1
|
Malhotra H, Sharma P, Kamal MA, Kaushik P, Rani N. Concise Review on Scientific Approaches to Burns and Scars. Curr Drug Saf 2024; 19:191-199. [PMID: 37165593 DOI: 10.2174/1574886318666230509143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
Burns are large open surgical lesions bathed in virulent pus that result in rupturing of the cutaneous membrane, which has serious consequences such as an extensive loss of proteins, and body fluids, increased chances of infections, and sometimes death. These can be classified based on their penetration levels, i.e., first-degree burns penetrating the epidermis, second-degree burns including both epidermis and dermis, third-degree burns to both layers including the hair follicular cells, sweat glands and various core tissues, fourth-degree burns to adipose tissue, fifth stage burns to muscles, and sixth stage burns to bones. Wound healing/wound repair is a very perplexing process in which the tissues of the affected/burnt area repairs themselves to attain their original form and functionality but develop a scar at the wound site. This article mainly focuses on the algorithms to differentiate various degrees of burns, general first aid approaches to burns and scars, the rationale of treatment of burns, basic mechanisms highlighting the healing processes in humans in terms of free from scar formation as well as with scar formation at their elementary levels including cellular as well as biochemical levels, utility, and progression of pre-clinical data to humans and finally approaches for the improvement of scar formation in man.
Collapse
Affiliation(s)
- Hitesh Malhotra
- Department of Pharmaceutical Science, Guru Gobind Singh College of Pharmacy, Yamuna Nagar (Haryana), India
| | - Prerna Sharma
- Department of Pharmaceutical Science, Guru Gobind Singh College of Pharmacy, Yamuna Nagar (Haryana), India
| | - Mohammad Amjad Kamal
- Institutes for Systems, Chengdu, Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- 4 Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee place, Hebersham, NSW 2770, Australia
| | - Peeyush Kaushik
- Department of Pharmaceutical Science, Guru Gobind Singh College of Pharmacy, Yamuna Nagar (Haryana), India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
2
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
3
|
Short WD, Wang X, Keswani SG. The Role of T Lymphocytes in Cutaneous Scarring. Adv Wound Care (New Rochelle) 2022; 11:121-131. [PMID: 34238032 PMCID: PMC8742284 DOI: 10.1089/wound.2021.0059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023] Open
Abstract
Significance: Cutaneous scarring affects millions of patients worldwide and results in significant financial and psychosocial burdens. Given the immune system's intricate involvement in the initiation and progression of wound healing, it is no surprise that the scarring outcome can be affected by the actions of various immune cells and the cytokines and growth factors they produce. Understanding the role of T cells in regulating immune responses and directing the action of wound mesenchymal cells is essential to developing antifibrotic therapies to reduce the burden of scarring. Recent Advances: As the immune system is intimately involved in wound healing, much work has examined the impact of T cells and their cytokines on the final wound outcome. New innovative tools for studying T cells have resulted in more sophisticated immunophenotyping capabilities and the ability to examine effects of individual cytokines in the wound environment. Critical Issues: Despite continued advances in the study of specific immune cells and their effects on dermal fibrosis, minimal progress has been made to modulate immune responses to result in improved wound cosmesis. Future Directions: The actions of T cells represent potential pharmacologic targets that could lead to novel bioengineered or immunoengineered therapies to improve the lives of people with cutaneous scarring.
Collapse
Affiliation(s)
- Walker D. Short
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas, USA
| | - Xinyi Wang
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas, USA
| | - Sundeep G. Keswani
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
4
|
Zhang S, Gao J, Liu S, Yu L, Zhang W, Liang Y, Wang H. Transcription Coactivator BCL3 Acts as a Potential Regulator of Lipid Metabolism Through the Effects on Inflammation. J Inflamm Res 2021; 14:4915-4926. [PMID: 34588797 PMCID: PMC8476110 DOI: 10.2147/jir.s327858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose Transcriptional coactivator B-cell lymphoma-3 (BCL3) is a member of the IκB family of NF-κB inhibitors and regulates the activity of the NF-κB pathway. However, the relationship between BCL3 and lipid metabolism remains unclear. The present study investigates the effects of BCL3 in immune and metabolism in obese mice. Animals and Methods Construct Bcl3-KO mice through CRISPR/Cas9 technology. Obesity model was induced in Bcl3-KO mice by feeding a high-fat diet for 16 weeks, and some metabolic-related indicators were analysed. Results The results showed that the KO mice gained significantly less body weight on a high fat diet without a change in food intake. There was significant improvement in hepatic steatosis and adipose tissue hypertrophy in KO mice. The expression of SREBP1 and its downstream fatty acid synthetase FAS and ACC were down-regulated in KO mice, and the inflammation in adipose tissue and liver was further reduced. Conclusion These results suggest that BCL3 may be a novel factor in regulating lipid metabolism in the development of obesity.
Collapse
Affiliation(s)
- Shuo Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Jingtao Gao
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Shibo Liu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Lu Yu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Wen Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| |
Collapse
|
5
|
Machcinska S, Kopcewicz M, Bukowska J, Walendzik K, Gawronska-Kozak B. Impairment of the Hif-1α regulatory pathway in Foxn1-deficient (Foxn1 -/- ) mice affects the skin wound healing process. FASEB J 2021; 35:e21289. [PMID: 33475195 DOI: 10.1096/fj.202001907r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia and hypoxia-regulated factors (eg, hypoxia-inducible factor-1α [Hif-1α], factor inhibiting Hif-1α [Fih-1], thioredoxin-1 [Trx-1], aryl hydrocarbon receptor nuclear translocator 2 [Arnt-2]) have essential roles in skin wound healing. Using Foxn1-/- mice that can heal skin injuries in a unique scarless manner, we investigated the interaction between Foxn1 and hypoxia-regulated factors. The Foxn1-/- mice displayed impairments in the regulation of Hif-1α, Trx-1, and Fih-1 but not Arnt-2 during the healing process. An analysis of wounded skin showed that the skin of the Foxn1-/- mice healed in a scarless manner, displaying rapid re-epithelialization and an increase in transforming growth factor β (Tgfβ-3) and collagen III expression. An in vitro analysis revealed that Foxn1 overexpression in keratinocytes isolated from the skin of the Foxn1-/- mice led to reduced Hif-1α expression in normoxic but not hypoxic cultures and inhibited Fih-1 expression exclusively under hypoxic conditions. These data indicate that in the skin, Foxn1 affects hypoxia-regulated factors that control the wound healing process and suggest that under normoxic conditions, Foxn1 is a limiting factor for Hif-1α.
Collapse
Affiliation(s)
- Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Effect of Pig-Adipose-Derived Stem Cells' Conditioned Media on Skin Wound-Healing Characteristics In Vitro. Int J Mol Sci 2021; 22:ijms22115469. [PMID: 34067360 PMCID: PMC8196863 DOI: 10.3390/ijms22115469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O2) on the secretome composition of pig ASCs (pASCs) and explores the effect of pASCs’ conditioned media (CM) on skin cell functions in vitro and the expression of markers attributed to wound healing. Exposure of pASCs to hypoxia increased levels of vascular endothelial growth factor (VEGF) in CM-Hyp compared to CM collected from the cells cultured in normoxia (CM-Nor). CM-Hyp promoted the migratory ability of pig keratinocytes (pKERs) and delayed migration of pig dermal fibroblasts (pDFs). Exposure of pKERs to either CM-Nor or CM-Hyp decreased the levels of pro-fibrotic indicators WNT10A and WNT11. Furthermore, CM-Hyp enhanced the expression of KRT14, the marker of the basal epidermis layer. In contrast, CM-Nor showed a stronger effect on pDFs manifested by increases in TGFB1, COL1A1, COL3A1, and FN1 mRNA expression. The formation of three-dimensional endothelial cell networks was improved in the presence of CM-Hyp. Overall, our results demonstrate that the paracrine activity of pASCs affects skin cells, and this property might be used to modulate wound healing.
Collapse
|
7
|
Bukowska J, Walendzik K, Kopcewicz M, Cierniak P, Gawronska-Kozak B. Wnt signaling and the transcription factor Foxn1 contribute to cutaneous wound repair in mice. Connect Tissue Res 2021; 62:238-248. [PMID: 31690137 DOI: 10.1080/03008207.2019.1688314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: The transcription factor Foxn1 is a regulator of scar-ended cutaneous wound healing in mice. However, the link between Foxn1 and Wnt signaling has not been explored in the context of cutaneous repair. Here, we investigate the effects of β-catenin-dependent and -independent Wnt signaling represented by Wnt10a and Wnt11, respectively, in healing of full-thickness cutaneous wounds in C57BL/6 mice. Material and Methods: Quantitative polymerase chain reaction, western blot, and immunostaining were performed to assess the spatial and temporal distribution of Wnt10a, Wnt11, and β-catenin in skin during wound healing. A co-culture system consisting of keratinocytes transfected with an adenoviral vector carrying Foxn1-GFP and dermal fibroblasts (DFs) was employed to determine the influence of epidermal signals on the capacity of DFs to produce extracellular matrix (ECM) proteins in vitro. The levels of types I and III collagen in conditioned media from DFs cultures were examined via enzyme-linked immunosorbent assay. Results: The expression of Wnt10a, Wnt11, and β-catenin increased at post-wounding days 14 and 21 when tissue remodeling occurred. Foxn1::Egfp transgenic mice experiments demonstrated that Wnts were abundant in the epidermis adjacent to the wound margin and to a lesser extent in the dermis. The Wnt10a signal colocalized with Foxn1-eGFP in the epithelial tongue and neo-epidermis during the initial stage of wound healing. Foxn1 overexpression in keratinocytes affected DFs function related to collagen synthesis. Conclusions: Wnt ligands contribute to cutaneous wound repair, predominantly by engagement in ECM maturation. The data indicates a possible relationship between Foxn1 and Wnts in post-traumatic skin tissue.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Patrycja Cierniak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn, Poland
| |
Collapse
|
8
|
Gaire J, Varholick JA, Rana S, Sunshine MD, Doré S, Barbazuk WB, Fuller DD, Maden M, Simmons CS. Spiny mouse (Acomys): an emerging research organism for regenerative medicine with applications beyond the skin. NPJ Regen Med 2021; 6:1. [PMID: 33397999 PMCID: PMC7782534 DOI: 10.1038/s41536-020-00111-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/13/2020] [Indexed: 12/01/2022] Open
Abstract
The spiny mouse (Acomys species) has emerged as an exciting research organism due to its remarkable ability to undergo scarless regeneration of skin wounds and ear punches. Excitingly, Acomys species demonstrate scar-free healing in a wide-range of tissues beyond the skin. In this perspective article, we discuss published findings from a variety of tissues to highlight how this emerging research organism could shed light on numerous clinically relevant human diseases. We also discuss the challenges of working with this emerging research organism and suggest strategies for future Acomys-inspired research.
Collapse
Affiliation(s)
- Janak Gaire
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 32611, USA
| | - Justin A Varholick
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32611, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, 32611, USA
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, 32611, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, 32611, USA
| | - W Brad Barbazuk
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, 32611, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, 32611, USA.,McKnight Brain Institute and Center for Breathing Research and Therapeutics, University of Florida, Gainesville, 32611, USA
| | - Malcolm Maden
- Department of Biology and UF Genetics Institute, University of Florida, Gainesville, 32611, USA
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, 32611, USA. .,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, 32611, USA.
| |
Collapse
|
9
|
Sass P, Sosnowski P, Podolak-Popinigis J, Górnikiewicz B, Kamińska J, Deptuła M, Nowicka E, Wardowska A, Ruczyński J, Rekowski P, Rogujski P, Filipowicz N, Mieczkowska A, Peszyńska-Sularz G, Janus Ł, Skowron P, Czupryn A, Mucha P, Piotrowski A, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Epigenetic inhibitor zebularine activates ear pinna wound closure in the mouse. EBioMedicine 2019; 46:317-329. [PMID: 31303499 PMCID: PMC6710911 DOI: 10.1016/j.ebiom.2019.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ± 9.4% in zebularine-treated and by 43.6 ± 15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Bartosz Górnikiewicz
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jarosław Ruczyński
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rekowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Natalia Filipowicz
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Alina Mieczkowska
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Research and Services Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
10
|
Foxn1 in Skin Development, Homeostasis and Wound Healing. Int J Mol Sci 2018; 19:ijms19071956. [PMID: 29973508 PMCID: PMC6073674 DOI: 10.3390/ijms19071956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Intensive research effort has focused on cellular and molecular mechanisms that regulate skin biology, including the phenomenon of scar-free skin healing during foetal life. Transcription factors are the key molecules that tune gene expression and either promote or suppress gene transcription. The epidermis is the source of transcription factors that regulate many functions of epidermal cells such as proliferation, differentiation, apoptosis, and migration. Furthermore, the activation of epidermal transcription factors also causes changes in the dermal compartment of the skin. This review focuses on the transcription factor Foxn1 and its role in skin biology. The regulatory function of Foxn1 in the skin relates to physiological (development and homeostasis) and pathological (skin wound healing) conditions. In particular, the pivotal role of Foxn1 in skin development and the acquisition of the adult skin phenotype, which coincides with losing the ability of scar-free healing, is discussed. Thus, genetic manipulations with Foxn1 expression, specifically those introducing conditional Foxn1 silencing in a Foxn1+/+ organism or its knock-in in a Foxn1−/− model, may provide future perspectives for regenerative medicine.
Collapse
|
11
|
Le PT, Bishop KA, Maridas DE, Motyl KJ, Brooks DJ, Nagano K, Baron R, Bouxsein ML, Rosen CJ. Spontaneous mutation of Dock7 results in lower trabecular bone mass and impaired periosteal expansion in aged female Misty mice. Bone 2017; 105:103-114. [PMID: 28821457 PMCID: PMC5693233 DOI: 10.1016/j.bone.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/08/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
Abstract
Misty mice (m/m) have a loss of function mutation in Dock7 gene, a guanine nucleotide exchange factor, resulting in low bone mineral density, uncoupled bone remodeling and reduced bone formation. Dock7 has been identified as a modulator of osteoblast number and in vitro osteogenic differentiation in calvarial osteoblast culture. In addition, m/m exhibit reduced preformed brown adipose tissue innervation and temperature as well as compensatory increase in beige adipocyte markers. While the low bone mineral density phenotype is in part due to higher sympathetic nervous system (SNS) drive in young mice, it is unclear what effect aging would have in mice homozygous for the mutation in the Dock7 gene. We hypothesized that age-related trabecular bone loss and periosteal envelope expansion would be altered in m/m. To test this hypothesis, we comprehensively characterized the skeletal phenotype of m/m at 16, 32, 52, and 78wks of age. When compared to age-matched wild-type control mice (+/+), m/m had lower areal bone mineral density (aBMD) and areal bone mineral content (aBMC). Similarly, both femoral and vertebral BV/TV, Tb.N, and Conn.D were decreased in m/m while there was also an increase in Tb.Sp. As low bone mineral density and decreased trabecular bone were already present at 16wks of age in m/m and persisted throughout life, changes in age-related trabecular bone loss were not observed highlighting the role of Dock7 in controlling trabecular bone acquisition or bone loss prior to 16wks of age. Cortical thickness was also lower in the m/m across all ages. Periosteal and endosteal circumferences were higher in m/m compared to +/+ at 16wks. However, endosteal and periosteal expansion were attenuated in m/m, resulting in m/m having lower periosteal and endosteal circumferences by 78wks of age compared to +/+, highlighting the critical role of Dock7 in appositional bone expansion. Histomorphometry revealed that osteoblasts were nearly undetectable in m/m and marrow adipocytes were elevated 3.5 fold over +/+ (p=0.014). Consistent with reduced bone formation, osteoblast gene expression of Alp, Col1a1, Runx-2, Sp7, and Bglap was significantly decreased in m/m whole bone. Furthermore, markers of osteoclasts were either unchanged or suppressed. Bone marrow stromal cell migration and motility were inhibited in culture and changes in senescence markers suggest that osteoblast function may also be inhibited with loss of Dock7 expression in m/m. Finally, increased Oil Red O staining in m/m ear mesenchymal stem cells during adipogenesis highlights a potential shift of cells from the osteogenic to adipogenic lineages. In summary, loss of Dock7 in the aging m/m resulted in an impairment of periosteal and endocortical envelope expansion, but did not alter age-related trabecular bone loss. These studies establish Dock7 as a critical regulator of both cortical and trabecular bone mass, and demonstrate for the first time a novel role of Dock7 in modulating compensatory changes in the periosteum with aging.
Collapse
Affiliation(s)
- Phuong T Le
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States
| | - Kathleen A Bishop
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States.
| | - David E Maridas
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME 04469, United States
| | - Katherine J Motyl
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States
| | - Daniel J Brooks
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Kenichi Nagano
- Harvard School of Dental Medicine, Boston, MA 02215, United States
| | - Roland Baron
- Harvard School of Dental Medicine, Boston, MA 02215, United States; Harvard School of Medicine, Boston, MA 02215, United States
| | - Mary L Bouxsein
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, United States; University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME 04469, United States
| |
Collapse
|
12
|
Maden M. Of Salamanders and Spiny Mice: Common Features of Regeneration and Stem Cells. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
FOXN1 is a prodifferentiation transcription factor in the skin epithelium. Recently, it has also emerged as an important player in controlling the skin wound healing process, as it actively participates in reepithelialization and is thought to be responsible for scar formation. FOXN1 positivity is also a feature of pigmented keratinocytes, including nevi, and FOXN1 is an attribute of benign epithelial tumors. The lack of FOXN1 favors the skin regeneration process displayed by nude mice, pointing to FOXN1 as a switch between regeneration and reparative processes. The stem cell niche provides a functional source of cells after the loss of tissue following wounding. The involvement of prodifferentiation factors in the regulation of this pool of stem cells is suggested. However, the exact mechanism is still under question, and we speculate that the FOXN1 transcription factor is involved in this process. This review analyzes the pleiotropic effects of FOXN1 in the skin, its function in the tumorigenesis process, and its potential role in depletion of the stem cell niche after injury, as well as its suggested mechanistic role, acting in a cell-autonomous and a non-cell-autonomous manner during skin self-renewal.
Collapse
|
14
|
Gawronska-Kozak B, Grabowska A, Kur-Piotrowska A, Kopcewicz M. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition. PLoS One 2016; 11:e0150635. [PMID: 26938103 PMCID: PMC4777299 DOI: 10.1371/journal.pone.0150635] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022] Open
Abstract
Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Grabowska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Anna Kur-Piotrowska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
15
|
Leung TH, Snyder ER, Liu Y, Wang J, Kim SK. A cellular, molecular, and pharmacological basis for appendage regeneration in mice. Genes Dev 2016; 29:2097-107. [PMID: 26494786 PMCID: PMC4617975 DOI: 10.1101/gad.267724.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Thomas H Leung
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emily R Snyder
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Medicine, Oncology Division, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
16
|
Gawronska-Kozak B. Preparation and differentiation of mesenchymal stem cells from ears of adult mice. Methods Enzymol 2014; 538:1-13. [PMID: 24529430 DOI: 10.1016/b978-0-12-800280-3.00001-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
External murine ears collected postmortem, as well as ear punches obtained during standard marking of live animals, are the source of mesenchymal stem cells, termed ear mesenchymal stem cells (EMSC). These cells provide an easily obtainable, primary culture model system for the study of lineage commitment and differentiation. EMSC are capable of differentiating into adipocytes, osteocytes, chondrocytes, and contractile myocytes. Facile adipogenic differentiation of EMSC provides an excellent model for the study of adipogenesis. In this chapter, methods for isolation, culture, and differentiation of EMSC are described.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
17
|
Gawronska-Kozak B, Grabowska A, Kopcewicz M, Kur A. Animal models of skin regeneration. Reprod Biol 2014; 14:61-7. [DOI: 10.1016/j.repbio.2014.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
|
18
|
Gawronska-Kozak B, Kirk-Ballard H. Cyclosporin A reduces matrix metalloproteinases and collagen expression in dermal fibroblasts from regenerative FOXN1 deficient (nude) mice. FIBROGENESIS & TISSUE REPAIR 2013; 6:7. [PMID: 23547542 PMCID: PMC3637475 DOI: 10.1186/1755-1536-6-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/11/2013] [Indexed: 12/02/2022]
Abstract
Background Cyclosporin A (CsA), an immunosuppressive agent modifies the wound healing process through an influence on extracellular matrix metabolism. We have compared the effects of CsA on dermal fibroblasts from nude (FOXN1 deficient) mice, a genetic model of skin scarless healing, and from control (C57BL/6 J (B6) mice to evaluate metabolic pathways that appear to have important roles in the process of scarless healing/regeneration. Results High levels of matrix metalloproteinases (MMPs) and collagen III expression in dermal fibroblasts from nude (regenerative) mice were down-regulated by CsA treatment to the levels observed in dermal fibroblasts from B6 (non-regenerative) mice. In contrast, dermal fibroblasts from control mice respond to CsA treatment with a minor reduction of Mmps mRNA and 2.5-fold increase expression of collagen I mRNA. An in vitro migratory assay revealed that CsA treatment profoundly delayed the migratory behavior of dermal fibroblasts from both nude and control mice. Conclusion The data suggest that by alternation of the accumulation of extracellular matrix components CsA treatment stimulates the transition from a scarless to a scar healing.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
19
|
Abstract
The Murphy Roths Large (MRL/MpJ) mice provide unique insights into wound repair and regeneration. These mice and the closely related MRL/MpJ-Faslpr /J and Large strains heal wounds made in multiple tissues without production of a fibrotic scar. The precise mechanism of this remarkable ability still eludes researchers, but some data has been generated and insights are being revealed. For example, MRL cells reepithelialize over dermal wound sites faster than cells of other mouse strains. This allows a blastema to develop beneath the protective layer. The MRL mice also have an altered basal immune system and an altered immune response to injury. In addition, MRL mice have differences in their tissue resident progenitor cells and certain cell cycle regulatory proteins. The difficulty often lies in separating the causative differences from the corollary differences. Remarkably, not every tissue in these mice heals scarlessly, and the specific type of wound and priming affect regeneration ability as well. The MRL/MpJ, MRL/MpJ-Faslpr /J, and Large mouse strains are also being investigated for their autoimmune characteristic. Whether the two phenotypes of regeneration and autoimmunity are related remains an enigma.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, Center for Cardiovascular Research, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
20
|
Abstract
The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.
Collapse
|
21
|
Gawronska-Kozak B. Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biol 2011; 30:290-300. [PMID: 21539913 DOI: 10.1016/j.matbio.2011.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 12/19/2022]
Abstract
Similar to mammalian fetuses FOXN1 deficient (nude) mice are able to restore the structure and integrity of injured skin in a scarless healing process by mechanisms independent of the genetic background. Matrix metalloproteinases (MMPs) are required for regular skin wound healing and the distinctive pattern of their expression has been implicated to promote scarless healing. In this study, we analyzed the temporal and spatial expression patterns of these molecules during the incisional skin wounds in adult nude mice. Macroscopic and histological analyses of skin wounds revealed an accelerated wound healing process, minimal granulation tissue formation and markedly diminished scarring in nude mice. Quantitative RT-PCR (Mmp-2, -3, -8, -9, -10, -12, -13, -14 and Timp-1, -2, -3), Western blots (MMP-13) and gelatin zymography (MMP-9) revealed that MMP-9 and MMP-13 showed a unique, bimodal pattern of up-regulation during the early and late phases of wound healing in nude mice. Immunohistochemically MMP-9 and MMP-13 were generally detected in epidermis during the early phase and in dermis during the late (remodeling) phase. Consistent with these in vivo observations, dermal fibroblasts cultured from nude mice expressed higher levels of types I and III collagen, MMP-9 and MMP-13 mRNA levels and higher MMP enzyme activity than wild type controls. Collectively, these finding suggest that the bimodal pattern of MMP-9 and MMP-13 expression during skin repair process in nude mice could be a major component of their ability for scarless healing.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
22
|
Fang B, Li Y, Song Y, Li N, Cao Y, Wei X, Lin Q, Zhao RC. Human adipose tissue-derived adult stem cells can lead to multiorgan engraftment. Transplant Proc 2010; 42:1849-56. [PMID: 20620536 DOI: 10.1016/j.transproceed.2010.01.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 11/02/2009] [Accepted: 01/25/2010] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated the existence of a population of adipose tissue-derived adult stem cells that can undergo multilineage differentiation in vitro; however, it is unclear whether these cells maintain their multilineage differentiation in vivo. The objective of the present study was to examine the in vivo characteristics and behavior of a potential population of human adipose tissue-derived adult stem cells. Herein, we demonstrate that human adipose tissue-derived adult stem cells differentiate into the epithelium of the gastrointestinal tract, liver, and bronchi, and an endothelial lineage after transplantation into irradiated nonobese mice with diabetes or severe combined immunodeficiency. These findings may contribute to clinical tissue repair after injury.
Collapse
Affiliation(s)
- B Fang
- Center of Excellence in Tissue Engineering, Henan Tumor Hospital, Henan Institute of Technology, Zhengzhou University, Zhengzho, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Therapeutic improvement of scarring: mechanisms of scarless and scar-forming healing and approaches to the discovery of new treatments. Dermatol Res Pract 2010; 2010. [PMID: 20811598 PMCID: PMC2929503 DOI: 10.1155/2010/405262] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/17/2010] [Indexed: 11/17/2022] Open
Abstract
Scarring in the skin after trauma, surgery, burn or sports injury is a major medical problem, often resulting in loss of function, restriction of tissue movement and adverse psychological effects. Whilst various studies have utilised a range of model systems that have increased our understanding of the pathways and processes underlying scar formation, they have typically not translated to the development of effective therapeutic approaches for scar management. Existing treatments are unreliable and unpredictable and there are no prescription drugs for the prevention or treatment of dermal scarring. As a consequence, scar improvement still remains an area of clear medical need. Here we describe the basic science of scar-free and scar-forming healing, the utility of pre-clinical model systems, their translation to humans, and our pioneering approach to the discovery and development of therapeutic approaches for the prophylactic improvement of scarring in man
Collapse
|
24
|
Staszkiewicz J, Frazier TP, Rowan BG, Bunnell BA, Chiu ES, Gimble JM, Gawronska-Kozak B. Cell growth characteristics, differentiation frequency, and immunophenotype of adult ear mesenchymal stem cells. Stem Cells Dev 2010; 19:83-92. [PMID: 19400629 DOI: 10.1089/scd.2009.0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ear mesenchymal stem cells (EMSCs) represent a readily accessible population of stem-like cells that are adherent, clonogenic, and have the ability to self-renew. Previously, we have demonstrated that they can be induced to differentiate into adipocyte, osteocyte, chondrocyte, and myocyte lineages. The purpose of the current study was to characterize the growth kinetics of the cells and to determine their ability to form colonies of fibroblasts, adipocytes, osteocytes, and chondrocytes. In addition, the immunophenotypes of freshly isolated and culture-expanded cells were evaluated. From 1 g of tissue, we were able to isolate an average of 7.8 x 10(6) cells exhibiting a cell cycle length of approximately 2-3 days. Colony-forming unit (CFU) assays indicated high proliferation potential, and confirmed previously observed multipotentiality of the cells. Fluorescence-activated cell sorting (FACS) showed that EMSCs were negative for hematopoietic markers (CD4, CD45), proving that they did not derive from circulating hematopoietic cells. The FACS analyses also showed high expression of stem cell antigen-1 (Sca-1) with only a minor population of cells expressing CD117, thus identifying Sca-1 as the more robust stem cell biomarker. Additionally, flow cytometry data revealed that the expression patterns of hematopoietic, stromal, and stem cell markers were maintained in the passaged EMSCs, consistent with the persistence of an undifferentiated state. This study indicates that EMSCs provide an alternative model for in vitro analyses of adult mesenchymal stem cells (MSCs). Further studies will be necessary to determine their utility for tissue engineering and regenerative medical applications.
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Regenerative Biology Laboratory, Louisiana State University System, Baton Rouge, Louisiana. , Department of Animal Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | | | | | | | | | | | | |
Collapse
|
25
|
Costa RA, Ruiz-de-Souza V, Azevedo GM, Vaz NM, Carvalho CR. Effects of strain and age on ear wound healing and regeneration in mice. ACTA ACUST UNITED AC 2009; 42:1143-9. [PMID: 19936546 DOI: 10.1590/s0100-879x2009005000042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 08/21/2009] [Indexed: 11/21/2022]
Abstract
Round holes in the ears of MRL mice tend to close with characteristics of regeneration believed to be absent in other mouse strains (e.g., C57BL/6). We evaluated the kinetics and the histopathology of ear wound closure in young (8 weeks old) C57BL/6 and BALB/c mice. We also used middle-aged (40 weeks old) C57BL/6 mice to evaluate the influence of aging on this process. A circular through-and-through hole was made in the ear, photographs were taken at different times after injury and wound area was measured with digital analysis software. The percentages of closed area measured on day 100 were: 23.57 +/- 8.66% for young BALB/c mice, 56.47 +/- 7.39% for young C57BL/6 mice, and 75.31 +/- 23.65% for middle-aged C57BL/6 mice. Mice were sacrificed on days 1, 3, 5, 25, 44, and 100 for histological evaluation with hematoxylin and eosin, Gomori's trichrome, periodic acid-Schiff, or picrosirius red staining. In young mice of both strains, healing included re-epithelialization, chondrogenesis, myogenesis, and collagen deposition. Young C57BL/6 and BALB/c mice differed in the organization of collagen fibers visualized using picrosirius-polarization. Sebaceous glands and hair follicles regenerated and chondrogenesis was greater in young C57BL/6 mice. In middle-aged C57BL/6 mice all aspects of regeneration were depressed. The characteristics of regeneration were present during ear wound healing in both young BALB/c and young C57BL/6 mice although they differed in intensity and pattern. Greater ear wound closure in middle-aged C57BL/6 mice was not correlated with regeneration.
Collapse
Affiliation(s)
- R A Costa
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | | | |
Collapse
|
26
|
Fang B, Luo S, Song Y, Li N, Cao Y. Hemangioblastic Characteristics of Human Adipose Tissue-derived Adult Stem Cells In Vivo. Arch Med Res 2009; 40:311-7. [DOI: 10.1016/j.arcmed.2009.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Accepted: 04/06/2009] [Indexed: 12/01/2022]
|
27
|
Ear mesenchymal stem cells: an efficient adult multipotent cell population fit for rapid and scalable expansion. J Biotechnol 2008; 139:291-9. [PMID: 19136033 DOI: 10.1016/j.jbiotec.2008.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 12/19/2022]
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) have the potential to be used for tissue engineering. Nevertheless, they exhibit a low growth rate that limits their availability. In this work we use an alternative model of MSCs from the outer ear (ear mesenchymal stem cells, E-MSCs). These cells bear the characteristics of progenitor cells because of their ability to be differentiated into the three lineages of chondrocytes, osteocytes and adipocytes. This model cell population had a threefold higher cell growth rate compared to BM-MSCs. This allowed rapid testing of the scalability in microcarrier culture using bead-to-bead transfer and also enabled their expansion in a 1-l bioreactor. The cells were able to maintain their potential for differentiation into the above three lineages. Therefore, E-MSCs appear to be an attractive model for assessing a number of bioengineering parameters that may affect the behavior of adult stem cells in culture.
Collapse
|
28
|
Staszkiewicz J, Gimble JM, Manuel JA, Gawronska-Kozak B. IFATS collection: Stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential. Stem Cells 2008; 26:2666-73. [PMID: 18599810 DOI: 10.1634/stemcells.2008-0270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hyperplasia is a major contributor to the increase in adipose tissue mass that is characteristic of obesity. However, the identity and characteristics of cells that can be committed into adipocyte lineage remain unclear. Stem cell antigen 1 (Sca-1) has been used recently as a candidate marker in the search for tissue-resident stem cells. In our quest for biomarkers of cells that can become adipocytes, we analyzed ear mesenchymal stem cells (EMSC), which can differentiate into adipocytes, osteocytes, chondrocytes, and myocytes. Our previous studies have demonstrated that EMSC abundantly expressed Sca-1. In the present study, we have analyzed the expression of adipogenic transcription factors and adipocyte-specific genes in Sca-1-enriched and Sca-1-depleted EMSC fractions. Sca-1-enriched EMSC accumulated more lipid droplets during adipogenic differentiation than Sca-1-depleted. Similarly, EMSC isolated from Sca-1(-/-) mice displayed reduced lipid accumulation relative to EMSC from wild-type controls (p < .01). Comparative analysis of the adipogenic differentiation process between Sca-1-enriched and Sca-1-depleted populations of EMSC revealed substantial differences in the gene expression. Preadipocyte factor 1, CCAAT enhancer-binding protein (C/EBP) beta, C/EBPalpha, peroxisome proliferator-activated receptor gamma2, lipoprotein lipase, and adipocyte fatty acid binding protein were expressed at significantly higher levels in the Sca-1-enriched EMSC fraction. However, the most striking observation was that leptin was detected only in the conditioned medium of Sca-1-enriched EMSC. In addition, we performed loss-of-function (Sca-1 morpholino oligonucleotide) experiments. The data presented here suggest that Sca-1 is a biomarker for EMSC with the potential to become functionally active adipocytes. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
29
|
Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA. In vitro Differentiation Potential of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:228-238. [PMID: 21547120 DOI: 10.1159/000124281] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/07/2008] [Indexed: 12/19/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) represent a class of multipotent progenitor cells that have been isolated from multiple tissue sites. Of these, adipose tissue and bone marrow offer advantages in terms of access, abundance, and the extent of their documentation in the literature. This review focuses on the in vitro differentiation capability of cells derived from adult human tissue. Multiple, independent studies have demonstrated that MSCs can commit to mesodermal (adipocyte, chondrocyte, hematopoietic support, myocyte, osteoblast, tenocyte), ectodermal (epithelial, glial, neural), and endodermal (hepatocyte, islet cell) lineages. The limitations and promises of these studies in the context of tissue engineering are discussed.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Enoch S, Moseley R, Stephens P, Thomas D. The oral mucosa: a model of wound healing with reduced scarring. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1752-248x.2007.00005.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Gawronska-Kozak B, Manuel JA, Prpic V. Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem 2007; 102:122-35. [PMID: 17370316 DOI: 10.1002/jcb.21286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously shown that cells isolated from the outer ears of adult mice are a source of mesenchymal stem cells that can be induced to differentiate into adipo-, osteo-, and chondrocytes. In this study, we demonstrate that ear mesenchymal stem cells (EMSC) express stromal cell-associated markers (CD44, CD73) and stem cell marker Sca-1 and can be differentiated into spontaneously contracting muscle cells. Treatment of cells with epidermal growth factor (EGF) change their morphology from fibroblast shapes into stick-like structures that show repeated spontaneous contractions. Under conditions that promote myogenic differentiation, EMSC expressed mRNA for myoD and ventricular specific myosin light chain (MLC-2v) and protein for connexin 43, sarcomeric alpha-actinin, myocyte enhancer factor 2c (MEF2c), myosin heavy chain (MyHC), myogenin, and sarco-endoplasmic reticulum Ca(2+)ATPase (SERCA) 1. However, the cells were negative for Nkx2.5, GATA4, and ANP. Intracellular Ca(2+) transients in spontaneously beating EMSC, visualized by Fluo-3AM, showed a frequency of Ca(2+) oscillations ranging over 28-59/min (mean 41.17 +/- SEM 1.54). We also demonstrated that small pieces of ear tissues (ear punches) collected from live mice provide sufficient numbers of EMSC to isolate, culture and differentiate them into myocytes. Due to the ease of acquiring an expanding repertoire of differentiated EMSC cell types by a noninvasive surgical procedure, we conclude that the ear may prove to be a potential source of autologous cells for regenerative medicine, as supported by the fact that ears are one of the best sources of cells for somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
32
|
Metcalfe AD, Ferguson MWJ. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; 28:5100-13. [PMID: 17688942 DOI: 10.1016/j.biomaterials.2007.07.031] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 07/17/2007] [Indexed: 12/22/2022]
Abstract
The development and use of artificial skin in treating acute and chronic wounds has, over the last 30 years, advanced from a scientific concept to a series of commercially viable products. Many important clinical milestones have been reached and the number of artificial skin substitutes licensed for clinical use is growing, but they have yet to replace the current "gold standard" of an autologous skin graft. Currently available skin substitutes often suffer from a range of problems that include poor integration (which in many cases is a direct result of inadequate vascularisation), scarring at the graft margins and a complete lack of differentiated structures. The ultimate goal for skin tissue engineers is to regenerate skin such that the complete structural and functional properties of the wounded area are restored to the levels before injury. New synthetic biomaterials are constantly being developed that may enable control over wound repair and regeneration mechanisms by manipulating cell adhesion, growth and differentiation and biomechanics for optimal tissue development. In this review, the clinical developments in skin bioengineering are discussed, from conception through to the development of clinically viable products. Central to the discussion is the development of the next generation of skin replacement therapy, the success of which is likely to be underpinned with our knowledge of wound repair and regeneration.
Collapse
Affiliation(s)
- Anthony D Metcalfe
- UK Centre for Tissue Engineering (UKCTE), Faculty of Life Sciences, University of Manchester, 3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
33
|
Metcalfe AD, Ferguson MW. Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 2007; 4:413-37. [PMID: 17251138 PMCID: PMC2373411 DOI: 10.1098/rsif.2006.0179] [Citation(s) in RCA: 469] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 09/08/2006] [Indexed: 12/12/2022] Open
Abstract
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.
Collapse
Affiliation(s)
| | - Mark W.J Ferguson
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester3.239 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
34
|
Abstract
We have previously shown that MRL/MpJ mice have a capacity for regeneration instead of scar formation following an ear punch wound. Understanding the differences that occur between scar-free regeneration or repair with scarring will have great impact upon advances in skin tissue engineering. A key question that remains unanswered in the MRL/MpJ mouse model is whether regeneration was restricted to the ear or whether it extended to the skin. A histological analysis was conducted up to 4 months post-wounding, not only with 2-mm punch wounds to the ear but also to the skin on the backs of the same animals. MRL/MpJ mouse ear wounds regenerate faster than control strains, with enhanced blastema formation, a markedly thickened tip epithelium and reduced scarring. Interestingly, in the excisional back wounds, none of these regenerative features was observed and both the C57BL/6 control and MRL/MpJ mice healed with scarring. This review gives an insight into how this regenerative capacity may be due to evolutionary processes as well as ear anatomy. The ear is thin and surrounded on both sides by epithelia, and the dorsal skin is devoid of cartilage and under greater tensile strain. Analysis of apoptosis during ear regeneration is also discussed, assessing the role and expression of various members of the Bcl-2 family of proteins. Ongoing studies are focusing on de novo cartilage development in the regenerating ear, as well as understanding the role of downstream signalling cascades in the process. Identification of such signals could lead to their manipulation and use in a novel tissue-engineered skin substitute with scar-free integration.
Collapse
Affiliation(s)
- Anthony D Metcalfe
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, UK.
| | | | | | | |
Collapse
|
35
|
Beare AHM, Metcalfe AD, Ferguson MWJ. Location of injury influences the mechanisms of both regeneration and repair within the MRL/MpJ mouse. J Anat 2007; 209:547-59. [PMID: 17005026 PMCID: PMC2100365 DOI: 10.1111/j.1469-7580.2006.00641.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The adult MRL/MpJ mouse regenerates all differentiated structures after through-and-through ear punch wounding in a scar-free process. We investigated whether this regenerative capacity was also shown by skin wounds. Dorsal skin wounds were created, harvested and archived from the same animals (MRL/MpJ and C57BL/6 mice) that received through-and-through ear punch wounds. Re-epithelialization was complete in dorsal wounds in both strains by day 5 and extensive granulation tissue was present by day 14 post-wounding. By day 21, wounds from both strains contained dense amounts of collagen that healed with a scar. The average wound area, as well as alpha-smooth muscle actin expression and macrophage influx were investigated during dorsal skin wound healing and did not significantly differ between strains. Thus, MRL/MpJ mice regenerate ear wounds in a scar-free manner, but heal dorsal skin wounds by simple repair with scar formation. A significant conclusion can be drawn from these data; mechanisms of regeneration and repair can occur within the same animal, potentially utilizing similar molecules and signalling pathways that subtly diverge dependent upon the microenvironment of the injury.
Collapse
Affiliation(s)
- Alice H M Beare
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
36
|
Manuel JA, Gawronska-Kozak B. Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biol 2006; 25:505-14. [PMID: 17010584 DOI: 10.1016/j.matbio.2006.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/20/2022]
Abstract
Cutaneous wound healing is associated with migratory and remodeling events that require the action of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Differences in their expressions were observed during scar-forming and scar-free skin wound healing. We previously found that athymic nude mice are exceptional among mature mammals in their ability to heal injured skin scarlessly. The present study was undertaken to determine whether the modulation of MMP-2 and MMP-9 expression during scarless healing in nude mice was different from scar-forming animals. Full thickness skin wounds were made into the back of nude, wild-type controls (C57BL/6J), immunodeficient SCID and Rag, thymectomized neonates and adults, and cyclosporin A treated mice. Post-injured skin tissues were harvested at Day 7 and 24 after injury. Quantitative RT-PCR, Western blot, gelatin zymography and immunohistochemical assays were performed. Our results show that MMP-2 protein was high but similarly expressed in all post-injured animals on Day 7 after injury. Late phase (Day 24) of wound repair was characterized by a decrease in mRNA and protein expression and a decrease in gelatinolytic activity of MMP-2 in all post-injured samples. On the contrary, high (p < 0.001) levels of mRNA expression, prominent pro-and active forms of MMP-9 and cells immunopositive for MMP-9 were present exclusively in the post-injured tissues from nude mice on Day 24 after wounding. This data suggest that MMP-9 expression in the remodeling phase of wound healing in nude mice could be a major component of their ability for scar-free healing.
Collapse
Affiliation(s)
- Jessica A Manuel
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
37
|
Togo T, Utani A, Naitoh M, Ohta M, Tsuji Y, Morikawa N, Nakamura M, Suzuki S. Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. J Transl Med 2006; 86:445-57. [PMID: 16625212 DOI: 10.1038/labinvest.3700409] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For cartilage reconstruction, it is still difficult to obtain a sufficient volume of cartilage and to maintain its functional phenotype for a long period. Utilizing tissue stem cells is one approach to overcome such difficulties. We show here the presence of cartilage progenitor cells in the ear perichondrium of adult rabbits by 5-bromo-2'-deoxyuridine labeling, clonogenicity, and differentiation analyses. Long-term label-retaining cells were demonstrated in the perichondrium. Cells from the perichondrium, that is, perichondrocytes were mechanically isolated using a raspatory and maintained in D-MEM/F-12 medium with 10% FCS. They proliferated more vigorously than chondrocytes from the cartilage. Perichondrocytes could differentiate into adipocytes as well as osteocytes in differentiation induction medium. For cartilage reconstruction in vivo, perichondrocytes were seeded on collagen sponge scaffolds and implanted in nude mice. After 4 weeks, the composites with perichondrocytes generated the same weight of cartilaginous tissue as those with chondrocytes. They produced glycosaminoglycan and type II collagen as shown by RT-PCR and immunohistochemical examination. On the contrary, rabbit bone marrow mesenchymal stem cells used as control could regenerate significantly smaller cartilage than perichondrocytes in the implant study. Based on these findings, we propose that the perichondrium containing tissue progenitor cells is one of the potential candidates for use in reconstructing cartilage and new therapeutic modalities.
Collapse
Affiliation(s)
- Takeshi Togo
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Sakyo-Ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2005; 24:376-85. [PMID: 16322640 DOI: 10.1634/stemcells.2005-0234] [Citation(s) in RCA: 1048] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adipose tissue represents an abundant and accessible source of multipotent adult stem cells and is used by many investigators for tissue engineering applications; however, not all laboratories use cells at equivalent stages of isolation and passage. We have compared the immunophenotype of freshly isolated human adipose tissue-derived stromal vascular fraction (SVF) cells relative to serial-passaged adipose-derived stem cells (ASCs). The initial SVF cells contained colony-forming unit fibroblasts at a frequency of 1:32. Colony-forming unit adipocytes and osteoblasts were present in the SVF cells at comparable frequencies (1:28 and 1:16, respectively). The immunophenotype of the adipose-derived cells based on flow cytometry changed progressively with adherence and passage. Stromal cell-associated markers (CD13, CD29, CD44, CD63, CD73, CD90, CD166) were initially low on SVF cells and increased significantly with successive passages. The stem cell-associated marker CD34 was at peak levels in the SVF cells and/or early-passage ASCs and remained present, although at reduced levels, throughout the culture period. Aldehyde dehydrogenase and the multidrug-resistance transport protein (ABCG2), both of which have been used to identify and characterize hematopoietic stem cells, are expressed by SVF cells and ASCs at detectable levels. Endothelial cell-associated markers (CD31, CD144 or VE-cadherin, vascular endothelial growth factor receptor 2, von Willebrand factor) were expressed on SVF cells and did not change significantly with serial passage. Thus, the adherence to plastic and subsequent expansion of human adipose-derived cells in fetal bovine serum-supplemented medium selects for a relatively homogeneous cell population, enriching for cells expressing a stromal immunophenotype, compared with the heterogeneity of the crude SVF.
Collapse
|
39
|
Rim JS, Mynatt RL, Gawronska-Kozak B. Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis. FASEB J 2005; 19:1205-7. [PMID: 15857881 DOI: 10.1096/fj.04-3204fje] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adipocytes arise from multipotent stem cells of mesodermal origin, which also give rise to the muscle, bone, and cartilage lineages. However, signals and early molecular events that commit multipotent stem cells into the adipocyte lineage are not well established mainly due to lack of an adequate model system. We have identified a novel source of adult stem cells from the external murine ears referred to here as an ear mesenchymal stem cells (EMSC). EMSC have been isolated from several standard and mutant strains of mice. They are self-renewing, clonogenic, and multipotent, since they give rise to osteocytes, chondrocytes, and adipocytes. The in vitro characterization of EMSC indicates very facile adipogenic differentiation. Morphological, histochemical, and molecular analysis after the induction of differentiation showed that EMSC maintain adipogenic potentials up to fifth passage. A comparison of EMSC to the stromal-vascular (S-V) fraction of fat depots, under identical culture conditions (isobutyl-methylxanthine, dexamethasone, and insulin), revealed much more robust and consistent adipogenesis in EMSC than in the S-V fraction. In summary, we show that EMSC can provide a novel, easily obtainable, primary culture model for the study of adipogenesis.
Collapse
Affiliation(s)
- Jong-Seop Rim
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|