1
|
Trevizani M, Leal LL, da Silva Barros RJ, de Paoli F, Nogueira BV, Costa FF, de Aguiar JAK, da Costa Maranduba CM. Effects of decellularization on glycosaminoglycans and collagen macromolecules in bovine bone extracellular matrix. Int J Biol Macromol 2025; 307:141007. [PMID: 39971037 DOI: 10.1016/j.ijbiomac.2025.141007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Bovine bones were decellularized to obtain extracellular matrices with potential use for Tissue Bioengineering. The objective of the present study was to develop a decellularization protocol for bovine trabecular bone while maintaining the integrity of the extracellular matrix (ECM). The protocol proved to be effective in significantly reducing the Amount of genetic material and cellular content, and it was considered innovative, being filed as a patent. The scaffold obtained showed a reduction in the content of glycosaminoglycans (GAGs) and collagen. Even with the loss of these ECM components, the material obtained can be considered an alternative for use in Tissue Engineering and Regenerative Medicine.
Collapse
Affiliation(s)
- Marizia Trevizani
- Department of Biology, Laboratory of Human Genetics and Cell Therapy, Institute of Biological Sciences, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Laís Lopardi Leal
- Department of Biology, Laboratory of Human Genetics and Cell Therapy, Institute of Biological Sciences, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Rodolpho José da Silva Barros
- Carlos Alberto Redins Cellular Ultrastructure Laboratory (LUCCAR), Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Flávia de Paoli
- Department of Morphology, Institute of Biological Sciences, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Breno Valentim Nogueira
- Carlos Alberto Redins Cellular Ultrastructure Laboratory (LUCCAR), Department of Morphology, Health Sciences Center, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Fabiano Freire Costa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Jair Adriano Kopke de Aguiar
- Department of Biochemistry, Glycoconjugate Analysis Laboratory, Institute of Biological Sciences, Federal University of Juiz de Fora, Minas Gerais, Brazil.
| | - Carlos Magno da Costa Maranduba
- Department of Biology, Laboratory of Human Genetics and Cell Therapy, Institute of Biological Sciences, Federal University of Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Tabatabai TS, Salehi M, Rezakhani L, Arabpour Z, Djalilian AR, Alizadeh M. Decellularization of various tissues and organs through chemical methods. Tissue Cell 2024; 91:102573. [PMID: 39393204 PMCID: PMC11993266 DOI: 10.1016/j.tice.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Due to the increase in demand for donor organs and tissues during the past 20 years, new approaches have been created. These methods include, for example, tissue engineering in vitro and the production of regenerative biomaterials for transplantation. Applying the natural extracellular matrix (ECM) as a bioactive biomaterial for clinical applications is a unique approach known as decellularization technology. Decellularization is the process of eliminating cells from an extracellular matrix while preserving its natural components including its structural and functional proteins and glycosaminoglycan. This can be achieved by physical, chemical, or biological processes. A naturally formed three-dimensional structure with a biocompatible and regenerative structure is the result of the decellularization process. Decreasing the biological factors and antigens at the transplant site reduces the risk of adverse effects including inflammatory responses and immunological rejection. Regenerative medicine and tissue engineering applications can benefit from the use of decellularization, a promising approach that provides a biomaterial that preserves its extracellular matrix.
Collapse
Affiliation(s)
- Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL 60612, USA
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Ma J, Wu C, Xu J. The Development of Lung Tissue Engineering: From Biomaterials to Multicellular Systems. Adv Healthc Mater 2024; 13:e2401025. [PMID: 39206615 DOI: 10.1002/adhm.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The challenge of the treatment of end-stage lung disease poses an urgent clinical demand for lung tissue engineering. Over the past few years, various lung tissue-engineered constructs are developed for lung tissue regeneration and respiratory pathology study. In this review, an overview of recent achievements in the field of lung tissue engineering is proposed. The introduction of lung structure and lung injury are stated briefly at first. After that, the lung tissue-engineered constructs are categorized into three types: acellular, monocellular, and multicellular systems. The different bioengineered constructs included in each system that can be applied to the reconstruction of the trachea, airway epithelium, alveoli, and even whole lung are described in detail, followed by the highlight of relevant representative research. Finally, the challenges and future directions of biomaterials, manufacturing technologies, and cells involved in lung tissue engineering are discussed. Overall, this review can provide referable ideas for the realization of functional lung regeneration and permanent lung substitution.
Collapse
Affiliation(s)
- Jingge Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Ahmadipour M, Prado JC, Hakak-Zargar B, Mahmood MQ, Rogers IM. Using ex vivo bioengineered lungs to model pathologies and screening therapeutics: A proof-of-concept study. Biotechnol Bioeng 2024; 121:3020-3033. [PMID: 38837764 DOI: 10.1002/bit.28754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/19/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Respiratory diseases, claim over eight million lives annually. However, the transition from preclinical to clinical phases in research studies is often hindered, partly due to inadequate representation of preclinical models in clinical trials. To address this, we conducted a proof-of-concept study using an ex vivo model to identify lung pathologies and to screen therapeutics in a humanized rodent model. We extracted and decellularized mouse heart-lung tissues using a detergent-based technique. The lungs were then seeded and cultured with human cell lines (BEAS-2B, A549, and Calu3) for 6-10 days, representing healthy lungs, cancerous states, and congenital pathologies, respectively. By manipulating cultural conditions and leveraging the unique characteristics of the cell lines, we successfully modeled various pathologies, including advanced-stage solid tumors and the primary phase of SARS-CoV-2 infection. Validation was conducted through histology, immunofluorescence staining, and pathology analysis. Additionally, our study involved pathological screening of the efficacy and impact of key anti-neoplastic therapeutics (Cisplatin and Wogonin) in cancer models. The results highlight the versatility and strength of the ex vivo model in representing crucial lung pathologies and screening therapeutics during the preclinical phase. This approach holds promise for bridging the gap between preclinical and clinical research, aiding in the development of effective treatments for respiratory diseases, including lung cancer.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jorge Castilo Prado
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benyamin Hakak-Zargar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Malik Quasir Mahmood
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Guimarães LL, Brito AA, Cereta AD, Oliveira APL, Afonso JPR, Mello DACPG, Oliveira-Silva I, Silva CHM, Oliveira RF, Oliveira DAAP, Vieira RDP, Santos DB, Insalaco G, Oliveira LVF, da Palma RK. Enhancing Lung Recellularization with Mesenchymal Stem Cells via Photobiomodulation Therapy: Insights into Cytokine Modulation and Sterilization. Int J Mol Sci 2024; 25:10131. [PMID: 39337615 PMCID: PMC11432310 DOI: 10.3390/ijms251810131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Several lung diseases can cause structural damage, making lung transplantation the only therapeutic option for advanced disease stages. However, the transplantation success rate remains limited. Lung bioengineering using the natural extracellular matrix (ECM) of decellularized lungs is a potential alternative. The use of undifferentiated cells to seed the ECM is practical; however, sterilizing the organ for recellularization is challenging. Photobiomodulation therapy (PBMT) may offer a solution, in which the wavelength is crucial for tissue penetration. This study aimed to explore the potential of optimizing lung recellularization with mesenchymal stem cells using PBMT (660 nm) after sterilization with PBMT (880 nm). The lungs from C57BL/6 mice were decellularized using 1% SDS and sterilized using PBMT (880 nm, 100 mW, 30 s). Recellularization was performed in two groups: (1) recellularized lung and (2) recellularized lung + 660 nm PBMT (660 nm, 100 mW, 30 s). Both were seeded with mesenchymal stem cells from human tooth pulp (DPSc) and incubated for 24 h at 37 °C and 5% CO2 in bioreactor-like conditions with continuous positive airway pressure (CPAP) at 20 cmH2O and 90% O2. The culture medium was analyzed after 24 h. H&E, immunostaining, SEM, and ELISA assays were performed. Viable biological scaffolds were produced, which were free of cell DNA and preserved the glycosaminoglycans; collagens I, III, and IV; fibronectin; laminin; elastin; and the lung structure (SEM). The IL-6 and IL-8 levels were stable during the 24 h culture, but the IFN-γ levels showed significant differences in the recellularized lung and recellularized lung + 660 nm PBMT groups. Greater immunological modulation was observed in the recellularized groups regarding pro-inflammatory cytokines (IL-6, IFN-γ, and IL-8). These findings suggest that PBMT plays a role in cytokine regulation and antimicrobial activity, thus offering promise for enhanced therapeutic strategies in lung bioengineering.
Collapse
Affiliation(s)
- Leticia L. Guimarães
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (L.L.G.); (A.D.C.); (R.K.d.P.)
| | - Auriléia A. Brito
- Post-Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo 17011-102, SP, Brazil; (A.A.B.); (A.P.L.O.)
| | - Andressa D. Cereta
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (L.L.G.); (A.D.C.); (R.K.d.P.)
| | - Ana Paula L. Oliveira
- Post-Graduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo 17011-102, SP, Brazil; (A.A.B.); (A.P.L.O.)
| | - João Pedro R. Afonso
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Diego A. C. P. G. Mello
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Iransé Oliveira-Silva
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Carlos H. M. Silva
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Rodrigo F. Oliveira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Deise A. A. P. Oliveira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Rodolfo de Paula Vieira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Dante Brasil Santos
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Giuseppe Insalaco
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy;
| | - Luís V. F. Oliveira
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
| | - Renata Kelly da Palma
- School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (L.L.G.); (A.D.C.); (R.K.d.P.)
- Human Movement and Rehabilitation, Post-Graduate Program, Evangelic University of Goiás, UniEVANGELICA, Anápolis 75083-515, GO, Brazil; (J.P.R.A.); (D.A.C.P.G.M.); (I.O.-S.); (C.H.M.S.); (R.F.O.); (D.A.A.P.O.); (R.d.P.V.); (D.B.S.)
- Facultad de Ciencias de la Salud de Manresa, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Manresa, Spain
| |
Collapse
|
6
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
7
|
Vikranth T, Dale T, Forsyth NR. Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering. J Tissue Eng Regen Med 2024; 2024:9940673. [PMID: 40225750 PMCID: PMC11918256 DOI: 10.1155/2024/9940673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 04/15/2025]
Abstract
Persistent air leaks caused by thoracic surgery, physical trauma, or spontaneous pneumothoraces are a cause of patient morbidity with need for extended chest tube durations and surgical interventions. Current treatment measures involve mechanical closure of air leaks in the compromised pleura. Organ and membrane decellularisation offers a broad range of biomimetic scaffolds of allogeneic and xenogeneic origins, exhibiting innate tissue-specific characteristics. We explored a physicochemical method for decellularising porcine pleural membranes (PPM) as potential tissue-engineered surrogates for lung tissue repair. Decellularised PPM (dPPM) was characterised with histology, quantitative assays, mechanical testing, and sterility evaluation. Cytotoxicity and recellularisation assays assessed biocompatibility of decellularised PPM (dPPM). Haematoxylin and Eosin (H&E) staining showed an evident reduction in stained nuclei in the dPPM, confirmed with nuclear staining and analysis ( ∗∗∗∗ p < 0.0001). Sulphated glycosaminoglycans (sGAG) and collagen histology demonstrated minimal disruption to the gross structural assembly of core extracellular matrix (ECM) in dPPM. Confocal imaging demonstrated realignment of ECM fibres in dPPM against native control. Quantitative analysis defined a significant change in the angular distribution ( ∗∗∗∗ p < 0.0001) and coherence ( ∗∗∗ p < 0.001) of fibre orientations in dPPM versus native ECM. DNA quantification indicated ≥85% reduction in native nuclear dsDNA in dPPM ( ∗∗ p < 0.01). Collagen and sGAG quantification indicated reductions of both ( ∗∗ p < 0.01). dPPM displayed increased membrane thickness ( ∗∗∗ p < 0.001). However, Young's modulus (459.67 ± 10.36 kPa) and ultimate tensile strength (4036.22 ± 155.1 kPa) of dPPM were comparable with those of native controls at (465.82 ± 10.51 kPa) and (3912.9 ± 247.42 kPa), respectively. In vitro cytotoxicity and scaffold biocompatibility assays demonstrated robust human mesothelial cell line (MeT-5A) attachment and viability. DNA quantification in reseeded dPPM with MeT-5A cells exhibited significant increase in DNA content at day 7 ( ∗∗ p < 0.01) and day 15 ( ∗∗∗∗ p < 0.0001) against unseeded dPPM. Here, we define a decellularisation protocol for porcine pleura that represents a step forward in their potential tissue engineering applications as bioscaffolds.
Collapse
Affiliation(s)
| | - Tina Dale
- School of Pharmacy and BioengineeringGuy Hilton Research CentreKeele University, Keele, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and BioengineeringGuy Hilton Research CentreKeele University, Keele, UK
| |
Collapse
|
8
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
9
|
Chen TA, Sharma D, Jia W, Ha D, Man K, Zhang J, Yang Y, Zhou Y, Kamp TJ, Zhao F. Detergent-Based Decellularization for Anisotropic Cardiac-Specific Extracellular Matrix Scaffold Generation. Biomimetics (Basel) 2023; 8:551. [PMID: 37999192 PMCID: PMC10669368 DOI: 10.3390/biomimetics8070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Cell-derived extracellular matrix (ECM) has become increasingly popular in tissue engineering applications due to its ability to provide tailored signals for desirable cellular responses. Anisotropic cardiac-specific ECM scaffold decellularized from human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts (hiPSC-CFs) mimics the native cardiac microenvironment and provides essential biochemical and signaling cues to hiPSC-derived cardiomyocytes (hiPSC-CMs). The objective of this study was to assess the efficacy of two detergent-based decellularization methods: (1) a combination of ethylenediaminetetraacetic acid and sodium dodecyl sulfate (EDTA + SDS) and (2) a combination of sodium deoxycholate and deoxyribonuclease (SD + DNase), in preserving the composition and bioactive substances within the aligned ECM scaffold while maximumly removing cellular components. The decellularization effects were evaluated by characterizing the ECM morphology, quantifying key structural biomacromolecules, and measuring preserved growth factors. Results showed that both treatments met the standard of cell removal (less than 50 ng/mg ECM dry weight) and substantially preserved major ECM biomacromolecules and growth factors. The EDTA + SDS treatment was more time-efficient and has been determined to be a more efficient method for generating an anisotropic ECM scaffold from aligned hiPSC-CFs. Moreover, this cardiac-specific ECM has demonstrated effectiveness in supporting the alignment of hiPSC-CMs and their expression of mature structural and functional proteins in in vitro cultures, which is crucial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianhua Zhang
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Tommasini F, Benoist T, Shibuya S, Woodall MNJ, Naldi E, Palor M, Orr JC, Giobbe GG, Maughan EF, Saleh T, Gjinovci A, Hutchinson JC, Arthurs OJ, Janes SM, Elvassore N, Hynds RE, Smith CM, Michielin F, Pellegata AF, De Coppi P. Lung viral infection modelling in a bioengineered whole-organ. Biomaterials 2023; 301:122203. [PMID: 37515903 PMCID: PMC10281738 DOI: 10.1016/j.biomaterials.2023.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/31/2023]
Abstract
Lung infections are one of the leading causes of death worldwide, and this situation has been exacerbated by the emergence of COVID-19. Pre-clinical modelling of viral infections has relied on cell cultures that lack 3D structure and the context of lung extracellular matrices. Here, we propose a bioreactor-based, whole-organ lung model of viral infection. The bioreactor takes advantage of an automated system to achieve efficient decellularization of a whole rat lung, and recellularization of the scaffold using primary human bronchial cells. Automatization allowed for the dynamic culture of airway epithelial cells in a breathing-mimicking setup that led to an even distribution of lung epithelial cells throughout the distal regions. In the sealed bioreactor system, we demonstrate proof-of-concept for viral infection within the epithelialized lung by infecting primary human airway epithelial cells and subsequently injecting neutrophils. Moreover, to assess the possibility of drug screening in this model, we demonstrate the efficacy of the broad-spectrum antiviral remdesivir. This whole-organ scale lung infection model represents a step towards modelling viral infection of human cells in a 3D context, providing a powerful tool to investigate the mechanisms of the early stages of pathogenic infections and the development of effective treatment strategies for respiratory diseases.
Collapse
Affiliation(s)
- Fabio Tommasini
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas Benoist
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK
| | - Soichi Shibuya
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maximillian N J Woodall
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eleonora Naldi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Machaela Palor
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jessica C Orr
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Giovanni Giuseppe Giobbe
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK
| | - Elizabeth F Maughan
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tarek Saleh
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Asllan Gjinovci
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Ciaran Hutchinson
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Owen J Arthurs
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital (GOSH), London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Nicola Elvassore
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire M Smith
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federica Michielin
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Alessandro Filippo Pellegata
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital (GOSH), London, UK; NIHR Great Ormond Street Biomedical Research Centre, London, UK.
| |
Collapse
|
11
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
12
|
Afzal Z, Huguet EL. Bioengineering liver tissue by repopulation of decellularised scaffolds. World J Hepatol 2023; 15:151-179. [PMID: 36926238 PMCID: PMC10011915 DOI: 10.4254/wjh.v15.i2.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
Collapse
Affiliation(s)
- Zeeshan Afzal
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Laurent Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre; Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
13
|
Han Y, Zhang B, Li J, Cen L, Zhao L, Xi Z. Preparation of extracellular matrix of fish swim bladders by decellularization with supercritical carbon dioxide. BIORESOUR BIOPROCESS 2023; 10:14. [PMID: 38647890 PMCID: PMC10991867 DOI: 10.1186/s40643-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/15/2022] [Indexed: 02/23/2023] Open
Abstract
Fish swim bladders used to be considered as byproducts or waste in fishery; however, they are potential materials for biological medicine with abundant collagen. In this work, an efficient noncytotoxic decellularization process using sodium dodecyl sulfate (SDS) ternary system assisted with supercritical carbon dioxide (scCO2) as the green extraction fluid and ethanol (ET) as the cosolvent has been developed to harvest acellular fish swim bladders (AFSBs). The experimental results show that the tissue treated by SDS assisted with scCO2 and ethanol at 37 °C and 25 MPa can be decellularized thoroughly and maintains intact fibers and uniform pore distribution, which resulting in a tensile strength of 5.61 MPa and satisfactory biocompatibility. Meanwhile, the residual SDS content in scCO2/SDS/ET ternary system is 0.0122% which is significantly lower than it in scCO2/SDS system due to the enhanced mass transfer rate of SDS in tissues by scCO2 with ethanol. The synergy between SDS and ethanol can enhance the diffusion coefficient and the solubility of SDS in scCO2, which reduced the contact time between SDS and tissues. Meaningfully, the results obtained in this work can not only provide a novel strategy to produce acellular matrix with superior properties, but also offer a further understanding of the decellularization through scCO2 extraction processing with the synergy of suitable detergent/cosolvent.
Collapse
Affiliation(s)
- Yuqing Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingyan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinjin Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Weiss DJ. What is the need and why is it time for innovative models for understanding lung repair and regeneration? Front Pharmacol 2023; 14:1130074. [PMID: 36860303 PMCID: PMC9968746 DOI: 10.3389/fphar.2023.1130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Advances in tissue engineering continue at a rapid pace and have provided novel methodologies and insights into normal cell and tissue homeostasis, disease pathogenesis, and new potential therapeutic strategies. The evolution of new techniques has particularly invigorated the field and span a range from novel organ and organoid technologies to increasingly sophisticated imaging modalities. This is particularly relevant for the field of lung biology and diseases as many lung diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic fibrosis (IPF), among others, remain incurable with significant morbidity and mortality. Advances in lung regenerative medicine and engineering also offer new potential avenues for critical illnesses such as the acute respiratory distress syndrome (ARDS) which also continue to have significant morbidity and mortality. In this review, an overview of lung regenerative medicine with focus on current status of both structural and functional repair will be presented. This will serve as a platform for surveying innovative models and techniques for study, highlighting the need and timeliness for these approaches.
Collapse
|
15
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2023; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
16
|
Galliger Z, Vogt CD, Helms HR, Panoskaltsis-Mortari A. Extracellular Matrix Microparticles Improve GelMA Bioink Resolution for 3D Bioprinting at Ambient Temperature. MACROMOLECULAR MATERIALS AND ENGINEERING 2022; 307:2200196. [PMID: 36531127 PMCID: PMC9757590 DOI: 10.1002/mame.202200196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/17/2023]
Abstract
Introduction Current bioinks for 3D bioprinting, such as gelatin-methacryloyl, are generally low viscosity fluids at room temperature, requiring specialized systems to create complex geometries. Methods and Results Adding decellularized extracellular matrix microparticles derived from porcine tracheal cartilage to gelatin-methacryloyl creates a yield stress fluid capable of forming self-supporting structures. This bioink blend performs similarly at 25°C to gelatin-methacryloyl alone at 15°C in linear resolution, print fidelity, and tensile mechanics. Conclusion This method lowers barriers to manufacturing complex tissue geometries and removes the need for cooling systems.
Collapse
Affiliation(s)
- Zachary Galliger
- Biomedical Engineering Graduate Program, University of Minnesota, Minneapolis, MN
| | - Caleb D. Vogt
- Biomedical Engineering Graduate Program; Medical Scientist Training Program, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN
| | - Haylie R. Helms
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cell Therapy, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Division of Blood and Marrow Transplantation & Cell Therapy; Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep, University of Minnesota, 420 Delaware St. SE., Minneapolis, MN
| |
Collapse
|
17
|
Snellings J, Keshi E, Tang P, Daneshgar A, Willma EC, Haderer L, Klein O, Krenzien F, Malinka T, Asbach P, Pratschke J, Sauer IM, Braun J, Sack I, Hillebrandt K. Solid fraction determines stiffness and viscosity in decellularized pancreatic tissues. BIOMATERIALS ADVANCES 2022; 139:212999. [PMID: 35882147 DOI: 10.1016/j.bioadv.2022.212999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 05/29/2023]
Abstract
The role of extracellular matrix (ECM) composition and turnover in mechano-signaling and the metamorphic fate of cells seeded into decellularized tissue can be elucidated by recent developments in non-invasive imaging and biotechnological analysis methods. Because these methods allow accurate quantification of the composition and structural integrity of the ECM, they can be critical in establishing standardized decellularization protocols. This study proposes quantification of the solid fraction, the single-component fraction and the viscoelasticity of decellularized pancreatic tissues using compact multifrequency magnetic resonance elastography (MRE) to assess the efficiency and quality of decellularization protocols. MRE of native and decellularized pancreatic tissues showed that viscoelasticity parameters depend according to a power law on the solid fraction of the decellularized matrix. The parameters can thus be used as highly sensitive markers of the mechanical integrity of soft tissues. Compact MRE allows consistent and noninvasive quantification of the viscoelastic properties of decellularized tissue. Such a method is urgently needed for the standardized monitoring of decellularization processes, evaluation of mechanical ECM properties, and quantification of the integrity of solid structural elements remaining in the decellularized tissue matrix.
Collapse
Affiliation(s)
- Joachim Snellings
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Tang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Assal Daneshgar
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Esther C Willma
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Luna Haderer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Oliver Klein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies, Charitéplatz 1, 10117 Berlin, Germany
| | - Felix Krenzien
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany at Charité - Universitätsmedizin Berlin, BIH Acadamy, Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Malinka
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany
| | - Patrick Asbach
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence "Matters of Activity. Image Space Material" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - E.XC 2025, Germany
| | - Igor M Sauer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence "Matters of Activity. Image Space Material" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - E.XC 2025, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Informatics, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence "Matters of Activity. Image Space Material" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - E.XC 2025, Germany.
| | - Karl Hillebrandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Campus Charité Mitte|Campus Virchow-Klinikum, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany at Charité - Universitätsmedizin Berlin, BIH Acadamy, Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence "Matters of Activity. Image Space Material" funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - E.XC 2025, Germany
| |
Collapse
|
18
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
20
|
Lipreri MV, Baldini N, Graziani G, Avnet S. Perfused Platforms to Mimic Bone Microenvironment at the Macro/Milli/Microscale: Pros and Cons. Front Cell Dev Biol 2022; 9:760667. [PMID: 35047495 PMCID: PMC8762164 DOI: 10.3389/fcell.2021.760667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
As life expectancy increases, the population experiences progressive ageing. Ageing, in turn, is connected to an increase in bone-related diseases (i.e., osteoporosis and increased risk of fractures). Hence, the search for new approaches to study the occurrence of bone-related diseases and to develop new drugs for their prevention and treatment becomes more pressing. However, to date, a reliable in vitro model that can fully recapitulate the characteristics of bone tissue, either in physiological or altered conditions, is not available. Indeed, current methods for modelling normal and pathological bone are poor predictors of treatment outcomes in humans, as they fail to mimic the in vivo cellular microenvironment and tissue complexity. Bone, in fact, is a dynamic network including differently specialized cells and the extracellular matrix, constantly subjected to external and internal stimuli. To this regard, perfused vascularized models are a novel field of investigation that can offer a new technological approach to overcome the limitations of traditional cell culture methods. It allows the combination of perfusion, mechanical and biochemical stimuli, biological cues, biomaterials (mimicking the extracellular matrix of bone), and multiple cell types. This review will discuss macro, milli, and microscale perfused devices designed to model bone structure and microenvironment, focusing on the role of perfusion and encompassing different degrees of complexity. These devices are a very first, though promising, step for the development of 3D in vitro platforms for preclinical screening of novel anabolic or anti-catabolic therapeutic approaches to improve bone health.
Collapse
Affiliation(s)
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Biomedical Science and Technologies Lab, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Laboratory for NanoBiotechnology (NaBi), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Ahmadipour M, Taniguchi D, Duchesneau P, Aoki FG, Phillips G, Sinderby C, Waddell TK, Karoubi G. Use of High-Rate Ventilation Results in Enhanced Recellularization of Bioengineered Lung Scaffolds. Tissue Eng Part C Methods 2021; 27:661-671. [PMID: 34847779 DOI: 10.1089/ten.tec.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While transplantation is a viable treatment option for end-stage lung diseases, this option is highly constrained by the availability of organs and postoperative complications. A potential solution is the use of bioengineered lungs generated from repopulated acellular scaffolds. Effective recellularization, however, remains a challenge. In this proof-of-concept study, mice lung scaffolds were decellurized and recellurized using human bronchial epithelial cells (BEAS2B). We present a novel liquid ventilation protocol enabling control over tidal volume and high rates of ventilation. The use of a physiological tidal volume (300 μL) for mice and a higher ventilation rate (40 breaths per minute vs. 1 breath per minute) resulted in higher cell numbers and enhanced cell surface coverage in mouse lung scaffolds as determined via histological evaluation, genomic polymerase chain reaction (PCR) analysis, and immunohistochemistry. A biomimetic lung bioreactor system was designed to include the new ventilation protocol and allow for simultaneous vascular perfusion. We compared the lungs cultured in our dual system to lungs cultured with a bioreactor allowing vascular perfusion only and showed that our system significantly enhances cell numbers and surface coverage. In summary, our results demonstrate the importance of the physical environment and forces for lung recellularization. Impact statement New bioreactor systems are required to further enhance the regeneration process of bioengineered lungs. This proof-of-concept study describes a novel ventilation protocol that allows for control over ventilation parameters such as rate and tidal volume. Our data show that a higher rate of ventilation is correlated with higher cell numbers and increased surface coverage. We designed a new biomimetic bioreactor system that allows for ventilation and simultaneous perfusion. Compared to a traditional perfusion only system, recellularization was enhanced in lungs recellularized with our new biomimetic bioreactor.
Collapse
Affiliation(s)
- MohammadAli Ahmadipour
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Pascal Duchesneau
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Science and Technology (ICT), Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Christer Sinderby
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, and University of Toronto, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Barreiro Carpio M, Dabaghi M, Ungureanu J, Kolb MR, Hirota JA, Moran-Mirabal JM. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front Bioeng Biotechnol 2021; 9:773511. [PMID: 34900964 PMCID: PMC8653950 DOI: 10.3389/fbioe.2021.773511] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julia Ungureanu
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Martin R. Kolb
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jose Manuel Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Young BM, Antczak LAM, Shankar K, Heise RL. A Two-Step Bioreactor for Decellularized Lung Epithelialization. Cells Tissues Organs 2021; 210:301-310. [PMID: 34500450 DOI: 10.1159/000517622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Bioreactors for the reseeding of decellularized lung scaffolds have evolved with various advancements, including biomimetic mechanical stimulation, constant nutrient flow, multi-output monitoring, and large mammal scaling. Although dynamic bioreactors are not new to the field of lung bioengineering, ideal conditions during cell seeding have not been extensively studied or controlled. To address the lack of cell dispersal in traditional seeding methods, we have designed a two-step bioreactor. The first step is a novel system that rotates a seeded lung every 20 min at different angles in a sequence designed to anchor 20% of cells to a particular location based on the known rate of attachment. The second step involves perfusion-ventilation culture to ensure nutrient dispersion and cellular growth. Compared to statically seeded lungs, rotationally seeded lungs had significantly increased dsDNA content and more uniform cellular distribution after perfusion and ventilation had been administered. The addition of this novel seeding system before traditional culture methods will aid in recellularizing the lung and other geometrically complex organs for tissue engineering.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Leigh-Ann M Antczak
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
24
|
Akinnola I, Rossi DR, Meyer C, Lindsey A, Haase DR, Fogas S, Ehrhardt MJ, Blue RE, Price AP, Johnson M, Alvarez DF, Taylor DA, Panoskaltsis-Mortari A. Engineering Functional Vasculature in Decellularized Lungs Depends on Comprehensive Endothelial Cell Tropism. Front Bioeng Biotechnol 2021; 9:727869. [PMID: 34485262 PMCID: PMC8415401 DOI: 10.3389/fbioe.2021.727869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering using decellularized whole lungs as matrix scaffolds began as a promise for creating autologous transplantable lungs for patients with end-stage lung disease and can also be used to study strategies for lung regeneration. Vascularization remains a critical component for all solid organ bioengineering, yet there has been limited success in generating functional re-endothelialization of most pulmonary vascular segments. We evaluated recellularization of the blood vessel conduits of acellular mouse scaffolds with highly proliferating, rat pulmonary microvascular endothelial progenitor cells (RMEPCs), pulmonary arterial endothelial cells (PAECs) or microvascular endothelial cells (MVECs). After 8 days of pulsatile perfusion, histological analysis showed that PAECs and MVECs possessed selective tropism for larger vessels or microvasculature, respectively. In contrast, RMEPCs lacked site preference and repopulated all vascular segments. RMEPC-derived endothelium exhibited thrombomodulin activity, expression of junctional genes, ability to synthesize endothelial signaling molecules, and formation of a restrictive barrier. The RMEPC phenotype described here could be useful for identifying endothelial progenitors suitable for efficient vascular organ and tissue engineering, regeneration and repair.
Collapse
Affiliation(s)
- Ifeolu Akinnola
- MSTP, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Daniel R Rossi
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn Meyer
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ashley Lindsey
- Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Douglas R Haase
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Samuel Fogas
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Ehrhardt
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Rachel E Blue
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrew P Price
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Max Johnson
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Diego F Alvarez
- Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | | | - Angela Panoskaltsis-Mortari
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States.,Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
25
|
Mahfouzi SH, Safiabadi Tali SH, Amoabediny G. Decellularized human-sized pulmonary scaffolds for lung tissue engineering: a comprehensive review. Regen Med 2021; 16:757-774. [PMID: 34431331 DOI: 10.2217/rme-2020-0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ultimate goal of lung bioengineering is to produce transplantable lungs for human beings. Therefore, large-scale studies are of high importance. In this paper, we review the investigations on decellularization and recellularization of human-sized lung scaffolds. First, studies that introduce new ways to enhance the decellularization of large-scale lungs are reviewed, followed by the investigations on the xenogeneic sources of lung scaffolds. Then, decellularization and recellularization of diseased lung scaffolds are discussed to assess their usefulness for tissue engineering applications. Next, the use of stem cells in recellularizing acellular lung scaffolds is reviewed, followed by the case studies on the transplantation of bioengineered lungs. Finally, the remaining challenges are discussed, and future directions are highlighted.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran.,Department of Biotechnology & Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, No. 4, Orouji all., 16 Azar St., 11155-4563, Tehran, Iran
| |
Collapse
|
26
|
Vasanthan KS, Srinivasan V, Pandita D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regen Med 2021; 16:775-802. [PMID: 34427104 DOI: 10.2217/rme-2021-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of tissue engineering involves regeneration and repair of damaged tissue and organs using various combinations of cells, growth factors and scaffolds. The extracellular matrix (ECM) forms the integral part of the scaffold to induce cell proliferation thereby leading to new tissue formation. Decellularization technique provides decellularized ECM (dECM), free of cells while preserving the in vivo biomolecules. In this review, we focus on the detailed methodology of diverse decellularization techniques for various organs of different animals, and the biomedical applications employing the dECM. A culmination of different methods of decellularization is optimized, which offers a suitable microenvironment mimicking the native in vivo topography for in vitro organ regeneration. A detailed assessment of the dECM provides information on the microarchitecture, presence of ECM proteins, biocompatibility and cell proliferation. dECM has also been processed as scaffolds and drug-delivery vehicles, and utilized for regeneration.
Collapse
Affiliation(s)
- Kirthanashri S Vasanthan
- Amity Institute of Molecular Medicine & Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | | | - Deepti Pandita
- Delhi Pharmaceutical Science & Research University, Government of NCT of Delhi, New Delhi, 110017, India
| |
Collapse
|
27
|
Comparative immunogenicity of decellularized wild type and alpha 1,3 galactosyltransferase knockout pig lungs. Biomaterials 2021; 276:121029. [PMID: 34311317 DOI: 10.1016/j.biomaterials.2021.121029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Decellularized pig lungs recellularized with human lung cells offer a novel approach for organ transplantation. However, the potential immunogenicity of decellularized pig lungs following exposure to human tissues has not been assessed. We found that exposure of native lungs from wildtype and transgenic pigs lacking alpha (1,3)-galactosyltransferase (α-gal KO) to sera from normal healthy human volunteers demonstrated similar robust IgM and IgG immunoreactivity, comparably decreased in decellularized lungs. Similar results were observed with sera from patients who had previously undergone transcutaneous porcine aortic valve replacement (TAVR) or from patients with increased circulating anti-α-gal IgE antibodies (α-gal syndrome). Depleting anti-α-gal antibodies from the sera demonstrated both specificity of α-gal immunoreactivity and also residual immunoreactivity similar between wildtype and α-gal KO pig lungs. Exposure of human monocytes and macrophages to native wildtype lungs demonstrated greater induction of M2 phenotype than native α-gal KO pig lungs, which was less marked with decellularized lungs of either type. Overall, these results demonstrate that native wildtype and α-gal KO pig lungs provoke similar immune responses that are comparably decreased following decellularization. This provides a further platform for potential use of decellularized pig lungs in tissue engineering approaches and subsequent transplantation schemes but no obvious overall immunologic advantage of utilizing lungs obtained from α-gal KO pigs.
Collapse
|
28
|
Grab M, Stieglmeier F, Emrich J, Grefen L, Leone A, König F, Hagl C, Thierfelder N. Customized 3D printed bioreactors for decellularization-High efficiency and quality on a budget. Artif Organs 2021; 45:1477-1490. [PMID: 34219220 DOI: 10.1111/aor.14034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
Decellularization (DC) of biomaterials with bioreactors is widely used to produce scaffolds for tissue engineering. This study uses 3D printing to develop efficient but low-cost DC bioreactors. Two bioreactors were developed to decellularize pericardial patches and vascular grafts. Flow profiles and pressure distribution inside the bioreactors were optimized by steady-state computational fluid dynamics (CFD) analysis. Printing materials were evaluated by cytotoxicity assessment. Following evaluation, all parts of the bioreactors were 3D printed in a commercial fused deposition modeling printer. Samples of bovine pericardia and porcine aortae were decellularized using established protocols. An immersion and agitation setup was used as a control. With histological assessment, DNA quantification and biomechanical testing treatment effects were evaluated. CFD analysis of the pericardial bioreactor revealed even flow and pressure distribution in between all pericardia. The CFD analysis of the vessel bioreactor showed increased intraluminal flow rate and pressure compared to the vessel's outside. Cytotoxicity assessment of the used printing material revealed no adverse effect on the tissue. Complete DC was achieved for all samples using the 3D printed bioreactors while DAPI staining revealed residual cells in aortic vessels of the control group. Histological analysis showed no structural changes in the decellularized samples. Additionally, biomechanical properties exhibited no significant change compared to native samples. This study presents a novel approach to manufacturing highly efficient and low budget 3D printed bioreactors for the DC of biomaterials. When compared to standard protocols, the bioreactors offer a cost effective, fast, and reproducible approach, which vastly improves the DC results.
Collapse
Affiliation(s)
- Maximilian Grab
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany.,Chair of Medical Materials and Implants, Technical University, Munich, Germany
| | - Felix Stieglmeier
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany
| | - Jessica Emrich
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany
| | - Linda Grefen
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany
| | - Ariane Leone
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany
| | - Fabian König
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany.,Chair of Medical Materials and Implants, Technical University, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, Ludwig-Maximilian University, Munich, Germany
| | | |
Collapse
|
29
|
Parihar A, Pandita V, Kumar A, Parihar DS, Puranik N, Bajpai T, Khan R. 3D Printing: Advancement in Biogenerative Engineering to Combat Shortage of Organs and Bioapplicable Materials. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 8:173-199. [PMID: 34230892 PMCID: PMC8252697 DOI: 10.1007/s40883-021-00219-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
ABSTRACT Organ or cell transplantation is medically evaluated for end-stage failure saving or extending the lives of thousands of patients who are suffering from organ failure disorders. The unavailability of adequate organs for transplantation to meet the existing demand is a major challenge in the medical field. This led to day-day-increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the queue. Recently, technological advancements in the field of biogenerative engineering have the potential to regenerate tissues and, in some cases, create new tissues and organs. In this context, major advances and innovations are being made in the fields of tissue engineering and regenerative medicine which have a huge impact on the scientific community is three-dimensional bioprinting (3D bioprinting) of tissues and organs. Besides this, the decellularization of organs and using this as a scaffold for generating new organs through the recellularization process shows promising results. This review discussed about current approaches for tissue and organ engineering including methods of scaffold designing, recent advances in 3D bioprinting, organs regenerated successfully using 3D printing, and extended application of 3D bioprinting technique in the field of medicine. Besides this, information about commercially available 3D printers has also been included in this article. LAY SUMMARY Today's need for organs for the transplantation process in order to save a patient's life or to enhance the survival rate of diseased one is the prime concern among the scientific community. Recent, advances in the field of biogenerative engineering have the potential to regenerate tissues and create organs compatible with the patient's body. In this context, major advances and innovations are being made in the fields of tissue engineering and regenerative medicine which have a huge impact on the scientific community is three-dimensional bioprinting (3D bioprinting) of tissues and organs. Besides this, the decellularization of organs and using this as a scaffold for generating new organs through the recellularization process shows promising results. This review dealt with the current approaches for tissue and organ engineering including methods of scaffold designing, recent advances in 3D bioprinting, organs regenerated successfully using 3D printing, and extended application of 3D bioprinting technique in the field of medicine. Furthermore, information about commercially available 3D printers has also been included in this article.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh 462026 India
- Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road Bhopal, 462026 India
| | - Vasundhara Pandita
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh 462026 India
| | - Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127 India
| | - Dipesh Singh Parihar
- Engineering College Tuwa , At. & Post. Tuwa, Taluka Godhra, Dist. Panchmahal, Godhra, Gujarat 388713 India
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh 462026 India
| | - Tapas Bajpai
- Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur, 302017 India
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road Bhopal, 462026 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026 India
| |
Collapse
|
30
|
Sobreiro‐Almeida R, Quinteira R, Neves NM. Renal Regeneration: The Role of Extracellular Matrix and Current ECM-Based Tissue Engineered Strategies. Adv Healthc Mater 2021; 10:e2100160. [PMID: 34137210 DOI: 10.1002/adhm.202100160] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECM) are currently being studied as an alternative source for organ transplantation or as new solutions to treat kidney injuries, which can evolve to end-stage renal disease, a life devastating condition. This paper provides an overview on the current knowledge in kidney ECM and its usefulness on future investigations. The composition and structure of kidney ECM is herein associated with its intrinsic capacity of remodeling and repair after insult. Moreover, it provides a deeper insight on altered ECM components during disease. The use of decellularized kidney matrices is discussed in the second part of the review, with emphasis on how these matrices contribute to tissue-specific differentiation of embryonic, pluripotent, and other stem cells. The evolution on the field toward different uses of xenogeneic ECM as a biological scaffold material is discussed, namely the major outcomes on whole kidney recellularization and its in vivo implantation. At last, the recent literature on the use of processed kidney decellularized ECM to produce diverse biomaterial substrates, such as hydrogels, membranes, and bioinks are reviewed, with emphasis on future perspectives of its translation into the clinic.
Collapse
Affiliation(s)
- Rita Sobreiro‐Almeida
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rita Quinteira
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco Guimarães 4805‐017 Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
31
|
Song YH, Maynes MA, Hlavac N, Visosevic D, Daramola KO, Porvasnik SL, Schmidt CE. Development of novel apoptosis-assisted lung tissue decellularization methods. Biomater Sci 2021; 9:3485-3498. [PMID: 33949462 DOI: 10.1039/d1bm00032b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Decellularized tissues hold great potential for both regenerative medicine and disease modeling applications. The acellular extracellular matrix (ECM)-enriched scaffolds can be recellularized with patient-derived cells prior to transplantation, or digested to create thermally-gelling ECM hydrogels for 3D cell culture. Current methods of decellularization clear cellular components using detergents, which can result in loss of ECM proteins and tissue architectural integrity. Recently, an alternative approach utilizing apoptosis to decellularize excised murine sciatic nerves resulted in superior ECM preservation, cell removal, and immune tolerance in vivo. However, this apoptosis-assisted decellularization approach has not been optimized for other tissues with a more complex geometry, such as lungs. To this end, we developed an apoptosis-assisted lung tissue decellularization method using a combination of camptothecin and sulfobetaine-10 (SB-10) to induce apoptosis and facilitate gentle and effective removal of cell debris, respectively. Importantly, combination of the two agents resulted in superior cell removal and ECM preservation compared to either of the treatments alone, presumably because of pulmonary surfactants. In addition, our method was superior in cell removal compared to a previously established detergent-based decellularization protocol. Furthermore, thermally-gelling lung ECM hydrogels supported high viability of rat lung epithelial cells for up to 2 weeks in culture. This work demonstrates that apoptosis-based lung tissue decellularization is a superior technique that warrants further utilization for both regenerative medicine and disease modeling purposes.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA. and Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| | - Mark A Maynes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Nora Hlavac
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Daniel Visosevic
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Kaitlyn O Daramola
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Stacy L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Busch SM, Lorenzana Z, Ryan AL. Implications for Extracellular Matrix Interactions With Human Lung Basal Stem Cells in Lung Development, Disease, and Airway Modeling. Front Pharmacol 2021; 12:645858. [PMID: 34054525 PMCID: PMC8149957 DOI: 10.3389/fphar.2021.645858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) is not simply a quiescent scaffold. This three-dimensional network of extracellular macromolecules provides structural, mechanical, and biochemical support for the cells of the lung. Throughout life, the ECM forms a critical component of the pulmonary stem cell niche. Basal cells (BCs), the primary stem cells of the airways capable of differentiating to all luminal cell types, reside in close proximity to the basolateral ECM. Studying BC-ECM interactions is important for the development of therapies for chronic lung diseases in which ECM alterations are accompanied by an apparent loss of the lung's regenerative capacity. The complexity and importance of the native ECM in the regulation of BCs is highlighted as we have yet to create an in vitro culture model that is capable of supporting the long-term expansion of multipotent BCs. The interactions between the pulmonary ECM and BCs are, therefore, a vital component for understanding the mechanisms regulating BC stemness during health and disease. If we are able to replicate these interactions in airway models, we could significantly improve our ability to maintain basal cell stemness ex vivo for use in in vitro models and with prospects for cellular therapies. Furthermore, successful, and sustained airway regeneration in an aged or diseased lung by small molecules, novel compounds or via cellular therapy will rely upon both manipulation of the airway stem cells and their immediate niche within the lung. This review will focus on the current understanding of how the pulmonary ECM regulates the basal stem cell function, how this relationship changes in chronic disease, and how replicating native conditions poses challenges for ex vivo cell culture.
Collapse
Affiliation(s)
- Shana M. Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
33
|
Wanczyk H, Jensen T, Weiss DJ, Finck C. Advanced single-cell technologies to guide the development of bioengineered lungs. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1101-L1117. [PMID: 33851545 DOI: 10.1152/ajplung.00089.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung transplantation remains the only viable option for individuals suffering from end-stage lung failure. However, a number of current limitations exist including a continuing shortage of suitable donor lungs and immune rejection following transplantation. To address these concerns, engineering a decellularized biocompatible lung scaffold from cadavers reseeded with autologous lung cells to promote tissue regeneration is being explored. Proof-of-concept transplantation of these bioengineered lungs into animal models has been accomplished. However, these lungs were incompletely recellularized with resulting epithelial and endothelial leakage and insufficient basement membrane integrity. Failure to repopulate lung scaffolds with all of the distinct cell populations necessary for proper function remains a significant hurdle for the progression of current engineering approaches and precludes clinical translation. Advancements in 3D bioprinting, lung organoid models, and microfluidic device and bioreactor development have enhanced our knowledge of pulmonary lung development, as well as important cell-cell and cell-matrix interactions, all of which will help in the path to a bioengineered transplantable lung. However, a significant gap in knowledge of the spatiotemporal interactions between cell populations as well as relative quantities and localization within each compartment of the lung necessary for its proper growth and function remains. This review will provide an update on cells currently used for reseeding decellularized scaffolds with outcomes of recent lung engineering attempts. Focus will then be on how data obtained from advanced single-cell analyses, coupled with multiomics approaches and high-resolution 3D imaging, can guide current lung bioengineering efforts for the development of fully functional, transplantable lungs.
Collapse
Affiliation(s)
- Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut.,Department of Surgery, Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
34
|
Mahfouzi SH, Amoabediny G, Safiabadi Tali SH. Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring. Biotechnol Bioeng 2021; 118:2142-2167. [PMID: 33629350 DOI: 10.1002/bit.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Shirani A, Ganji F, Golmohammadi M, Hashemi SM, Mozafari M, Amoabediny G, Karkuki Osguei N, Samadikuchaksaraei A. Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111938. [PMID: 33641926 DOI: 10.1016/j.msec.2021.111938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
The concept of providing tissue engineering scaffolds with natural physical properties and minimal immunogenicity has not been systematically approached for the lungs yet. Here, the rat acellular lung tissue (ALT) was cross-linked to provide either EDC/NHS cross-linked tissue (EDC/NHS-CLT) or tannic acid cross-linked tissue (TA-CLT). Young's modulus revealed that EDC/NHS-CLT had mechanical properties similar to the native lung and culture of lung mesenchymal cells showed a higher potential of cell proliferation on EDC/NHS-CLT versus TA-CLT and ALT. The in vitro immunogenicity tests showed a strong induction of T-cell proliferation by TA-CLT and an attenuated macrophage induction by TA-CLT. Processed rat lungs were implanted xenogenically into the mouse peritoneal cavity and the host-implant interactions showed that tannic acid is not released from TA-CLT in a physiologically effective dose. The profile of peritoneal fluid proinflammatory (TNFα, IL-1β, IL-12p70 and IL-17) and anti-inflammatory (IL-10 and TGFβ1) cytokines, and CD3+ T-lymphocytes and CD11b+ macrophages revealed that apart from induction of high levels of IL-17 during the first week and IL-10 during the second to third weeks after implantation by TA-CLT, other indicators of immune reactions to cross-linked tissues were not significantly different from ALT. Also, a high fibrotic reaction to TA-CLT was observed on the weeks 2-3, but alveolar structures were preserved in EDC/NHS-CLT. Our findings show that by controlled EDC/NHS cross-linking, an acellular lung scaffold could be provided with mechanical properties similar to native lung, which promotes mesenchymal lung cells proliferation and does not stimulate recipient's immune system more than a non-cross-linked tissue.
Collapse
Affiliation(s)
- Ali Shirani
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ganji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Golmohammadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | | | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Sant S, Wang D, Abidi M, Walker G, Ferrell N. Mechanical characterization of native and sugar-modified decellularized kidneys. J Mech Behav Biomed Mater 2021; 114:104220. [PMID: 33257205 PMCID: PMC7855467 DOI: 10.1016/j.jmbbm.2020.104220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Decellularized organs have the potential to be used as scaffolds for tissue engineering organ replacements. The mechanical properties of the extracellular matrix (ECM) following decellularization are critical for structural integrity and for regulation of cell function upon recellularization. Advanced glycation end products (AGEs) accumulate in the ECM with age and their formation is accelerated by several pathological conditions including diabetes. Some AGEs span multiple amino acids to form crosslinks that may alter the mechanical properties of the ECM. The goal of this work was to evaluate how sugar-induced modifications to the ECM affect the mechanical behavior of decellularized kidney. The compressive and tensile properties of the kidney ECM were evaluated using an accelerated model of AGE formation by ribose. Results show that ribose modifications significantly alter the mechanical behavior of decellularized kidney. Increased resistance to deformation corresponds to increased ECM crosslinking, and mechanical changes can be partially mitigated by AGE inhibition. The degree of post-translational modification of the ECM is dependent on the age and health of the organ donor and may play a role in regulating the mechanical properties of decellularized organs.
Collapse
Affiliation(s)
- Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Dan Wang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Minhal Abidi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Gwyneth Walker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Vanderbilt Center for Kidney Disease, United States.
| |
Collapse
|
37
|
De Santis MM, Alsafadi HN, Tas S, Bölükbas DA, Prithiviraj S, Da Silva IAN, Mittendorfer M, Ota C, Stegmayr J, Daoud F, Königshoff M, Swärd K, Wood JA, Tassieri M, Bourgine PE, Lindstedt S, Mohlin S, Wagner DE. Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005476. [PMID: 33300242 PMCID: PMC11469085 DOI: 10.1002/adma.202005476] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue-specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro-angiogenic and support recipient-derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof-of-principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.
Collapse
Affiliation(s)
- Martina M. De Santis
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
| | - Hani N. Alsafadi
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Sinem Tas
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Deniz A. Bölükbas
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Sujeethkumar Prithiviraj
- Laboratory for CellTissue and Organ EngineeringDept of Clinical Sciences LundStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Iran A. N. Da Silva
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Margareta Mittendorfer
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Chiharu Ota
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
- Present address:
Department of PediatricsTohoku University Graduate School of MedicineSendaiJapan
| | - John Stegmayr
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Fatima Daoud
- Department of Experimental Medical ScienceLund UniversityLund22362Sweden
| | - Melanie Königshoff
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
- Present address:
Division of Pulmonary Sciences and Critical Care MedicineDepartment of MedicineUniversity of Colorado DenverAuroraCOUSA
| | - Karl Swärd
- Department of Experimental Medical ScienceLund UniversityLund22362Sweden
| | - Jeffery A. Wood
- Soft MatterFluidics and InterfacesMESA+ Institute for NanotechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Manlio Tassieri
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8LTUnited Kingdom
| | - Paul E. Bourgine
- Laboratory for CellTissue and Organ EngineeringDept of Clinical Sciences LundStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Sandra Lindstedt
- Dept of Cardiothoracic SurgeryHeart and Lung TransplantationWallenberg Center for Molecular MedicineLund University HospitalLund22242Sweden
| | - Sofie Mohlin
- Division of PediatricsClinical SciencesTranslational Cancer ResearchLund University Cancer Center at Medicon VillageLund22363Sweden
| | - Darcy E. Wagner
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
| |
Collapse
|
38
|
Ahmadipour M, Duchesneau P, Taniguchi D, Waddell TK, Karoubi G. Negative Pressure Cell Delivery Augments Recellularization of Decellularized Lungs. Tissue Eng Part C Methods 2021; 27:1-11. [PMID: 33307958 DOI: 10.1089/ten.tec.2020.0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For end-stage lung disease, lung transplantation remains the only treatment but is limited by the availability of organs. Production of bioengineered lungs via recellularization is an alternative but is hindered by inadequate repopulation. We present a cell delivery method via the generation of negative pressure. Decellularized lungs were seeded with human bronchial epithelial cells using gravity-based perfusion or negative pressure (via air removal). After delivery, lungs were maintained in static conditions for 18 h, and cell surface coverage was qualitatively assessed using histology and analyzed by subjective scoring and an image analysis software. Negative pressure seeded lungs had higher cell surface coverage area, and this effect was maintained following 5 days of culture. Enhanced coverage via negative pressure cell delivery was also observed when vasculature seeded with endothelial cells. Our findings show that negative pressure cell delivery is a superior approach for the recellularization of the bioengineered lung. Impact statement New strategies are required to overcome the shortage of organ donors for lung transplantation. Recellularization of acellular biological scaffolds is an exciting potential alternative. Adequate recellularization, however, remains a significant challenge. This proof of concept study describes a novel cell delivery approach, which further enhances the recellularization of decellularized lungs. Organs seeded and cultured with this method possess higher cell surface coverage and number compared to those seeded via traditional gravity-based perfusion approaches.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Pascal Duchesneau
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daisuke Taniguchi
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Thomas K Waddell
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Golnaz Karoubi
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Rolandsson Enes S, Weiss DJ. Bioartificial lungs based on de- and recellularisation approaches: a historical perspective. Breathe (Sheff) 2020; 16:200168. [PMID: 33447287 PMCID: PMC7792863 DOI: 10.1183/20734735.0168-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A discussion of three landmark studies on bioartificial lungs published during 2010 that were instrumental in invigorating the lung regenerative medicine field https://bit.ly/31qQAEa.
Collapse
Affiliation(s)
- Sara Rolandsson Enes
- Dept of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Daniel J Weiss
- Dept of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
40
|
Swol J, Shigemura N, Ichiba S, Steinseifer U, Anraku M, Lorusso R. Artificial lungs--Where are we going with the lung replacement therapy? Artif Organs 2020; 44:1135-1149. [PMID: 33098217 DOI: 10.1111/aor.13801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Lung transplantation may be a final destination therapy in lung failure, but limited donor organ availability creates a need for alternative management, including artificial lung technology. This invited review discusses ongoing developments and future research pathways for respiratory assist devices and tissue engineering to treat advanced and refractory lung disease. An overview is also given on the aftermath of the coronavirus disease 2019 pandemic and lessons learned as the world comes out of this situation. The first order of business in the future of lung support is solving the problems with existing mechanical devices. Interestingly, challenges identified during the early days of development persist today. These challenges include device-related infection, bleeding, thrombosis, cost, and patient quality of life. The main approaches of the future directions are to repair, restore, replace, or regenerate the lungs. Engineering improvements to hollow fiber membrane gas exchangers are enabling longer term wearable systems and can be used to bridge lung failure patients to transplantation. Progress in the development of microchannel-based devices has provided the concept of biomimetic devices that may even enable intracorporeal implantation. Tissue engineering and cell-based technologies have provided the concept of bioartificial lungs with properties similar to the native organ. Recent progress in artificial lung technologies includes continued advances in both engineering and biology. The final goal is to achieve a truly implantable and durable artificial lung that is applicable to destination therapy.
Collapse
Affiliation(s)
- Justyna Swol
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Intensive Care Medicine, Paracelsus Medical University Nuremberg, General Hospital Nuremberg, Nuremberg, Germany
| | - Norihisa Shigemura
- Division of Cardiovascular Surgery, Temple University Health System Inc., Philadelphia, PA, USA
| | - Shingo Ichiba
- Department of Surgical Intensive Care Medicine, Nippon Medical School Hospital, Bunkyo-ku, Japan
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Aachen, Germany
| | - Masaki Anraku
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine Faculty of Medicine, Bunkyo-ku, Japan
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department - Heart & Vascular Centre, Maastricht University Medical Hospital, Maastricht, The Netherlands
| |
Collapse
|
41
|
Swaminathan V, Bryant BR, Tchantchaleishvili V, Rajab TK. Bioengineering lungs - current status and future prospects. Expert Opin Biol Ther 2020; 21:465-471. [PMID: 33028138 DOI: 10.1080/14712598.2021.1834534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Once pulmonary disease progresses to end-stage pulmonary disease, treatment options are very limited. An important advance in the field is the development of a bioartificial lung derived from a generic matrix scaffold populated with patients' own cells. Significant progress has already been made in the engineering of bioartificial lungs. AREAS COVERED This review explains how previous and current research contributes to the goal of creating a successful bioartificial lung, and the barriers faced in doing so. We will also highlight some of the design considerations being explored to optimize bioartificial lungs and considerations for clinical translation. EXPERT OPINION While current bioartificial lungs are able to provide short-term gas exchange in large-animal studies, much work is still required to combine the disciplines of cell biology, materials science, and tissue engineering to create such clinically useful and functioning artificial lungs.
Collapse
Affiliation(s)
- Vishal Swaminathan
- Division of Cardiac Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Barry R Bryant
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Taufiek Konrad Rajab
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
42
|
Abstract
The field of tissue engineering has advanced over the past decade, but the largest impact on human health should be achieved with the transition of engineered solid organs to the clinic. The number of patients suffering from solid organ disease continues to increase, with over 100 000 patients on the U.S. national waitlist and approximately 730 000 deaths in the United States resulting from end-stage organ disease annually. While flat, tubular, and hollow nontubular engineered organs have already been implanted in patients, in vitro formation of a fully functional solid organ at a translatable scale has not yet been achieved. Thus, one major goal is to bioengineer complex, solid organs for transplantation, composed of patient-specific cells. Among the myriad of approaches attempted to engineer solid organs, 3D bioprinting offers unmatched potential. This review highlights the structural complexity which must be engineered at nano-, micro-, and mesostructural scales to enable organ function. We showcase key advances in bioprinting solid organs with complex vascular networks and functioning microstructures, advances in biomaterials science that have enabled this progress, the regulatory hurdles the field has yet to overcome, and cutting edge technologies that bring us closer to the promise of engineered solid organs.
Collapse
Affiliation(s)
- Adam M Jorgensen
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
43
|
Alaby Pinheiro Faccioli L, Suhett Dias G, Hoff V, Lemos Dias M, Ferreira Pimentel C, Hochman-Mendez C, Braz Parente D, Labrunie E, Souza Mourão PA, Rogério de Oliveira Salvalaggio P, Goldberg AC, Campos de Carvalho AC, Dos Santos Goldenberg RC. Optimizing the Decellularized Porcine Liver Scaffold Protocol. Cells Tissues Organs 2020; 211:385-394. [PMID: 33040059 DOI: 10.1159/000510297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
There are few existing methods for shortening the decellularization period for a human-sized whole-liver scaffold. Here, we describe a protocol that enables effective decellularization of the liver obtained from pigs weigh 120 ± 4.2 kg within 72 h. Porcine livers (approx. 1.5 kg) were decellularized for 3 days using a combination of chemical and enzymatic decellularization agents. After trypsin, sodium deoxycholate, and Triton X-100 perfusion, the porcine livers were completely translucent. Our protocol was efficient to promote cell removal, the preservation of extracellular matrix (ECM) components, and vascular tree integrity. In conclusion, our protocol is efficient to promote human-sized whole-liver scaffold decellularization and thus useful to generate bioengineered livers to overcome the shortage of organs.
Collapse
Affiliation(s)
- Lanuza Alaby Pinheiro Faccioli
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Radiology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grazielle Suhett Dias
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Victor Hoff
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Lemos Dias
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cibele Ferreira Pimentel
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Daniella Braz Parente
- Radiology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education, Botafogo, Rio de Janeiro, Brazil
| | - Ester Labrunie
- Radiology Department, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Antonio Souza Mourão
- Connective Tissue Laboratory, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Anna Carla Goldberg
- Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Antonio Carlos Campos de Carvalho
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Science and Technology for Regenerative Medicine - REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Cellular and Molecular Cardiology Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
- Institute of Science and Technology for Regenerative Medicine - REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil,
| |
Collapse
|
44
|
Zhang Y, Nam K, Kimura T, Wu P, Nakamura N, Hashimoto Y, Funamoto S, Kishida A. Preparation of gradient-type biological tissue-polymer complex for interlinking device. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111017. [PMID: 32993989 DOI: 10.1016/j.msec.2020.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/13/2019] [Accepted: 04/23/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the monomer absorption behavior of decellularized dermis and prepare a gradient-type decellularized dermis-polymer complex. Decellularized dermis was prepared using sodium dodecyl sulfate, and its monomer absorption behavior was investigated using three types of hydrophobic monomer with different surface free energies. The results show that monomer absorption depends strongly on the tissue structure, regardless of the surface free energy, and the amount of absorbed monomer can be increased by sonication. Based on these results, we prepared a gradient-type decellularized dermis-poly(methyl methacrylate) complex by controlling the permeation time of the methyl methacrylate monomer and polymerization initiator into the decellularized dermis. The mechanical strength of this complex gradually increased from the dermis side to the polymer side, and combined the physical characteristics of the dermis and the polymer.
Collapse
Affiliation(s)
- Yongwei Zhang
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kwangwoo Nam
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsuyoshi Kimura
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Pingli Wu
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoko Nakamura
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshihide Hashimoto
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Seiichi Funamoto
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akio Kishida
- Department of Material-based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
45
|
Choudhury D, Yee M, Sheng ZLJ, Amirul A, Naing MW. Decellularization systems and devices: State-of-the-art. Acta Biomater 2020; 115:51-59. [PMID: 32771593 DOI: 10.1016/j.actbio.2020.07.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) is a natural biomaterial scaffold that provides biochemical and structural support to its surrounding cells, forming tissue and respective organs. These ECM proteins can be extracted from organs and tissues through decellularization, which is the process of removing cellular content and nuclear material from the organs to obtain decellularized ECM (dECM). dECM is a versatile and functional biomaterial that can be used as the base component of bioinks for rebuilding tissue and organs. Intact dECM of whole organs can be used as a scaffold for recellularization with human stem cells to produce a functioning organ. As decellularization is a relatively new lab process, the associated technologies and devices are largely non-standardized and only available in small, lab-specific scales. Additionally, there is a lack of standardized protocols to analyze the quality and consistency of harvested dECM for medical applications. This review discusses the relevant decellularization systems and devices currently available to facilitate further development of this process for larger scales with the intention to commercialize dECM materials. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) is a natural cocktail of biomaterials that provides biochemical and structural support to its surrounding cells. ECM proteins are extracted from organs and tissues through decellularization. Being a versatile and functional biomaterial, decellularized extracellular matrix (dECM) is being used as base component of bioinks/hydrogels for rebuilding of tissue and organ constructs. Decellularization is a relatively new lab process with associated technologies/devices being largely non-standardized and only available in lab-specific scales. We discuss categories of decellularization systems and devices for the first time being used in academic and commercial settings. We highlight inherent challenges with the current systems and suggest possible solutions. We comment on further development of these processes for large-scale and commercial applications of dECM.
Collapse
Affiliation(s)
- Deepak Choudhury
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore.
| | - Marcus Yee
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore
| | - Zach Lee Jia Sheng
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore
| | - Ahmad Amirul
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore
| | - May Win Naing
- Biomanufacturing Technology Group, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668, Singapore; Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, #08-04, Innovis 138634, Singapore
| |
Collapse
|
46
|
Xu J, Ong HX, Traini D, Williamson J, Byrom M, Gomes Dos Reis L, Young PM. Paclitaxel-eluting silicone airway stent for preventing granulation tissue growth and lung cancer relapse in central airway pathologies. Expert Opin Drug Deliv 2020; 17:1631-1645. [PMID: 32815403 DOI: 10.1080/17425247.2020.1811224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Airway stents are used to treat obstructive central airway pathologies including palliation of lung cancer, but face challenges with granulation tissue growth. Paclitaxel is a chemotherapy drug that also suppresses growth of granulation tissue. Yet, side effects arise from administration with toxic solubilizers. By incorporating paclitaxel in silicone stents, delivery of paclitaxel can be localized, and side effects minimized. METHODS Paclitaxel was incorporated into Liquid Silicone Rubber (LSR) containing polydimethylsiloxane, either as a powder or solution, prior to curing. Drug release study was compared in vitro at 37°C over 10 days. Drug release was quantified using HPLC, and bronchial cell lines were grown on LSR to investigate drug cytotoxicity, and expression of inflammatory markers, specifically interleukin-6 and interleukin-8. RESULTS Release rate of paclitaxel incorporated into silicone rubber was consistent with the Korsmeyer and Weibull models (R2 > 0.96). Paclitaxel exposure reduced IL-8 levels in cancer cell lines, whilst no cytotoxic effect was observed in all cell lines at treatment concentration levels (≤ 0.1% (w/v) paclitaxel in silicone). CONCLUSIONS Incorporating paclitaxel into a silicone matrix for future use in a tracheobronchial stent was investigated. Drug release from silicone was observed and is a promising avenue for future treatments of central airway pathologies.
Collapse
Affiliation(s)
- Jesse Xu
- Respiratory Technology Group, Woolcock Institute of Medical Research , Sydney, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney , Sydney, Australia
| | - Hui Xin Ong
- Respiratory Technology Group, Woolcock Institute of Medical Research , Sydney, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney , Sydney, Australia
| | - Daniela Traini
- Respiratory Technology Group, Woolcock Institute of Medical Research , Sydney, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney , Sydney, Australia
| | - Jonathan Williamson
- South West Clinical School, The University of New South Wales , Sydney, Australia.,MQ Health, Respiratory and Sleep, Macquarie University , Sydney, Australia
| | - Michael Byrom
- RPA Institute of Academic Surgery , Sydney, Australia
| | - Larissa Gomes Dos Reis
- Respiratory Technology Group, Woolcock Institute of Medical Research , Sydney, Australia
| | - Paul M Young
- Respiratory Technology Group, Woolcock Institute of Medical Research , Sydney, Australia.,Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney , Sydney, Australia
| |
Collapse
|
47
|
McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater 2020; 111:1-19. [PMID: 32464269 DOI: 10.1016/j.actbio.2020.05.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Biomedical engineers are at the forefront of developing novel treatments to improve human health, however, many products fail to translate to clinical implementation. In vivo pre-clinical animal models, although the current best approximation of complex disease conditions, are limited by reproducibility, ethical concerns, and poor accurate prediction of human response. Hence, there is a need to develop physiologically relevant, low cost, scalable, and reproducible in vitro platforms to provide reliable means for testing drugs, biomaterials, and tissue engineered products for successful clinical translation. One emerging approach of developing physiologically relevant in vitro models utilizes decellularized tissues/organs as biomaterial platforms for 2D and 3D models of healthy and diseased tissue. Decellularization is a process that removes cellular content and produces tissue-specific extracellular matrix scaffolds that can more accurately recapitulate an organ/tissue's native microenvironment compared to other natural or synthetic materials. Decellularized tissues hold enormous potential for in vitro modeling of various disease phenotypes and tissue responses to drugs or external conditions such as aging, toxin exposure, or even implantation. In this review, we highlight the need for in vitro models, the advantages and limitations of implementing decellularized tissues, and considerations of the decellularization process. We discuss current research efforts towards applying decellularized tissues as platforms to generate in vitro models of healthy and diseased tissues, and where we foresee the field progressing. A variety of organs/tissues are discussed, including brain, heart, kidney, large intestine, liver, lung, skeletal muscle, skin, and tongue. STATEMENT OF SIGNIFICANCE: Many biomedical products fail to reach clinical translation due to animal model limitations. Development of physiologically relevant in vitro models can provide a more economic, scalable, and reproducible means of testing drugs/therapeutics for successful clinical translation. The use of decellularized tissues as platforms for in vitro models holds promise, as these scaffolds can effectively replicate native tissue complexity, but is not widely explored. This review discusses the need for in vitro models, the promise of decellularized tissues as biomaterial substrates, and the current research applying decellularized tissues towards the creation of in vitro models. Further, this review provides insights into the current limitations and future of such in vitro models.
Collapse
Affiliation(s)
- Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Instituto de Micro y Nanotechnología, IMN-CNM, CSIC (CEI UAM+CSIC), Calle Isaac Newton 8, 28760 Madrid, Tres Cantos, Spain; Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, Calle Nicolás Cabrera, 28049 Madrid, Spain.
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Department of Biomedical Engineering, University of Arkansas, 134 White Hall, Fayetteville, AR 72701, United States.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| |
Collapse
|
48
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
49
|
Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020; 48:2132-2153. [PMID: 31741227 PMCID: PMC7231673 DOI: 10.1007/s10439-019-02408-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix (ECM) are commonly used for the repair and remodeling of injured tissue. The clinical outcomes associated with implantation of ECM-based materials range from unacceptable to excellent. The variable clinical results are largely due to differences in the preparation of the material, including characteristics of the source tissue, the method and efficacy of decellularization, and post-decellularization processing steps. The mechanisms by which ECM scaffolds promote constructive tissue remodeling include mechanical support, degradation and release of bioactive molecules, recruitment and differentiation of endogenous stem/progenitor cells, and modulation of the immune response toward an anti-inflammatory phenotype. The methods of ECM preparation and the impact of these methods on the quality of the final product are described herein. Examples of favorable cellular responses of immune and stem cells associated with constructive tissue remodeling of ECM bioscaffolds are described.
Collapse
Affiliation(s)
- Madeline C Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
50
|
Keller S, Wörgötter K, Liedek A, Kluger PJ, Bach M, Tovar GEM, Southan A. Azide-Functional Extracellular Matrix Coatings as a Bioactive Platform for Bioconjugation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26868-26879. [PMID: 32426964 DOI: 10.1021/acsami.0c04579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, the development and application of decellularized extracellular matrices (ECMs) for use as biomaterials have grown rapidly. These cell-derived matrices (CDMs) represent highly bioactive and biocompatible materials consisting of a complex assembly of biomolecules. Even though CDMs mimic the natural microenvironment of cells in vivo very closely, they still lack specifically addressable functional groups, which are often required to tailor a biomaterial functionality by bioconjugation. To overcome this limitation, metabolic glycoengineering has emerged as a powerful tool to equip CDMs with chemical groups such as azides. These small chemical handles are known for their ability to undergo bioorthogonal click reactions, which represent a desirable reaction type for bioconjugation. However, ECM insolubility makes its processing very challenging. In this contribution, we isolated both the unmodified ECM and azide-modified clickECM by osmotic lysis. In a first step, these matrices were concentrated to remove excessive water from the decellularization step. Next, the hydrogel-like ECM and clickECM films were mechanically fragmentized, resulting in easy to pipette suspensions with fragment sizes ranging from 7.62 to 31.29 μm (as indicated by the mean d90 and d10 values). The biomolecular composition was not impaired as proven by immunohistochemistry. The suspensions were used for the reproducible generation of surface coatings, which proved to be homogeneous in terms of ECM fragment sizes and coating thicknesses (the mean coating thickness was found to be 33.2 ± 7.3 μm). Furthermore, they were stable against fluid-mechanical abrasion in a laminar flow cell. When primary human fibroblasts were cultured on the coated substrates, an increased bioactivity was observed. By conjugating the azides within the clickECM coatings with alkyne-coupled biotin molecules, a bioconjugation platform was obtained, where the biotin-streptavidin interaction could be used. Its applicability was demonstrated by equipping the bioactive clickECM coatings with horseradish peroxidase as a model enzyme.
Collapse
Affiliation(s)
- Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Katharina Wörgötter
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Anke Liedek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Petra J Kluger
- School of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Monika Bach
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|