1
|
Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces. Nat Commun 2025; 16:1861. [PMID: 39984447 PMCID: PMC11845577 DOI: 10.1038/s41467-025-57016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing 'biohybrid' and 'all-living' interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation.
Collapse
Affiliation(s)
- Dimitris Boufidis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raghav Garg
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugenia Angelopoulos
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Carnicer‐Lombarte A, Malliaras GG, Barone DG. The Future of Biohybrid Regenerative Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408308. [PMID: 39564751 PMCID: PMC11756040 DOI: 10.1002/adma.202408308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/13/2024] [Indexed: 11/21/2024]
Abstract
Biohybrid regenerative bioelectronics are an emerging technology combining implantable devices with cell transplantation. Once implanted, biohybrid regenerative devices integrate with host tissue. The combination of transplant and device provides an avenue to both replace damaged or dysfunctional tissue, and monitor or control its function with high precision. While early challenges in the fusion of the biological and technological components limited development of biohybrid regenerative technologies, progress in the field has resulted in a rapidly increasing number of applications. In this perspective the great potential of this emerging technology for the delivery of therapy is discussed, including both recent research progress and potential new directions. Then the technology barriers are discussed that will need to be addressed to unlock the full potential of biohybrid regenerative devices.
Collapse
Affiliation(s)
| | - George G. Malliaras
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
| | - Damiano G. Barone
- Department of EngineeringElectrical Engineering DivisionUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Neurosurgery, Houston MethodistHouston77030USA
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| |
Collapse
|
3
|
Li Y, Yang C, Fang S, Zhou Y, Li M, Liu Z, Zhang X, Duan L, Liu K, Sun F. Clickable, Thermally Responsive Hydrogels Enabled by Recombinant Spider Silk Protein and Spy Chemistry for Sustained Neurotrophin Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413957. [PMID: 39648660 DOI: 10.1002/adma.202413957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Indexed: 12/10/2024]
Abstract
The ability to deliver protein therapeutics in a minimally invasive, safe, and sustained manner, without resorting to viral delivery systems, will be crucial for treating a wide range of chronic injuries and diseases. Among these challenges, achieving axon regeneration and functional recovery post-injury or disease in the central nervous system remains elusive to most clinical interventions, constantly calling for innovative solutions. Here, a thermally responsive hydrogel system utilizing recombinant spider silk protein (spidroin) is developed. The protein solution undergoes rapid sol-gel transition at an elevated temperature (37 °C) following brief sonication. This thermally triggered gelation confers injectability to the system. Leveraging SpyTag/SpyCatcher chemistry, the hydrogel, composed of SpyTag-fusion spidroin, can be functionalized with diverse SpyCatcher-fusion bioactive motifs, such as neurotrophic factors (e.g., ciliary neurotrophic factor) and cell-binding ligands (e.g., laminin), rendering it well-suited for neuronal culturing. More importantly, the intravitreous injection of the protein materials decorated with SpyCatcher-fusion CNTF into the vitreous body after optic nerve injury leads to prolonged JAK/STAT3 signaling, increased neuronal survival, and enhanced axon regeneration. This study illustrates a generalizable material system for injectable and sustained delivery of protein therapeutics for neuroprotection and regeneration, with the potential for extension to other chronic diseases and injuries.
Collapse
Affiliation(s)
- Yue Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chao Yang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Shiyu Fang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zewei Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xin Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Kai Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong, 518057, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
- HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
4
|
Raffa V, Shefi O, Falconieri A. Editorial: Perspectives in neuroscience: mechanical forces for the modulation of axonal mechanics and nerve regeneration. Front Mol Neurosci 2024; 17:1453190. [PMID: 39071843 PMCID: PMC11273933 DOI: 10.3389/fnmol.2024.1453190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Alessandro Falconieri
- Department of Biology, Università di Pisa, Pisa, Italy
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
6
|
Chouhan D, Gordián Vélez WJ, Struzyna LA, Adewole DO, Cullen ER, Burrell JC, O'Donnell JC, Cullen DK. Generation of contractile forces by three-dimensional bundled axonal tracts in micro-tissue engineered neural networks. Front Mol Neurosci 2024; 17:1346696. [PMID: 38590432 PMCID: PMC10999686 DOI: 10.3389/fnmol.2024.1346696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Axonal extension and retraction are ongoing processes that occur throughout all developmental stages of an organism. The ability of axons to produce mechanical forces internally and respond to externally generated forces is crucial for nervous system development, maintenance, and plasticity. Such axonal mechanobiological phenomena have typically been evaluated in vitro at a single-cell level, but these mechanisms have not been studied when axons are present in a bundled three-dimensional (3D) form like in native tissue. In an attempt to emulate native cortico-cortical interactions under in vitro conditions, we present our approach to utilize previously described micro-tissue engineered neural networks (micro-TENNs). Here, micro-TENNs were comprised of discrete populations of rat cortical neurons that were spanned by 3D bundled axonal tracts and physically integrated with each other. We found that these bundled axonal tracts inherently exhibited an ability to generate contractile forces as the microtissue matured. We therefore utilized this micro-TENN testbed to characterize the intrinsic contractile forces generated by the integrated axonal tracts in the absence of any external force. We found that contractile forces generated by bundled axons were dependent on microtubule stability. Moreover, these intra-axonal contractile forces could simultaneously generate tensile forces to induce so-called axonal "stretch-growth" in different axonal tracts within the same microtissue. The culmination of axonal contraction generally occurred with the fusion of both the neuronal somatic regions along the axonal tracts, therefore perhaps showing the innate tendency of cortical neurons to minimize their wiring distance, a phenomenon also perceived during brain morphogenesis. In future applications, this testbed may be used to investigate mechanisms of neuroanatomical development and those underlying certain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dimple Chouhan
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Wisberty J Gordián Vélez
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura A Struzyna
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Dayo O Adewole
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Erin R Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Justin C Burrell
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C O'Donnell
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Politrón-Zepeda GA, Fletes-Vargas G, Rodríguez-Rodríguez R. Injectable Hydrogels for Nervous Tissue Repair-A Brief Review. Gels 2024; 10:190. [PMID: 38534608 PMCID: PMC10970171 DOI: 10.3390/gels10030190] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The repair of nervous tissue is a critical research field in tissue engineering because of the degenerative process in the injured nervous system. In this review, we summarize the progress of injectable hydrogels using in vitro and in vivo studies for the regeneration and repair of nervous tissue. Traditional treatments have not been favorable for patients, as they are invasive and inefficient; therefore, injectable hydrogels are promising for the treatment of damaged tissue. This review will contribute to a better understanding of injectable hydrogels as potential scaffolds and drug delivery system for neural tissue engineering applications.
Collapse
Affiliation(s)
- Gladys Arline Politrón-Zepeda
- Ingeniería en Sistemas Biológicos, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico;
| | - Gabriela Fletes-Vargas
- Departamento de Ciencias Clínicas, Centro Universitario de los Altos (CUALTOS), Universidad de Guadalajara, Carretera Tepatitlán-Yahualica de González Gallo, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Rogelio Rodríguez-Rodríguez
- Departamento de Ciencias Naturales y Exactas, Centro Universitario de los Valles (CUVALLES), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
8
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Burrell JC, Das S, Laimo FA, Katiyar KS, Browne KD, Shultz RB, Tien VJ, Vu PT, Petrov D, Ali ZS, Rosen JM, Cullen DK. Engineered neuronal microtissue provides exogenous axons for delayed nerve fusion and rapid neuromuscular recovery in rats. Bioact Mater 2022; 18:339-353. [PMID: 35415305 PMCID: PMC8965778 DOI: 10.1016/j.bioactmat.2022.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Abstract
Nerve injury requiring surgical repair often results in poor functional recovery due to the inability of host axons to re-grow long distances and reform meaningful connections with the target muscle. While surgeons can re-route local axon fascicles to the target muscle, there are no technologies to provide an exogenous source of axons without sacrificing healthy nerves. Accordingly, we have developed tissue engineered neuromuscular interfaces (TE-NMIs) as the first injectable microtissue containing motor and sensory neurons in an anatomically-inspired architecture. TE-NMIs provide axon tracts that are intended to integrate with denervated distal structures and preserve regenerative capacity during prolonged periods without host innervation. Following implant, we found that TE-NMI axons promoted Schwann cell maintenance, integrated with distal muscle, and preserved an evoked muscle response out to 20-weeks post nerve transection in absence of innervation from host axons. By repopulating the distal sheath with exogenous axons, TE-NMIs also enabled putative delayed fusion with proximal host axons, a phenomenon previously not achievable in delayed repair scenarios due to distal axon degeneration. Here, we found immediate electrophysiological recovery after fusion with proximal host axons and improved axon maturation and muscle reinnervation at 24-weeks post-transection (4-weeks following delayed nerve fusion). These findings show that TE-NMIs provide the potential to improve functional recovery following delayed nerve repair.
Collapse
Affiliation(s)
- Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Franco A. Laimo
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Kritika S. Katiyar
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Kevin D. Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Robert B. Shultz
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| | - Vishal J. Tien
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Phuong T. Vu
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zarina S. Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M. Rosen
- Dartmouth-Hitchcock Medical Center, Division of Plastic Surgery, Dartmouth College, Lebanon, NH, USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, USA
| |
Collapse
|
10
|
Struzyna LA, Browne KD, Burrell JC, Vélez WJG, Wofford KL, Kaplan HM, Murthy NS, Chen HI, Duda JE, España RA, Cullen DK. Axonal Tract Reconstruction Using a Tissue-Engineered Nigrostriatal Pathway in a Rat Model of Parkinson's Disease. Int J Mol Sci 2022; 23:13985. [PMID: 36430464 PMCID: PMC9692781 DOI: 10.3390/ijms232213985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) affects 1-2% of people over 65, causing significant morbidity across a progressive disease course. The classic PD motor deficits are caused by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in the loss of their long-distance axonal projections that modulate striatal output. While contemporary treatments temporarily alleviate symptoms of this disconnection, there is no approach able to replace the nigrostriatal pathway. We applied microtissue engineering techniques to create a living, implantable tissue-engineered nigrostriatal pathway (TE-NSP) that mimics the architecture and function of the native pathway. TE-NSPs comprise a discrete population of dopaminergic neurons extending long, bundled axonal tracts within the lumen of hydrogel micro-columns. Neurons were isolated from the ventral mesencephalon of transgenic rats selectively expressing the green fluorescent protein in dopaminergic neurons with subsequent fluorescent-activated cell sorting to enrich a population to 60% purity. The lumen extracellular matrix and growth factors were varied to optimize cytoarchitecture and neurite length, while immunocytochemistry and fast-scan cyclic voltammetry (FSCV) revealed that TE-NSP axons released dopamine and integrated with striatal neurons in vitro. Finally, TE-NSPs were implanted to span the nigrostriatal pathway in a rat PD model with a unilateral 6-hydroxydopamine SNpc lesion. Immunohistochemistry and FSCV established that transplanted TE-NSPs survived, maintained their axonal tract projections, extended dopaminergic neurites into host tissue, and released dopamine in the striatum. This work showed proof of concept that TE-NSPs can reconstruct the nigrostriatal pathway, providing motivation for future studies evaluating potential functional benefits and long-term durability of this strategy. This pathway reconstruction strategy may ultimately replace lost neuroarchitecture and alleviate the cause of motor symptoms for PD patients.
Collapse
Affiliation(s)
- Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin D. Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wisberty J. Gordián Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn L. Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hilton M. Kaplan
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - N. Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rodrigo A. España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Ita ME, Singh S, Troche HR, Welch RL, Winkelstein BA. Intra-articular MMP-1 in the spinal facet joint induces sustained pain and neuronal dysregulation in the DRG and spinal cord, and alters ligament kinematics under tensile loading. Front Bioeng Biotechnol 2022; 10:926675. [PMID: 35992346 PMCID: PMC9382200 DOI: 10.3389/fbioe.2022.926675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic joint pain is a major healthcare challenge with a staggering socioeconomic burden. Pain from synovial joints is mediated by the innervated collagenous capsular ligament that surrounds the joint and encodes nociceptive signals. The interstitial collagenase MMP-1 is elevated in painful joint pathologies and has many roles in collagen regulation and signal transduction. Yet, the role of MMP-1 in mediating nociception in painful joints remains poorly understood. The goal of this study was to determine whether exogenous intra-articular MMP-1 induces pain in the spinal facet joint and to investigate effects of MMP-1 on mediating the capsular ligament’s collagen network, biomechanical response, and neuronal regulation. Intra-articular MMP-1 was administered into the cervical C6/C7 facet joints of rats. Mechanical hyperalgesia quantified behavioral sensitivity before, and for 28 days after, injection. On day 28, joint tissue structure was assessed using histology. Multiscale ligament kinematics were defined under tensile loading along with microstructural changes in the collagen network. The amount of degraded collagen in ligaments was quantified and substance P expression assayed in neural tissue since it is a regulatory of nociceptive signaling. Intra-articular MMP-1 induces behavioral sensitivity that is sustained for 28 days (p < 0.01), absent any significant effects on the structure of joint tissues. Yet, there are changes in the ligament’s biomechanical and microstructural behavior under load. Ligaments from joints injected with MMP-1 exhibit greater displacement at yield (p = 0.04) and a step-like increase in the number of anomalous reorganization events of the collagen fibers during loading (p ≤ 0.02). Collagen hybridizing peptide, a metric of damaged collagen, is positively correlated with the spread of collagen fibers in the unloaded state after MMP-1 (p = 0.01) and that correlation is maintained throughout the sub-failure regime (p ≤ 0.03). MMP-1 injection increases substance P expression in dorsal root ganglia (p < 0.01) and spinal cord (p < 0.01) neurons. These findings suggest that MMP-1 is a likely mediator of neuronal signaling in joint pain and that MMP-1 presence in the joint space may predispose the capsular ligament to altered responses to loading. MMP-1-mediated pathways may be relevant targets for treating degenerative joint pain in cases with subtle or no evidence of structural degeneration.
Collapse
Affiliation(s)
- Meagan E. Ita
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Sagar Singh
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Harrison R. Troche
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Rachel L. Welch
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Beth A. Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Beth A. Winkelstein,
| |
Collapse
|
12
|
Montemurro N, Aliaga N, Graff P, Escribano A, Lizana J. New Targets and New Technologies in the Treatment of Parkinson's Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8799. [PMID: 35886651 PMCID: PMC9321220 DOI: 10.3390/ijerph19148799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Nelida Aliaga
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Pablo Graff
- Functional Neurosurgery Program, Department of Neurosurgery, San Miguel Arcángel Hospital, Buenos Aires B1406, Argentina;
| | - Amanda Escribano
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Jafeth Lizana
- Department of Neurosurgery, Hospital Nacional Guillermo Almenara Irigoyen, Lima 07035, Peru;
- Medicine Faculty, Universidad Nacional Mayor de San Marcos, Lima 07035, Peru
| |
Collapse
|
13
|
Middendorf JM, Ita ME, Winkelstein BA, H Barocas V. Local tissue heterogeneity may modulate neuronal responses via altered axon strain fields: insights about innervated joint capsules from a computational model. Biomech Model Mechanobiol 2021; 20:2269-2285. [PMID: 34514531 PMCID: PMC9289994 DOI: 10.1007/s10237-021-01506-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
In innervated collagenous tissues, tissue scale loading may contribute to joint pain by transmitting force through collagen fibers to the embedded mechanosensitive axons. However, the highly heterogeneous collagen structures of native tissues make understanding this relationship challenging. Recently, collagen gels with embedded axons were stretched and the resulting axon signals were measured, but these experiments were unable to measure the local axon strain fields. Computational discrete fiber network models can directly determine axon strain fields due to tissue scale loading. Therefore, this study used a discrete fiber network model to identify how heterogeneous collagen networks (networks with multiple collagen fiber densities) change axon strain due to tissue scale loading. In this model, a composite cylinder (axon) was embedded in a Delaunay network (collagen). Homogeneous networks with a single collagen volume fraction and two types of heterogeneous networks with either a sparse center or dense center were created. Measurements of fiber forces show higher magnitude forces in sparse regions of heterogeneous networks and uniform force distributions in homogeneous networks. The average axon strain in the sparse center networks decreases when compared to homogeneous networks with similar collagen volume fractions. In dense center networks, the average axon strain increases compared to homogeneous networks. The top 1% of axon strains are unaffected by network heterogeneity. Based on these results, the interaction of tissue scale loading, collagen network heterogeneity, and axon strains in native musculoskeletal tissues should be considered when investigating the source of joint pain.
Collapse
Affiliation(s)
- Jill M Middendorf
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, USA
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, USA.
| |
Collapse
|
14
|
Brant JA, Adewole DO, Vitale F, Cullen DK. Bioengineering applications for hearing restoration: emerging biologically inspired and biointegrated designs. Curr Opin Biotechnol 2021; 72:131-138. [PMID: 34826683 DOI: 10.1016/j.copbio.2021.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
Cochlear implantation has become the standard of care for hearing loss not amenable to amplification by bypassing the structures of the cochlea and stimulating the spiral ganglion neurons directly. Since the first single channel electrodes were implanted, significant advancements have been made: multi-channel arrays are now standard, they are softer to avoid damage to the cochlea and pre-curved to better position the electrode array adjacent to the nerve, and surgical and stimulation techniques have helped to conform to the anatomy and physiology of the cochlea. However, even with these advances the experience does not approach that of normal hearing. In order to make significant advances in performance, the next generation of implants will require novel interface technology. Advances in regenerative techniques, optogenetics, piezoelectric materials, and bioengineered living scaffolds hold the promise for the next generation of implantable hearing devices, and hope for the restoration of natural hearing.
Collapse
Affiliation(s)
- Jason A Brant
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 240 S. 33rd St., 301 Hayden Hall, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 240 S. 33rd St., 301 Hayden Hall, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied, Science, University of Pennsylvania, 220 S 33rd St., Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA 19104, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | - Flavia Vitale
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 240 S. 33rd St., 301 Hayden Hall, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied, Science, University of Pennsylvania, 220 S 33rd St., Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | - Daniel K Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 240 S. 33rd St., 301 Hayden Hall, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied, Science, University of Pennsylvania, 220 S 33rd St., Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA 19104, USA; Center for Neuroengineering & Therapeutics, University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Sullivan PZ, AlBayar A, Burrell JC, Browne KD, Arena J, Johnson V, Smith DH, Cullen DK, Ozturk AK. Implantation of Engineered Axon Tracts to Bridge Spinal Cord Injury Beyond the Glial Scar in Rats. Tissue Eng Part A 2021; 27:1264-1274. [PMID: 33430694 PMCID: PMC8851225 DOI: 10.1089/ten.tea.2020.0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Regeneration after spinal cord injury (SCI) is limited by the presence of a glial scar and inhibitory cell signaling pathways that favor scar formation over regrowth of endogenous neurons. Tissue engineering techniques, including the use of allografted neural networks, have shown promise for nervous system repair in prior studies. Through the use of a minimally invasive injury model in rats, we describe the implantation of micro-tissue engineered neural networks (micro-TENNs) across a region of SCI, spanning the glial scar to promote axonal regeneration. Forty-three female Sprague-Dawley rats were included in this study. Micro-TENNs were preformed in vitro before implant, and comprised rat sensory dorsal root ganglion (DRG) neurons projecting long bundled axonal tracts within the lumen of a biocompatible hydrogel columnar encasement (1.2 cm long; 701 μm outer diameter × 300 μm inner diameter). Animals were injured using a 2F embolectomy catheter inflated within the epidural space. After a 2-week recovery period, micro-TENNs were stereotactically implanted across the injury. Animals were euthanized at 1 week and 1 month after implantation, and the tissue was interrogated for the survival of graft DRG neurons and outgrowth of axons. No intraoperative deaths were noted with implantation of the micro-TENNs to span the injury cavity. Graft DRG axons were found to survive at 1 week postimplant within the hydrogel encasement. Graft-derived axonal outgrowth was observed within the spinal cord up to 4.5 mm from the implant site at 1 month postinjury. Limited astroglial response was noted within the host, suggesting minimal trauma and scar formation in response to the graft. Micro-TENN sensory neurons survive and extend axons into the host spinal cord following a minimally invasive SCI in rats. This work serves as the foundation for future studies investigating the use of micro-TENNs as a living bridge to promote recovery following SCI. Impact statement As spinal cord injury pathology develops, the establishment of a glial scar puts an end to the hope of regeneration and recovery from the consequent neurological deficits. Therefore, growing attention is given to bioengineered scaffolds that can bridge the lesions bordered by this scar tissue. The utilization of longitudinally aligned preformed neural networks-referred to as micro-tissue engineered neural networks (TENNs)-presents a promising opportunity to provide a multipurpose bridging strategy that may take advantage of several potential mechanisms of host regeneration. In addition to providing physical support for regenerating spinal cord axons, micro-TENNs may serve as a functional "cable" that restores lost connections within the spinal cord.
Collapse
Affiliation(s)
- Patricia Zadnik Sullivan
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ahmed AlBayar
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Justin C. Burrell
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Kevin D. Browne
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - John Arena
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Victoria Johnson
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas H. Smith
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Ali K. Ozturk
- Department of Neurosurgery, Center for Brain Injury & Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Doblado LR, Martínez-Ramos C, García-Verdugo JM, Moreno-Manzano V, Pradas MM. Engineered axon tracts within tubular biohybrid scaffolds. J Neural Eng 2021; 18. [PMID: 34311448 DOI: 10.1088/1741-2552/ac17d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts.
Collapse
Affiliation(s)
- Laura Rodríguez Doblado
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Universidad Católica de Valencia, Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
17
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
18
|
An implantable human stem cell-derived tissue-engineered rostral migratory stream for directed neuronal replacement. Commun Biol 2021; 4:879. [PMID: 34267315 PMCID: PMC8282659 DOI: 10.1038/s42003-021-02392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
The rostral migratory stream (RMS) facilitates neuroblast migration from the subventricular zone to the olfactory bulb throughout adulthood. Brain lesions attract neuroblast migration out of the RMS, but resultant regeneration is insufficient. Increasing neuroblast migration into lesions has improved recovery in rodent studies. We previously developed techniques for fabricating an astrocyte-based Tissue-Engineered RMS (TE-RMS) intended to redirect endogenous neuroblasts into distal brain lesions for sustained neuronal replacement. Here, we demonstrate that astrocyte-like-cells can be derived from adult human gingiva mesenchymal stem cells and used for TE-RMS fabrication. We report that key proteins enriched in the RMS are enriched in TE-RMSs. Furthermore, the human TE-RMS facilitates directed migration of immature neurons in vitro. Finally, human TE-RMSs implanted in athymic rat brains redirect migration of neuroblasts out of the endogenous RMS. By emulating the brain’s most efficient means for directing neuroblast migration, the TE-RMS offers a promising new approach to neuroregenerative medicine. O’Donnell et al. describe their Tissue-Engineered Rostral Migratory Stream (TE-RMS) comprised of human astrocyte-like cells that can be derived from adult gingival stem cells within one week, which reorganizes into bundles of bidirectional, longitudinally-aligned astrocytes to emulate the endogenous RMS. Establishing immature neuronal migration in vitro and in vivo, their study demonstrates surgical feasibility and proof-of-concept evidence for this nascent technology.
Collapse
|
19
|
Prox J, Seicol B, Qi H, Argall A, Araya N, Behnke N, Guo L. Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms. J Neural Eng 2021; 18. [PMID: 34010821 DOI: 10.1088/1741-2552/ac02dd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Objective.Therapeutic intervention for Parkinson's disease (PD) via deep brain stimulation (DBS) represents the current paradigm for managing the advanced stages of the disease in patients when treatment with pharmaceuticals becomes inadequate. Although DBS is the prevailing therapy in these cases, the overall effectiveness and reliability of DBS can be diminished over time due to hardware complications and biocompatibility issues with the electronic implants. To achieve a lifetime solution, we envision that the next generation of neural implants will be entirely 'biological' and 'autologous', both physically and functionally. Thus, in this study, we set forth toward developing a biological brain pacemaker for treating PD. Our focus is to investigate engineering strategies for creating a multicellular biological circuit that integrates innate biological design and function while incorporating principles of neuromodulation to create a biological mechanism for delivering high-frequency stimulation with cellular specificity.Approach.We engineer a 3D multicellular circuit design built entirely from biological and biocompatible components using established tissue engineering protocols to demonstrate the feasibility of creating a living neural implant. Furthermore, using 2D co-culture systems, we investigate the physiologically relevant parameters that would be necessary to further develop a therapeutic benefit of high-frequency stimulation with cellular specificity within our construct design.Main results.Our results demonstrate the feasibility of fabricating a 3D multicellular circuit device in an implantable form. Furthermore, we show we can organize cellular materials to create potential functional connections in normal physiological conditions, thus laying down the foundation of designing a high-frequency pacing system for selective and controlled therapeutic neurostimulation.Significance.The findings from this study may lead to the future development of autologous living neural implants that both circumvent the issues inherent in electronic neural implants and form more biocompatible devices with lifelong robustness to repair and restore motor functions, with the ultimate benefit for patients with PD.
Collapse
Affiliation(s)
- Jordan Prox
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Benjamin Seicol
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of America
| | - Hao Qi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Aaron Argall
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States of America
| | - Neway Araya
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States of America
| | - Nicholas Behnke
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Liang Guo
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
20
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Ita ME, Ghimire P, Welch RL, Troche HR, Winkelstein BA. Intra-articular collagenase in the spinal facet joint induces pain, DRG neuron dysregulation and increased MMP-1 absent evidence of joint destruction. Sci Rep 2020; 10:21965. [PMID: 33319791 PMCID: PMC7738551 DOI: 10.1038/s41598-020-78811-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Degeneration is a hallmark of painful joint disease and is mediated by many proteases that degrade joint tissues, including collagenases. We hypothesized that purified bacterial collagenase would initiate nociceptive cascades in the joint by degrading the capsular ligament's matrix and activating innervating pain fibers. Intra-articular collagenase in the rat facet joint was investigated for its effects on behavioral sensitivity, joint degeneration, and nociceptive pathways in the peripheral and central nervous systems. In parallel, a co-culture collagen gel model of the ligament was used to evaluate effects of collagenase on microscale changes to the collagen fibers and embedded neurons. Collagenase induced sensitivity within one day, lasting for 3 weeks (p < 0.001) but did not alter ligament structure, cartilage health, or chondrocyte homeostasis. Yet, nociceptive mediators were increased in the periphery (substance P, pERK, and MMP-1; p ≤ 0.039) and spinal cord (substance P and MMP-1; p ≤ 0.041). The collagen loss (p = 0.008) induced by exposing co-cultures to collagenase was accompanied by altered neuronal activity (p = 0.002) and elevated neuronal MMP-1 (p < 0.001), suggesting microscale collagen degradation mediates sensitivity in vivo. The induction of sustained sensitivity and nociception without joint damage may explain the clinical disconnect in which symptomatic joint pain patients present without radiographic evidence of joint destruction.
Collapse
Affiliation(s)
- Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Prabesh Ghimire
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Rachel L Welch
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Harrison R Troche
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA, 19104-6392, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, Allam NK. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective. ACS Biomater Sci Eng 2020; 6:6490-6509. [PMID: 33320628 DOI: 10.1021/acsbiomaterials.0c01074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a devastating health condition that may lead to permanent disabilities and death. Understanding the pathophysiological perspectives of traumatic SCI is essential to define mechanisms that can help in designing recovery strategies. Since central nervous system tissues are notorious for their deficient ability to heal, efforts have been made to identify solutions to aid in restoration of the spinal cord tissues and thus its function. The two main approaches proposed to address this issue are neuroprotection and neuro-regeneration. Neuroprotection involves administering drugs to restore the injured microenvironment to normal after SCI. As for the neuro-regeneration approach, it focuses on axonal sprouting for functional recovery of the injured neural tissues and damaged axons. Despite the progress made in the field, neural regeneration treatment after SCI is still unsatisfactory owing to the disorganized way of axonal growth and extension. Nanomedicine and tissue engineering are considered promising therapeutic approaches that enhance axonal growth and directionality through implanting or injecting of the biomaterial scaffolds. One of these recent approaches is nanofibrous scaffolds that are used to provide physical support to maintain directional axonal growth in the lesion site. Furthermore, these preferable tissue-engineered substrates can afford axonal regeneration by mimicking the extracellular matrix of the neural tissues in terms of biological, chemical, and architectural characteristics. In this review, we discuss the regenerative approach using nanofibrous scaffolds with a focus on their fabrication methods and their properties that define their functionality performed to heal the neural tissue efficiently.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Maha E Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manar El-Naggar
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Wessam A Abass
- Center of Sustainable Development, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim H Abdullah
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basem I Awad
- Mansoura Experimental Research Center (MERC), Department of Neurological Surgery, School of Medicine, Mansoura University, Mansoura, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
23
|
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med 2020; 5:11. [PMID: 32550009 PMCID: PMC7275031 DOI: 10.1038/s41536-020-0096-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Innervation plays a pivotal role as a driver of tissue and organ development as well as a means for their functional control and modulation. Therefore, innervation should be carefully considered throughout the process of biofabrication of engineered tissues and organs. Unfortunately, innervation has generally been overlooked in most non-neural tissue engineering applications, in part due to the intrinsic complexity of building organs containing heterogeneous native cell types and structures. To achieve proper innervation of engineered tissues and organs, specific host axon populations typically need to be precisely driven to appropriate location(s) within the construct, often over long distances. As such, neural tissue engineering and/or axon guidance strategies should be a necessary adjunct to most organogenesis endeavors across multiple tissue and organ systems. To address this challenge, our team is actively building axon-based "living scaffolds" that may physically wire in during organ development in bioreactors and/or serve as a substrate to effectively drive targeted long-distance growth and integration of host axons after implantation. This article reviews the neuroanatomy and the role of innervation in the functional regulation of cardiac, skeletal, and smooth muscle tissue and highlights potential strategies to promote innervation of biofabricated engineered muscles, as well as the use of "living scaffolds" in this endeavor for both in vitro and in vivo applications. We assert that innervation should be included as a necessary component for tissue and organ biofabrication, and that strategies to orchestrate host axonal integration are advantageous to ensure proper function, tolerance, assimilation, and bio-regulation with the recipient post-implant.
Collapse
Affiliation(s)
- Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Wisberty J. Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | | | - Foteini Mourkioti
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Axonova Medical, LLC., Philadelphia, PA USA
| |
Collapse
|
24
|
Purvis EM, O'Donnell JC, Chen HI, Cullen DK. Tissue Engineering and Biomaterial Strategies to Elicit Endogenous Neuronal Replacement in the Brain. Front Neurol 2020; 11:344. [PMID: 32411087 PMCID: PMC7199479 DOI: 10.3389/fneur.2020.00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the postnatal mammalian brain is known to occur in the dentate gyrus of the hippocampus and the subventricular zone. These neurogenic niches serve as endogenous sources of neural precursor cells that could potentially replace neurons that have been lost or damaged throughout the brain. As an example, manipulation of the subventricular zone to augment neurogenesis has become a popular strategy for attempting to replace neurons that have been lost due to acute brain injury or neurodegenerative disease. In this review article, we describe current experimental strategies to enhance the regenerative potential of endogenous neural precursor cell sources by enhancing cell proliferation in neurogenic regions and/or redirecting migration, including pharmacological, biomaterial, and tissue engineering strategies. In particular, we discuss a novel replacement strategy based on exogenously biofabricated "living scaffolds" that could enhance and redirect endogenous neuroblast migration from the subventricular zone to specified regions throughout the brain. This approach utilizes the first implantable, biomimetic tissue-engineered rostral migratory stream, thereby leveraging the brain's natural mechanism for sustained neuronal replacement by replicating the structure and function of the native rostral migratory stream. Across all these strategies, we discuss several challenges that need to be overcome to successfully harness endogenous neural precursor cells to promote nervous system repair and functional restoration. With further development, the diverse and innovative tissue engineering and biomaterial strategies explored in this review have the potential to facilitate functional neuronal replacement to mitigate neurological and psychiatric symptoms caused by injury, developmental disorders, or neurodegenerative disease.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John C. O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
25
|
Rochford AE, Carnicer-Lombarte A, Curto VF, Malliaras GG, Barone DG. When Bio Meets Technology: Biohybrid Neural Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903182. [PMID: 31517403 DOI: 10.1002/adma.201903182] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The development of electronics capable of interfacing with the nervous system is a rapidly advancing field with applications in basic science and clinical translation. Devices containing arrays of electrodes can be used in the study of cells grown in culture or can be implanted into damaged or dysfunctional tissue to restore normal function. While devices are typically designed and used exclusively for one of these two purposes, there have been increasing efforts in developing implantable electrode arrays capable of housing cultured cells, referred to as biohybrid implants. Once implanted, the cells within these implants integrate into the tissue, serving as a mediator of the electrode-tissue interface. This biological component offers unique advantages to these implant designs, providing better tissue integration and potentially long-term stability. Herein, an overview of current research into biohybrid devices, as well as the historical background that led to their development are provided, based on the host anatomical location for which they are designed (CNS, PNS, or special senses). Finally, a summary of the key challenges of this technology and potential future research directions are presented.
Collapse
Affiliation(s)
- Amy E Rochford
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | | | - Vincenzo F Curto
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Damiano G Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
26
|
Harris JP, Burrell JC, Struzyna LA, Chen HI, Serruya MD, Wolf JA, Duda JE, Cullen DK. Emerging regenerative medicine and tissue engineering strategies for Parkinson's disease. NPJ Parkinsons Dis 2020; 6:4. [PMID: 31934611 PMCID: PMC6949278 DOI: 10.1038/s41531-019-0105-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, affecting 1-2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway-a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - John A. Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education, and Clinical Center (PADRECC), Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
27
|
Marinov T, López Sánchez HA, Yuchi L, Adewole DO, Cullen DK, Kraft RH. A computational model of bidirectional axonal growth in micro-tissue engineered neuronal networks (micro-TENNs). In Silico Biol 2020; 14:85-99. [PMID: 32390612 PMCID: PMC7505002 DOI: 10.3233/isb-180172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micro-Tissue Engineered Neural Networks (Micro-TENNs) are living three-dimensional constructs designed to replicate the neuroanatomy of white matter pathways in the brain and are being developed as implantable micro-tissue for axon tract reconstruction, or as anatomically-relevant in vitro experimental platforms. Micro-TENNs are composed of discrete neuronal aggregates connected by bundles of long-projecting axonal tracts within miniature tubular hydrogels. In order to help design and optimize micro-TENN performance, we have created a new computational model including geometric and functional properties. The model is built upon the three-dimensional diffusion equation and incorporates large-scale uni- and bi-directional growth that simulates realistic neuron morphologies. The model captures unique features of 3D axonal tract development that are not apparent in planar outgrowth and may be insightful for how white matter pathways form during brain development. The processes of axonal outgrowth, branching, turning and aggregation/bundling from each neuron are described through functions built on concentration equations and growth time distributed across the growth segments. Once developed we conducted multiple parametric studies to explore the applicability of the method and conducted preliminary validation via comparisons to experimentally grown micro-TENNs for a range of growth conditions. Using this framework, the model can be applied to study micro-TENN growth processes and functional characteristics using spiking network or compartmental network modeling. This model may be applied to improve our understanding of axonal tract development and functionality, as well as to optimize the fabrication of implantable tissue engineered brain pathways for nervous system reconstruction and/or modulation.
Collapse
Affiliation(s)
- Toma Marinov
- Penn State Computational Biomechanics Group, Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - Haven A. López Sánchez
- The Laboratory of Physicochemistry and Engineering of Proteins, Department of Biochemistry, Facultad de Medicina, National Autonomous University of Mexico, Mexico
| | - Liang Yuchi
- Penn State Computational Biomechanics Group, Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - Dayo O. Adewole
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Reuben H. Kraft
- Penn State Computational Biomechanics Group, Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Nagle AR, Fay CD, Wallace GG, Xie Z, Wang X, Higgins MJ. Patterning and process parameter effects in 3D suspension near-field electrospinning of nanoarrays. NANOTECHNOLOGY 2019; 30:495301. [PMID: 31426035 DOI: 10.1088/1361-6528/ab3c87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extracellular matrix (ECM) contains nanofibrous proteins and proteoglycans. Nanofabrication methods have received growing interest in recent years as a means of recapitulating these elements within the ECM. Near-field electrospinning (NFES) is a versatile fibre deposition method, capable of layer-by-layer nano-fabrication. The maximum layer height is generally limited in layer-by-layer NFES as a consequence of electrostatic effects of the polymer at the surface, due to residual charge and polymer dielectric properties. This restricts the total volume achievable by layer-by-layer techniques. Surpassing this restriction presents a complex challenge, leading to research innovations aimed at increasing patterning precision, and achieving a translation from 2D to 3D additive nanofabrication. Here we investigated a means of achieving this translation through the use of 3D electrode substrates. This was addressed by in-house developed technology in which selective laser melt manufactured standing pillar electrodes were combined with a direct suspension near-field electrospinning (SNFES) technique, which implements an automated platform to manoeuvre the pillar electrodes around the emitter in order to suspend fibres in the free space between the electrode support structures. In this study SNFES was used in multiple operation modes, investigating the effects of varying process parameters, as well as pattern variations on the suspended nanoarrays. Image analysis of the nanoarrays allowed for the assessment of fibre directionality, isotropy, and diameter; identifying optimal settings to generate fibres for tissue engineering applications.
Collapse
Affiliation(s)
- Alexander R Nagle
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Innovation Campus, AIIM Facility, Squires Way, North Wollongong, New South Wales 2500, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Cullen DK, Gordián-Vélez WJ, Struzyna LA, Jgamadze D, Lim J, Wofford KL, Browne KD, Chen HI. Bundled Three-Dimensional Human Axon Tracts Derived from Brain Organoids. iScience 2019; 21:57-67. [PMID: 31654854 PMCID: PMC6820245 DOI: 10.1016/j.isci.2019.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022] Open
Abstract
Reestablishing cerebral connectivity is a critical part of restoring neuronal network integrity and brain function after trauma, stroke, and neurodegenerative diseases. Creating transplantable axon tracts in the laboratory is an unexplored strategy for overcoming the common barriers limiting axon regeneration in vivo, including growth-inhibiting factors and the limited outgrowth capacity of mature neurons in the brain. We describe the generation, phenotype, and connectivity of constrained three-dimensional human axon tracts derived from brain organoids. These centimeter-long constructs are encased in an agarose shell that permits physical manipulation and are composed of discrete cellular regions spanned by axon tracts, mirroring the separation of cerebral gray and white matter. Features of cerebral cortex also are emulated, as evidenced by the presence of neurons with different cortical layer phenotypes. This engineered neural tissue represents a first step toward potentially reconstructing brain circuits by physically replacing neuronal populations and long-range axon tracts in the brain. Transplantable 3D axon tracts are tissue engineered from human brain organoids Growth of organoid axons in a hydrogel column is enhanced compared with planar culture Organoids within engineered columns can maintain a laminar cortical architecture Functional connectivity across the construct is demonstrated using calcium imaging
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Wisberty J Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennis Jgamadze
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - James Lim
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, 3rd Floor, Silverstein Pavilion/3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Ita ME, Winkelstein BA. Concentration-Dependent Effects of Fibroblast-Like Synoviocytes on Collagen Gel Multiscale Biomechanics and Neuronal Signaling: Implications for Modeling Human Ligamentous Tissues. J Biomech Eng 2019; 141:091013. [PMID: 31209465 PMCID: PMC6808009 DOI: 10.1115/1.4044051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Abnormal loading of a joint's ligamentous capsule causes pain by activating the capsule's nociceptive afferent fibers, which reside in the capsule's collagenous matrix alongside fibroblast-like synoviocytes (FLS) and transmit pain to the dorsal root ganglia (DRG). This study integrated FLS into a DRG-collagen gel model to better mimic the anatomy and physiology of human joint capsules; using this new model, the effect of FLS on multiscale biomechanics and cell physiology under load was investigated. Primary FLS cells were co-cultured with DRGs at low or high concentrations, to simulate variable anatomical FLS densities, and failed in tension. Given their roles in collagen degradation and nociception, matrix-metalloproteinase (MMP-1) and neuronal expression of the neurotransmitter substance P were probed after gel failure. The amount of FLS did not alter (p > 0.3) the gel failure force, displacement, or stiffness. FLS doubled regional strains at both low (p < 0.01) and high (p = 0.01) concentrations. For high FLS, the collagen network showed more reorganization at failure (p < 0.01). Although total MMP-1 and neuronal substance P were the same regardless of FLS concentration before loading, protein expression of both increased after failure, but only in low FLS gels (p ≤ 0.02). The concentration-dependent effect of FLS on microstructure and cellular responses implies that capsule regions with different FLS densities experience variable microenvironments. This study presents a novel DRG-FLS co-culture collagen gel system that provides a platform for investigating the complex biomechanics and physiology of human joint capsules, and is the first relating DRG and FLS interactions between each other and their surrounding collagen network.
Collapse
Affiliation(s)
- Meagan E Ita
- Department of Bioengineering,University of Pennsylvania,240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104e-mail:
| | - Beth A Winkelstein
- Mem. ASMEDepartment of Bioengineering,University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104
- Department of Neurosurgery,University of Pennsylvania,240 Skirkanich Hall, 210 South 33rd Street,Philadelphia, PA 19104e-mail:
| |
Collapse
|
31
|
Luo C, Fang H, Zhou M, Li J, Zhang X, Liu S, Zhou C, Hou J, He H, Sun J, Wang Z. Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering. Theranostics 2019; 9:4663-4677. [PMID: 31367248 PMCID: PMC6643438 DOI: 10.7150/thno.34464] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Microtissues constructed with hydrogels promote cell expansion and specific differentiation by mimicking the microarchitecture of native tissues. However, the suboptimal mechanical property and osteogenic activity of microtissues fabricated by natural polymers need further improvement for bone reconstruction application. Core-shell designed structures are composed of an inner core part and an outer part shell, combining the characteristics of different materials, which improve the mechanical property of microtissues. Methods: A micro-stencil array chip was used to fabricate an open porous core-shell micro-scaffold consisting of gelatin as shell and demineralized bone matrix particles modified with bone morphogenetic protein-2 (BMP-2) as core. Single gelatin micro-scaffold was fabricated as a control. Rat bone marrow mesenchymal stem cells (BMSCs) were seeded on the micro-scaffolds, after which they were dynamic cultured and osteo-induced in mini-capsule bioreactors to fabricate microtissues. The physical characteristics, biocompatibility, osteo-inducing and controlled release ability of the core-shell microtissue were evaluated in vitro respectively. Then microtissues were tested in vivo via ectopic implantation and orthotopic bone implantation in rat model. Results: The Young's modulus of core-shell micro-scaffold was nearly triple that of gelatin micro-scaffold, which means the core-shell micro-scaffolds have better mechanical property. BMSCs rapidly proliferated and retained the highest viability on core-shell microtissues. The improved osteogenic potential of core-shell microtissues was evidenced by the increased calcification based on von kossa staining and osteo-relative gene expression. At 3months after transplantation, core-shell microtissue group formed the highest number of mineralized tissues in rat ectopic subcutaneous model, and displayed the largest amount of new bony tissue deposition in rat orthotopic cranial defect. Conclusion: The novel core-shell microtissue construction strategy developed may become a promising cell delivery platform for bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
32
|
Chen HI, Jgamadze D, Lim J, Mensah-Brown K, Wolf JA, Mills JA, Smith DH. Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Eng Part A 2019; 25:736-745. [PMID: 30648482 DOI: 10.1089/ten.tea.2018.0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT Axon regeneration is negligible in the adult mammalian brain, and thus, white matter damage often leads to permanent neurological deficits. A novel approach for axon repair is the generation of axon tracts in the laboratory setting followed by transplantation of these constructs. This article details a human substrate for this repair strategy. Using the technique of axon stretch growth, functional cortical axon tracts are generated from human pluripotent stem cells at rates of up to 1 mm/day. These results form the basis of a potential patient-specific protocol for cerebral axon transplantation after injury.
Collapse
Affiliation(s)
- H Isaac Chen
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2 Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dennis Jgamadze
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Lim
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kobina Mensah-Brown
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John A Wolf
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2 Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Jason A Mills
- 3 Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Adewole DO, Serruya MD, Wolf JA, Cullen DK. Bioactive Neuroelectronic Interfaces. Front Neurosci 2019; 13:269. [PMID: 30983957 PMCID: PMC6449725 DOI: 10.3389/fnins.2019.00269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Within the neural engineering field, next-generation implantable neuroelectronic interfaces are being developed using biologically-inspired and/or biologically-derived materials to improve upon the stability and functional lifetime of current interfaces. These technologies use biomaterials, bioactive molecules, living cells, or some combination of these, to promote host neuronal survival, reduce the foreign body response, and improve chronic device-tissue integration. This article provides a general overview of the different strategies, milestones, and evolution of bioactive neural interfaces including electrode material properties, biological coatings, and "decoration" with living cells. Another such biohybrid approach developed in our lab uses preformed implantable micro-tissue featuring long-projecting axonal tracts encased within carrier biomaterial micro-columns. These so-called "living electrodes" have been engineered with carefully tailored material, mechanical, and biological properties to enable natural, synaptic based modulation of specific host circuitry while ultimately being under computer control. This article provides an overview of these living electrodes, including design and fabrication, performance attributes, as well as findings to date characterizing in vitro and in vivo functionality.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
34
|
O'Donnell JC, Browne KD, Kilbaugh TJ, Chen HI, Whyte J, Cullen DK. Challenges and demand for modeling disorders of consciousness following traumatic brain injury. Neurosci Biobehav Rev 2019; 98:336-346. [PMID: 30550859 PMCID: PMC7847278 DOI: 10.1016/j.neubiorev.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
Following severe traumatic brain injury (TBI), many patients experience coma - an unresponsive state lacking wakefulness or awareness. Coma rarely lasts more than two weeks, and emergence involves passing through a state of wakefulness without awareness of self or environment. Patients that linger in these Disorders of Consciousness (DoC) undergo clinical assessments of awareness for diagnosis into Unresponsive Wakefulness Syndrome (no awareness, also called vegetative state) or Minimally Conscious State (periodic increases in awareness). These diagnoses are notoriously inaccurate, offering little prognostic value. Recovery of awareness is unpredictable, returning within weeks, years, or never. This leaves patients' families with difficult decisions and little information on which to base them. Clinical studies have made significant advancements, but remain encumbered by high variability, limited data output, and a lack of necessary controls. Herein we discuss the clear and present need to establish a preclinical model of TBI-induced DoC, the significant challenges involved, and how such a model can be applied to support DoC research.
Collapse
Affiliation(s)
- John C O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kevin D Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Todd J Kilbaugh
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - John Whyte
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
35
|
Chen HI, Song H, Ming GL. Applications of Human Brain Organoids to Clinical Problems. Dev Dyn 2019; 248:53-64. [PMID: 30091290 PMCID: PMC6312736 DOI: 10.1002/dvdy.24662] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are an exciting new technology with the potential to significantly change how diseases of the brain are understood and treated. These three-dimensional neural tissues are derived from the self-organization of pluripotent stem cells, and they recapitulate the developmental process of the human brain, including progenitor zones and rudimentary cortical layers. Brain organoids have been valuable in investigating different aspects of developmental neurobiology and comparative biology. Several characteristics of organoids also make them attractive as models of brain disorders. Data generated from human organoids are more generalizable to patients because of the match in species background. Personalized organoids also can be generated from patient-derived induced pluripotent stem cells. Furthermore, the three-dimensionality of brain organoids supports cellular, mechanical, and topographical cues that are lacking in planar systems. In this review, we discuss the translational potential of brain organoids, using the examples of Zika virus, autism-spectrum disorder, and glioblastoma multiforme to consider how they could contribute to disease modeling, personalized medicine, and testing of therapeutics. We then discuss areas of improvement in organoid technology that will enhance the translational potential of brain organoids, as well as the possibility of their use as substrates for repairing cerebral circuitry after injury. Developmental Dynamics 248:53-64, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Guo-li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
36
|
Chan VWL, Tobin WR, Zhang S, Winkelstein BA, Barocas VH, Shephard MS, Picu CR. Image-based multi-scale mechanical analysis of strain amplification in neurons embedded in collagen gel. Comput Methods Biomech Biomed Engin 2018; 22:113-129. [PMID: 30450957 DOI: 10.1080/10255842.2018.1538414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A general multi-scale strategy is presented for modeling the mechanical environment of a group of neurons that were embedded within a collagenous matrix. The results of the multi-scale simulation are used to estimate the local strains that arise in neurons when the extracellular matrix is deformed. The distribution of local strains was found to depend strongly on the configuration of the embedded neurons relative to the loading direction, reflecting the anisotropic mechanical behavior of the neurons. More importantly, the applied strain on the surrounding extracellular matrix is amplified in the neurons for all loading configurations that are considered. In the most severe case, the applied strain is amplified by at least a factor of 2 in 10% of the neurons' volume. The approach presented in this paper provides an extension to the capability of past methods by enabling the realistic representation of complex cell geometry into a multi-scale framework. The simulation results for the embedded neurons provide local strain information that is not accessible by current experimental techniques.
Collapse
Affiliation(s)
- Victor W L Chan
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA
| | - William R Tobin
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA
| | - Sijia Zhang
- b Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| | - Beth A Winkelstein
- b Department of Bioengineering , University of Pennsylvania , Philadelphia , PA , USA
| | - Victor H Barocas
- c Department of Biomedical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - Mark S Shephard
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA
| | - Catalin R Picu
- a Scientific Computational Research Center , Rensselaer Polytechnic Institute, Low Center for Industrial Innocation , Troy , NY , USA.,d Department of Mechanical , Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute , Troy , NY , USA
| |
Collapse
|
37
|
Dhobale AV, Adewole DO, Chan AHW, Marinov T, Serruya MD, Kraft RH, Cullen DK. Assessing functional connectivity across 3D tissue engineered axonal tracts using calcium fluorescence imaging. J Neural Eng 2018; 15:056008. [PMID: 29855432 PMCID: PMC6999858 DOI: 10.1088/1741-2552/aac96d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Micro-tissue engineered neural networks (micro-TENNs) are anatomically-inspired constructs designed to structurally and functionally emulate white matter pathways in the brain. These 3D neural networks feature long axonal tracts spanning discrete neuronal populations contained within a tubular hydrogel, and are being developed to reconstruct damaged axonal pathways in the brain as well as to serve as physiologically-relevant in vitro experimental platforms. The goal of the current study was to characterize the functional properties of these neuronal and axonal networks. APPROACH Bidirectional micro-TENNs were transduced to express genetically-encoded calcium indicators, and spontaneous fluorescence activity was recorded using real-time microscopy at 20 Hz from specific regions-of-interest in the neuronal populations. Network activity patterns and functional connectivity across the axonal tracts were then assessed using various techniques from statistics and information theory including Pearson cross-correlation, phase synchronization matrices, power spectral analysis, directed transfer function, and transfer entropy. MAIN RESULTS Pearson cross-correlation, phase synchronization matrices, and power spectral analysis revealed high values of correlation and synchronicity between the spatially segregated neuronal clusters connected by axonal tracts. Specifically, phase synchronization revealed high synchronicity of >0.8 between micro-TENN regions of interest. Normalized directed transfer function and transfer entropy matrices suggested robust information flow between the neuronal populations. Time varying power spectrum analysis revealed the strength of information propagation at various frequencies. Signal power strength was visible at elevated peak levels for dominant delta (1-4 Hz) and theta (4-8 Hz) frequency bands and progressively weakened at higher frequencies. These signal power strength results closely matched normalized directed transfer function analysis where near synchronous information flow was detected between frequencies of 2-5 Hz. SIGNIFICANCE To our knowledge, this is the first report using directed transfer function and transfer entropy methods based on fluorescent calcium activity to estimate functional connectivity of distinct neuronal populations via long-projecting, 3D axonal tracts in vitro. These functional data will further improve the design and optimization of implantable neural networks that could ultimately be deployed to reconstruct the nervous system to treat neurological disease and injury.
Collapse
Affiliation(s)
- Anjali Vijay Dhobale
- The Penn State Computational Biomechanics Group, The Pennsylvania State University, University Park, PA, USA
| | - Dayo O. Adewole
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy Ho Wing Chan
- Department of Neurology and Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Toma Marinov
- The Penn State Computational Biomechanics Group, The Pennsylvania State University, University Park, PA, USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Neurology and Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Reuben H. Kraft
- The Penn State Computational Biomechanics Group, The Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Struzyna LA, Browne KD, Brodnik ZD, Burrell JC, Harris JP, Chen HI, Wolf JA, Panzer KV, Lim J, Duda JE, España RA, Cullen DK. Tissue engineered nigrostriatal pathway for treatment of Parkinson's disease. J Tissue Eng Regen Med 2018; 12:1702-1716. [PMID: 29766664 PMCID: PMC6416379 DOI: 10.1002/term.2698] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023]
Abstract
The classic motor deficits of Parkinson's disease are caused by degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in the loss of their long-distance axonal projections that modulate the striatum. Current treatments only minimize the symptoms of this disconnection as there is no approach capable of replacing the nigrostriatal pathway. We are applying microtissue engineering techniques to create living, implantable constructs that mimic the architecture and function of the nigrostriatal pathway. These constructs consist of dopaminergic neurons with long axonal tracts encased within hydrogel microcolumns. Microcolumns were seeded with dopaminergic neuronal aggregates, while lumen extracellular matrix, growth factors, and end targets were varied to optimize cytoarchitecture. We found a 10-fold increase in axonal outgrowth from aggregates versus dissociated neurons, resulting in remarkable axonal lengths of over 6 mm by 14 days and 9 mm by 28 days in vitro. Axonal extension was also dependent upon lumen extracellular matrix, but did not depend on growth factor enrichment or neuronal end target presence. Evoked dopamine release was measured via fast scan cyclic voltammetry and synapse formation with striatal neurons was observed in vitro. Constructs were microinjected to span the nigrostriatal pathway in rats, revealing survival of implanted neurons while maintaining their axonal projections within the microcolumn. Lastly, these constructs were generated with dopaminergic neurons differentiated from human embryonic stem cells. This strategy may improve Parkinson's disease treatment by simultaneously replacing lost dopaminergic neurons in the substantia nigra and reconstructing their long-projecting axonal tracts to the striatum.
Collapse
Affiliation(s)
- Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia PA
| | - Kevin D. Browne
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - Zachary D. Brodnik
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia PA
| | - James P. Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - John A. Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - Kate V. Panzer
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia PA
| | - James Lim
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rodrigo A. España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA
| |
Collapse
|
39
|
Serruya MD, Harris JP, Adewole DO, Struzyna LA, Burrell JC, Nemes A, Petrov D, Kraft RH, Chen HI, Wolf JA, Cullen DK. Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701183. [PMID: 34045935 PMCID: PMC8152180 DOI: 10.1002/adfm.201701183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel "biohybrid" strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based "living electrodes", which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain. Upon microinjection, the axonal segment penetrates to prescribed depth for synaptic integration with local host neurons, with the perikaryal segment remaining externalized below conforming electrical-optical arrays. In this paradigm, only the biological component ultimately remains in the brain, potentially attenuating a chronic foreign-body response. Axon-based living electrodes are constructed using multiple neuronal subtypes, each with differential capacity to stimulate, inhibit, and/or modulate neural circuitry based on specificity uniquely afforded by synaptic integration, yet ultimately computer controlled by optical/electrical components on the brain surface. Current efforts are assessing the efficacy of this biohybrid interface for targeted, synaptic-based neuromodulation, and the specificity, spatial density and long-term fidelity versus conventional microelectronic or optical substrates alone.
Collapse
Affiliation(s)
- Mijail D Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James P Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Ashley Nemes
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Reuben H Kraft
- Computational Biomechanics Group, Department of Mechanical & Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John A Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Breau MA, Schneider-Maunoury S. [Stretch-induced axon growth: a universal, yet poorly explored process]. Biol Aujourdhui 2018; 211:215-222. [PMID: 29412131 DOI: 10.1051/jbio/2017028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Indexed: 12/21/2022]
Abstract
The growth of axons is a key step in neuronal circuit assembly. The axon starts elongating with the migration of its growth cone in response to molecular signals present in the surrounding embryonic tissues. Following the formation of a synapse between the axon and the target cell, the distance which separates the cell body from the synapse continues to increase to accommodate the growth of the organism. This second phase of elongation, which is universal and crucial since it contributes to an important proportion of the final axon size, has been historically referred to as "stretch-induced axon growth". It is indeed likely to result from a mechanical tension generated by the growth of the body, but the underlying mechanisms remain poorly characterized. This article reviews the experimental studies of this process, mainly analysed on cultured neurons so far. The recent development of in vivo imaging techniques and tools to probe and perturb mechanical forces within embryos will shed new light on this universal mode of axonal growth. This knowledge may inspire the design of novel tissue engineering strategies dedicated to brain and spinal cord repair.
Collapse
Affiliation(s)
- Marie Anne Breau
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| | - Sylvie Schneider-Maunoury
- Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, CNRS UMR7622, INSERM U1156, 75005 Paris, France - Sorbonne Universités, UPMC Université Paris 06, 75005 Paris, France
| |
Collapse
|
41
|
Zhang S, Singh S, Winkelstein BA. Collagen organization regulates stretch-initiated pain-related neuronal signals in vitro: Implications for structure-function relationships in innervated ligaments. J Orthop Res 2018; 36:770-777. [PMID: 28722281 PMCID: PMC5775066 DOI: 10.1002/jor.23657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 02/04/2023]
Abstract
Injury to the spinal facet capsule, an innervated ligament with heterogeneous collagen organization, produces pain. Although mechanical facet joint trauma activates embedded afferents, it is unclear if, and how, the varied extracellular microstructure of its ligament affects sensory transduction for pain from mechanical inputs. To investigate the effects of macroscopic deformations on afferents in collagen matrices with different organizations, an in vitro neuron-collagen construct (NCC) model was used. NCCs with either randomly organized or parallel aligned collagen fibers were used to mimic the varied microstructure in the facet capsular ligament. Embryonic rat dorsal root ganglia (DRG) were encapsulated in the NCCs; axonal outgrowth was uniform and in all directions in random NCCs, but parallel in aligned NCCs. NCCs underwent uniaxial stretch (0.25 ± 0.06 strain) corresponding to sub-failure facet capsule strains that induce pain. Macroscopic NCC mechanics were measured and axonal expression of phosphorylated extracellular signal-regulated kinase (pERK) and the neurotransmitter substance P (SP) was assayed at 1 day to assess neuronal activation and nociception. Stretch significantly upregulated pERK expression in both random and aligned gels (p < 0.001), with the increase in pERK being significantly higher (p = 0.013) in aligned than in random NCCs. That increase likely relates to the higher peak force (p = 0.025) and stronger axon alignment (p < 0.001) with stretch direction in the aligned NCCs. In contrast, SP expression was greater in stretched NCCs (p < 0.001) regardless of collagen organization. These findings suggest that collagen organization differentially modulates pain-related neuronal signaling and support structural heterogeneity of ligament tissue as mediating sensory function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:770-777, 2018.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Sagar Singh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
42
|
Katiyar KS, Winter CC, Gordián-Vélez WJ, O'Donnell JC, Song YJ, Hernandez NS, Struzyna LA, Cullen DK. Three-dimensional Tissue Engineered Aligned Astrocyte Networks to Recapitulate Developmental Mechanisms and Facilitate Nervous System Regeneration. J Vis Exp 2018. [PMID: 29364269 DOI: 10.3791/55848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurotrauma and neurodegenerative disease often result in lasting neurological deficits due to the limited capacity of the central nervous system (CNS) to replace lost neurons and regenerate axonal pathways. However, during nervous system development, neuronal migration and axonal extension often occur along pathways formed by other cells, referred to as "living scaffolds". Seeking to emulate these mechanisms and to design a strategy that circumvents the inhibitory environment of the CNS, this manuscript presents a protocol to fabricate tissue engineered astrocyte-based "living scaffolds". To create these constructs, we employed a novel biomaterial encasement scheme to induce astrocytes to self-assemble into dense three-dimensional bundles of bipolar longitudinally-aligned somata and processes. First, hollow hydrogel micro-columns were assembled, and the inner lumen was coated with collagen extracellular-matrix. Dissociated cerebral cortical astrocytes were then delivered into the lumen of the cylindrical micro-column and, at a critical inner diameter of <350 µm, spontaneously self-aligned and contracted to produce long fiber-like cables consisting of dense bundles of astrocyte processes and collagen fibrils measuring <150 µm in diameter yet extending several cm in length. These engineered living scaffolds exhibited >97% cell viability and were virtually exclusively comprised of astrocytes expressing a combination of the intermediate filament proteins glial-fibrillary acidic protein (GFAP), vimentin, and nestin. These aligned astrocyte networks were found to provide a permissive substrate for neuronal attachment and aligned neurite extension. Moreover, these constructs maintain integrity and alignment when extracted from the hydrogel encasement, making them suitable for CNS implantation. These preformed constructs structurally emulate key cytoarchitectural elements of naturally occurring glial-based "living scaffolds" in vivo. As such, these engineered living scaffolds may serve as test-beds to study neurodevelopmental mechanisms in vitro or facilitate neuroregeneration by directing neuronal migration and/or axonal pathfinding following CNS degeneration in vivo.
Collapse
Affiliation(s)
- Kritika S Katiyar
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Drexel University
| | - Carla C Winter
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - Wisberty J Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - John C O'Donnell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Yeri J Song
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania
| | - Nicole S Hernandez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania;
| |
Collapse
|
43
|
Zhang S, Zhao E, Winkelstein BA. A Nociceptive Role for Integrin Signaling in Pain After Mechanical Injury to the Spinal Facet Capsular Ligament. Ann Biomed Eng 2017; 45:2813-2825. [PMID: 28924864 PMCID: PMC5693676 DOI: 10.1007/s10439-017-1917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
Integrins modulate chemically-induced nociception in a variety of inflammatory and neuropathic pain models. Yet, the role of integrins in mechanically-induced pain remains undefined, despite its well-known involvement in cell adhesion and mechanotransduction. Excessive spinal facet capsular ligament stretch is a common injury that induces morphological and functional changes in its innervating afferent neurons and can lead to pain. However, the local mechanisms underlying the translation from tissue deformation to pain signaling are unclear, impeding effective treatment. Therefore, the involvement of the integrin subunit β1 in pain signaling from facet injury was investigated in complementary in vivo and in vitro studies. An anatomical study in the rat identified expression of the integrin subunit β1 in dorsal root ganglion (DRG) neurons innervating the facet, with greater expression in peptidergic than non-peptidergic DRG neurons. Painful facet capsule stretch in the rat upregulated the integrin subunit β1 in small- and medium-diameter DRG neurons at day 7. Inhibiting the α2β1 integrin in a DRG-collagen culture prior to its stretch injury prevented strain-induced increases in axonal substance P (SP) in a dose-dependent manner. Together, these findings suggest that integrin subunit β1-dependent pathways may contribute to SP-mediated pain from mechanical injury of the facet capsular ligament.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Ethan Zhao
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Turunen S, Joki T, Hiltunen ML, Ihalainen TO, Narkilahti S, Kellomäki M. Direct Laser Writing of Tubular Microtowers for 3D Culture of Human Pluripotent Stem Cell-Derived Neuronal Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25717-25730. [PMID: 28697300 DOI: 10.1021/acsami.7b05536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As the complex structure of nervous tissue cannot be mimicked in two-dimensional (2D) cultures, the development of three-dimensional (3D) neuronal cell culture platforms is a topical issue in the field of neuroscience and neural tissue engineering. Computer-assisted laser-based fabrication techniques such as direct laser writing by two-photon polymerization (2PP-DLW) offer a versatile tool to fabricate 3D cell culture platforms with highly ordered geometries in the size scale of natural 3D cell environments. In this study, we present the design and 2PP-DLW fabrication process of a novel 3D neuronal cell culture platform based on tubular microtowers. The platform facilitates efficient long-term 3D culturing of human neuronal cells and supports neurite orientation and 3D network formation. Microtower designs both with or without intraluminal guidance cues and/or openings in the tower wall are designed and successfully fabricated from Ormocomp. Three of the microtower designs are chosen for the final culture platform: a design with openings in the wall and intralumial guidance cues (webs and pillars), a design with openings but without intraluminal structures, and a plain cylinder design. The proposed culture platform offers a promising concept for future 3D cultures in the field of neuroscience.
Collapse
Affiliation(s)
- Sanna Turunen
- Biomaterials and Tissue Engineering Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology , Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Tiina Joki
- NeuroGroup, BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| | - Maiju L Hiltunen
- Biomaterials and Tissue Engineering Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology , Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Teemu O Ihalainen
- NeuroGroup, BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology , Korkeakoulunkatu 3, 33720 Tampere, Finland
- BioMediTech and Faculty of Medicine and Life Sciences, University of Tampere , Lääkärinkatu 1, 33520 Tampere, Finland
| |
Collapse
|
45
|
Struzyna LA, Adewole DO, Gordián-Vélez WJ, Grovola MR, Burrell JC, Katiyar KS, Petrov D, Harris JP, Cullen DK. Anatomically Inspired Three-dimensional Micro-tissue Engineered Neural Networks for Nervous System Reconstruction, Modulation, and Modeling. J Vis Exp 2017. [PMID: 28605376 DOI: 10.3791/55609] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Functional recovery rarely occurs following injury or disease-induced degeneration within the central nervous system (CNS) due to the inhibitory environment and the limited capacity for neurogenesis. We are developing a strategy to simultaneously address neuronal and axonal pathway loss within the damaged CNS. This manuscript presents the fabrication protocol for micro-tissue engineered neural networks (micro-TENNs), implantable constructs consisting of neurons and aligned axonal tracts spanning the extracellular matrix (ECM) lumen of a preformed hydrogel cylinder hundreds of microns in diameter that may extend centimeters in length. Neuronal aggregates are delimited to the extremes of the three-dimensional encasement and are spanned by axonal projections. Micro-TENNs are uniquely poised as a strategy for CNS reconstruction, emulating aspects of brain connectome cytoarchitecture and potentially providing means for network replacement. The neuronal aggregates may synapse with host tissue to form new functional relays to restore and/or modulate missing or damaged circuitry. These constructs may also act as pro-regenerative "living scaffolds" capable of exploiting developmental mechanisms for cell migration and axonal pathfinding, providing synergistic structural and soluble cues based on the state of regeneration. Micro-TENNs are fabricated by pouring liquid hydrogel into a cylindrical mold containing a longitudinally centered needle. Once the hydrogel has gelled, the needle is removed, leaving a hollow micro-column. An ECM solution is added to the lumen to provide an environment suitable for neuronal adhesion and axonal outgrowth. Dissociated neurons are mechanically aggregated for precise seeding within one or both ends of the micro-column. This methodology reliably produces self-contained miniature constructs with long-projecting axonal tracts that may recapitulate features of brain neuroanatomy. Synaptic immunolabeling and genetically encoded calcium indicators suggest that micro-TENNs possess extensive synaptic distribution and intrinsic electrical activity. Consequently, micro-TENNs represent a promising strategy for targeted neurosurgical reconstruction of brain pathways and may also be applied as biofidelic models to study neurobiological phenomena in vitro.
Collapse
Affiliation(s)
- Laura A Struzyna
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Dayo O Adewole
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Michael R Grovola
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - Kritika S Katiyar
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Drexel University
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - James P Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Michael J. Crescenz Veterans Affairs Medical Center;
| |
Collapse
|
46
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
47
|
Takahashi H, Itoga K, Shimizu T, Yamato M, Okano T. Human Neural Tissue Construct Fabrication Based on Scaffold-Free Tissue Engineering. Adv Healthc Mater 2016; 5:1931-8. [PMID: 27331769 DOI: 10.1002/adhm.201600197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/21/2016] [Indexed: 11/06/2022]
Abstract
Current neural tissue engineering strategies involve the development and application of neural tissue constructs produced by using an anisotropic polymeric scaffold. This study reports a scaffold-free method of tissue engineering to create a tubular neural tissue construct containing unidirectional neuron bundles. The surface patterning of a thermoresponsive culture substrate and a coculture system of neurons with patterned astrocytes can provide an anisotropic structure and easy handling of the neural tissue construct without the use of a scaffold. Furthermore, using a gelatin gel-coated plunger, the neuron bundles can be laid out in the same direction at regulated intervals within multilayered astrocyte sheets. Since the 3D tissue construct is composed only by neurons and astrocytes, they can communicate physiologically without obstruction of a scaffold. The medical benefits of scaffold-free tissue generation provide new opportunities for the development of human cell-based tissue models required to better understand the mechanisms of neurodegenerative diseases. Therefore, this new tissue engineering approach may be useful to establish a technology for regenerative medicine and drug discovery using the patient's own neurons.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Kazuyoshi Itoga
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| |
Collapse
|
48
|
Winter CC, Katiyar KS, Hernandez NS, Song YJ, Struzyna LA, Harris JP, Cullen DK. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Acta Biomater 2016; 38:44-58. [PMID: 27090594 DOI: 10.1016/j.actbio.2016.04.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 04/13/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Neurotrauma, stroke, and neurodegenerative disease may result in widespread loss of neural cells as well as the complex interconnectivity necessary for proper central nervous system function, generally resulting in permanent functional deficits. Potential regenerative strategies involve the recruitment of endogenous neural stem cells and/or directed axonal regeneration through the use of tissue engineered "living scaffolds" built to mimic features of three-dimensional (3-D) in vivo migratory or guidance pathways. Accordingly, we devised a novel biomaterial encasement scheme using tubular hydrogel-collagen micro-columns that facilitated the self-assembly of seeded astrocytes into 3-D living scaffolds consisting of long, cable-like aligned astrocytic networks. Here, robust astrocyte alignment was achieved within a micro-column inner diameter (ID) of 180μm or 300-350μm but not 1.0mm, suggesting that radius of curvature dictated the extent of alignment. Moreover, within small ID micro-columns, >70% of the astrocytes assumed a bi-polar morphology, versus ∼10% in larger micro-columns or planar surfaces. Cell-cell interactions also influenced the aligned architecture, as extensive astrocyte-collagen contraction was achieved at high (9-12×10(5)cells/mL) but not lower (2-6×10(5)cells/mL) seeding densities. This high density micro-column seeding led to the formation of ultra-dense 3-D "bundles" of aligned bi-polar astrocytes within collagen measuring up to 150μm in diameter yet extending to a remarkable length of over 2.5cm. Importantly, co-seeded neurons extended neurites directly along the aligned astrocytic bundles, demonstrating permissive cues for neurite extension. These transplantable cable-like astrocytic networks structurally mimic the glial tube that guides neuronal progenitor migration in vivo along the rostral migratory stream, and therefore may be useful to guide progenitor cells to repopulate sites of widespread neurodegeneration. STATEMENT OF SIGNIFICANCE This manuscript details our development of novel micro-tissue engineering techniques to generate robust networks of longitudinally aligned astrocytes within transplantable micro-column hydrogels. We report a novel biomaterial encasement scheme that facilitated the self-assembly of seeded astrocytes into long, aligned regenerative pathways. These miniature "living scaffold" constructs physically emulate the glial tube - a pathway in the brain consisting of aligned astrocytes that guide the migration of neuronal progenitor cells - and therefore may facilitate directed neuronal migration for central nervous system repair. The small size and self-contained design of these aligned astrocyte constructs will permit minimally invasive transplantation in models of central nervous system injury in future studies.
Collapse
|
49
|
Katiyar KS, Winter CC, Struzyna LA, Harris JP, Cullen DK. Mechanical elongation of astrocyte processes to create living scaffolds for nervous system regeneration. J Tissue Eng Regen Med 2016; 11:2737-2751. [PMID: 27273796 DOI: 10.1002/term.2168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 12/31/2015] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
Abstract
Following brain injury or neurodegenerative disease, successful regeneration requires orchestrated migration of neurons and reformation of long-distance communication fibres, or axons. Such extensive regeneration does not occur in the mature brain; however, during embryonic development, pathways formed by glial cells extend several millimeters (mm) to create 'living scaffolds' for targeted neural cell migration and axonal pathfinding. Techniques to recapitulate long process outgrowth in glial cells have proven elusive, preventing the exploitation of this developmental mechanism for regeneration. In the current study, astrocytes were induced to form a network of interconnected processes that were subjected to controlled mechanical tension in vitro using custom-built mechanobioreactors. We discovered a specific micron (μm)-scale mechanical growth regime that induced elongation of the astrocytic processes to a remarkable length of 2.5 mm at an optimal rate of 12.5 μm/h. More rapid mechanical regimes (> 20 μm/h) caused greater incidence of process degeneration or outright breakage, whereas slow regimes (< 4 μm/h) led to adaptive motility, thus failing to achieve process elongation. Cellular phenotype for this astrocytic 'stretch-growth' was confirmed based on presentation of the intermediate filament glial fibrillary acidic protein (GFAP). Mechanical elongation resulted in the formation of dense bundles of aligned astrocytic processes. Importantly, seeded neurons readily adhered to, and extended neurites directly along, the elongated astrocytic processes, demonstrating permissiveness to support neuronal growth. This is the first demonstration of the controlled application of mechanical forces to create long astrocytic processes, which may form the backbone of tissue-engineered 'living scaffolds' that structurally emulate radial glia to facilitate neuroregeneration. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kritika S Katiyar
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Carla C Winter
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Struzyna
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - James P Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| |
Collapse
|
50
|
Wang Y, Ji Y, Zhao Y, Kong Y, Gao M, Feng Q, Wu Y, Yang Y. Effects of surface functional groups on proliferation and biofunction of Schwann cells. J Biomater Appl 2016; 30:1494-504. [DOI: 10.1177/0885328216628785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Scaffolds in tissue engineering should be rationally designed to become an adhesion substrate friendly to cells. Schwann cells play an important role in nerve regeneration and repair. Previous studies have suggested that surface chemical groups have effect on many types of cells. However, there have hitherto been few reports on Schwann cells. In this study, we investigated cell adhesion, survival, proliferation, and neurotrophic actions of Schwann cells cultured on glass coverslips modified with different chemical groups, including methyl, carboxyl, amino, hydroxyl, mercapto, and sulfonic groups. Schwann cells on amino and carboxyl surfaces had higher attachment rate, presenting good morphology, high proliferation, and strong neurotrophic functions, while on methyl surfaces, few cells can survive, cells shrunk into round shape, exhibiting poor proliferation and weak neurotrophic functions. Growth of cells on other groups was between methyl and amino, carboxyl, and had little difference among them. Our data indicated that chemical groups can regulate behavior of Schwann cells, indicating a way to design new scaffolds for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yaling Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, P. R. China
| | - Yawei Ji
- Department of cardiology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Yahong Zhao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yan Kong
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Ming Gao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Qilin Feng
- School of Medical, Nantong University, Nantong, P. R. China
| | - Yue Wu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yumin Yang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P. R. China
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
| |
Collapse
|