growth factor 23 (FGF23) is responsible for hypophosphatemia and impaired vitamin D metabolism, the pathogenesis of XLH remains unclear. We herein generated PHEX-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene ablation to an iPS clone derived from a healthy male, and analyzed PHEX-KO iPS cells with deletions extending from exons 1 to 3 and frameshifts by inducing them to differentiate into the osteoblast lineage. We confirmed the increased production of FGF23 in osteoblast lineage cells differentiated from PHEX-KO iPS cells. In vitro mineralization was enhanced in osteoblast lineage cells from PHEX-KO iPS cells than in those from isogenic control iPS cells, which reminded us of high bone mineral density and enthesopathy in patients with XLH. The extracellular level of pyrophosphate (PPi), an inhibitor of mineralization, was elevated, and this increase appeared to be partly due to the reduced activity of tissue non-specific alkaline phosphatase (TNSALP). Osteoblast lineage cells derived from PHEX-KO iPS cells also showed the increased expression of multiple molecules such as dentine matrix protein 1, osteopontin, RUNX2, FGF receptor 1 and early growth response 1. This gene dysregulation was similar to that in the osteoblasts/osteocytes of Phex-deficient Hyp mice, suggesting that common pathogenic mechanisms are shared between human XLH and Hyp mice. Moreover, we found that the phosphorylation of CREB was markedly enhanced in osteoblast lineage cells derived from PHEX-KO iPS cells, which appeared to be associated with the up-regulation of the parathyroid hormone related protein gene. PHEX deficiency also affected the response of the ALPL gene encoding TNSALP to extracellular Pi. Collectively, these results indicate that complex intrinsic abnormalities in osteoblasts/osteocytes underlie the pathogenesis of human XLH.
Collapse
Affiliation(s)
- Tatsuro Nakanishi
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | - Ayu Ueta
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan; 1st Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan
| | | | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
18
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
19
|
Park EJ, Truong VL, Jeong WS, Min WK. Brain-Derived Neurotrophic Factor (BDNF) Enhances Osteogenesis and May Improve Bone Microarchitecture in an Ovariectomized Rat Model. Cells 2024; 13:518. [PMID: 38534361 PMCID: PMC10969057 DOI: 10.3390/cells13060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has gained attention as a therapeutic agent due to its potential biological activities, including osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of BDNF have not been fully understood. This study aimed to investigate the action of BDNF on the osteoblast differentiation in bone marrow stromal cells, and its influence on signaling pathways. In addition, to evaluate the clinical efficacy, an in vivo animal study was performed. METHODS Preosteoblast cells (MC3T3-E1), bone marrow-derived stromal cells (ST2), and a direct 2D co-culture system were treated with BDNF. The effect of BDNF on cell proliferation was determined using the CCK-8 assay. Osteoblast differentiation was assessed based on alkaline phosphatase (ALP) activity and staining and the protein expression of multiple osteoblast markers. Calcium accumulation was examined by Alizarin red S staining. For the animal study, we used ovariectomized Sprague-Dawley rats and divided them into BDNF and normal saline injection groups. MicroCT, hematoxylin and eosin (H&E), and tartrate-resistant acid phosphatase (TRAP) stain were performed for analysis. RESULTS BDNF significantly increased ALP activity, calcium deposition, and the expression of osteoblast differentiation-related proteins, such as ALP, osteopontin, etc., in both ST-2 and the MC3T3-E1 and ST-2 co-culture systems. Moreover, the effect of BDNF on osteogenic differentiation was diminished by blocking tropomyosin receptor kinase B, as well as inhibiting c-Jun N-terminal kinase and p38 MAPK signals. Although the animal study results including bone density and histology showed increased osteoblastic and decreased osteoclastic activity, only a portion of parameters reached statistical significance. CONCLUSIONS Our study results showed that BDNF affects osteoblast differentiation through TrkB receptor, and JNK and p38 MAPK signal pathways. Although not statistically significant, the trend of such effects was observed in the animal experiment.
Collapse
Affiliation(s)
- Eugene J. Park
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Van-Long Truong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Woo-Sik Jeong
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Woo-Kie Min
- Department of Orthopedic Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
20
|
Wang D, Wu Q, Ren X, Niu M, Ren J, Meng X. Tunable Zeolitic Imidazolate Framework-8 Nanoparticles for Biomedical Applications. SMALL METHODS 2024; 8:e2301270. [PMID: 37997211 DOI: 10.1002/smtd.202301270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Zeolite imidazole framework-8 (ZIF-8) is the most prestigious one among zeolitic imidazolate framework (ZIF) with tunable dimensions and unique morphological features. Utilizing its synthetic adjustability and structural regularity, ZIF-8 exhibits enhanced flexibility, allowing for a wide range of functionalities, such as loading of nanoparticle components while preserving biomolecules activity. Extensive efforts are made from investigating synthesis techniques to develop novel applications over decades. In this review, the development and recent progress of various synthesis approaches are briefly summarized. In addition, its interesting properties such as adjustable porosity, excellent thermal, and chemical stabilities are introduced. Further, five representative biomedical applications are highlighted based on above physicochemical properties. Finally, the remaining challenges and offered insights into the future outlook are also discussed. This review aims to understand the co-relationships between structures and biomedical functionalities, offering the opportunity to construct attractive materials with promising characteristics.
Collapse
Affiliation(s)
- Dongdong Wang
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangling Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Niu
- Department of Radiology, First Hospital of China Medical University Key Laboratory of Diagnostic Imaging and Interventional Radiology in Liaoning Province, Shenyang, 110001, China
| | - Jun Ren
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Tan J, Li S, Sun C, Bao G, Liu M, Jing Z, Fu H, Sun Y, Yang Q, Zheng Y, Wang X, Yang H. A Dose-Dependent Spatiotemporal Response of Angiogenesis Elicited by Zn Biodegradation during the Initial Stage of Bone Regeneration. Adv Healthc Mater 2024; 13:e2302305. [PMID: 37843190 DOI: 10.1002/adhm.202302305] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Zinc (Zn) plays a crucial role in bone metabolism and imbues biodegradable Zn-based materials with the ability to promote bone regeneration in bone trauma. However, the impact of Zn biodegradation on bone repair, particularly its influence on angiogenesis, remains unexplored. This study reveals that Zn biodegradation induces a consistent dose-dependent spatiotemporal response in angiogenesis,both in vivo and in vitro. In a critical bone defect model, an increase in Zn release intensity from day 3 to 10 post-surgery is observed. By day 10, the CD31-positive area around the Zn implant significantly surpasses that of the Ti implant, indicating enhanced angiogenesis. Furthermore,angiogenesis exhibits a distance-dependent pattern closely mirroring the distribution of Zn signals from the implant. In vitro experiments demonstrate that Zn extraction fosters the proliferation and migration of human umbilical vein endothelial cells and upregulates the key genes associated with tube formation, such as HIF-1α and VEGF-A, peaking at a concentration of 22.5 µM. Additionally, Zn concentrations within the range of 11.25-45 µM promote the polarization of M0-type macrophages toward the M2-type, while inhibiting polarization toward the M1-type. These findings provide essential insights into the biological effects of Zn on bone repair, shedding light on its potential applications.
Collapse
Affiliation(s)
- Junlong Tan
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Shuang Li
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Chaoyang Sun
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Guo Bao
- Department of Reproduction and Physiology, National Research Institute for Family Planning, Beijing, 100081, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Zehao Jing
- Beijing Key Laboratory of Spinal Disease Research, Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Hanwei Fu
- School of Materials Science and Engineering, Beihang University, 37 Xueyuan Rd, Beijing, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Qingmin Yang
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Yufeng Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering and School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| | - Hongtao Yang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 37 Xueyuan Rd, Beijing, 100191, China
| |
Collapse
|
22
|
Tang H, Yu Y, Zhan X, Chai Y, Zheng Y, Liu Y, Xia D, Lin H. Zeolite imidazolate framework-8 in bone regeneration: A systematic review. J Control Release 2024; 365:558-582. [PMID: 38042375 DOI: 10.1016/j.jconrel.2023.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Zeolite imidazolate framework-8 (ZIF-8) is a biomaterial that has been increasingly studied in recent years. It has several applications such as bone regeneration, promotion of angiogenesis, drug loading, and antibacterial activity, and exerts multiple effects to deal with various problems in the process of bone regeneration. This systematic review aims to provide an overview of the applications and effectiveness of ZIF-8 in bone regeneration. A search of papers published in the PubMed, Web of Science, Embase, and Cochrane Library databases revealed 532 relevant studies. Title, abstract, and full-text screening resulted in 39 papers being included in the review, including 39 in vitro and 22 animal studies. Appropriate concentrations of nano ZIF-8 can promote cell proliferation and osteogenic differentiation by releasing Zn2+ and entering the cell, whereas high doses of ZIF-8 are cytotoxic and inhibit osteogenic differentiation. In addition, five studies confirmed that ZIF-8 exhibits good vasogenic activity. In all in vivo experiments, nano ZIF-8 promoted bone formation. These results indicate that, at appropriate concentrations, materials containing ZIF-8 promote bone regeneration more than materials without ZIF-8, and with characteristics such as promoting angiogenesis, drug loading, and antibacterial activity, it is expected to show promising applications in the field of bone regeneration. STATEMENT OF SIGNIFICANCE: This manuscript reviewed the use of ZIF-8 in bone regeneration, clarified the biocompatibility and effectiveness in promoting bone regeneration of ZIF-8 materials, and discussed the possible mechanisms and factors affecting its promotion of bone regeneration. Overall, this study provides a better understanding of the latest advances in the field of bone regeneration of ZIF-8, serves as a design guide, and contributes to the design of future experimental studies.
Collapse
Affiliation(s)
- Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Chai
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Hong Lin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| |
Collapse
|
23
|
Luo W, Zhang N, Wang Z, Chen H, Sun J, Yao C, Zhang Y. LncRNA USP2-AS1 facilitates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting KDM3A/ETS1/USP2 to activate the Wnt/β-catenin signaling pathway. RNA Biol 2024; 21:1-13. [PMID: 38131611 PMCID: PMC10761055 DOI: 10.1080/15476286.2023.2290771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 12/23/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) can promote new bone formation. Previous studies have proven the ability of long non-coding RNAs (lncRNAs) to modulate the osteogenic differentiation of mesenchymal stem cells. However, the molecular mechanism modulated by lncRNAs in affecting the osteogenic differentiation of HBMSCs remains largely unknown. Thus, this study aims to reveal the role of lncRNA ubiquitin-specific peptidase 2 antisense RNA 1 (USP2-AS1) in regulating the osteogenic differentiation of HBMSCs and investigate its regulatory mechanism. Through bioinformatics analysis and RT-qPCR, we confirmed that USP2-AS1 expression was increased in HBMSCs after culturing in osteogenic differentiation medium (OM-HBMSCs). Moreover, we uncovered that knockdown of USP2-AS1 inhibited the osteogenic differentiation of HBMSCs. Further exploration indicated that USP2-AS1 positively regulated the expression of its nearby gene USP2. Mechanistically, USP2-AS1 recruited lysine demethylase 3A (KDM3A) to stabilize ETS proto-oncogene 1 (ETS1), transcription factor that transcriptionally activated USP2. Additionally, USP2-induced Wnt/β-catenin signalling pathway activation via deubiquitination of β-catenin protein. In summary, our study proved that lncRNA USP2-AS1 facilitates the osteogenic differentiation of HBMSCs by targeting KDM3A/ETS1/USP2 axis to activate the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Wanxin Luo
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Na Zhang
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Ziping Wang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hao Chen
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Sun
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
24
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
25
|
Arisumi S, Fujiwara T, Yasumoto K, Tsutsui T, Saiwai H, Kobayakawa K, Okada S, Zhao H, Nakashima Y. Metallothionein 3 promotes osteoclast differentiation and survival by regulating the intracellular Zn 2+ concentration and NRF2 pathway. Cell Death Discov 2023; 9:436. [PMID: 38040717 PMCID: PMC10692135 DOI: 10.1038/s41420-023-01729-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
In osteoclastogenesis, the metabolism of metal ions plays an essential role in controlling reactive oxygen species (ROS) production, mitochondrial biogenesis, and survival, and differentiation. However, the mechanism regulating metal ions during osteoclast differentiation remains unclear. The metal-binding protein metallothionein (MT) detoxifies heavy metals, maintains metal ion homeostasis, especially zinc, and manages cellular redox levels. We carried out tests using murine osteoclast precursors to examine the function of MT in osteoclastogenesis and evaluated their potential as targets for future osteoporosis treatments. MT genes were significantly upregulated upon differentiation from osteoclast precursors to mature osteoclasts in response to receptor activators of nuclear factor-κB (NF-κB) ligand (RANKL) stimulation, and MT3 expression was particularly pronounced in mature osteoclasts among MT genes. The knockdown of MT3 in osteoclast precursors demonstrated a remarkable inhibition of differentiation into mature osteoclasts. In preosteoclasts, MT3 knockdown suppressed the activity of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways upon RANKL stimulation, leading to affect cell survival through elevated cleaved Caspase 3 and poly (ADP-ribose) polymerase (PARP) levels. Additionally, ROS levels were decreased, and nuclear factor erythroid 2-related factor 2 (NRF2) (a suppressor of ROS) and the downstream antioxidant proteins, such as catalase (CAT) and heme oxygenase 1 (HO-1), were more highly expressed in the MT3 preosteoclast knockdowns. mitochondrial ROS, which is involved in mitochondrial biogenesis and the production of reactive oxygen species, were similarly decreased because cAMP response element-binding (CREB) and peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) were less activated due to MT3 depletion. Thus, by modulating ROS through the NRF2 pathway, MT3 plays a crucial role in regulating osteoclast differentiation and survival, acting as a metabolic modulator of intracellular zinc ions.
Collapse
Affiliation(s)
- Shinkichi Arisumi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Keitaro Yasumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Tsutsui
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokazu Saiwai
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Osaka University, Suita, Japan
| | - Haibo Zhao
- Southern California Institute for Research and Education, Long Beach, CA, USA
- Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
26
|
Wang X, Huang S, Peng Q. Metal Ion-Doped Hydroxyapatite-Based Materials for Bone Defect Restoration. Bioengineering (Basel) 2023; 10:1367. [PMID: 38135958 PMCID: PMC10741145 DOI: 10.3390/bioengineering10121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Hydroxyapatite (HA)-based materials are widely used in the bone defect restoration field due to their stable physical properties, good biocompatibility, and bone induction potential. To further improve their performance with extra functions such as antibacterial activity, various kinds of metal ion-doped HA-based materials have been proposed and synthesized. This paper offered a comprehensive review of metal ion-doped HA-based materials for bone defect restoration based on the introduction of the physicochemical characteristics of HA followed by the synthesis methods, properties, and applications of different kinds of metal ion (Ag+, Zn2+, Mg2+, Sr2+, Sm3+, and Ce3+)-doped HA-based materials. In addition, the underlying challenges for bone defect restoration using these materials and potential solutions were discussed.
Collapse
Affiliation(s)
- Xuan Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Shan Huang
- Changsha Health Vocational College, Changsha 410100, China;
| | - Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha 410008, China;
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
27
|
Ciaffaglione V, Rizzarelli E. Carnosine, Zinc and Copper: A Menage a Trois in Bone and Cartilage Protection. Int J Mol Sci 2023; 24:16209. [PMID: 38003398 PMCID: PMC10671046 DOI: 10.3390/ijms242216209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Dysregulated metal homeostasis is associated with many pathological conditions, including arthritic diseases. Osteoarthritis and rheumatoid arthritis are the two most prevalent disorders that damage the joints and lead to cartilage and bone destruction. Recent studies show that the levels of zinc (Zn) and copper (Cu) are generally altered in the serum of arthritis patients. Therefore, metal dyshomeostasis may reflect the contribution of these trace elements to the disease's pathogenesis and manifestations, suggesting their potential for prognosis and treatment. Carnosine (Car) also emerged as a biomarker in arthritis and exerts protective and osteogenic effects in arthritic joints. Notably, its zinc(II) complex, polaprezinc, has been recently proposed as a drug-repurposing candidate for bone fracture healing. On these bases, this review article aims to provide an overview of the beneficial roles of Cu and Zn in bone and cartilage health and their potential application in tissue engineering. The effects of Car and polaprezinc in promoting cartilage and bone regeneration are also discussed. We hypothesize that polaprezinc could exchange Zn for Cu, present in the culture media, due to its higher sequestering ability towards Cu. However, future studies should unveil the potential contribution of Cu in the beneficial effects of polaprezinc.
Collapse
Affiliation(s)
- Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
28
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
29
|
Liu Y, Li X, Liu S, Du J, Xu J, Liu Y, Guo L. The changes and potential effects of zinc homeostasis in periodontitis microenvironment. Oral Dis 2023; 29:3063-3077. [PMID: 35996971 DOI: 10.1111/odi.14354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/28/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Zinc is a very important and ubiquitous element, which is present in oral environment, daily diet, oral health products, dental restorative materials, and so on. However, there is a lack of attention to the role of both extracellular or intracellular zinc in the progression of periodontitis and periodontal regeneration. This review summarizes the characteristics of immunological microenvironment and host cells function in several key stages of periodontitis progression, and explores the regulatory effect of zinc during this process. We find multiple evidence indicate that zinc may be involved and play a key role in the stages of immune defense, inflammatory response and bone remodeling. Zinc supplementation in an appropriate dose range or regulation of zinc transport proteins can promote periodontal regeneration by either enhancing immune defense or up-regulating local cells proliferation and differentiation functions. Therefore, zinc homeostasis is essential in periodontal remodeling and regeneration. More attention is suggested to be focused on zinc homeostasis regulation and consider it as a potential strategy in the studies on periodontitis treatment, periodontal-guided tissue regeneration, implant material transformation, and so on.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Kumar V, Kalita J, Misra UK, Parashar V. Stunting and wasting in neurological Wilson disease: Role of copper, zinc, and insulin-like growth factor-I. Int J Dev Neurosci 2023; 83:653-664. [PMID: 37580872 DOI: 10.1002/jdn.10293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
OBJECTIVES Copper (Cu) and zinc (Zn) are important trace elements for the growth and development of children. In Wilson disease (WD), impaired Cu metabolism may affect growth. This study was conducted to evaluate the height and weight of children with neurological WD and correlate these with serum Cu, Zn, and insulin-like growth factor-I (IGF-I). METHODS This prospective cohort study was conducted in a tertiary care teaching institute. Children with neurologic WD were included. The height, weight, and body-mass index of each child were measured and categorized according to the revised national growth chart. Serum Cu, Zn, calcium, alkaline phosphatase, albumin, thyroid-stimulating hormone, and urinary-Cu were measured. Serum IGF-1 was measured by enzyme-linked immunosorbent assay. The relationship between height and weight with trace elements and IGF was analyzed using parametric or non-parametric tests. RESULTS There were 52 children (5-18 years) with neurologic WD. Thirty-six (69.2%) children had normal height, 12 (23.1%) were tall, and 4 (7.7%) were stunted. Forty-six (88.5%) children had normal weight and six (11.5%) children were underweight. IGF-1 correlated with height, weight, duration of treatment, and serum Zn level. About 15.4% of children had stunting and/or wasting, which was associated with low levels of serum IGF-I, Zn, and calcium. CONCLUSIONS Stunting and/or wasting occurs in 15.4% of children with neurologic WD and is associated with reduced serum IGF-I, Zn, and calcium concentration. Adjunctive Zn and calcium treatment may help in achieving normal growth.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Orthopedics Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Usha Kant Misra
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- Apollomedic Super Specialty Hospital, Lucknow, Uttar Pradesh, India
| | - Vasudev Parashar
- Department of Neurology, SMS Medical College & Hospital, Jaipur, India
| |
Collapse
|
31
|
Tettey F, Saudi S, Davies D, Shrestha S, Johnson K, Fialkova S, Subedi K, Bastakoti BP, Sankar J, Desai S, Bhattarai N. Fabrication and Characterization of Zn Particle Incorporated Fibrous Scaffolds for Potential Application in Tissue Healing and Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48913-48929. [PMID: 37847523 DOI: 10.1021/acsami.3c09793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Zinc (Zn) metal and its alloys have received a lot of interest in biomedical applications due to their biodegradability, biocompatibility, antimicrobial activity, and ability to stimulate tissue regeneration. Bulk Zn has been successfully utilized in a variety of implant applications, most notably as bioabsorbable cardiac stents and orthopedic fixation devices, where it provides adequate mechanical properties while also releasing helpful Zn ions (Zn2+) during degradation. Such beneficial ions are dose-dependent and, when released in excess, can induce cellular toxicity. In this study, we hypothesize that embedding Zn metal particles into a polymer nanofibrous scaffold will enable control of the degradation and time release of the Zn2+. We designed and fabricated two polymer scaffolds, polycaprolactone (PCL) and polycaprolactone-chitosan (PCL-CH). Each scaffold had an increasing amount of Zn. Several physicochemical properties such as fiber morphology, crystallinity, mechanical strength, hydrophilicity, degradation and release of Zn2+, thermal properties, chemical compositions, and so forth were characterized and compared with the PCL fibrous scaffold. The biological properties of the scaffolds were evaluated in vitro utilizing direct and indirect cytotoxicity assays and cell viability. All the data show that the addition of Zn changed various physical properties of the PCL and PCL-CH scaffolds except their chemical structure. Further investigation reveals that the PCL-CH scaffolds degrade the Zn particles relatively faster than the PCL because the presence of the hydrophilic CH influences the faster release of Zn2+ in cell culture conditions as compared to the PCL fibrous scaffold. The combined advantages of CH and Zn in the PCL scaffold enriched 3T3 fibroblast cells' survival and proliferation except the ones with the higher concentration of Zn particles. These new composite scaffolds are promising and can be further considered for tissue healing and regeneration applications.
Collapse
Affiliation(s)
- Felix Tettey
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Sheikh Saudi
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Dekonti Davies
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Sita Shrestha
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Kalene Johnson
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Svitlana Fialkova
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Kiran Subedi
- College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Bishnu P Bastakoti
- Department of Chemistry, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Jagannathan Sankar
- Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Narayan Bhattarai
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| |
Collapse
|
32
|
Yuan X, Wu T, Lu T, Ye J. Effects of Zinc and Strontium Doping on In Vitro Osteogenesis and Angiogenesis of Calcium Silicate/Calcium Phosphate Cement. ACS Biomater Sci Eng 2023; 9:5761-5771. [PMID: 37676927 DOI: 10.1021/acsbiomaterials.3c00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Based on multiple biological functions (mainly osteogenesis and angiogenesis) of bioactive ions, Zn/Sr-doped calcium silicate/calcium phosphate cements (Zn/Sr-CS/CPCs, including 10Zn-CS/CPC, 20Sr-CS/CPC, and 10Zn/20Sr-CS/CPC) were prepared by the addition of Zn and Sr dual active ions into CS/CPC to further accelerate its bone regeneration in this study. The physicochemical and biological properties of the Zn/Sr-CS/CPCs were systematically investigated. The results showed that the setting time was slightly prolonged, the compressive strength and porosity did not change much, and all groups maintained good injectability after the doping of Zn and Sr. Besides, the doping of Zn and Sr had little effect on the phase and microstructure of hydrated products of CS/CPC. The degradation rate of Zn/Sr-CS/CPCs decreased after doping with Zn and Sr. In mouse bone marrow mesenchymal stem cells (mBMSC) experiments, all Zn/Sr-CS/CPCs stimulated the viability, adhesion, proliferation, and alkaline phosphatase (ALP) activity together with osteogenesis-related genes (ALP, Runx2, Col-I, OCN, and OPN). The further addition of Zn and Sr played better and synergistic roles in in vitro osteogenesis. Thereinto, 10Zn/20Sr-CS/CPC manifested the optimum in vitro osteogenic performance. As for human umbilical vein endothelial cell (HUVEC) experiments, the incorporation of CS doped with Zn and Sr into CPC possessed good vascularization properties of proliferation, NO secretion, tube formation, and the expression of angiogenesis-related genes (VEGF, bFGF, and eNOS). In conclusion, the doping of Zn and Sr into CS/CPC could exhibit excellent osteogenesis and good angiogenesis potentials and 10Zn/20Sr-CS/CPC could be considered as a promising candidate in bone repair.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510536, P. R. China
| | - Teliang Lu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| |
Collapse
|
33
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
34
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
35
|
Yang Z, Zhang X, Zhuo F, Liu T, Luo Q, Zheng Y, Li L, Yang H, Zhang Y, Wang Y, Liu D, Tu P, Zeng K. Allosteric Activation of Transglutaminase 2 via Inducing an "Open" Conformation for Osteoblast Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206533. [PMID: 37088726 PMCID: PMC10288273 DOI: 10.1002/advs.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/04/2023] [Indexed: 05/03/2023]
Abstract
Osteoblasts play an important role in the regulation of bone homeostasis throughout life. Thus, the damage of osteoblasts can lead to serious skeletal diseases, highlighting the urgent need for novel pharmacological targets. This study introduces chemical genetics strategy by using small molecule forskolin (FSK) as a probe to explore the druggable targets for osteoporosis. Here, this work reveals that transglutaminase 2 (TGM2) served as a major cellular target of FSK to obviously induce osteoblast differentiation. Then, this work identifies a previously undisclosed allosteric site in the catalytic core of TGM2. In particular, FSK formed multiple hydrogen bonds in a saddle-like domain to induce an "open" conformation of the β-sandwich domain in TGM2, thereby promoting the substrate protein crosslinks by incorporating polyamine. Furthermore, this work finds that TGM2 interacted with several mitochondrial homeostasis-associated proteins to improve mitochondrial dynamics and ATP production for osteoblast differentiation. Finally, this work observes that FSK effectively ameliorated osteoporosis in the ovariectomy mice model. Taken together, these findings show a previously undescribed pharmacological allosteric site on TGM2 for osteoporosis treatment, and also provide an available chemical tool for interrogating TGM2 biology and developing bone anabolic agent.
Collapse
Affiliation(s)
- Zhuo Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Xiao‐Wen Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fang‐Fang Zhuo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ting‐Ting Liu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Qian‐Wei Luo
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yong‐Zhe Zheng
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ling Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yi‐Chi Zhang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Yan‐Hang Wang
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Dan Liu
- Proteomics LaboratoryMedical and Healthy Analytical CenterPeking University Health Science CenterBeijing100191China
| | - Peng‐Fei Tu
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Ke‐Wu Zeng
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
36
|
Murphy B, Martins C, Maggio M, Morris MA, Hoey DA. Nano sized gallium oxide surface features for enhanced antimicrobial and osteo-integrative responses. Colloids Surf B Biointerfaces 2023; 227:113378. [PMID: 37257301 DOI: 10.1016/j.colsurfb.2023.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Gallium oxide has known beneficial osteo-integrative properties. This may have importance for improving the osteointegration of orthopedic implants. At high concentrations gallium is cytotoxic. Therefore, integration of gallium into implant devices must be carefully controlled to limit its concentration and release. A strategy based on surface doping of gallium although challenging seems an appropriate approach to limit dose amounts to minimize cytotoxicity and maximize osteointegration benefits. In this work we develop a novel form of patterned surface doping via a block copolymer-based surface chemistry that enables very low gallium content but enhanced osteointegration as proven by comprehensive bioassays. Polystyrene-b-poly 4vinyl pyridine (PS-b-P4VP) BCP (block copolymer) films were produced on surfaces. Selective infiltration of the BCP pattern with a gallium salt precursor solution and subsequent UV-ozone treatment produced a surface pattern of gallium oxide nanodots as evidenced by atomic force and scanning electron microscopy. A comprehensive study of the bioactivity was carried out, including antimicrobial and sterility testing, gallium ion release kinetics and the interaction with human marrow mesenchymal stomal cells and mononuclear cells. Comparing the data from osteogenesis media assay tests with osteoclastogenesis tests demonstrated the potential for the gallium oxide nanodot doping to improve osteointegration properties of a surface.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - Carolina Martins
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Mimma Maggio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Mick A Morris
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland; School of Chemistry, Trinity College Dublin, Dublin 2, Ireland.
| | - David A Hoey
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
37
|
Xie L, Feng E, Li S, Chai H, Chen J, Li L, Ge J. Comparisons of gene expression between peripheral blood mononuclear cells and bone tissue in osteoporosis. Medicine (Baltimore) 2023; 102:e33829. [PMID: 37335694 PMCID: PMC10194530 DOI: 10.1097/md.0000000000033829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2023] [Indexed: 06/21/2023] Open
Abstract
Osteoporosis (OP) is one of the major public health problems in the world. However, the biomarkers between the peripheral blood mononuclear cells (PBMs) and bone tissue for prognosis of OP have not been well characterized. This study aimed to explore the similarities and differences of the gene expression profiles between the PBMs and bone tissue and identify potential genes, transcription factors (TFs) and hub proteins involved in OP. The patients were enrolled as an experimental group, and healthy subjects served as normal controls. Human whole-genome expression chips were used to analyze gene expression profiles from PBMs and bone tissue. And the differentially expressed genes (DEGs) were subsequently studied using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The above DEGs were constructed into protein-protein interaction network. Finally, TF-DEGs regulation networks were constructed. Microarray analysis revealed that 226 DEGs were identified between OP and normal controls in the PBMs, while 2295 DEGs were identified in the bone tissue. And 13 common DEGs were obtained by comparing the 2 tissues. The Gene Ontology analysis indicated that DEGs in the PBMs were more involved in immune response, while DEGs in bone were more involved in renal response and urea transmembrane transport. And the Kyoto Encyclopedia of Genes and Genomes analysis indicated almost all of the pathways in the PBMs were overlapped with those in the bone tissue. Furthermore, protein-protein interaction network presented 6 hub proteins: PI3K1, APP, GNB5, FPR2, GNG13, and PLCG1. APP has been found to be associated with OP. Finally, 5 key TFs were identified by TF-DEGs regulation networks analysis (CREB1, RUNX1, STAT3, CREBBP, and GLI1) and were supposed to be associated with OP. This study enhanced our understanding of the pathogenesis of OP. PI3K1, GNB5, FPR2, GNG13, and PLCG1 might be the potential targets of OP.
Collapse
Affiliation(s)
- Lihua Xie
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Eryou Feng
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Shengqiang Li
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Hao Chai
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Juan Chen
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Li Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jirong Ge
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| |
Collapse
|
38
|
Ali A, Paladhi A, Hira SK, Singh BN, Pyare R. Bioactive ZnO-assisted 1393 glass scaffold promotes osteogenic differentiation: Some studies. J Biomed Mater Res B Appl Biomater 2023; 111:1059-1073. [PMID: 36583285 DOI: 10.1002/jbm.b.35214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
We developed ZnO-assisted 1393 bioactive glass-based scaffold with suitable mechanical properties through foam replica technique and observed to be suitable for bone tissue engineering application. However, the developed scaffolds' ability to facilitate cellular infiltration and integration was further assessed through in vivo studies in suitable animal model. Herein, the pure 1393 bioactive glass (BG) and ZnO-assisted 1393 bioactive glass- (ZnBGs; 1, 2, 4 mol% ZnO substitution for SiO2 in pure BG is named as Z1BG, Z2BG, Z3BG, respectively) based scaffolds were prepared through sol-gel route, followed by foam replica techniques and characterized by a series of in vitro and some in vivo tests. Different cell lines like normal mouse embryonic cells (NIH/3T3), mouse bone marrow stromal cells (mBMSc), peripheral blood mononuclear cells, that is, lymphocytes and monocytes (PBMC) and U2OS (carcinogenic human osteosarcoma cells) were used in determination and comparative analysis of the biological compatibility of the BG and ZnBGs. Also, the alkaline phosphatase (ALP) activity, and osteogenic gene expression by primer-specific osteopontin (OPN), osteocalcin (OCN), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were performed to study osteogenic differentiability of the stromal cells in different BGs. Moreover, radiological and histopathological tests were performed in bone defect model of Wister rats to evaluate the in vivo bone regeneration and healing. Interestingly, these studies demonstrate augmented biological compatibility, and superior osteogenic differentiation in ZnBGs, in particular Z3BG than the pure BG in most cases.
Collapse
Affiliation(s)
- Akher Ali
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Ram Pyare
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
39
|
Skrajnowska D, Idkowiak J, Szterk A, Ofiara K, Augustyniak K, Bobrowska-Korczak B. Effect of Nano- and Microzinc Supplementation on the Mineral Composition of Bones of Rats with Induced Mammary Gland Cancer. Foods 2023; 12:foods12061348. [PMID: 36981273 PMCID: PMC10047967 DOI: 10.3390/foods12061348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The aim of this study was to determine changes in the mineral composition of the bones of rats with chemically induced mammary gland cancer and to attempt to establish whether a specific diet modification involving the inclusion of zinc ions in two forms-nano and micro-will affect the mineral composition of the bones. METHODS Female Sprague-Dawley rats were used for the research. The animals were randomly assigned to three experimental groups. All animals were fed a standard diet (Labofeed H), and selected groups additionally received zinc nanoparticles or microparticles in the amount of 4.6 mg/mL. To induce mammary cancer, the animals were given 7,12-dimethyl-1,2-benz[a]anthracene. The content of Ag, As, B, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, and V was determined using ICP-MS, while that of Ca, Fe, K, Mg, Na, and Zn was determined using FAAS. RESULTS The use of a diet enriched with zinc nano- or microparticles significantly influenced the content of the elements tested. In the bones of rats fed a diet with zinc nanoparticles, changes were found in the content of Ca, Mg, Zn, Cd, U, V, and Tl, while in the case of the diet supplemented with zinc microparticles, there were differences in six elements-Ca, Mg, B, Cd, Ag, and Pb-compared to animals receiving an unsupplemented diet. CONCLUSIONS The content of elements in the bone tissue of rats in the experimental model indicates disturbances of mineral metabolism in the tissue at an early stage of mammary cancer.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Arkadiusz Szterk
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Karol Ofiara
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Kinga Augustyniak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
40
|
Prado-Prone G, Silva-Bermudez P, Rodil SE, Ganjkhani Y, Moradi AR, Méndez FJ, García-Macedo JA, Bazzar M, Almaguer-Flores A. ZnO nanoparticles-modified polycaprolactone-gelatin membranes for guided/bone tissue regeneration, antibacterial and osteogenic differentiation properties. Biomed Phys Eng Express 2023; 9. [PMID: 36821850 DOI: 10.1088/2057-1976/acbe47] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Periodontitis is a highly prevalent infectious disease that causes the progressive destruction of the periodontal supporting tissues. If left untreated, it can lead to tooth loss impairing oral function, aesthetics, and the patient's overall quality of life. Guided and Bone Tissue Regeneration (GTR/BTR) are surgical therapies based on the placement of a membrane that prevents epithelial growth into the defect, allowing the periodontal/bone cells (including stem cells) to regenerate or restore the affected tissues. The success of these therapies is commonly affected by the local bacterial colonization of the membrane area and its fast biodegradation, causing postoperative infections and a premature rupture of the membrane limiting the regeneration process. This study presents the antibacterial and osteogenic differentiation properties of polycaprolactone-gelatin (PCL-G) electrospun membranes modified with ZnO nanoparticles (ZnO-NPs). The membranes´ chemical composition, surface roughness, biodegradation, water wettability, and mechanical properties under simulated physiological conditions, were analyzed by the close relationship with their biological properties. The PCL-G membranes modified with 1, 3, and 6% w/w of ZnO-NPs showed a significant reduction in the planktonic and biofilm formation of four clinically relevant bacteria;A. actinomycetemcomitansserotype b, P. gingivalis,E. coli, andS. epidermidis. Additionally, the membranes presented appropriate mechanical properties and biodegradation rates to be potentially used in clinical treatments. Notably, the membranes modified with the lowest concentration of ZnO-NPs (1% w/w) stimulated the production of osteoblast markers and calcium deposits in human bone marrow-derived mesenchymal stem cells (BM-MSC) and were biocompatible to human osteoblasts cells (hFOB). These results suggest that the PCL-G membranes with 1% w/w of ZnO-NPs are high-potential candidates for GTR/BTR treatments, as they were the most effective in terms of better antibacterial effectiveness at a lower NPs-concentration while creating a favorable cellular microenvironment for bone growth.
Collapse
Affiliation(s)
- Gina Prado-Prone
- Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389, Ciudad de México, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México; Ciudad Universitaria No. 3000, C.P. 04360, Ciudad de México, Mexico
| | - Yasaman Ganjkhani
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.,Institut für Technische Optik, Universitat Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Franklin J Méndez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CICATA-Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología 1036 Z-1 P 2/2, Atlacholoaya 62790, Xochitepec, Mexico
| | - Jorge A García-Macedo
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México; Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Argelia Almaguer-Flores
- Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México. Circuito exterior s/n, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| |
Collapse
|
41
|
Ciosek Ż, Kot K, Rotter I. Iron, Zinc, Copper, Cadmium, Mercury, and Bone Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2197. [PMID: 36767564 PMCID: PMC9915283 DOI: 10.3390/ijerph20032197] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the current understanding on the effects of five metals on bone tissue, namely iron, zinc, copper, cadmium, and mercury. Iron, zinc, and copper contribute significantly to human and animal metabolism when present in sufficient amounts, but their excess or shortage increases the risk of developing bone disorders. In contrast, cadmium and mercury serve no physiological purpose and their long-term accumulation damages the osteoarticular system. We discuss the methods of action and interactions between the discussed elements as well as the concentrations of each element in distinct bone structures.
Collapse
Affiliation(s)
- Żaneta Ciosek
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Rotter
- Chair and Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
42
|
ZDHHC16 restrains osteogenic differentiation of bone marrow mesenchymal stem cells by inhibiting phosphorylation of CREB. Heliyon 2023; 9:e12788. [PMID: 36685387 PMCID: PMC9852670 DOI: 10.1016/j.heliyon.2022.e12788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Aims The osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs) plays a critical role in fracture healing. Osteogenic differentiation is regulated by a variety of post-translational modifications, but the function of protein palmitoylation in osteogenesis remains largely unknown. Methods Osteogenic differentiation induction of hBMSCs was used in this study. RT‒qPCR and immunoblotting assays (WB) were used to test marker genes of osteogenic induction. Alkaline phosphatase (ALP) activity, ALP staining and Alizarin red staining were performed to evaluate osteogenesis of hBMSCs. Signal finder pathway reporter array, co-immunoprecipitation and WB were applied to elucidate the molecular mechanism. A mouse fracture model was used to verify the in vivo function of the ZDHHC inhibitor. Key findings We revealed that palmitic acid inhibited Runx2 mRNA expression in hBMSCs and identified ZDHHC16 as a potential target palmitoyl acyltransferase. In addition, ZDHHC16 decreased during osteogenic induction. Next, we confirmed the inhibitory function of ZDHHC16 by its knockdown or overexpression during osteogenesis of hBMSCs. Moreover, we illustrated that ZDHHC16 inhibited the phosphorylation of CREB, thus inhibiting osteogenesis of hBMSCs by enhancing the palmitoylation of CREB. With a mouse femur fracture model, we found that 2-BP, a general inhibitor of ZDHHCs, promoted fracture healing in vivo. Thus, we clarified the inhibitory function of ZDHHC16 during osteogenic differentiation. Significance Collectively, these findings highlight the inhibitory function of ZDHHC16 in osteogenesis as a potential therapy method for fracture healing.
Collapse
|
43
|
Awale G, Kan HM, Laurencin CT, Lo KWH. Molecular Mechanisms Underlying the Short-Term Intervention of Forskolin-Mediated Bone Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022; 12:biom12060785. [PMID: 35740910 PMCID: PMC9220840 DOI: 10.3390/biom12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Zinc is essential for human growth and development. As a trace nutrient, zinc plays important roles in numerous signal transduction pathways involved in distinct physiologic or pathologic processes. Protein phosphorylation is a posttranslational modification which regulates protein activity, degradation, and interaction with other molecules. Protein kinases (PKs) and phosphatases (PPs), with their effects of adding phosphate to or removing phosphate from certain substrates, are master regulators in controlling the phosphorylation of proteins. In this review, we summarize the disturbance of zinc homeostasis and role of zinc disturbance in regulating protein kinases and protein phosphatases in neurodegenerative diseases, with the focus of that in Alzheimer’s disease, providing a new perspective for understanding the mechanisms of these neurologic diseases.
Collapse
|
45
|
Pieles O, Reichert TE, Morsczeck C. Protein kinase A is activated during bone morphogenetic protein 2-induced osteogenic differentiation of dental follicle stem cells via endogenous parathyroid hormone-related protein. Arch Oral Biol 2022; 138:105409. [PMID: 35338829 DOI: 10.1016/j.archoralbio.2022.105409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the mechanisms of how protein kinase A (PKA) is activated during bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation in dental follicle stem cells. DESIGN Human dental follicle stem cells were cultured and treated with a BMP2-containing osteogenic differentiation medium or differentiation medium without BMP2. Specific siRNAs and substances/proteins were used to modulate pathways. PKA activity and activity of alkaline phosphatase were determined. Expression of targets was measured by Western Blots and reverse transcription-quantitative polymerase chain reaction, while protein interactions were investigated by immunoprecipitation. Immunofluorescence staining was used for subcellular target localization. RESULTS PKA activity is stimulated after osteogenic induction by BMP2. Differentiation medium without BMP2 strongly induces BMP2 gene expression, which correlates with downstream target expression. Elevation of cAMP levels does not affect alkaline phosphatase activity and PKA does not directly interact with Smad 4. However, PKA activation requires expression of parathyroid hormone-related protein (PTHrP), which is stimulated after BMP2-induced differentiation. Furthermore, neither supplementation with PTHrP nor with the receptor antagonist parathyroid hormone (7-34) affects PKA activity. Thus, endogenous PTHrP expression is required for PKA activation and immunofluorescence staining shows that PTHrP is mainly located in the nucleus of dental follicle stem cells. Beyond, knockdown of PKA stimulates the BMP2 signaling pathway and down-stream expression of PTHrP. CONCLUSIONS BMP2-induced osteogenic differentiation activates PKA in dental follicle stem cells via endogenous expression of PTHrP. Additionally, PKA inhibits BMP2 signaling and expression of PTHrP in a negative feedback loop.
Collapse
Affiliation(s)
- Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
46
|
Drug repositioning of polaprezinc for bone fracture healing. Commun Biol 2022; 5:462. [PMID: 35577977 PMCID: PMC9110432 DOI: 10.1038/s42003-022-03424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Fractures and related complications are a common challenge in the field of skeletal tissue engineering. Vitamin D and calcium are the only broadly available medications for fracture healing, while zinc has been recognized as a nutritional supplement for healthy bones. Here, we aimed to use polaprezinc, an anti-ulcer drug and a chelate form of zinc and L-carnosine, as a supplement for fracture healing. Polaprezinc induced upregulation of osteogenesis-related genes and enhanced the osteogenic potential of human bone marrow-derived mesenchymal stem cells and osteoclast differentiation potential of mouse bone marrow-derived monocytes. In mouse experimental models with bone fractures, oral administration of polaprezinc accelerated fracture healing and maintained a high number of both osteoblasts and osteoclasts in the fracture areas. Collectively, polaprezinc promotes the fracture healing process efficiently by enhancing the activity of both osteoblasts and osteoclasts. Therefore, we suggest that drug repositioning of polaprezinc would be helpful for patients with fractures. Polaprezinc promoted both osteoblast and osteoclast differentiation and altered YAP protein expression in vitro, and animals treated with polaprezinc showed greater bone formation in their fracture calluses after 21 days.
Collapse
|
47
|
Liang N, Ren N, Feng Z, Sun Z, Dong M, Wang W, Liu F, Sun C, Zhou W, Xing Z, Wang J, Liu C, Liu H. Biomimetic Metal-Organic Frameworks as Targeted Vehicles to Enhance Osteogenesis. Adv Healthc Mater 2022; 11:e2102821. [PMID: 35182414 DOI: 10.1002/adhm.202102821] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Although engineered nanoparticles loaded with specific growth factors are used to regulate differentiation of stem cells, the low loading efficiency and biocompatibility are still great challenges in tissue repair. A nature-inspired biomimetic delivery system with targeted functions is attractive for enhancing cell activity and controlling cell fate. Herein, a stem cell membrane (SCM)-wrapped dexamethasone (DEX)-loaded zeolitic imidazolate framework-8 (ZIF-8) is constructed, which integrates the synthetic nanomaterials with native plasma membrane, to achieve efficient DEX delivery and DEX-mediated bone repair. The DEX@ZIF-8-SCM enables high DEX loading capacity, modulates the sustained release, and facilitates the specific uptake of mesenchymal stem cells (MSCs), owing to the porous property of ZIF-8 and the innate targeting capability of SCM. The endocytosed DEX@ZIF-8-SCM shows high cytocompatibility and greatly enhances the osteogenic differentiation of MSCs. Furthermore, RNA-sequencing data reveal that the phosphoinositide 3-kinase (PI3K)-Akt signaling pathways are activated and dominantly involved in the accelerated osteogenesis. In the bone defect model, the administrated DEX@ZIF-8-SCM exerts excellent biocompatibility and effectively promotes bone regeneration. Overall, the SCM-derived biomimetic nanoplatform achieves targeted delivery, excellent biosafety, and enhanced osteogenic differentiation and bone repair, which provides a new and valid strategy for treating various tissue injuries.
Collapse
Affiliation(s)
- Na Liang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery Qilu Hospital of Shandong University Institute of Stomatology Shandong University Jinan 250012 P. R. China
| | - Mengwei Dong
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Wenhan Wang
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Zhiqing Xing
- Ji'nan Pantheum Biological Technology Limited Company Jinan 250100 P. R. China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery Qilu Hospital of Shandong University Institute of Stomatology Shandong University Jinan 250012 P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 P. R. China
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| |
Collapse
|
48
|
Li H, Li M, Ran X, Cui J, Wei F, Yi G, Chen W, Luo X, Chen Z. The Role of Zinc in Bone Mesenchymal Stem Cell Differentiation. Cell Reprogram 2022; 24:80-94. [PMID: 35172118 DOI: 10.1089/cell.2021.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential trace element for bone growth and bone homeostasis in the human body. Bone mesenchymal stem cells (BMSCs) are multipotent progenitors existing in the bone marrow stroma with the capability of differentiating along multiple lineage pathways. Zinc plays a paramount role in BMSCs, which can be spurred differentiating into osteoblasts, chondrocytes, or adipocytes, and modulates the formation and activity of osteoclasts. The expression of related genes also changed during the differentiation of various cell phenotypes. Based on the important role of zinc in BMSC differentiation, using zinc as a therapeutic approach for bone remodeling will be a promising method. This review explores the role of zinc ion in the differentiation of BMSCs into various cell phenotypes and outlines the existing research on their molecular mechanism.
Collapse
Affiliation(s)
- Huiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Muzhe Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xun Ran
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fu Wei
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuling Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
49
|
Ressler A, Antunović M, Teruel-Biosca L, Ferrer GG, Babić S, Urlić I, Ivanković M, Ivanković H. Osteogenic differentiation of human mesenchymal stem cells on substituted calcium phosphate/chitosan composite scaffold. Carbohydr Polym 2022; 277:118883. [PMID: 34893286 DOI: 10.1016/j.carbpol.2021.118883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Ionic substitutions are a promising strategy to enhance the biological performance of calcium phosphates (CaP) and composite materials for bone tissue engineering applications. However, systematic studies have not been performed on multi-substituted organic/inorganic scaffolds. In this work, highly porous composite scaffolds based on CaPs substituted with Sr2+, Mg2+, Zn2+ and SeO32- ions, and chitosan have been prepared by freeze-gelation technique. The scaffolds have shown highly porous structure, with very well interconnected pores and homogeneously dispersed CaPs, and high stability during 28 days in the degradation medium. Osteogenic potential of human mesenchymal stem cells seeded on scaffolds has been determined by histological, immunohistochemical and RT-qPCR analysis of cultured cells in static and dynamic conditions. Results indicated that ionic substitutions have a beneficial effect on cells and tissues. The scaffolds with multi-substituted CaPs have shown increased expression of osteogenesis related markers and increased phosphate deposits, compared to the scaffolds with non-substituted CaPs.
Collapse
Affiliation(s)
- Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia.
| | - Maja Antunović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia
| | - Laura Teruel-Biosca
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - Slaven Babić
- UHC "Sestre Milosrdnice", Department for Traumatology, Draškovićeva 19, 10 000 Zagreb, Croatia
| | - Inga Urlić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10 000, Croatia.
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia.
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10 000 Zagreb, Croatia.
| |
Collapse
|
50
|
BMS-470539 Attenuates Oxidative Stress and Neuronal Apoptosis via MC1R/cAMP/PKA/Nurr1 Signaling Pathway in a Neonatal Hypoxic-Ischemic Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4054938. [PMID: 35140838 PMCID: PMC8820941 DOI: 10.1155/2022/4054938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022]
Abstract
Neuronal apoptosis induced by oxidative stress plays an important role in the pathogenesis and progression of hypoxic-ischemic encephalopathy (HIE). Previous studies reported that activation of melanocortin-1 receptor (MC1R) exerts antioxidative stress, antiapoptotic, and neuroprotective effects in various neurological diseases. However, whether MC1R activation can attenuate oxidative stress and neuronal apoptosis after hypoxic-ischemic- (HI-) induced brain injury remains unknown. Herein, we have investigated the role of MC1R activation with BMS-470539 in attenuating oxidative stress and neuronal apoptosis induced by HI and the underlying mechanisms. 159 ten-day-old unsexed Sprague-Dawley rat pups were used. HI was induced by right common carotid artery ligation followed by 2.5 h of hypoxia. The novel-selective MC1R agonist BMS-470539 was administered intranasally at 1 h after HI induction. MC1R CRISPR KO plasmid and Nurr1 CRISPR KO plasmid were administered intracerebroventricularly at 48 h before HI induction. Percent brain infarct area, short-term neurobehavioral tests, Western blot, immunofluorescence staining, Fluoro-Jade C staining, and MitoSox Staining were performed. We found that the expression of MC1R and Nurr1 increased, peaking at 48 h post-HI. MC1R and Nurr1 were expressed on neurons at 48 h post-HI. BMS-470539 administration significantly attenuated short-term neurological deficits and infarct area, accompanied by a reduction in cleaved caspase-3-positive neurons at 48 h post-HI. Moreover, BMS-470539 administration significantly upregulated the expression of MC1R, cAMP, p-PKA, Nurr1, HO-1, and Bcl-2. However, it downregulated the expression of 4-HNE and Bax, as well as reduced FJC-positive cells, MitoSox-positive cells, and 8-OHdG-positive cells at 48 h post-HI. MC1R CRISPR and Nurr1 CRISPR abolished the antioxidative stress, antiapoptotic, and neuroprotective effects of BMS-470539. In conclusion, our findings demonstrated that BMS-470539 administration attenuated oxidative stress and neuronal apoptosis and improved neurological deficits in a neonatal HI rat model, partially via the MC1R/cAMP/PKA/Nurr1 signaling pathway. Early administration of BMS-470539 may be a novel therapeutic strategy for infants with HIE.
Collapse
|