1
|
Liu X, Schreiber AC, Astudillo Potes MD, Dashtdar B, Hamouda AM, Rezaei A, Elder BD, Lu L. Bone Enzyme-Responsive Biodegradable Poly(propylene fumarate) and Polycaprolactone Polyphosphoester Dendrimer Cross-Linked via Click Chemistry for Bone Tissue Engineering. Biomacromolecules 2025; 26:835-847. [PMID: 39818811 DOI: 10.1021/acs.biomac.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Traditional polymer systems often rely on toxic initiators or catalysts for cross-linking, posing significant safety risks. For bone tissue engineering, another issue is that the scaffolds often take a longer time to degrade, inconsistent with bone formation pace. Here, we developed an enzyme-responsive biodegradable poly(propylene fumarate) (PPF) and polycaprolactone (PCL) polyphosphoester (PPE) dendrimer cross-linked utilizing click chemistry (EnzDeg-click-PFCLPE scaffold) for enhanced biocompatibility and degradation. The strain-promoted alkyne-azide cycloaddition (SPAAC) offers high efficiency and biocompatibility without harmful agents. The polyphosphoesters render polymer cleavage responsive to alkaline phosphatase (ALP) enzyme in bone formation, ensuring facilitated scaffold biodegradation. The in vitro testing confirmed biocompatibility, enzyme-responsive degradation, and capability to support stem cell differentiation. Further in vivo implantation in rat demonstrated bone regeneration and scaffold integration. In summary, this polymer system combining click chemistry with ALP-responsive biodegradation ensures initial bone support and facilitates scaffold degradation synchronized with the natural bone healing process.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Abdelrahman M Hamouda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
2
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Le‐Vinh B, Akkuş‐Dağdeviren ZB, Le NN, Nazir I, Bernkop‐Schnürch A. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bao Le‐Vinh
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Zeynep Burcu Akkuş‐Dağdeviren
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| | - Nguyet‐Minh Nguyen Le
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
- Department of Industrial Pharmacy Faculty of Pharmacy University of Medicine and Pharmacy at Ho Chi Minh City Ho Chi Minh City 700000 Viet Nam
| | - Imran Nazir
- Department of Pharmacy COMSATS University Islamabad Abbottabad Campus Abbottabad 22060 Pakistan
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy University of Innsbruck Innrain 80/82 Innsbruck 6020 Austria
| |
Collapse
|
4
|
Lantigua D, Wu X, Suvarnapathaki S, Nguyen MA, Camci-Unal G. Composite Scaffolds from Gelatin and Bone Meal Powder for Tissue Engineering. Bioengineering (Basel) 2021; 8:169. [PMID: 34821735 PMCID: PMC8614748 DOI: 10.3390/bioengineering8110169] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Bone tissue engineering offers versatile solutions to broaden clinical options for treating skeletal injuries. However, the variety of robust bone implants and substitutes remains largely uninvestigated. The advancements in hydrogel scaffolds composed of natural polymeric materials and osteoinductive microparticles have shown to be promising solutions in this field. In this study, gelatin methacrylate (GelMA) hydrogels containing bone meal powder (BP) particles were investigated for their osteoinductive capacity. As natural source of the bone mineral, we expect that BP improves the scaffold's ability to induce mineralization. We characterized the physical properties of GelMA hydrogels containing various BP concentrations (0, 0.5, 5, and 50 mg/mL). The in vitro cellular studies revealed enhanced mechanical performance and the potential to promote the differentiation of pre-osteoblast cells. The in vivo studies demonstrated both promising biocompatibility and biodegradation properties. Overall, the biological and physical properties of this biomaterial is tunable based on BP concentration in GelMA scaffolds. The findings of this study offer a new composite scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Darlin Lantigua
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA; (D.L.); (X.W.); (S.S.)
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA; (D.L.); (X.W.); (S.S.)
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA; (D.L.); (X.W.); (S.S.)
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Michelle A. Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32673-32689. [PMID: 34227792 DOI: 10.1021/acsami.1c06058] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.
Collapse
Affiliation(s)
- Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jia Liu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Nianqi Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wentao Yun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Weidong Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
6
|
Burroughs L, Amer MH, Vassey M, Koch B, Figueredo GP, Mukonoweshuro B, Mikulskis P, Vasilevich A, Vermeulen S, Dryden IL, Winkler DA, Ghaemmaghami AM, Rose FRAJ, de Boer J, Alexander MR. Discovery of synergistic material-topography combinations to achieve immunomodulatory osteoinductive biomaterials using a novel in vitro screening method: The ChemoTopoChip. Biomaterials 2021; 271:120740. [PMID: 33714019 DOI: 10.1016/j.biomaterials.2021.120740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are widely represented in regenerative medicine clinical strategies due to their compatibility with autologous implantation. Effective bone regeneration involves crosstalk between macrophages and hMSCs, with macrophages playing a key role in the recruitment and differentiation of hMSCs. However, engineered biomaterials able to simultaneously direct hMSC fate and modulate macrophage phenotype have not yet been identified. A novel combinatorial chemistry-topography screening platform, the ChemoTopoChip, is used here to identify materials suitable for bone regeneration by screening 1008 combinations in each experiment for human immortalized mesenchymal stem cell (hiMSCs) and human macrophage response. The osteoinduction achieved in hiMSCs cultured on the "hit" materials in basal media is comparable to that seen when cells are cultured in osteogenic media, illustrating that these materials offer a materials-induced alternative to osteo-inductive supplements in bone-regeneration. Some of these same chemistry-microtopography combinations also exhibit immunomodulatory stimuli, polarizing macrophages towards a pro-healing phenotype. Maximum control of cell response is achieved when both chemistry and topography are recruited to instruct the required cell phenotype, combining synergistically. The large combinatorial library allows us for the first time to probe the relative cell-instructive roles of microtopography and material chemistry which we find to provide similar ranges of cell modulation for both cues. Machine learning is used to generate structure-activity relationships that identify key chemical and topographical features enhancing the response of both cell types, providing a basis for a better understanding of cell response to micro topographically patterned polymers.
Collapse
Affiliation(s)
| | - Mahetab H Amer
- University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Matthew Vassey
- University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Britta Koch
- University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | | - Steven Vermeulen
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht, 6229 ER, Netherlands
| | - Ian L Dryden
- University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David A Winkler
- University of Nottingham, Nottingham, NG7 2RD, United Kingdom; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Parkville, 3052, Australia; La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3042, Australia; CSIRO Data61, Clayton, 3168, Australia
| | | | | | - Jan de Boer
- Eindhoven University of Technology, Eindhoven, 5600 MB, Netherlands
| | | |
Collapse
|
7
|
Tran NMP, Dang NTN, Nguyen NTP, Nguyen LVH, Quyen TN, Tran PA, Lee BT, Hiep NT. Fabrication of injectable bone substitute loading porous simvastatin-loaded poly(lactic- co-glycolic acid) microspheres. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nam Minh-Phuong Tran
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nhi Thao-Ngoc Dang
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Nghi Thi-Phuong Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Long Vuong-Hoang Nguyen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| | - Tran Ngoc Quyen
- Institute of Applied Materials Science, Vietnam Academy Science and Technology, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology Viet Nam, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Phong A. Tran
- Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Byong-Taek Lee
- Department of Biomedical Engineering and Materials, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Nguyen Thi Hiep
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University, Vietnam National University- Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Enhancement of osteoblast cells osteogenic differentiation and bone regeneration by hydroxyapatite/phosphoester modified poly(amino acid). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110769. [PMID: 32279769 DOI: 10.1016/j.msec.2020.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/27/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
Hydroxyapatite/poly(amino acid) (HA/PAA) has been used to treat a variety of long bone and vertebral bony defects, and a further biocompatibility improvement is a key for better application. Phosphoester (PE) contained materials are highly biocompatible but could hardly treat massive bone defects due to its fast-degradation-derived mechanical instability. To address the problems of the two materials, we have incorporated PE molecule into the main chain of PAA by chemical bonding. As a result, the compressive strength of HA/PAA with 1 wt% and 2.5 wt% PE maintained in the range of 80-150 MPa after soaking in PBS for 12 weeks, which could be attributed to the amplified hydrogen-bonding inside composites. Besides, the PE-containing HA/PAAs with increased hydrophilic function groups (O=P-O bonds and O=P-N), created a more favourable surface for cell adhesion. Meanwhile, compared with HA/PAA, the PE-containing HA/PAAs had a fast minerlization speed and promoted cell osteogenic differentiation. Furthermore, the in vivo study indicated that PE-containing HA/PAAs could facilitate bone formation (4 weeks), and form a complete bone bridging (12 weeks) in a rabbit cranial bone defect. In summary, the HA/PE-m-PAAs possessed good mechanical stability, improved cytocompatibility and osteoconductivity, so the composites have a great potential for massive bone defect treatment.
Collapse
|
9
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
10
|
Nifant’ev I, Bukharova T, Dyakonov A, Goldshtein D, Galitsyna E, Kosarev M, Shlyakhtin A, Gavrilov D, Ivchenko P. Osteogenic Differentiation of Human Adipose Tissue-Derived MSCs by Non-Toxic Calcium Poly(ethylene phosphate)s. Int J Mol Sci 2019; 20:E6242. [PMID: 31835689 PMCID: PMC6940807 DOI: 10.3390/ijms20246242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
There is a current clinical need for the development of bone void fillers and bioactive bone graft substitutes. The use of mesenchymal stem cells (MSCs) that are seeded into 3D scaffolds and induce bone generation in the event of MSCs osteogenic differentiation is highly promising. Since calcium ions and phosphates promote the osteogenic differentiation of MSCs, the use of the calcium complexes of phosphate-containing polymers is highly prospective in the development of osteogenic scaffolds. Calcium poly(ethylene phosphate)s (PEP-Ca) appear to be potentially suitable candidates primarily because of PEP's biodegradability. In a series of experiments with human adipose-tissue-derived multipotent mesenchymal stem cells (ADSCs), we demonstrated that PEP-Ca are non-toxic and give rise to osteogenesis gene marker, bone morphogenetic protein 2 (BMP-2) and mineralization of the intercellular matrix. Owing to the synthetic availability of poly(ethylene phosphoric acid) block copolymers, these results hold out the possibility for the development of promising new polymer composites for orthopaedic and maxillofacial surgery.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Alexander Dyakonov
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Elena Galitsyna
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Maxim Kosarev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
| | - Andrey Shlyakhtin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
| | - Dmitry Gavrilov
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
| | - Pavel Ivchenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| |
Collapse
|
11
|
Kossover O, Cohen N, Lewis JA, Berkovitch Y, Peled E, Seliktar D. Growth Factor Delivery for the Repair of a Critical Size Tibia Defect Using an Acellular, Biodegradable Polyethylene Glycol-Albumin Hydrogel Implant. ACS Biomater Sci Eng 2019; 6:100-111. [PMID: 33463206 DOI: 10.1021/acsbiomaterials.9b00672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth factor delivery using acellular matrices presents a promising alternative to current treatment options for bone repair in critical-size injuries. However, supra-physiological doses of the factors can introduce safety concerns that must be alleviated, mainly by sustaining delivery of smaller doses using the matrix as a depot. We developed an acellular, biodegradable hydrogel implant composed of poly(ethylene glycol) (PEG) and denatured albumin to be used for sustained delivery of bone morphogenic protein-2 (BMP2). In this study, poly(ethylene glycol)-albumin (PEG-Alb) hydrogels were produced and loaded with 7.7 μg/mL of recombinant human BMP2 (rhBMP2) to be tested for safety and performance in a critical-size long-bone defect, using a rodent model. The hydrogels were formed ex situ in a 5 mm long cylindrical mold of 3 mm diameter, implanted into defects made in the tibia of Sprague-Dawley rats and compared to non-rhBMP2 control hydrogels at 13 weeks following surgery. The hydrogels were also compared to the more established PEG-fibrinogen (PEG-Fib) hydrogels we have tested previously. Comprehensive in vitro characterization as well as in vivo assessments that include: histological analyses, including safety parameters (i.e., local tolerance and toxicity), assessment of implant degradation, bone formation, as well as repair tissue density using quantitative microCT analysis were performed. The in vitro assessments demonstrated similarities between the mechanical and release properties of the PEG-Alb hydrogels to those of the PEG-Fib hydrogels. Safety analysis presented good local tolerance in the bone defects and no signs of toxicity. A significantly larger amount of bone was detected at 13 weeks in the rhBMP2-treated defects as compared to non-rhBMP2 defects. However, no significant differences were noted in bone formation at 13 weeks when comparing the PEG-Alb-treated defects to PEG-Fib-treated defects (with or without BMP2). The study concludes that hydrogel scaffolds made from PEG-Alb containing 7.7 μg/mL of rhBMP2 are effective in accelerating the bridging of boney defects in the tibia.
Collapse
Affiliation(s)
- Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalie Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320003, Israel
| | - Jacob A Lewis
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yulia Berkovitch
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320003, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa 3200000, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
Tateno A, Asano M, Akita D, Toriumi T, Tsurumachi-Iwasaki N, Kazama T, Arai Y, Matsumoto T, Kano K, Honda M. Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats. J Oral Sci 2019; 61:534-538. [PMID: 31631097 DOI: 10.2334/josnusd.18-0458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tissue engineering is a promising approach to supplement existing treatment strategies for craniofacial bone regeneration. In this study, a type I collagen scaffold made from a recombinant peptide (RCP) with an Arg-Gly-Asp motif was developed, and its effect on regeneration in critical-size mandibular bone defects was evaluated. Additionally, the combined effect of the scaffold and lipid-free dedifferentiated fat (DFAT) cells was assessed. Briefly, DFAT cells were separated from mature adipocytes by using a ceiling culture technique based on buoyancy. A 3 cm × 4 cm critical-size bone defect was created in the rat mandible, and regeneration was evaluated by using RCP with DFAT cells. Then, cultured DFAT cells and adipose-derived stem cells (ASCs) were seeded onto RCP scaffolds (DFAT/RCP and ASC/RCP) and implanted into the bone defects. Micro-computed tomography imaging at 8 weeks after implantation showed significantly greater bone regeneration in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. Similarly, histological analysis showed significantly greater bone width in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. These findings suggest that DFAT/RCP is effective for bone formation in critical-size bone defects and that DFAT cells are a promising source for bone regeneration.
Collapse
Affiliation(s)
- Atsushi Tateno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| | | | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
13
|
Ultrafast hydrolytic degradation of 2,3-dihydroxypropyl functionalized poly(ethylene phosphates). MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Li N, Jiang L, Jin H, Wu Y, Liu Y, Huang W, Wei L, Zhou Q, Chen F, Gao Y, Zhu B, Zhang X. An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids Surf B Biointerfaces 2019; 183:110454. [PMID: 31473407 DOI: 10.1016/j.colsurfb.2019.110454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Periodontitis is a chronic, destructive inflammatory disease that injures tooth- supporting tissues, eventually leading to tooth loss. Complete eradication of periodontal pathogenic microorganisms is fundamental to allow periodontal healing and commonly precedes periodontal tissue regeneration. To address this challenge, we report a strategy for developing an enzyme-mediated periodontal membrane for targeted antibiotic delivery into infectious periodontal pockets; the unique components of the membrane will also benefit periodontal alveolar bone repair. In this approach, a chitosan membrane containing polyphosphoester and minocycline hydrochloride (PPEM) was prepared. Physical, morphological, and ultrastructural analyses were carried out in order to assess cellular compatibility, drug release and antibacterial activity in vitro. Additionally, the functionality of the PPEM membrane was evaluated in vivo with a periodontal defect model in rats. The results confirm that the PPEM membrane exhibits good physical properties with excellent antibacterial activity and successfully promotes periodontal tissue repair, making it promising for periodontal treatment.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Liting Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China; Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hua Jin
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongjia Liu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Huang
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Wei
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Qi Zhou
- Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 200025, Shanghai, China
| | - Feng Chen
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, South Campus of Shanghai Sixth People's Hospital, Shanghai Jiaotong University, 201499, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Bangshang Zhu
- Instrumental Analysis Center, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiuyin Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 200011, Shanghai, China.
| |
Collapse
|
15
|
Dera R, Diliën H, Billen B, Gagliardi M, Rahimi N, Van Den Akker NMS, Molin DGM, Grandfils C, Adriaensens P, Guedens W, Cleij TJ. Phosphodiester Hydrogels for Cell Scaffolding and Drug Release Applications. Macromol Biosci 2019; 19:e1900090. [PMID: 31166090 DOI: 10.1002/mabi.201900090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/17/2019] [Indexed: 12/19/2022]
Abstract
Given the major structural role phosphodiesters play in the organism it is surprising they have not been more widely adopted as a building block in sophisticated biomimetic hydrogels and other biomaterials. The potential benefits are substantial: phosphoester-based materials show excellent compatibility with blood, cells, and a remarkable resistance to protein adsorption that may trigger a foreign-body response. In this work, a novel class of phosphodiester-based ionic hydrogels is presented which are crosslinked via a phosphodiester moiety. The material shows good compatibility with blood, supports the growth and proliferation of tissue and presents opportunities for use as a drug release matrix as shown with fluorescent model compounds. The final gel is produced via base-induced elimination from a phosphotriester precursor, which is made by the free-radical polymerization of a phosphotriester crosslinker. This crosslinker is easily synthesized via multigram one-pot procedures out of common laboratory chemicals. Via the addition of various comonomers the properties of the final gel may be tuned leading to a wide range of novel applications for this exciting class of materials.
Collapse
Affiliation(s)
- Rafael Dera
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Hanne Diliën
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, Chemelot Center Court, Gebouw 200, 6167 RD Geleen, The Netherlands
| | - Brecht Billen
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Mick Gagliardi
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nastaran Rahimi
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nynke M S Van Den Akker
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Daniel G M Molin
- Department of Physiology, CARIM, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - Christian Grandfils
- Université de Liège, Allée du 6 Août 11, B-4000, Liège (Sart-Tilman), Belgium
| | - Peter Adriaensens
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- IMO, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Thomas J Cleij
- Sensor Engineering, Faculty of Science and Engineering, Maastricht University, Urmonderbaan 22, Chemelot Center Court, Gebouw 200, 6167 RD Geleen, The Netherlands
| |
Collapse
|
16
|
Abstract
This microreview details recent developments in stimuli-responsive polymers with phosphorus in the main-chain, in particular polyphosphazenes and polyphosphoesters. The presence of phosphorus in the polymers endows unique properties onto the macromolecules, which can be utilized for the preparation of materials capable of physically responding to specific stimuli. Achieving the desired responsiveness has been much facilitated by recent developments in synthetic polymer chemistry, in particular controlled synthesis and backbone functionalization phosphorus-based polymers, in order to achieve the required properties and hence responsiveness of the materials. The development of phosphorus-based polymers which respond to the most important stimuli are discussed, namely, pH, oxidation, reduction, temperature and biological triggers. The polymers are placed in the context not just of each other but also with reference to state-of-the-art organic polymers.
Collapse
Affiliation(s)
- Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler University LinzAltenberger Straße 694040LinzAustria
| |
Collapse
|
17
|
Guven M, Altuncu MS, Bal T, Oran DC, Gulyuz U, Kizilel S, Okay O, Avci D. Bisphosphonic Acid-Functionalized Cross-Linkers to Tailor Hydrogel Properties for Biomedical Applications. ACS OMEGA 2018; 3:8638-8647. [PMID: 31458994 PMCID: PMC6644954 DOI: 10.1021/acsomega.8b01103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/23/2018] [Indexed: 05/05/2023]
Abstract
Two bisphosphonic acid-functionalized cross-linkers (one novel) with different spacer chain characteristics were synthesized and incorporated into hydrogels by copolymerization with 2-hydroxyethyl methacrylate at different ratios to control the hydrogels' swelling, mechanical properties, and ability to support mineralization for biomedical applications. The cross-linkers were synthesized by reaction of 2-isocyanatoethyl methacrylate and bisphosphonated diamines followed by selective dealkylation of the bisphosphonate ester groups. The hydrogels provide in vitro growth of carbonated apatite, morphology affected by the cross-linker structure. The hydrogels exhibit a high Young's modulus E (up to 400 kPa) and can sustain up to 10.2 ± 0.1 MPa compressive stresses. E and hence the cross-link density significantly increases upon mineralization reflecting the formation of many bisphosphonate BP-Ca2+ bonds acting as additional cross-links. Cyclic mechanical tests reveal self-recoverability of hydrogels because of reversible nature of BP-Ca2+ bonds. The results suggest that these cross-linkers can add calcium-binding abilities to hydrogels synthesized from any monomer and improve their mechanical, swelling, and mineralization properties and hence are potentially useful materials for biomedical applications.
Collapse
Affiliation(s)
- Melek
N. Guven
- Department
of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Merve S. Altuncu
- Department
of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Tugba Bal
- Department
of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Dilem C. Oran
- Department
of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Umit Gulyuz
- Department
of Chemistry and Chemical Processing Technologies, Kirklareli University, Luleburgaz, 39750 Kirklareli, Turkey
| | - Seda Kizilel
- Department
of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Oguz Okay
- Department
of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Duygu Avci
- Department
of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
18
|
Iwasaki Y, Yokota A, Otaka A, Inoue N, Yamaguchi A, Yoshitomi T, Yoshimoto K, Neo M. Bone-targeting poly(ethylene sodium phosphate). Biomater Sci 2018; 6:91-95. [PMID: 29184942 DOI: 10.1039/c7bm00930e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly(ethylene sodium phosphate) (PEP·Na) showed excellent cytocompatibility and in vivo bone affinity. Moreover, PEP·Na did not interact with thrombin, which is a coagulation-related protein. Because immobilization of therapeutic agents and imaging probes on PEP·Na is easily performed, PEP·Na is a promising polymer for bone-targeted therapies.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
20
|
Lee JK, Choi IS, Oh TI, Lee E. Cell-Surface Engineering for Advanced Cell Therapy. Chemistry 2018; 24:15725-15743. [PMID: 29791047 DOI: 10.1002/chem.201801710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/22/2018] [Indexed: 12/16/2022]
Abstract
Stem cells opened great opportunity to overcome diseases that conventional therapy had only limited success. Use of scaffolds made from biomaterials not only helps handling of stem cells for delivery or transplantation but also supports enhanced cell survival. Likewise, cell encapsulation can provide stability for living animal cells even in a state of separateness. Although various chemical reactions were tried to encapsulate stolid microbial cells such as yeasts, a culture environment for the growth of animal cells allows only highly biocompatible reactions. Therefore, the animal cells were mostly encapsulated in hydrogels, which resulted in enhanced cell survival. Interestingly, major findings of chemistry on biological interfaces demonstrate that cell encapsulation in hydrogels have a further a competence for modulating cell characteristics that can go beyond just enhancing the cell survival. In this review, we present a comprehensive overview on the chemical reactions applied to hydrogel-based cell encapsulation and their effects on the characteristics and behavior of living animal cells.
Collapse
Affiliation(s)
- Jungkyu K Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| | - Insung S Choi
- Department of Chemistry and Center for Cell-Encapsulation Research, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Tong In Oh
- Department of Biomedical Engineering, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - EunAh Lee
- Impedance Imaging Research Center (IIRC), Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
21
|
Vanparijs N, Nuhn L, De Geest BG. Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 2018; 46:1193-1239. [PMID: 28165097 DOI: 10.1039/c6cs00748a] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.
Collapse
Affiliation(s)
- Nane Vanparijs
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Yao H, Kang J, Li W, Liu J, Xie R, Wang Y, Liu S, Wang DA, Ren L. Novel
β
-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair. Biomed Mater 2017; 13:015012. [DOI: 10.1088/1748-605x/aa8541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Harnessing cell-material interaction to control cell fate: design principle of advanced functional hydrogel materials. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1387-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Bauer KN, Tee HT, Velencoso MM, Wurm FR. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Kim HD, Lee EA, An YH, Kim SL, Lee SS, Yu SJ, Jang HL, Nam KT, Im SG, Hwang NS. Chondroitin Sulfate-Based Biomineralizing Surface Hydrogels for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2017; 9:21639-21650. [PMID: 28605908 DOI: 10.1021/acsami.7b04114] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chondroitin sulfate (CS) is the major component of glycosaminoglycan in connective tissue. In this study, we fabricated methacrylated PEGDA/CS-based hydrogels with varying CS concentration (0, 1, 5, and 10%) and investigated them as biomineralizing three-dimensional scaffolds for charged ion binding and depositions. Due to its negative charge from the sulfate group, CS exhibited an osteogenically favorable microenvironment by binding charged ions such as calcium and phosphate. Particularly, ion binding and distribution within negatively charged hydrogel was dependent on CS concentration. Furthermore, CS dependent biomineralizing microenvironment induced osteogenic differentiation of human tonsil-derived mesenchymal stem cells in vitro. Finally, when we transplanted PEGDA/CS-based hydrogel into a critical sized cranial defect model for 8 weeks, 10% CS hydrogel induced effective bone formation with highest bone mineral density. This PEGDA/CS-based biomineralizing hydrogel platform can be utilized for in situ bone formation in addition to being an investigational tool for in vivo bone mineralization and resorption mechanisms.
Collapse
Affiliation(s)
- Hwan D Kim
- School of Chemical and Biological Engineering, N-Bio Institute, Institute of Chemical Process, Seoul National University , Seoul 151-744, Republic of Korea
| | - Eunjee A Lee
- School of Chemical and Biological Engineering, N-Bio Institute, Institute of Chemical Process, Seoul National University , Seoul 151-744, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, N-Bio Institute, Institute of Chemical Process, Seoul National University , Seoul 151-744, Republic of Korea
| | - Seunghyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University , Seoul 151-744, Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering, Seoul National University , Seoul 151-744, Republic of Korea
| | - Seung Jung Yu
- Department of Chemical and Bimolecular Engineering, Korea Advanced Institute of Technology , Daejeon 305-701, Republic of Korea
| | - Hae Lin Jang
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-744, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University , Seoul 151-744, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Bimolecular Engineering, Korea Advanced Institute of Technology , Daejeon 305-701, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, N-Bio Institute, Institute of Chemical Process, Seoul National University , Seoul 151-744, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University , Seoul 151-744, Republic of Korea
| |
Collapse
|
26
|
Becker G, Ackermann LM, Schechtel E, Klapper M, Tremel W, Wurm FR. Joining Two Natural Motifs: Catechol-Containing Poly(phosphoester)s. Biomacromolecules 2017; 18:767-777. [PMID: 28140560 DOI: 10.1021/acs.biomac.6b01613] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous catechol-containing polymers, including biodegradable polymers, are currently heavily discussed for modern biomaterials. However, there is no report combining poly(phosphoester)s (PPEs) with catechols. Adhesive PPEs have been prepared via acyclic diene metathesis polymerization. A novel acetal-protected catechol phosphate monomer was homo- and copolymerized with phosphoester comonomers with molecular weights up to 42000 g/mol. Quantitative release of the catechols was achieved by careful hydrolysis of the acetal groups without backbone degradation. Degradation of the PPEs under basic conditions revealed complete and statistical degradation of the phosphotri- to phosphodiesters. In addition, a phosphodiester monomer with an adhesive P-OH group and no protective group chemistry was used to compare the binding to metal oxides with the multicatechol-PPEs. All PPEs can stabilize magnetite particles (NPs) in polar solvents, for example, methanol, due to the binding of the phosphoester groups in the backbone to the particles. ITC measurements reveal that multicatechol PPEs exhibit a higher binding affinity to magnetite NPs compared to PPEs bearing phosphodi- or phosphotriesters as repeating units. In addition, the catechol-containing PPEs were used to generate organo- and hydrogels by oxidative cross-linking, due to cohesive properties of catechol groups. This unique combination of two natural adhesive motives, catechols and phosphates, will allow the design of novel future gels for tissue engineering applications or novel degradable adhesives.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Lisa-Maria Ackermann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Eugen Schechtel
- Johannes Gutenberg-University Mainz , Institute of Inorganic Chemistry and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Markus Klapper
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wolfgang Tremel
- Johannes Gutenberg-University Mainz , Institute of Inorganic Chemistry and Analytical Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017; 8:2041731417712073. [PMID: 28634532 PMCID: PMC5467968 DOI: 10.1177/2041731417712073] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering is a promising alternative to autografts or allografts for the regeneration of large bone defects. Cell-free biomaterials with different degrees of sophistication can be used for several therapeutic indications, to stimulate bone repair by the host tissue. However, when osteoprogenitors are not available in the damaged tissue, exogenous cells with an osteoblast differentiation potential must be provided. These cells should have the capacity to colonize the defect and to participate in the building of new bone tissue. To achieve this goal, cells must survive, remain in the defect site, eventually proliferate, and differentiate into mature osteoblasts. A critical issue for these engrafted cells is to be fed by oxygen and nutrients: the transient absence of a vascular network upon implantation is a major challenge for cells to survive in the site of implantation, and different strategies can be followed to promote cell survival under poor oxygen and nutrient supply and to promote rapid vascularization of the defect area. These strategies involve the use of scaffolds designed to create the appropriate micro-environment for cells to survive, proliferate, and differentiate in vitro and in vivo. Hydrogels are an eclectic class of materials that can be easily cellularized and provide effective, minimally invasive approaches to fill bone defects and favor bone tissue regeneration. Furthermore, by playing on their composition and processing, it is possible to obtain biocompatible systems with adequate chemical, biological, and mechanical properties. However, only a good combination of scaffold and cells, possibly with the aid of incorporated growth factors, can lead to successful results in bone regeneration. This review presents the strategies used to design cellularized hydrogel-based systems for bone regeneration, identifying the key parameters of the many different micro-environments created within hydrogels.
Collapse
Affiliation(s)
- Mathieu Maisani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Daniele Pezzoli
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| | - Olivier Chassande
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Diego Mantovani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| |
Collapse
|
28
|
Mao Z, Fang Z, Yang Y, Chen X, Wang Y, Kang J, Qu X, Yuan W, Dai K. Strontium ranelate-loaded PLGA porous microspheres enhancing the osteogenesis of MC3T3-E1 cells. RSC Adv 2017; 7:24607-24615. [DOI: 10.1039/c7ra01445g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
Biodegradable poly lactic-co-glycolic acid (PLGA) has been used as a tissue engineering scaffold as well as a carrier for the delivery of proteins, drugs, and other macromolecules.
Collapse
Affiliation(s)
- Zhenyang Mao
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Zhiwei Fang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yunqi Yang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xuan Chen
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yugang Wang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Jian Kang
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xinhua Qu
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Weien Yuan
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| |
Collapse
|
29
|
Raphel J, Holodniy M, Goodman SB, Heilshorn SC. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 2016; 84:301-314. [PMID: 26851394 PMCID: PMC4883578 DOI: 10.1016/j.biomaterials.2016.01.016] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/22/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
The two leading causes of failure for joint arthroplasty prostheses are aseptic loosening and periprosthetic joint infection. With the number of primary and revision joint replacement surgeries on the rise, strategies to mitigate these failure modes have become increasingly important. Much of the recent work in this field has focused on the design of coatings either to prevent infection while ignoring bone mineralization or vice versa, to promote osseointegration while ignoring microbial susceptibility. However, both coating functions are required to achieve long-term success of the implant; therefore, these two modalities must be evaluated in parallel during the development of new orthopaedic coating strategies. In this review, we discuss recent progress and future directions for the design of multifunctional orthopaedic coatings that can inhibit microbial cells while still promoting osseointegration.
Collapse
Affiliation(s)
- Jordan Raphel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Mark Holodniy
- Division of Infectious Diseases & Geographic Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and Bioengineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Jha AK, Tharp KM, Browne S, Ye J, Stahl A, Yeghiazarians Y, Healy KE. Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials 2016; 89:136-47. [PMID: 26967648 DOI: 10.1016/j.biomaterials.2016.02.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
A critical design parameter for the function of synthetic extracellular matrices is to synchronize the gradual cell-mediated degradation of the matrix with the endogenous secretion of natural extracellular matrix (ECM) (e.g., creeping substitution). In hyaluronic acid (HyA)-based hydrogel matrices, we have investigated the effects of peptide crosslinkers with different matrix metalloproteinases (MMP) sensitivities on network degradation and neovascularization in vivo. The HyA hydrogel matrices consisted of cell adhesive peptides, heparin for both the presentation of exogenous and sequestration of endogenously synthesized growth factors, and MMP cleavable peptide linkages (i.e., QPQGLAK, GPLGMHGK, and GPLGLSLGK). Sca1(+)/CD45(-)/CD34(+)/CD44(+) cardiac progenitor cells (CPCs) cultured in the matrices with the slowly degradable QPQGLAK hydrogels supported the highest production of MMP-2, MMP-9, MMP-13, VEGF165, and a range of angiogenesis related proteins. Hydrogels with QPQGLAK crosslinks supported prolonged retention of these proteins via heparin within the matrix, stimulating rapid vascular development, and anastomosis with the host vasculature when implanted in the murine hindlimb.
Collapse
Affiliation(s)
- Amit K Jha
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Kevin M Tharp
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Shane Browne
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Ireland
| | - Jianqin Ye
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Andreas Stahl
- Department of Nutritional Science and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Yerem Yeghiazarians
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA; Department of Material Science and Engineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Huang P, Bi X, Gao J, Sun L, Wang S, Chen S, Fan X, You Z, Wang Y. Phosphorylated poly(sebacoyl diglyceride) – a phosphate functionalized biodegradable polymer for bone tissue engineering. J Mater Chem B 2016; 4:2090-2101. [DOI: 10.1039/c5tb02542g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study demonstrates a simply powerful way to make therapeutic materials: using small functional units (phosphates) to control bioactivity (osteogenesis).
Collapse
Affiliation(s)
- Peng Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Xiaoping Bi
- Department of Ophthalmology
- Shanghai Ninth Peoples' Hospital affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai
- P. R. China
| | - Jin Gao
- Departments of Bioengineering, Chemical Engineering
- Surgery, and the McGowan Institute
- University of Pittsburgh
- Pittsburgh
- USA
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Shaofei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Xianqun Fan
- Department of Ophthalmology
- Shanghai Ninth Peoples' Hospital affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai
- P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Yadong Wang
- Departments of Bioengineering, Chemical Engineering
- Surgery, and the McGowan Institute
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
32
|
Watson BM, Vo TN, Tatara AM, Shah SR, Scott DW, Engel PS, Mikos AG. Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering. Biomaterials 2015; 67:286-96. [PMID: 26232878 DOI: 10.1016/j.biomaterials.2015.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/07/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Injectable, biodegradable, dual-gelling macromer solutions were used to encapsulate mesenchymal stem cells (MSCs) within stable hydrogels when elevated to physiologic temperature. Pendant phosphate groups were incorporated in the N-isopropyl acrylamide-based macromers to improve biointegration and facilitate hydrogel degradation. The MSCs were shown to survive the encapsulation process, and live cells were detected within the hydrogels for up to 28 days in vitro. Cell-laden hydrogels were shown to undergo significant mineralization in osteogenic medium. Cell-laden and acellular hydrogels were implanted into a critical-size rat cranial defect for 4 and 12 weeks. Both cell-laden and acellular hydrogels were shown to degrade in vivo and help to facilitate bone growth into the defect. Improved bone bridging of the defect was seen with the incorporation of cells, as well as with higher phosphate content of the macromer. Furthermore, direct bone-to-hydrogel contact was observed in the majority of implants, which is not commonly seen in this model. The ability of these macromers to deliver stem cells while forming in situ and subsequently degrade while facilitating bone ingrowth into the defect makes this class of macromers a promising material for craniofacial bone tissue engineering.
Collapse
Affiliation(s)
- Brendan M Watson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Tiffany N Vo
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | | - Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - David W Scott
- Department of Statistics, Rice University, Houston, TX 77251, USA
| | - Paul S Engel
- Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Clément B, Molin DG, Jérôme C, Lecomte P. Synthesis of polyphosphodiesters by ring-opening polymerization of cyclic phosphates bearing allyl phosphoester protecting groups. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27732] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Benoït Clément
- Center for Education and Research on Macromolecules (CERM); University of Liège; B6a, Sart-Tilman 4000 Liège Belgium
| | - Daniel G. Molin
- BioMIMedics; Interreg EMR IV-A Consortium; Lead Partner Maastricht University; Universiteitssingel 50 6229ER Maastricht The Netherlands
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM); University of Liège; B6a, Sart-Tilman 4000 Liège Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM); University of Liège; B6a, Sart-Tilman 4000 Liège Belgium
| |
Collapse
|
34
|
Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration:in vitroandin vivocharacteristics. J Biomed Mater Res A 2015; 103:3580-9. [DOI: 10.1002/jbm.a.35499] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023]
|
35
|
Kinneberg KRC, Nelson A, Stender ME, Aziz AH, Mozdzen LC, Harley BAC, Bryant SJ, Ferguson VL. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Ann Biomed Eng 2015; 43:2618-29. [PMID: 26001970 DOI: 10.1007/s10439-015-1337-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.
Collapse
Affiliation(s)
- K R C Kinneberg
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA
| | - A Nelson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - M E Stender
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA
| | - A H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - L C Mozdzen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - B A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - S J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Material Science & Engineering Program, University of Colorado, Boulder, CO, USA
| | - V L Ferguson
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA. .,BioFrontiers Institute, University of Colorado, Boulder, CO, USA. .,Material Science & Engineering Program, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
36
|
Lee WC, Lim CH, Su C, Loh KP, Lim CT. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:963-9. [PMID: 25320042 DOI: 10.1002/smll.201401635] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/02/2014] [Indexed: 05/10/2023]
Abstract
Graphene-based nanomaterials are increasingly being explored for use as biomaterials for drug delivery and tissue engineering applications due to their exceptional physicochemical and mechanical properties. However, the two-dimensional nature of graphene makes it difficult to extend its applications beyond planar tissue culture. Here, graphene-cell biocomposites are used to pre-concentrate growth factors for chondrogenic differentiation. Bone marrow-derived mesenchymal stem cells (MSCs) are assembled with graphene flakes in the solution to form graphene-cell biocomposites. Increasing concentrations of graphene (G) and porous graphene oxide (pGO) are found to correlate positively with the extent of differentiation. However, beyond a certain concentration, especially in the case of graphene oxide, it will lead to decreased chondrogenesis due to increased diffusional barrier and cytotoxic effects. Nevertheless, these findings indicate that both G and pGO could serve as effective pre-concentration platforms for the construction of tissue-engineered cartilage and suspension-based cultures in vitro.
Collapse
Affiliation(s)
- Wong Cheng Lee
- Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore; NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | | | | | | | | |
Collapse
|
37
|
Lim YH, Tiemann KM, Heo GS, Wagers PO, Rezenom YH, Zhang S, Zhang F, Youngs WJ, Hunstad DA, Wooley KL. Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly(L-lactide). ACS NANO 2015; 9:1995-2008. [PMID: 25621868 PMCID: PMC4455953 DOI: 10.1021/nn507046h] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of well-defined polymeric nanoparticles (NPs) as delivery carriers for antimicrobials targeting human infectious diseases requires rational design of the polymer template, an efficient synthetic approach, and fundamental understanding of the developed NPs, e.g., drug loading/release, particle stability, and other characteristics. Herein, we developed and evaluated the in vitro antimicrobial activity of silver-bearing, fully biodegradable and functional polymeric NPs. A series of degradable polymeric nanoparticles (dNPs), composed of phosphoester and L-lactide and designed specifically for silver loading into the hydrophilic shell and/or the hydrophobic core, were prepared as potential delivery carriers for three different types of silver-based antimicrobials-silver acetate or one of two silver carbene complexes (SCCs). Silver-loading capacities of the dNPs were not influenced by the hydrophilic block chain length, loading site (i.e., core or shell), or type of silver compound, but optimization of the silver feed ratio was crucial to maximize the silver loading capacity of dNPs, up to ca. 12% (w/w). The release kinetics of silver-bearing dNPs revealed 50% release at ca. 2.5-5.5 h depending on the type of silver compound. In addition, we undertook a comprehensive evaluation of the rates of hydrolytic or enzymatic degradability and performed structural characterization of the degradation products. Interestingly, packaging of the SCCs in the dNP-based delivery system improved minimum inhibitory concentrations up to 70%, compared with the SCCs alone, as measured in vitro against 10 contemporary epidemic strains of Staphylococcus aureus and eight uropathogenic strains of Escherichia coli. We conclude that these dNP-based delivery systems may be beneficial for direct epithelial treatment and/or prevention of ubiquitous bacterial infections, including those of the skin and urinary tract.
Collapse
Affiliation(s)
- Young H. Lim
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United States
| | - Kristin M. Tiemann
- Department of Pediatrics, Washington University of School of Medicine, St. Louis, MO 63110, United States
| | - Gyu Seong Heo
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United States
| | - Patrick O. Wagers
- Department of Chemistry and Center for Silver Therapeutics Research, University of Akron, Akron, OH 44325, United States
| | - Yohannes H. Rezenom
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiyi Zhang
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United States
| | - Fuwu Zhang
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United States
| | - Wiley J. Youngs
- Department of Chemistry and Center for Silver Therapeutics Research, University of Akron, Akron, OH 44325, United States
| | - David A. Hunstad
- Department of Pediatrics, Washington University of School of Medicine, St. Louis, MO 63110, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, and Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, Texas 77842, United States
| |
Collapse
|
38
|
Fan C, Wang DA. Effects of permeability and living space on cell fate and neo-tissue development in hydrogel-based scaffolds: a study with cartilaginous model. Macromol Biosci 2015; 15:535-45. [PMID: 25557976 DOI: 10.1002/mabi.201400453] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/27/2014] [Indexed: 01/20/2023]
Abstract
One bottleneck in tissue regeneration with hydrogel scaffolds is the limited understanding of the crucial factors for controlling hydrogel's physical microenvironments to regulate cell fate. Here, the effects of permeability and living space of hydrogels on encapsulated cells' behavior were evaluated, respectively. Three model hydrogel-based constructs are fabricated by using photo-crosslinkable hyaluronic acid as precursor and chondrocytes as model cell type. The better permeable hydrogels facilitate better cell viability and rapid proliferation, which lead to increased production of extracellular matrix (ECM), e.g. collagen, glycosaminoglycan. By prolonged culture, nano-sized hydrogel networks inhibit neo-tissue development, and the presence of macro-porous living spaces significantly enhance ECM deposition via forming larger cell clusters and eventually induce formation of scaffold-free neo-tissue islets. The results of this work demonstrate that the manipulation and optimization of hydrogel microenvironments, namely permeability and living space, are crucial to direct cell fate and neo-tissue formation.
Collapse
Affiliation(s)
- Changjiang Fan
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457
| | | |
Collapse
|
39
|
Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering. PLoS One 2014; 9:e110764. [PMID: 25329501 PMCID: PMC4203828 DOI: 10.1371/journal.pone.0110764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/24/2014] [Indexed: 01/17/2023] Open
Abstract
To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton’s jelly (hUCMSCs) represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC) tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton’s jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15–20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF) not only made full use of the Wharton’s jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.
Collapse
|
40
|
Watson BM, Kasper FK, Engel PS, Mikos AG. Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Biomacromolecules 2014; 15:1788-96. [PMID: 24758298 PMCID: PMC4025585 DOI: 10.1021/bm500175e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Novel,
injectable, biodegradable macromer solutions that form hydrogels
when elevated to physiologic temperature via a dual chemical and thermo-gelation
were fabricated and characterized. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant phosphate groups
was synthesized and subsequently functionalized with chemically cross-linkable
methacrylate groups via degradable phosphate ester bonds, yielding
a dual-gelling macromer. These dual-gelling macromers were tuned to
have transition temperatures between room temperature and physiologic
temperature, allowing them to undergo instantaneous thermogelation
as well as chemical gelation when elevated to physiologic temperature.
Additionally, the chemical cross-linking of the hydrogels was shown
to mitigate hydrogel syneresis, which commonly occurs when thermogelling
materials are raised above their transition temperature. Finally,
degradation of the phosphate ester bonds of the cross-linked hydrogels
yielded macromers that were soluble at physiologic temperature. Further
characterization of the hydrogels demonstrated minimal cytotoxicity
of hydrogel leachables as well as in vitro calcification, making these
novel, injectable macromers promising materials for use in bone tissue
engineering.
Collapse
Affiliation(s)
- Brendan M Watson
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, United States
| | | | | | | |
Collapse
|
41
|
Pasale SK, Cerroni B, Ghugare SV, Paradossi G. Multiresponsive Hyaluronan-p(NiPAAm) “Click”-Linked Hydrogels. Macromol Biosci 2014; 14:1025-38. [PMID: 24706494 DOI: 10.1002/mabi.201400021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/25/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Sharad K. Pasale
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma “Tor Vergata”; Via della Ricerca Scientifica 00133 Rome Italy
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma “Tor Vergata”; Via della Ricerca Scientifica 00133 Rome Italy
| | - Shivkumar V. Ghugare
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma “Tor Vergata”; Via della Ricerca Scientifica 00133 Rome Italy
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche; Università di Roma “Tor Vergata”; Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
42
|
Abstract
Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications.
Collapse
Affiliation(s)
- Brendan M. Watson
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - F. Kurtis Kasper
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
43
|
Haridas V, Sadanandan S, Collart-Dutilleul PY, Gronthos S, Voelcker NH. Lysine-appended polydiacetylene scaffolds for human mesenchymal stem cells. Biomacromolecules 2014; 15:582-590. [PMID: 24364714 DOI: 10.1021/bm4015655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report on the self-assembly based fabrication of fibrous polymers for tissue engineering applications. Directed self-assembly followed by polymerization of lysine-appended diacetylenes generated a variety of polymers (P1-P5) with distinct chemical properties. The self-assembly along with the conjugated double and triple bonds and rigid geometry of diacetylene backbone imposed a nanofibrous morphology on the resulting polymers. Chemical properties including wettability of the polymers were tuned by using lysine (Lys) with orthogonal protecting groups (Boc and Fmoc). These Lys-appended polydiacetylene scaffolds were compared in terms of their efficiency toward human mesenchymal stem cells adhesion and spreading. Interestingly, polymer P4 containing Lys N(α)-NH2 and Lys N(ε)-Boc with balanced wettability supported cell adhesion better than the more hydrophobic polymer P2 with N(ε)-Boc and N(α)-Fmoc or more hydrophilic polymer P5 containing free N(ε) and N(α) amino groups. The molecular level control in the fabrication of nanofibrous polymers compared with other existing methods for the generation of fibrous polymers is the hallmark of this work.
Collapse
Affiliation(s)
- V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi , New Delhi-110016, India
| | | | | | | | | |
Collapse
|
44
|
Xu W, Wang L, Wei K, Ling Y, Zhong S. In vitro osteogenesis of mesenchymal stem cells promoted by the release of La3+ and SiO44− from sheet-shaped lanthanum dropped hexagonal mesoporous silicon. RSC Adv 2014. [DOI: 10.1039/c4ra02987a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Functionalization of biomaterials with small osteoinductive moieties. Acta Biomater 2013; 9:8773-89. [PMID: 23933486 DOI: 10.1016/j.actbio.2013.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/11/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022]
Abstract
Human mesenchymal stem cells (MSCs) are currently recognized as a powerful cell source for regenerative medicine, notably for their capacity to differentiate into multiple cell types. The combination of MSCs with biomaterials functionalized with instructive cues can be used as a strategy to direct specific lineage commitment, and can thus improve the therapeutic efficacy of these cells. In terms of biomaterial design, one common approach is the functionalization of materials with ligands capable of directly binding to cell receptors and trigger specific differentiation signaling pathways. Other strategies focus on the use of moieties that have an indirect effect, acting, for example, as sequesters of bioactive ligands present in the extracellular milieu that, in turn, will interact with cells. Compared with complex biomolecules, the use of simple compounds, such as chemical moieties and peptides, and other small molecules can be advantageous by leading to less expensive and easily tunable biomaterial formulations. This review describes different strategies that have been used to promote substrate-mediated guidance of osteogenic differentiation of immature osteoblasts, osteoprogenitors and MSCs, through chemically conjugated small moieties, both in two- and three-dimensional set-ups. In each case, the selected moiety, the coupling strategy and the main findings of the study were highlighted. The latest advances and future perspectives in the field are also discussed.
Collapse
|
46
|
Shen Y, Zhang S, Zhang F, Loftis A, Pavía-Sanders A, Zou J, Fan J, Taylor JSA, Wooley KL. Polyphosphoester-based cationic nanoparticles serendipitously release integral biologically-active components to serve as novel degradable inducible nitric oxide synthase inhibitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5609-14. [PMID: 23999874 PMCID: PMC4404032 DOI: 10.1002/adma.201302842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Indexed: 05/16/2023]
Abstract
A degradable polyphosphoester (PPE)-based cationic nanoparticle (cSCK), which is integrated constructed as a novel degradable drug device, demonstrates surprisingly efficient inhibition of inducible nitric oxide synthase (iNOS) transcription, and eventually inhibits nitric oxide (NO) over-production, without loading of any specific therapeutic drugs. This system may serve as a promising anti-inflammatory agent toward the treatment of acute lung injury.
Collapse
Affiliation(s)
- Yuefei Shen
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Shiyi Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA, Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Fuwu Zhang
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Alexander Loftis
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Adriana Pavía-Sanders
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Jiong Zou
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - Jingwei Fan
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| | - John-Stephen A. Taylor
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Karen L. Wooley
- Department of Chemistry, Department of Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, Texas, 77842, USA
| |
Collapse
|
47
|
Nath SD, Linh NTB, Sadiasa A, Lee BT. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. J Biomater Appl 2013; 28:1151-63. [DOI: 10.1177/0885328213499272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main objective of this study was to fabricate a controlled drug delivery which is simultaneously effective for bone regeneration. We have encapsulated simvastatin, which enhances osteoblastic activity, in the poly (lactic-co-glycolic acid) microspheres. Loading of these microspheres inside the spongy scaffold of biphasic calcium phosphate with the help of Gelatin (Gel) hydrogel controls the delivery of the drug, and ensures a more favorable drug release profile. As a result, some significant benefits have been achieved, such as higher mechanical strength, excellent biocompatibility in in vitro experiments. For determining the characteristics of the composite scaffold, several analysis, such as scanning electron microscope, EDX, X-ray diffraction, FT-IR, and porosity were carried out. The in vitro drug release profile clearly indicates that simvastatin release from the microsphere was more controlled and prolonged after loading in the scaffold. Biocompatibility was certainly higher for the final composite scaffold compared to drug unloaded scaffold, as assessed through MTT assay and Confocal imaging with MC3T3-E1 pre-osteoblast cells. Cell attachment and proliferation were certainly higher in the presence of drug loaded microspheres. Bone remodeling gene and protein expression were observed by real-time polymerase chain reaction and Western blot respectively. Simvastatin loaded scaffold exhibited the best results in every determination which was carried out.
Collapse
Affiliation(s)
- Subrata D Nath
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| | - Nguyen TB Linh
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| | - Alexander Sadiasa
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| | - Byong T Lee
- Department of Biomedical Engineering and Materials, Soonchunhyang University, Republic of Korea
| |
Collapse
|
48
|
Hulsart-Billström G, Yuen PK, Marsell R, Hilborn J, Larsson S, Ossipov D. Bisphosphonate-Linked Hyaluronic Acid Hydrogel Sequesters and Enzymatically Releases Active Bone Morphogenetic Protein-2 for Induction of Osteogenic Differentiation. Biomacromolecules 2013; 14:3055-63. [DOI: 10.1021/bm400639e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gry Hulsart-Billström
- Department
of Surgical Sciences, Orthopedics, Uppsala University Hospital, Uppsala, SE 751 85, Sweden
| | - Pik Kwan Yuen
- Department
of Surgical Sciences, Orthopedics, Uppsala University Hospital, Uppsala, SE 751 85, Sweden
| | - Richard Marsell
- Department
of Surgical Sciences, Orthopedics, Uppsala University Hospital, Uppsala, SE 751 85, Sweden
| | - Jöns Hilborn
- Science
for Life
Laboratory, Division of Polymer Chemistry, Department
of Chemistry-Ångström, Uppsala University, Uppsala, SE 751 21, Sweden
| | - Sune Larsson
- Department
of Surgical Sciences, Orthopedics, Uppsala University Hospital, Uppsala, SE 751 85, Sweden
| | - Dmitri Ossipov
- Science
for Life
Laboratory, Division of Polymer Chemistry, Department
of Chemistry-Ångström, Uppsala University, Uppsala, SE 751 21, Sweden
| |
Collapse
|
49
|
Abstract
The delivery of living cells into a host body has emerged as a promising approach to treating a variety of different diseases and for tissue repair. However, one of the major obstacles for clinical success is to deliver the cells to the target tissue without losing control of cell fate and function after transplantation. Temperature-responsive biomaterials represent a promising vehicle to deliver cells noninvasively by injection of a liquid precursor, which undergoes a reversible phase transition at body temperature, thus, forming temperature-induced hydrogels in situ. The final material provides transplanted cells with a synthetic extracellular matrix, which retains the cells at the injection site, supports cell growth and mitigates migration. This mini review is intended to cover the fundamental physicochemical characteristics of these thermoresponsive biomaterials, and to examine the applications, with a focus on the recently developed cell-delivery systems for tissue engineering and cell therapy, including advantages, limitations and future challenges.
Collapse
|
50
|
Abstract
Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors, and regenerative medicine. Their ability to respond to specific biologically derived stimuli creates a design challenge in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range, limit of detection, and the potential for feedback control. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide sensing, transduction, and actuation of the hydrogel. Future advancements in bioresponsive hydrogels will out of necessity contain control loops similar to synthetic metabolic pathways. The use of these materials will continue to expand as they become coupled and integrated with new technologies.
Collapse
|