1
|
Shuai Y, Zheng M, Kundu SC, Mao C, Yang M. Bioengineered Silk Protein-Based 3D In Vitro Models for Tissue Engineering and Drug Development: From Silk Matrix Properties to Biomedical Applications. Adv Healthc Mater 2024; 13:e2401458. [PMID: 39009465 DOI: 10.1002/adhm.202401458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Indexed: 07/17/2024]
Abstract
3D in vitro model has emerged as a valuable tool for studying tissue development, drug screening, and disease modeling. 3D systems can accurately replicate tissue microstructures and physiological features, mirroring the in vivo microenvironment departing from conventional 2D cell cultures. Various 3D in vitro models utilizing biomacromolecules like collagen and synthetic polymers have been developed to meet diverse research needs and address the complex challenges of contemporary research. Silk proteins, bearing structural and functional similarities to collagen, have been increasingly employed to construct advanced 3D in vitro systems, surpassing the limitations of 2D cultures. This review examines silk proteins' composition, structure, properties, and functions, elucidating their role in 3D in vitro models. Furthermore, recent advances in biomedical applications involving silk-based organoid models are discussed. In particular, the unique physiological attributes of silk matrix constituents in in vitro tissue constructs are highlighted, providing a meticulous evaluation of their importance. Additionally, it outlines the current research hurdles and complexities while contemplating future avenues, thereby paving the way for developing complex and biomimetic silk protein-based microtissues.
Collapse
Affiliation(s)
- Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, P. R. China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Caneus J, Autar K, Akanda N, Grillo M, Long CJ, Jackson M, Lindquist S, Guo X, Morgan D, Hickman JJ. Validation of a functional human AD model with four AD therapeutics utilizing patterned ipsc-derived cortical neurons integrated with microelectrode arrays. Sci Rep 2024; 14:24875. [PMID: 39438515 PMCID: PMC11496884 DOI: 10.1038/s41598-024-73869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Preclinical methods are needed for screening potential Alzheimer's disease (AD) therapeutics that recapitulate phenotypes found in the Mild Cognitive Impairment (MCI) stage or even before this stage of the disease. This would require a phenotypic system that reproduces cognitive deficits without significant neuronal cell death to mimic the clinical manifestations of AD during these stages. Long-term potentiation (LTP), which is a correlate of learning and memory, was induced in mature human iPSC-derived cortical neurons cultured on microelectrode arrays utilizing circuit patterns connecting two adjacent electrodes. We demonstrated an LTP system that modeled the MCI and pre-MCI stages of Alzheimer's and validated this functional system utilizing four AD therapeutics, which was also verified utilizing patch-clamp electrophysiology. LTP was induced by tetanic electrical stimulation, and LTP maintenance was significantly reduced in the presence of Amyloid-Beta 42 (Aβ42) oligomers compared to the controls, however, co-treatment with AD therapeutics (Donepezil, Memantine, Rolipram and Saracatinib) corrected Aβ42-induced LTP impairment. The results illustrate the utility of the system as a validated platform to model MCI AD pathology, and potentially for the pre-MCI phase before significant neuronal death. This system also has the potential to become an ideal platform for high-content therapeutic screening for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Julbert Caneus
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| | - Kaveena Autar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Marcella Grillo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | | | - Max Jackson
- Hesperos Inc., 12501 Research Pkwy #100, Orlando, FL, USA
| | | | - Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Dave Morgan
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc., 12501 Research Pkwy #100, Orlando, FL, USA
| |
Collapse
|
3
|
Musah S, Bhattacharya R, Himmelfarb J. Kidney Disease Modeling with Organoids and Organs-on-Chips. Annu Rev Biomed Eng 2024; 26:383-414. [PMID: 38424088 PMCID: PMC11479997 DOI: 10.1146/annurev-bioeng-072623-044010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Kidney disease is a global health crisis affecting more than 850 million people worldwide. In the United States, annual Medicare expenditures for kidney disease and organ failure exceed $81 billion. Efforts to develop targeted therapeutics are limited by a poor understanding of the molecular mechanisms underlying human kidney disease onset and progression. Additionally, 90% of drug candidates fail in human clinical trials, often due to toxicity and efficacy not accurately predicted in animal models. The advent of ex vivo kidney models, such as those engineered from induced pluripotent stem (iPS) cells and organ-on-a-chip (organ-chip) systems, has garnered considerable interest owing to their ability to more accurately model tissue development and patient-specific responses and drug toxicity. This review describes recent advances in developing kidney organoids and organ-chips by harnessing iPS cell biology to model human-specific kidney functions and disease states. We also discuss challenges that must be overcome to realize the potential of organoids and organ-chips as dynamic and functional conduits of the human kidney. Achieving these technological advances could revolutionize personalized medicine applications and therapeutic discovery for kidney disease.
Collapse
Affiliation(s)
- Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
- Developmental and Stem Cell Biology Program and Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, USA;
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, North Carolina, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Kidney Research Institute, and Division of Nephrology, University of Washington School of Medicine, Seattle, Washington, USA;
| |
Collapse
|
4
|
Qiu P, Zhang Y, Lv M, Wang L, Shi D, Luo C. Establishing a 3D-cultured system based on alginate-hydrogel embedding benefits the in vitro maturation of porcine Oocytes. Theriogenology 2024; 225:33-42. [PMID: 38788627 DOI: 10.1016/j.theriogenology.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
The in vitro maturation (IVM) quality of oocytes is directly related to the subsequent developmental potential of embryos and a fundamental of in vitro embryo production. However, conventional IVM methods fail to maintain the gap-junction intercellular communication (GJIC) between cumulus-oocyte complexes (COCs), which leads to insufficient oocyte maturation. Herein, we investigated the effects of three different three-dimensional (3D) culture methods on oocyte development in vitro, optimized of the alginate-hydrogel embedding method, and assessed the effects of the alginate-hydrogel embedding method on subsequent embryonic developmental potential of oocytes after IVM and parthenogenetic activation (PA). The results showed that Matrigel embedding and alginate-hydrogel embedding benefited the embryonic developmental potential of oocytes after IVM and PA. With the further optimization of alginate-hydrogel embedding, including crosslinking and decrosslinking of parameters, we established a 3D culture system that can significantly increase oocyte maturation and the blastocyst rate of embryos after PA (27.2 ± 1.5 vs 36.7 ± 2.8, P < 0.05). This 3D culture system produced oocytes with markedly increased mitochondrial intensity and membrane potential, which reduced the abnormalities of spindle formation and cortical granule distribution. The alginate-hydrogel embedding system can also remarkably enhance the GJIC between COCs. In summary, based on alginate-hydrogel embedding, we established a 3D culture system that can improve the IVM quality of porcine oocytes, possibly by enhancing GJIC.
Collapse
Affiliation(s)
- Peng Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunchuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Meiyun Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Lei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| | - Chan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| |
Collapse
|
5
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
6
|
Lacueva-Aparicio A, Lindoso RS, Mihăilă SM, Giménez I. Role of extracellular matrix components and structure in new renal models in vitro. Front Physiol 2022; 13:1048738. [PMID: 36569770 PMCID: PMC9767975 DOI: 10.3389/fphys.2022.1048738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM), a complex set of fibrillar proteins and proteoglycans, supports the renal parenchyma and provides biomechanical and biochemical cues critical for spatial-temporal patterning of cell development and acquisition of specialized functions. As in vitro models progress towards biomimicry, more attention is paid to reproducing ECM-mediated stimuli. ECM's role in in vitro models of renal function and disease used to investigate kidney injury and regeneration is discussed. Availability, affordability, and lot-to-lot consistency are the main factors determining the selection of materials to recreate ECM in vitro. While simpler components can be synthesized in vitro, others must be isolated from animal or human tissues, either as single isolated components or as complex mixtures, such as Matrigel or decellularized formulations. Synthetic polymeric materials with dynamic and instructive capacities are also being explored for cell mechanical support to overcome the issues with natural products. ECM components can be used as simple 2D coatings or complex 3D scaffolds combining natural and synthetic materials. The goal is to recreate the biochemical signals provided by glycosaminoglycans and other signaling molecules, together with the stiffness, elasticity, segmentation, and dimensionality of the original kidney tissue, to support the specialized functions of glomerular, tubular, and vascular compartments. ECM mimicking also plays a central role in recent developments aiming to reproduce renal tissue in vitro or even in therapeutical strategies to regenerate renal function. Bioprinting of renal tubules, recellularization of kidney ECM scaffolds, and development of kidney organoids are examples. Future solutions will probably combine these technologies.
Collapse
Affiliation(s)
- Alodia Lacueva-Aparicio
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Tissue Microenvironment Lab (TME Lab), I3A, University of Zaragoza, Zaragoza, Spain
| | - Rafael Soares Lindoso
- Carlos Chagas Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ignacio Giménez
- Renal and Cardiovascular Physiopathology (FISIOPREN), Aragon’s Health Sciences Institute, Zaragoza, Spain,Institute for Health Research Aragon (IIS Aragon), Zaragoza, Spain,School of Medicine, University of Zaragoza, Zaragoza, Spain,*Correspondence: Ignacio Giménez,
| |
Collapse
|
7
|
Metelmann IB, Kraemer S, Steinert M, Langer S, Stock P, Kurow O. Novel 3D organotypic co-culture model of pleura. PLoS One 2022; 17:e0276978. [PMID: 36454800 PMCID: PMC9714887 DOI: 10.1371/journal.pone.0276978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Pleural mesothelial cells are the predominant cell type in the pleural cavity, but their role in the pathogenesis of pleural diseases needs to be further elucidated. 3D organotypic models are an encouraging approach for an in vivo understanding of molecular disease development. The aim of the present study was to develop a 3D organotypic model of the pleural mesothelium. Specimens of human pleura parietalis were obtained from patients undergoing surgery at the University Hospital Leipzig, Germany. 3D co-culture model of pleura was established from human pleural mesothelial cells and fibroblasts. The model was compared to human pleura tissue by phase-contrast and light microscopy, immunochemistry and -fluorescence as well as solute permeation test. Histological assessment of the 3D co-culture model displayed the presence of both cell types mimicking the morphology of the human pleura. Vimentin and Cytokeratin, PHD1 showed a similar expression pattern in pleural biopsies and 3D model. Expression of Ki-67 indicates the presence of proliferating cells. Tight junctional marker ZO-1 was found localized at contact zones between mesothelial cells. Each of these markers were expressed in both the 3D co-culture model and human biopsies. Permeability of 3D organotypic co-culture model of pleura was found to be higher for 70 kDa-Dextran and no significant difference was seen in the permeability for small dextran (4 kDa). In summary, the presented 3D organoid of pleura functions as a robust assay for pleural research serving as a precise reproduction of the in vivo morphology and microenvironment.
Collapse
Affiliation(s)
- Isabella B. Metelmann
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Sebastian Kraemer
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Matthias Steinert
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Stefan Langer
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Olga Kurow
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
8
|
Parigoris E, Lee JH, Liu AY, Zhao X, Takayama S. Extended longevity geometrically-inverted proximal tubule organoids. Biomaterials 2022; 290:121828. [PMID: 36215909 PMCID: PMC10693433 DOI: 10.1016/j.biomaterials.2022.121828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 01/22/2023]
Abstract
This study reports the cellular self-organization of primary human renal proximal tubule epithelial cells (RPTECs) around a minimal Matrigel scaffold to produce basal-in and apical-out proximal tubule organoids (tubuloids). These tubuloids are produced and maintained in hanging drop cultures for 90+ days, the longest such culture of any kind reported to date. The tubuloids upregulate maturity markers, such as aquaporin-1 (AQP1) and megalin (LRP2), and exhibit less mesenchymal and proliferation markers, such as vimentin and Ki67, compared to 2D cultures. They also experience changes over time as revealed by a comparison of gene expression patterns of cells in 2D culture and in day 31 and day 67 tubuloids. Gene expression analysis and immunohistochemistry reveal an increase in the expression of megalin, an endocytic receptor that can directly bind and uptake protein or potentially assist protein uptake. The tubuloids, including day 90 tubuloids, uptake fluorescent albumin and reveal punctate fluorescent patterns, suggesting functional endocytic uptake through these receptors. Furthermore, the tubuloids release kidney injury molecule-1 (KIM-1), a common biomarker for kidney injury, when exposed to albumin in both dose- and time-dependent manners. While this study focuses on potential applications for modeling proteinuric kidney disease, the tubuloids may have broad utility for studies where apical proximal tubule cell access is required.
Collapse
Affiliation(s)
- Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Amy Yunfan Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, United States; The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
9
|
Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-Based Biopolymer Processing as a Route toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105196. [PMID: 34647374 PMCID: PMC8741650 DOI: 10.1002/adma.202105196] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Some of the most abundant biomass on earth is sequestered in fibrous biopolymers like cellulose, chitin, and silk. These types of natural materials offer unique and striking mechanical and functional features that have driven strong interest in their utility for a range of applications, while also matching environmental sustainability needs. However, these material systems are challenging to process in cost-competitive ways to compete with synthetic plastics due to the limited options for thermal processing. This results in the dominance of solution-based processing for fibrous biopolymers, which presents challenges for scaling, cost, and consistency in outcomes. However, new opportunities to utilize thermal processing with these types of biopolymers, as well as fibrillation approaches, can drive renewed opportunities to bridge this gap between synthetic plastic processing and fibrous biopolymers, while also holding sustainability goals as critical to long-term successful outcomes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Haoyuan Shi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
10
|
3D Bioprinting for fabrication of tissue models of COVID-19 infection. Essays Biochem 2021; 65:503-518. [PMID: 34028514 DOI: 10.1042/ebc20200129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Over the last few decades, the world has witnessed multiple viral pandemics, the current severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic being the worst and most devastating one, claiming millions of lives worldwide. Physicians, scientists, and engineers worldwide have joined hands in dealing with the current situation at an impressive speed and efficiency. One of the major reasons for the delay in response is our limited understanding of the mechanism of action and individual effects of the virus on different tissues and organs. Advances in 3D bioprinting have opened up a whole new area to explore and utilize the technology in fabricating models of these tissues and organs, recapitulating in vivo environment. These biomimetic models can not only be utilized in learning the infection pathways and drug toxicology studies but also minimize the need for animal models and shorten the time span for human clinical trials. The current review aims to integrate the existing developments in bioprinting techniques, and their implementation to develop tissue models, which has implications for SARS-CoV-2 infection. Future translation of these models has also been discussed with respect to the pandemic.
Collapse
|
11
|
Rizki-Safitri A, Traitteur T, Morizane R. Bioengineered Kidney Models: Methods and Functional Assessments. FUNCTION 2021; 2:zqab026. [PMID: 35330622 PMCID: PMC8788738 DOI: 10.1093/function/zqab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023] Open
Abstract
Investigations into bioengineering kidneys have been extensively conducted owing to their potential for preclinical assays and regenerative medicine. Various approaches and methods have been developed to improve the structure and function of bioengineered kidneys. Assessments of functional properties confirm the adequacy of bioengineered kidneys for multipurpose translational applications. This review is to summarize the studies performed in kidney bioengineering in the past decade. We identified 84 original articles from PubMed and Mendeley with keywords of kidney organoid or kidney tissue engineering. Those were categorized into 5 groups based on their approach: de-/recellularization of kidney, reaggregation of kidney cells, kidney organoids, kidney in scaffolds, and kidney-on-a-chip. These models were physiologically assessed by filtration, tubular reabsorption/secretion, hormone production, and nephrotoxicity. We found that bioengineered kidney models have been developed from simple cell cultures to multicellular systems to recapitulate kidney function and diseases. Meanwhile, only about 50% of these studies conducted functional assessments on their kidney models. Factors including cell composition and organization are likely to alter the applicability of physiological assessments in bioengineered kidneys. Combined with recent technologies, physiological assessments importantly contribute to the improvement of the bioengineered kidney model toward repairing and refunctioning the damaged kidney.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Tamara Traitteur
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
12
|
Badekila AK, Kini S, Jaiswal AK. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J Cell Physiol 2021; 236:741-762. [PMID: 32657458 DOI: 10.1002/jcp.29935] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
In the last four decades, several researchers worldwide have routinely and meticulously exercised cell culture experiments in two-dimensional (2D) platforms. Using traditionally existing 2D models, the therapeutic efficacy of drugs has been inappropriately validated due to the failure in generating the precise therapeutic response. Fortunately, a 3D model addresses the foregoing limitations by recapitulating the in vivo environment. In this context, one has to contemplate the design of an appropriate scaffold for favoring the organization of cell microenvironment. Instituting pertinent model on the platter will pave way for a precise mimicking of in vivo conditions. It is because animal cells in scaffolds oblige spontaneous formation of 3D colonies that molecularly, phenotypically, and histologically resemble the native environment. The 3D culture provides insight into the biochemical aspects of cell-cell communication, plasticity, cell division, cytoskeletal reorganization, signaling mechanisms, differentiation, and cell death. Focusing on these criteria, this paper discusses in detail, the diversification of polymeric scaffolds based on their available resources. The paper also reviews the well-founded and latest techniques of scaffold fabrication, and their applications pertaining to tissue engineering, drug screening, and tumor model development.
Collapse
Affiliation(s)
- Anjana K Badekila
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Sudarshan Kini
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Amit K Jaiswal
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. MICROMACHINES 2021; 12:mi12020139. [PMID: 33525451 PMCID: PMC7911320 DOI: 10.3390/mi12020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.
Collapse
|
14
|
Shpichka A, Bikmulina P, Peshkova M, Kosheleva N, Zurina I, Zahmatkesh E, Khoshdel-Rad N, Lipina M, Golubeva E, Butnaru D, Svistunov A, Vosough M, Timashev P. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 2020; 6:302. [PMID: 33089000 PMCID: PMC7557357 DOI: 10.18063/ijb.v6i4.302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
While the number of studies related to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is constantly growing, it is essential to provide a framework of modeling viral infections. Therefore, this review aims to describe the background presented by earlier used models for viral studies and an approach to design an "ideal" tissue model for SARS-CoV-2 infection. Due to the previous successful achievements in antiviral research and tissue engineering, combining the emerging techniques such as bioprinting, microfluidics, and organoid formation are considered to be one of the best approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-CoV-2 infection can be a great breakthrough that can help defeat coronavirus disease in 2019.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Bikmulina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Embryology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Irina Zurina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marina Lipina
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Elena Golubeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Denis Butnaru
- Rector’s Office, Sechenov University, Moscow, Russia
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
15
|
Robinson TE, Hughes EAB, Wiseman OJ, Stapley SA, Cox SC, Grover LM. Hexametaphosphate as a potential therapy for the dissolution and prevention of kidney stones. J Mater Chem B 2020; 8:5215-5224. [PMID: 32436557 DOI: 10.1039/d0tb00343c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incidence of kidney stones is increasing worldwide, and recurrence is common (50% within 5 years). Citrate, the current gold standard therapy, which is usually given as potassium or sodium salts, is used because it raises urine pH and chelates calcium, the primary component of up to 94% of stones. In this study hexametaphosphate (HMP), a potent calcium chelator, was found to be 12 times more effective at dissolving calcium oxalate, the primary component of kidney stones, than citrate. HMP was also observed to be effective against other common kidney stone components, namely calcium phosphate and struvite (magnesium ammonium phosphate). Interestingly, HMP was capable of raising the zeta potential of calcium oxalate particles from -15.4 to -34.6 mV, which may prevent stone growth by aggregation, the most rapid growth mechanism, and thus avert occlusion. Notably, HMP was shown to be up to 16 times as effective as citrate at dissolving human kidney stones under simulated physiological conditions. It may thus be concluded that HMP is a promising potential therapy for calcium and struvite kidney stones.
Collapse
Affiliation(s)
- Thomas E Robinson
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK. and Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston, B15 2SQ, UK
| | - Erik A B Hughes
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Oliver J Wiseman
- Department of Urology, Cambridge University Hospital, Cambridge, CB2 0QQ, UK
| | - Sarah A Stapley
- Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston, B15 2SQ, UK
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
16
|
Wang X, Guo C, Chen Y, Tozzi L, Szymkowiak S, Li C, Kaplan DL. Developing a self-organized tubulogenesis model of human renal proximal tubular epithelial cells in vitro. J Biomed Mater Res A 2019; 108:795-804. [PMID: 31808276 DOI: 10.1002/jbm.a.36858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
Three-dimensional tissue culture models which recapitulate the phenotype and function of human renal tissue have attracted significant interest as valuable tools for studying kidney development, disease pathophysiology, and nephrotoxicity. Here, a layer-by-layered three-dimensional (3D) co-culture technique was employed to bioengineer an improved human proximal tubule tissue model through incorporating human renal proximal tubule epithelial cells (RPTECs) with two types of interstitial cells on the layered extracellular matrix-like culture matrix. The resulting cultures were characterized by their growth profile, metabolic and proliferative activity, morphological characteristics as well as their functional gene expression. Our results found that the cultures were able to enable the self-organization of RPTECs and promote the tubule-like structure formation in vitro. A well-defined lumen structure and polarized expression of some key protein markers including actin, P-gp, Na+ -K+ -ATPase, and SGLT2 were also observed in the 3D co-cultures. Moreover, compared to the 3D monocultures, the tubule-like structures formed within the 3D co-cultures displayed more significant polarity and enhanced functional gene expression. This suggested the important role played by the renal stromal cells in supporting the tubulogenesis and differentiation of RPTECs. Thus, the 3D co-culture model reported here would benefit bioengineering approaches toward more physiologically relevant proximal tubule tissue in vitro, providing more robust tool not only for better understanding kidney development and pathophysiology but also for drug screening for nephrotoxicity.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Histology & Embryology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Lorenzo Tozzi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Sophia Szymkowiak
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
17
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Chowdhury SR, Mh Busra MF, Lokanathan Y, Ng MH, Law JX, Cletus UC, Binti Haji Idrus R. Collagen Type I: A Versatile Biomaterial. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:389-414. [PMID: 30357700 DOI: 10.1007/978-981-13-0947-2_21] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagen type I is the most abundant matrix protein in the human body and is highly demanded in tissue engineering, regenerative medicine, and pharmaceutical applications. To meet the uprising demand in biomedical applications, collagen type I has been isolated from mammalians (bovine, porcine, goat and rat) and non-mammalians (fish, amphibian, and sea plant) source using various extraction techniques. Recent advancement enables fabrication of collagen scaffolds in multiple forms such as film, sponge, and hydrogel, with or without other biomaterials. The scaffolds are extensively used to develop tissue substitutes in regenerating or repairing diseased or damaged tissues. The 3D scaffolds are also used to develop in vitro model and as a vehicle for delivering drugs or active compounds.
Collapse
Affiliation(s)
- Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ude Chinedu Cletus
- Bioartificial Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Haji Idrus
- Department of Physiology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJF, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res 2019; 71:88-113. [PMID: 30453079 PMCID: PMC6690397 DOI: 10.1016/j.preteyeres.2018.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/03/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Yashar Seyed-Razavi
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Gabriela Dieckmann
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Thomas J F Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Rachel E Pollard
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology and Cornea Service, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|
20
|
Booij TH, Price LS, Danen EHJ. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:615-627. [PMID: 30817892 PMCID: PMC6589915 DOI: 10.1177/2472555219830087] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
The introduction of more relevant cell models in early preclinical drug discovery, combined with high-content imaging and automated analysis, is expected to increase the quality of compounds progressing to preclinical stages in the drug development pipeline. In this review we discuss the current switch to more relevant 3D cell culture models and associated challenges for high-throughput screening and high-content analysis. We propose that overcoming these challenges will enable front-loading the drug discovery pipeline with better biology, extracting the most from that biology, and, in general, improving translation between in vitro and in vivo models. This is expected to reduce the proportion of compounds that fail in vivo testing due to a lack of efficacy or to toxicity.
Collapse
Affiliation(s)
- Tijmen H. Booij
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- NEXUS Personalized Health Technologies, ETH Zürich, Switzerland
| | - Leo S. Price
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- OcellO B.V., Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
21
|
Daniel E, Cleaver O. Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Curr Top Dev Biol 2019; 132:177-220. [PMID: 30797509 DOI: 10.1016/bs.ctdb.2018.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organogenesis requires tightly coordinated and patterned growth of numerous cell types to form a fully mature and vascularized organ. Endothelial cells (ECs) that line blood vessels develop alongside the growing organ, but only recently has their role in directing epithelial and stromal growth been appreciated. Endothelial, epithelial, and stromal cells in embryonic organs actively communicate with one another throughout development to ensure that the organ forms appropriately. What signals tell blood vessel progenitors where to go? How are tissues influenced by the vasculature that pervades it? In this chapter, we review the ways in which crosstalk between ECs and epithelial or stromal cells during development leads to a fully patterned pancreas, lung, or kidney. ECs in all of these organs are necessary for proper epithelial and stromal growth, but how they direct this process is organ- and time-specific, highlighting the concept of dynamic EC heterogeneity. We end with a discussion on how understanding cell-cell crosstalk during development can be applied therapeutically through the generation of transplantable miniature organ-like tissues called "organoids." We will discuss the current state of organoid technology and highlight the major challenges in forming a properly patterned vascular network that will be critical in transforming them into a viable therapeutic option.
Collapse
Affiliation(s)
- Edward Daniel
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
22
|
Guided tissue organization and disease modeling in a kidney tubule array. Biomaterials 2018; 183:295-305. [PMID: 30189357 DOI: 10.1016/j.biomaterials.2018.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/09/2018] [Accepted: 07/29/2018] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) in vitro kidney tubule models have either largely relied on the self-morphogenetic properties of the mammalian cells or used an engineered microfluidic platform with a monolayer of cells cultured on an extracellular matrix (ECM) protein coated porous membrane. These systems are used to understand critical processes during kidney development and transport properties of renal tubules. However, high variability and lack of kidney tubule-relevant geometries among engineered structures limit their utility in disease research and pre-clinical drug testing. Here, we report a novel bioengineered guided kidney tubule (gKT) array system that incorporates in vivo-like physicochemical cues in 3D culture to reproducibly generate homogeneous kidney tubules. The system utilizes a unique 3D micro-molded ECM platform in human physiology-scale dimensions (50-μm diameter) and relevant shapes to guide cells towards formation of mature tubule structures. The guided kidney tubules in our array system display enhanced tubule homogeneity with in vivo-like structural and functional features as evaluated by marker protein localization and epithelial transport analysis. Furthermore, the response of gKT structures to forskolin treatment exhibits characteristic tissue transformations from tubules to expanding cysts. Moreover, acute cisplatin injury causes induction of Kidney Injury Molecule-1 (KIM-1) expression as well as tubular necrosis and apoptosis. Thus the gKT array system offers enhanced structural uniformity with accurate in vivo-like tissue architecture, and will have broad applications in kidney tubule disease pathophysiology (including ciliopathies and drug-induced acute kidney injury), and will enhance pre-clinical drug screening studies.
Collapse
|
23
|
Dixon EE, Woodward OM. Three-dimensional in vitro models answer the right questions in ADPKD cystogenesis. Am J Physiol Renal Physiol 2018; 315:F332-F335. [PMID: 29693448 DOI: 10.1152/ajprenal.00126.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Novel technologies, new understanding of the basement membrane composition, and better comprehension of the embryonic development of the mammalian kidney have led to explosive growth in the use of three-dimensional in vitro models to study a range of human disease pathologies (Clevers H. Cell 165: 1586-1597, 2016; Shamir ER, Ewald AJ. Nat Rev Mol Cell Biol 15: 647-664, 2014). The development of these effective model systems represents a new tool to study the progressive cystogenesis of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is a prevalent and complex monogenetic disease, characterized by the pathological formation of fluid fill cysts in renal tissue (Grantham JJ, Mulamalla S, Swenson-Fields KI. Nat Rev Nephrol 7: 556-566, 2011; Takiar V, Caplan MJ. Biochim Biophys Acta 1812: 1337-1343, 2011). ADPKD cystogenesis is attributed to loss of function mutations in either PKD1 or PKD2, which encode for two transmembrane proteins, polycystin-1 and polycystin-2, and progresses with loss of both copies of either gene through a proposed two-hit mechanism with secondary somatic mutations (Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M. Biochem Biophys Res Commun 322: 1374-1383, 2004; Pei Y, Watnick T, He N, Wang K, Liang Y, Parfrey P, Germino G, St George-Hyslop P. Am Soc Nephrol 10: 1524-1529, 1999; Wu G, D'Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S. Cell 93: 177-188, 1998). The exaggerated consequences of large fluid filled cysts result in fibrosis and nephron injury, leading initially to functional compensation but ultimately to dysfunction (Grantham JJ. Am J Kidney Dis 28: 788-803, 1996; Norman J. Biochim Biophys Acta 1812: 1327-1336, 2011; Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Results Probl Cell Differ 60: 323-344, 2017). The complicated disease progression has scattered focus and resources across the spectrum of ADPKD research.
Collapse
Affiliation(s)
- Eryn E Dixon
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
24
|
Zhou W, Chen Y, Roh T, Lin Y, Ling S, Zhao S, Lin JD, Khalil N, Cairns DM, Manousiouthakis E, Tse M, Kaplan DL. Multifunctional Bioreactor System for Human Intestine Tissues. ACS Biomater Sci Eng 2017; 4:231-239. [PMID: 29333491 PMCID: PMC5761048 DOI: 10.1021/acsbiomaterials.7b00794] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments.
Collapse
Affiliation(s)
- Wenda Zhou
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, People's Republic of China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Terrence Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Yinan Lin
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Siwei Zhao
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - James D Lin
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Noor Khalil
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Dana M Cairns
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Eleana Manousiouthakis
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan Tse
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
25
|
Abstract
AbstractAn analysis of biological effects induced by environmental toxins and exposure-related evaluation of potential risks for health and environment represent central tasks in classical biomonitoring. While epidemiological data and population surveys are clearly the methodological frontline of this scientific field, cellbased in vitro assays provide information on toxin-affected cellular pathways and mechanisms, and are important sources for the identification of relevant biomarkers. This review provides an overview on currently available in vitro methods based on cultured cells, as well as some limitations and considerations that are of specific interest in the context of environmental toxicology. Today, a large number of different endpoints can be determined to pinpoint basal and specific toxicological cellular effects. Technological progress and increasingly refined protocols are extending the possibilities of cell-based in vitro assays in environmental toxicology and promoting their increasingly important role in biomonitoring.
Collapse
|
26
|
Weber HM, Tsurkan MV, Magno V, Freudenberg U, Werner C. Heparin-based hydrogels induce human renal tubulogenesis in vitro. Acta Biomater 2017; 57:59-69. [PMID: 28526628 DOI: 10.1016/j.actbio.2017.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/01/2022]
Abstract
Dialysis or kidney transplantation is the only therapeutic option for end stage renal disease. Accordingly, there is a large unmet clinical need for new causative therapeutic treatments. Obtaining robust models that mimic the complex nature of the human kidney is a critical step in the development of new therapeutic strategies. Here we establish a synthetic in vitro human renal tubulogenesis model based on a tunable glycosaminoglycan-hydrogel platform. In this system, renal tubulogenesis can be modulated by the adjustment of hydrogel mechanics and degradability, growth factor signaling, and the presence of insoluble adhesion cues, potentially providing new insights for regenerative therapy. Different hydrogel properties were systematically investigated for their ability to regulate renal tubulogenesis. Hydrogels based on heparin and matrix metalloproteinase cleavable peptide linker units were found to induce the morphogenesis of single human proximal tubule epithelial cells into physiologically sized tubule structures. The generated tubules display polarization markers, extracellular matrix components, and organic anion transport functions of the in vivo renal proximal tubule and respond to nephrotoxins comparable to the human clinical response. The established hydrogel-based human renal tubulogenesis model is thus considered highly valuable for renal regenerative medicine and personalized nephrotoxicity studies. STATEMENT OF SIGNIFICANCE The only cure for end stage kidney disease is kidney transplantation. Hence, there is a huge need for reliable human kidney models to study renal regeneration and establish alternative treatments. Here we show the development and application of an in vitro human renal tubulogenesis model using heparin-based hydrogels. To the best of our knowledge, this is the first system where human renal tubulogenesis can be monitored from single cells to physiologically sized tubule structures in a tunable hydrogel system. To validate the efficacy of our model as a drug toxicity platform, a chemotherapy drug was incubated with the model, resulting in a drug response similar to human clinical pathology. The established model could have wide applications in the field of nephrotoxicity and renal regenerative medicine and offer a reliable alternative to animal models.
Collapse
Affiliation(s)
- Heather M Weber
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Mikhail V Tsurkan
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Valentina Magno
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany; Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
27
|
Miles JR, Laughlin TD, Sargus-Patino CN, Pannier AK. In vitro porcine blastocyst development in three-dimensional alginate hydrogels. Mol Reprod Dev 2017; 84:775-787. [PMID: 28407335 DOI: 10.1002/mrd.22814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Appropriate embryonic and fetal development significantly impact pregnancy success and, therefore, the efficiency of swine production. The pre-implantation period of porcine pregnancy is characterized by several developmental hallmarks, which are initiated by the dramatic morphological change that occurs as pig blastocysts elongate from spherical to filamentous blastocysts. Deficiencies in blastocyst elongation contribute to approximately 20% of embryonic loss, and have a direct influence on within-litter birth weight variation. Although factors identified within the uterine environment may play a role in blastocyst elongation, little is known about the exact mechanisms by which porcine (or other species') blastocysts initiate and progress through the elongation process. This is partly due to the difficulty of replicating elongation in vitro, which would allow for its study in a controlled environment and in real-time. We developed a three dimensional (3-D) culture system using alginate hydrogel matrices that can encapsulate pig blastocysts, maintain viability and blastocyst architecture, and facilitate reproducible morphological changes with corresponding expression of steroidogenic enzyme transcripts and estrogen production, consistent with the initiation of elongation in vivo. This review highlights key aspects of the pre-implantation period of porcine pregnancy and the difficulty of studying blastocyst elongation in vivo or by using in vitro systems. This review also provides insights on the utility of 3-D hydrogels to study blastocyst elongation continuously and in real-time as a complementary and confirmatory approach to in vivo analysis.
Collapse
Affiliation(s)
- Jeremy R Miles
- USDA, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska
| | - Taylor D Laughlin
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska
| | - Catherine N Sargus-Patino
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska
| | - Angela K Pannier
- Department of Biological Systems Engineering, University of Nebraska-Lincoln (UNL), Lincoln, Nebraska
| |
Collapse
|
28
|
Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017; 12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/27/2022]
Abstract
In tissue engineering and regenerative medicine, studies that utilize 3D scaffolds for generating voluminous tissues are mostly confined in the realm of in vitro research and preclinical animal model testing. Bioreactors offer an excellent platform to grow and develop 3D tissues by providing conditions that mimic their native microenvironment. Aligning the bioreactor development process with a focus on patient care will aid in the faster translation of the bioreactor technology to clinics. In this review, we discuss the various factors involved in the design of clinically relevant bioreactors in relation to their respective applications. We explore the functional relevance of tissue grafts generated by bioreactors that have been designed to provide physiologically relevant mechanical cues on the growing tissue. The review discusses the recent trends in non-invasive sensing of the bioreactor culture conditions. It provides an insight to the current technological advancements that enable in situ, non-invasive, qualitative and quantitative evaluation of the tissue grafts grown in a bioreactor system. We summarize the emerging trends in commercial bioreactor design followed by a short discussion on the aspects that hamper the 'push' of bioreactor systems into the commercial market as well as 'pull' factors for stakeholders to embrace and adopt widespread utility of bioreactors in the clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuchun Liu
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore.,Academic Clinical Program (Research), National Dental Centre of Singapore, 5 Second Hospital Ave Singapore, 168938, Singapore
| | - Swee-Hin Teoh
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
29
|
King SM, Higgins JW, Nino CR, Smith TR, Paffenroth EH, Fairbairn CE, Docuyanan A, Shah VD, Chen AE, Presnell SC, Nguyen DG. 3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal Physiology to Enable Nephrotoxicity Testing. Front Physiol 2017; 8:123. [PMID: 28337147 PMCID: PMC5340751 DOI: 10.3389/fphys.2017.00123] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/15/2017] [Indexed: 01/09/2023] Open
Abstract
Due to its exposure to high concentrations of xenobiotics, the kidney proximal tubule is a primary site of nephrotoxicity and resulting attrition in the drug development pipeline. Current pre-clinical methods using 2D cell cultures and animal models are unable to fully recapitulate clinical drug responses due to limited in vitro functional lifespan, or species-specific differences. Using Organovo's proprietary 3D bioprinting platform, we have developed a fully cellular human in vitro model of the proximal tubule interstitial interface comprising renal fibroblasts, endothelial cells, and primary human renal proximal tubule epithelial cells to enable more accurate prediction of tissue-level clinical outcomes. Histological characterization demonstrated formation of extensive microvascular networks supported by endogenous extracellular matrix deposition. The epithelial cells of the 3D proximal tubule tissues demonstrated tight junction formation and expression of renal uptake and efflux transporters; the polarized localization and function of P-gp and SGLT2 were confirmed. Treatment of 3D proximal tubule tissues with the nephrotoxin cisplatin induced loss of tissue viability and epithelial cells in a dose-dependent fashion, and cimetidine rescued these effects, confirming the role of the OCT2 transporter in cisplatin-induced nephrotoxicity. The tissues also demonstrated a fibrotic response to TGFβ as assessed by an increase in gene expression associated with human fibrosis and histological verification of excess extracellular matrix deposition. Together, these results suggest that the bioprinted 3D proximal tubule model can serve as a test bed for the mechanistic assessment of human nephrotoxicity and the development of pathogenic states involving epithelial-interstitial interactions, making them an important adjunct to animal studies.
Collapse
|
30
|
Chiang IN, Huang WC, Huang CY, Pu YS, Young TH. Development of a chitosan-based tissue-engineered renal proximal tubule conduit. J Biomed Mater Res B Appl Biomater 2016; 106:9-20. [PMID: 27801972 DOI: 10.1002/jbm.b.33808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/21/2016] [Accepted: 10/12/2016] [Indexed: 11/10/2022]
Abstract
Renal proximal tubule cells (RPTCs) are responsible for glomerular filtration and maintenance of water/electrolyte balance. To regenerate a proximal tubule, sufficient cell numbers and normal cell function are requisite. Collagen has been routinely used as a substrate for culturing human RPTCs (HRPTCs); however, the role of biomaterials has not been thoroughly explored. In this study, RPTCs retrieved from human nephrectomy/nephroureterectomy specimens were cultivated on chitosan as a substrate in serum-free condition for up to 150 days. HRPTCs could maintain a typical epithelial morphology and the specific differentiation feature of transporting epithelia after such long-term culture. As compared with HRPTCs cultivated on collagen, those cultivated on chitosan showed more dome formation, higher Na+ -K+ ATPase expression, lower vimentin expression, and lower transepithelial electrical resistance, indicating that HRPTCs cultivated on chitosan presented better differentiation status and would be more functional with better active transportation. Thus, the current study indicates greater scope for the use of chitosan as a biomaterial for preparing a HRPTC-coated chitosan conduit, which might be useful for the scaffold design of tissue-engineered proximal tubules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 9-20, 2018.
Collapse
Affiliation(s)
- I-Ni Chiang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.,Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Chen Huang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Attalla R, Ling C, Selvaganapathy P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Biomed Microdevices 2016; 18:17. [PMID: 26842949 DOI: 10.1007/s10544-016-0042-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.
Collapse
Affiliation(s)
- R Attalla
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - C Ling
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - P Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
32
|
Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL. Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21861-21868. [PMID: 26849288 DOI: 10.1021/acsami.5b12114] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tissue engineering has broad and diverse impacts on a variety of different applications from tissue regeneration to drug screening. While two-dimensional (2-D) cell culture platforms are suitable for tissue interfaces where planar surfaces are relevant, three dimensional (3-D) tissue models have enhanced relevance and sustainability over 2-D devices. The improvements between 2-D and 3-D functions and sustainability are related to the limitations of 2-D systems to support proper cellular morphology and signaling over time, resulting in cell overgrowth or changes in viability. For sustainable (long-term) cultures, 3-D silk protein scaffolds provide biocompatibility, porous features for transport, robust yet tunable mechanical properties, retain size and open porous structures for extended time frames due to slow proteolytic biodegradation, avoid specific cell signaling, and require no chemical cross-linking. Silk degradation can be extended for months to years without premature collapse of structures (that would result in necrosis) to support cell interactions during slow remodeling toward native tissue. Silk can also be fabricated into different material formats, such as hydrogels, tubes, sponges, composites, fibers, microspheres, and thin films, providing versatile platforms and interfaces for a variety of different applications. For sustainable tissue engineering applications, many formats have been used, including silk ionmer hydrogels that have been cultured for up to 8 weeks and porous silk scaffolds that have been cultured for up to 6 months. In this review, we highlight some of our tissue engineering work related to long-term in vitro cultures. While each tissue engineered system (adipose tissue, cortical brain tissue, intestine, kidney tissue, bone) is unique, they all use silk biomaterials as a base scaffolding material to achieve sustainable cultivation. Sustainability is important for studies that extend past a few weeks to study acute and chronic impacts of treatments, disease models, and other related applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Erica P Kimmerling
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Dana M Cairns
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Tufts University , 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
33
|
Åkerfelt M, Bayramoglu N, Robinson S, Toriseva M, Schukov HP, Härmä V, Virtanen J, Sormunen R, Kaakinen M, Kannala J, Eklund L, Heikkilä J, Nees M. Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention. Oncotarget 2016; 6:30035-56. [PMID: 26375443 PMCID: PMC4745780 DOI: 10.18632/oncotarget.5046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) constitute an important part of the tumor microenvironment and promote invasion via paracrine functions and physical impact on the tumor. Although the importance of including CAFs into three-dimensional (3D) cell cultures has been acknowledged, computational support for quantitative live-cell measurements of complex cell cultures has been lacking. Here, we have developed a novel automated pipeline to model tumor-stroma interplay, track motility and quantify morphological changes of 3D co-cultures, in real-time live-cell settings. The platform consists of microtissues from prostate cancer cells, combined with CAFs in extracellular matrix that allows biochemical perturbation. Tracking of fibroblast dynamics revealed that CAFs guided the way for tumor cells to invade and increased the growth and invasiveness of tumor organoids. We utilized the platform to determine the efficacy of inhibitors in prostate cancer and the associated tumor microenvironment as a functional unit. Interestingly, certain inhibitors selectively disrupted tumor-CAF interactions, e.g. focal adhesion kinase (FAK) inhibitors specifically blocked tumor growth and invasion concurrently with fibroblast spreading and motility. This complex phenotype was not detected in other standard in vitro models. These results highlight the advantage of our approach, which recapitulates tumor histology and can significantly improve cancer target validation in vitro.
Collapse
Affiliation(s)
- Malin Åkerfelt
- Turku Centre for Biotechnology, University of Turku, Turku, FI-20520, Finland.,VTT Technical Research Centre of Finland, Turku, FI-20521, Finland
| | - Neslihan Bayramoglu
- Centre for Machine Vision Research, University of Oulu, Oulu, FI-90014, Finland
| | - Sean Robinson
- Department of Mathematics and Statistics, University of Turku, Turku, FI-20014, Finland.,University Grenoble Alpes, iRTSV-BGE, Grenoble, F-38000, France.,CEA, iRTSV-BGE, Grenoble, F-38000, France.,INSERM, BGE, Grenoble, F-38000, France
| | - Mervi Toriseva
- Turku Centre for Biotechnology, University of Turku, Turku, FI-20520, Finland.,VTT Technical Research Centre of Finland, Turku, FI-20521, Finland.,Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland
| | | | - Ville Härmä
- VTT Technical Research Centre of Finland, Turku, FI-20521, Finland
| | | | - Raija Sormunen
- Biocenter Oulu and Department of Pathology, University of Oulu and Oulu University Hospital, Oulu, FI-90220, Finland
| | - Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FI-90014, Finland
| | - Juho Kannala
- Centre for Machine Vision Research, University of Oulu, Oulu, FI-90014, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, FI-90014, Finland
| | - Janne Heikkilä
- Centre for Machine Vision Research, University of Oulu, Oulu, FI-90014, Finland
| | - Matthias Nees
- Turku Centre for Biotechnology, University of Turku, Turku, FI-20520, Finland.,VTT Technical Research Centre of Finland, Turku, FI-20521, Finland
| |
Collapse
|
34
|
Liang H, Sun Q, Zhen Y, Li F, Xu Y, Liu Y, Zhang X, Qin M. The differentiation of amniotic fluid stem cells into sweat glandlike cells is enhanced by the presence of Sonic hedgehog in the conditioned medium. Exp Dermatol 2016; 25:714-20. [PMID: 27120089 DOI: 10.1111/exd.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
Abstract
After patients suffer severe full-thickness burn injuries, the current treatments cannot lead to the complete self-regeneration of the sweat gland structure and function. Therefore, it is important to identify new methods for acquiring sufficient functional sweat gland cells to restore skin function. In this study, we induced CD117+ human amniotic fluid stem (hAFS) cells to differentiate into sweat glandlike (hAFS-SG) cells based on the use of conditioned medium (CM) from the human sweat gland (hSG) cells. Real-time PCR and immunofluorescent staining were used to confirm the expression of the sweat gland-related genes Ectodysplasin-A (EDA), Ectodysplasin-A receptor (EDAR), keratin 8 (K8) and carcino-embryonic antigen (CEA). Transmission electron microscopy analysis shows that microvilli, the cellular structures that are typical for hSG cells, can also be observed on the membrane of the hAFS-SG cells. Our test for the calcium response to acetylcholine (Ach) proved that hAFS-SG cells have the potential to respond to Ach in a manner similar to normal sweat glands. A three-dimensional culture is an effective approach that stimulates the hAFS-SG cells to form tubular structures and drives hAFS-SG cells to mature into higher stage. We also found that epidermal growth factor enhances the efficiency of differentiation and that Sonic hedgehog is an important factor of the CM that influences sweat gland differentiation. Our study provides the basis for further investigations into novel methods of inducing stem cells to differentiate into sweat glandlike cells.
Collapse
Affiliation(s)
- Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Qing Sun
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Yunfang Zhen
- The Center of Diagnosis and Treatment for Children's Bone Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Li
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China.,Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - YunYun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yao Liu
- The Center of Diagnosis and Treatment for Children's Bone Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| | - Mingde Qin
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
35
|
Xie Q, Xu Z, Hu B, He X, Zhu L. Preparation of a novel silk microfiber covered by AgCl nanoparticles with antimicrobial activity. Microsc Res Tech 2016; 80:272-279. [DOI: 10.1002/jemt.22683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Qifan Xie
- Institute of Applied Bioresource; College of Animal Science, Zhejiang University; Hangzhou Zhejiang 310058 People's Republic of China
| | - Zongpu Xu
- Institute of Applied Bioresource; College of Animal Science, Zhejiang University; Hangzhou Zhejiang 310058 People's Republic of China
| | - Binhui Hu
- Institute of Applied Bioresource; College of Animal Science, Zhejiang University; Hangzhou Zhejiang 310058 People's Republic of China
| | - Xiuling He
- Institute of Applied Bioresource; College of Animal Science, Zhejiang University; Hangzhou Zhejiang 310058 People's Republic of China
| | - Liangjun Zhu
- Institute of Applied Bioresource; College of Animal Science, Zhejiang University; Hangzhou Zhejiang 310058 People's Republic of China
| |
Collapse
|
36
|
He M, Callanan A, Lagaras K, Steele JAM, Stevens MM. Optimization of SDS exposure on preservation of ECM characteristics in whole organ decellularization of rat kidneys. J Biomed Mater Res B Appl Biomater 2016; 105:1352-1360. [DOI: 10.1002/jbm.b.33668] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 02/05/2016] [Accepted: 03/10/2016] [Indexed: 11/12/2022]
Affiliation(s)
- M. He
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| | - A. Callanan
- Institute for BioEngineering (IBioE), School of Engineering, University of Edinburgh; Edinburgh UK
| | - K. Lagaras
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| | - J. A. M. Steele
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| | - M. M. Stevens
- Department of Bioengineering; Imperial College London; London UK
- Department of Materials and Institute of Biomedical Engineering; Imperial College London; London UK
| |
Collapse
|
37
|
Ghosh S, Kumar SRP, Puri IK, Elankumaran S. Magnetic assembly of 3D cell clusters: visualizing the formation of an engineered tissue. Cell Prolif 2016; 49:134-44. [PMID: 26839975 DOI: 10.1111/cpr.12234] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/12/2015] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Contactless magnetic assembly of cells into 3D clusters has been proposed as a novel means for 3D tissue culture that eliminates the need for artificial scaffolds. However, thus far its efficacy has only been studied by comparing expression levels of generic proteins. Here, it has been evaluated by visualizing the evolution of cell clusters assembled by magnetic forces, to examine their resemblance to in vivo tissues. MATERIALS AND METHODS Cells were labeled with magnetic nanoparticles, then assembled into 3D clusters using magnetic force. Scanning electron microscopy was used to image intercellular interactions and morphological features of the clusters. RESULTS When cells were held together by magnetic forces for a single day, they formed intercellular contacts through extracellular fibers. These kept the clusters intact once the magnetic forces were removed, thus serving the primary function of scaffolds. The cells self-organized into constructs consistent with the corresponding tissues in vivo. Epithelial cells formed sheets while fibroblasts formed spheroids and exhibited position-dependent morphological heterogeneity. Cells on the periphery of a cluster were flattened while those within were spheroidal, a well-known characteristic of connective tissues in vivo. CONCLUSIONS Cells assembled by magnetic forces presented visual features representative of their in vivo states but largely absent in monolayers. This established the efficacy of contactless assembly as a means to fabricate in vitro tissue models.
Collapse
Affiliation(s)
- S Ghosh
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada
| | - S R P Kumar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - I K Puri
- Department of Engineering Physics, McMaster University, Hamilton, ON, Canada.,Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | - S Elankumaran
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
38
|
Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1168-1180. [DOI: 10.1016/j.msec.2015.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
|
39
|
Robinson S, Guyon L, Nevalainen J, Toriseva M, Åkerfelt M, Nees M. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields. PLoS One 2015; 10:e0143798. [PMID: 26630674 PMCID: PMC4668034 DOI: 10.1371/journal.pone.0143798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.
Collapse
Affiliation(s)
- Sean Robinson
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Industrial Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
- Université Grenoble-Alpes, F-38000 Grenoble, France
- CEA, iRTSV, Biologie à Grande Echelle, F-38054 Grenoble, France
- INSERM, U1038, F-38054 Grenoble, France
- * E-mail:
| | - Laurent Guyon
- Université Grenoble-Alpes, F-38000 Grenoble, France
- CEA, iRTSV, Biologie à Grande Echelle, F-38054 Grenoble, France
- INSERM, U1038, F-38054 Grenoble, France
| | - Jaakko Nevalainen
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- School of Health Sciences, University of Tampere, Tampere, Finland
| | - Mervi Toriseva
- Industrial Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Malin Åkerfelt
- Industrial Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| | - Matthias Nees
- Industrial Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Centre for Biotechnology, University of Turku, Turku, Finland
| |
Collapse
|
40
|
|
41
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|
42
|
Rnjak-Kovacina J, DesRochers TM, Burke KA, Kaplan DL. The effect of sterilization on silk fibroin biomaterial properties. Macromol Biosci 2015; 15:861-74. [PMID: 25761231 PMCID: PMC4456215 DOI: 10.1002/mabi.201500013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/21/2015] [Indexed: 12/20/2022]
Abstract
The effects of common sterilization techniques on the physical and biological properties of lyophilized silk fibroin sponges are described. Sterile silk fibroin sponges were cast using a pre-sterilized silk fibroin solution under aseptic conditions or post-sterilized via autoclaving, γ radiation, dry heat, exposure to ethylene oxide, or hydrogen peroxide gas plasma. Low average molecular weight and low concentration silk fibroin solutions could be sterilized via autoclaving or filtration without significant loses of protein. However, autoclaving reduced the molecular weight distribution of the silk fibroin protein solution, and silk fibroin sponges cast from autoclaved silk fibroin were significantly stiffer compared to sponges cast from unsterilized or filtered silk fibroin. When silk fibroin sponges were sterilized post-casting, autoclaving increased scaffold stiffness, while decreasing scaffold degradation rate in vitro. In contrast, γ irradiation accelerated scaffold degradation rate. Exposure to ethylene oxide significantly decreased cell proliferation rate on silk fibroin sponges, which was rescued by leaching ethylene oxide into PBS prior to cell seeding.
Collapse
Affiliation(s)
- Jelena Rnjak-Kovacina
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
- Graduate School of Biomedical Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Teresa M DesRochers
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
- KIYATEC, Inc., Greenville, South Carolina, USA
| | - Kelly A Burke
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA.
| |
Collapse
|
43
|
DesRochers TM, Kuo IY, Kimmerling EP, Ehrlich BE, Kaplan DL. The effects of mycoplasma contamination upon the ability to form bioengineered 3D kidney cysts. PLoS One 2015; 10:e0120097. [PMID: 25793639 PMCID: PMC4368695 DOI: 10.1371/journal.pone.0120097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/25/2015] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma contamination of cell cultures is a pervasive, often undiagnosed and ignored problem in many laboratories that can result in reduced cell proliferation and changes in gene expression. Unless contamination is specifically suspected, it is often undetected in two dimensional (2D) cultures and the resulting effects of mycoplasma contamination are rarely appreciated and can lead to incorrect conclusions. Three dimensional (3D) tissue cultures are increasingly utilized to explore tissue development and phenotype. However, 3D cultures are more complex than 2D cell cultures and require a more controlled cellular environment in order to generate structures necessary to mimic in vivo responses and are often maintained for longer time periods. Changes to the microenvironment are assumed to have a more extreme effect upon the success of 3D tissue cultures than 2D cell cultures, but the effects of mycoplasma have not been studied. To test this hypothesis, we grew 2D cell cultures and 3D tissues from pig kidney epithelial cells (LLC-PK1) that were contaminated with mycoplasma and the same stock of cells after mycoplasma removal. We did not observe an effect of mycoplasma contamination on proliferation in 2D monolayer cell culture. However, cyst formation in 3D tissues was altered, with effects upon the number, size and structure of cysts formed. These data serve to reinforce the necessity of testing cell stocks for mycoplasma contamination.
Collapse
Affiliation(s)
- Teresa M. DesRochers
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Ivana Y. Kuo
- Departments of Pharmacology and of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Erica P. Kimmerling
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Barbara E. Ehrlich
- Departments of Pharmacology and of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (BE); (DK)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
- * E-mail: (BE); (DK)
| |
Collapse
|
44
|
Smith AST, Long CJ, McAleer C, Guo X, Esch M, Prot JM, Shuler ML, Hickman JJ. ‘Body-on-a-Chip’ Technology and Supporting Microfluidics. HUMAN-BASED SYSTEMS FOR TRANSLATIONAL RESEARCH 2014. [DOI: 10.1039/9781782620136-00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to effectively streamline current drug development protocols, there is a need to generate high information content preclinical screens capable of generating data with a predictive power in relation to the activity of novel therapeutics in humans. Given the poor predictive power of animal models, and the lack of complexity and interconnectivity of standard in vitro culture methodologies, many investigators are now moving toward the development of physiologically and functionally accurate culture platforms composed of human cells to investigate cellular responses to drug compounds in high-throughput preclinical studies. The generation of complex, multi-organ in vitro platforms, built to recapitulate physiological dimensions, flow rates and shear stresses, is being investigated as the logical extension of this drive. Production and application of a biologically accurate multi-organ platform, or ‘body-on-a-chip’, would facilitate the correct modelling of the dynamic and interconnected state of living systems for high-throughput drug studies as well as basic and applied biomolecular research. This chapter will discuss current technologies aimed at producing ‘body-on-a-chip’ models, as well as highlighting recent advances and important challenges still to be met in the development of biomimetic single-organ systems for drug development purposes.
Collapse
Affiliation(s)
- A. S. T. Smith
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - C. J. Long
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - C. McAleer
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - X. Guo
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| | - M. Esch
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - J. M. Prot
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - M. L. Shuler
- Biomedical Engineering, Cornell University Ithaca NY USA
| | - J. J. Hickman
- NanoScience Technology Center, University of Central Florida Orlando FL 32826 USA
| |
Collapse
|
45
|
Abstract
Mutations in polycystin 1 and 2 (PC1 and PC2) cause the common genetic kidney disorder autosomal dominant polycystic kidney disease (ADPKD). It is unknown how these mutations result in renal cysts, but dysregulation of calcium (Ca(2+)) signaling is a known consequence of PC2 mutations. PC2 functions as a Ca(2+)-activated Ca(2+) channel of the endoplasmic reticulum. We hypothesize that Ca(2+) signaling through PC2, or other intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor (InsP3R), is necessary to maintain renal epithelial cell function and that disruption of the Ca(2+) signaling leads to renal cyst development. The cell line LLC-PK1 has traditionally been used for studying PKD-causing mutations and Ca(2+) signaling in 2D culture systems. We demonstrate that this cell line can be used in long-term (8 wk) 3D tissue culture systems. In 2D systems, knockdown of InsP3R results in decreased Ca(2+) transient signals that are rescued by overexpression of PC2. In 3D systems, knockdown of either PC2 or InsP3R leads to cyst formation, but knockdown of InsP3R type 1 (InsP3R1) generated the largest cysts. InsP3R1 and InsP3R3 are differentially localized in both mouse and human kidney, suggesting that regional disruption of Ca(2+) signaling contributes to cystogenesis. All cysts had intact cilia 2 wk after starting 3D culture, but the cells with InsP3R1 knockdown lost cilia as the cysts grew. Studies combining 2D and 3D cell culture systems will assist in understanding how mutations in PC2 that confer altered Ca(2+) signaling lead to ADPKD cysts.
Collapse
|
46
|
Duval JL, Dinis T, Vidal G, Vigneron P, Kaplan DL, Egles C. Organotypic culture to assess cell adhesion, growth and alignment of different organs on silk fibroin. J Tissue Eng Regen Med 2014; 11:354-361. [DOI: 10.1002/term.1916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/27/2014] [Accepted: 04/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Jean-Luc Duval
- Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338; Université de Technologie de Compiègne; Compiègne France
| | - Tony Dinis
- Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338; Université de Technologie de Compiègne; Compiègne France
- Biomedical Engineering, Science and Technology Center; Tufts University; Medford MA USA
| | - Guillaume Vidal
- Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338; Université de Technologie de Compiègne; Compiègne France
| | - Pascale Vigneron
- Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338; Université de Technologie de Compiègne; Compiègne France
| | - David L. Kaplan
- Biomedical Engineering, Science and Technology Center; Tufts University; Medford MA USA
| | - Christophe Egles
- Laboratoire BioMécanique et BioIngénierie (BMBI), UMR CNRS 7338; Université de Technologie de Compiègne; Compiègne France
- Department of Oral and Maxillofacial Pathology; Tufts University School of Dental Medicine; Boston MA USA
| |
Collapse
|
47
|
Rnjak-Kovacina J, Wray LS, Golinski JM, Kaplan DL. Arrayed Hollow Channels in Silk-based Scaffolds Provide Functional Outcomes for Engineering Critically-sized Tissue Constructs. ADVANCED FUNCTIONAL MATERIALS 2014; 24:2188-2196. [PMID: 25395920 PMCID: PMC4225637 DOI: 10.1002/adfm.201302901] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the field of regenerative medicine there is a need for scaffolds that support large, critically-sized tissue formation. Major limitations in reaching this goal are the delivery of oxygen and nutrients throughout the bulk of the engineered tissue as well as host tissue integration and vascularization upon implantation. To address these limitations we previously reported the development of a porous scaffold platform made from biodegradable silk protein that contains an array of vascular-like structures that extend through the bulk of the scaffold. Here we report that the hollow channels play a pivotal role in enhancing cell infiltration, delivering oxygen and nutrients to the scaffold bulk, and promoting in vivo host tissue integration and vascularization. The unique features of this protein biomaterial system, including the vascular structures and tunable material properties, render this scaffold a robust and versatile tool for implementation in a variety of tissue engineering, regenerative medicine and disease modeling applications.
Collapse
|
48
|
Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML. How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 2014; 69-70:158-69. [PMID: 24412641 DOI: 10.1016/j.addr.2013.12.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices present an opportunity to improve the drug development process. The devices have the potential to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices' capabilities can present unique opportunities for the study of drug action. We will also discuss challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion.
Collapse
|
49
|
DesRochers TM, Palma E, Kaplan DL. Tissue-engineered kidney disease models. Adv Drug Deliv Rev 2014; 69-70:67-80. [PMID: 24361391 DOI: 10.1016/j.addr.2013.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 02/08/2023]
Abstract
Renal disease represents a major health problem that often results in end-stage renal failure necessitating dialysis and eventually transplantation. Historically these diseases have been studied with patient observation and screening, animal models, and two-dimensional cell culture. In this review, we focus on recent advances in tissue engineered kidney disease models that have the capacity to compensate for the limitations of traditional modalities. The cells and materials utilized to develop these models are discussed and tissue engineered models of polycystic kidney disease, drug-induced nephrotoxicity, and the glomerulus are examined in detail. The application of these models has the potential to direct future disease treatments and preclinical drug development.
Collapse
|
50
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|