1
|
Gudapati H, Torigoe RMS, Tahmasebifar A, Purushothaman KR, Wyles S. First-in-kind 3D bioprinted human skin model using recombinant human collagen. Arch Dermatol Res 2025; 317:704. [PMID: 40220209 DOI: 10.1007/s00403-025-04236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Reliable translational human skin models are lacking for modeling skin diseases and screening effective therapeutics. 3D bioprinting is an emerging technology that enables the fabrication of human skin models that mimic the structure and functions of human skin in a dish (in-vitro). As a prototype, we present a first-in-kind fully humanized 3D bioprinted skin model as an alternative to animal testing for preclinical research. This model utilizes a plant-derived recombinant human collagen and human skin fibroblasts, melanocytes, and keratinocytes. The 3D bioprinted human skin model expresses involucrin and cytokeratin 14, contains melanin granules, and structurally resembles human skin. However, the morphology of keratinocytes is slightly different, containing a thicker layer of proliferative keratinocytes and a thinner layer of differentiated, cornified keratinocytes. Nevertheless, the model shows epidermal stratification, which indicates skin maturation. Further, the model lacks skin appendages such as hair follicles and sweat glands, as current bioprinting technology cannot deliver distinct cells at the single-cell resolution. Recent advances in 3D bioprinting such as spheroid-based bioprinting show potential to address these limitations. Hence, 3D bioprinting of skin using plant-derived recombinant human collagen, presents significant advantages, including high-throughput production of personalized human skin models, reduction of animal testing, and potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Hemanth Gudapati
- Department of Dermatology, Mayo Clinic, 200 1st SW Street, Rochester, MN, 55905, USA
| | | | - Aydin Tahmasebifar
- Department of Dermatology, Mayo Clinic, 200 1st SW Street, Rochester, MN, 55905, USA
| | - K-Raman Purushothaman
- Department of Dermatology, Mayo Clinic, 200 1st SW Street, Rochester, MN, 55905, USA
| | - Saranya Wyles
- Department of Dermatology, Mayo Clinic, 200 1st SW Street, Rochester, MN, 55905, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, 200 1st SW Street, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Fang B, Peng Z, Chen B, Rao J. Hemp Protein Isolate-Based Natural Thermal-Reversible Hydrogel as a Novel Wound Dressing Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51916-51931. [PMID: 39302428 DOI: 10.1021/acsami.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Hydrogels, due to their excellent microstructure and mechanical strength, have become a novel biomaterial in wound dressing. However, plant proteins have never been considered because of their poor original gelling performances and insufficient rheological properties. Here, we reported the fabrication of a plant protein-based thermal-reversible gel using a reverse micelle-extracted hemp protein isolate (HPI). A systematic study was conducted to fully reveal their microstructure, rheological properties, and anti-inflammatory effect to lay a foundation for this newly developed plant protein hydrogel as a potential natural wound dressing. By modulating protein concentration (4% HPI) and temperature (85 °C), a thermal-reversible HPI gel appeared as a filament structure with the major molecular driving force of hydrophobic interactions and hydrogen bonds. By characterizing the rheological properties, lower gel strength and wider linear viscoelastic regime were determined in the thermal-reversible HPI gel compared with a thermal-irreversible HPI gel. Besides, large amplitude oscillatory shear data identified the thermal-reversible gel as a soft gel which demonstrated intracycle strain stiffening and shear thinning behavior. Moreover, the thermal-reversible HPI gel is nontoxic and has benefits in neutrophil growth with injectability and perfect wound coverage. This study opens a novel means to form a natural thermal-reversible hydrogel that can be a new material source for wound dressing.
Collapse
Affiliation(s)
- Baochen Fang
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhicheng Peng
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
3
|
Shang L, Wang S, Mao Y. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: A review. Int J Biol Macromol 2024; 277:133830. [PMID: 39002914 DOI: 10.1016/j.ijbiomac.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.
Collapse
Affiliation(s)
- Lijun Shang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Shan Wang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
4
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Veiga A, Silva IV, Dias JR, Alves NM, Oliveira AL, Ribeiro VP. Streamlining Skin Regeneration: A Ready-To-Use Silk Bilayer Wound Dressing. Gels 2024; 10:439. [PMID: 39057462 PMCID: PMC11276312 DOI: 10.3390/gels10070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Silk proteins have been highlighted in the past decade for tissue engineering (TE) and skin regeneration due to their biocompatibility, biodegradability, and exceptional mechanical properties. While silk fibroin (SF) has high structural and mechanical stability with high potential as an external protective layer, traditionally discarded sericin (SS) has shown great potential as a natural-based hydrogel, promoting cell-cell interactions, making it an ideal material for direct wound contact. In this context, the present study proposes a new wound dressing approach by developing an SS/SF bilayer construct for full-thickness exudative wounds. The processing methodology implemented included an innovation element and the cryopreservation of the SS intrinsic secondary structure, followed by rehydration to produce a hydrogel layer, which was integrated with a salt-leached SF scaffold to produce a bilayer structure. In addition, a sterilization protocol was developed using supercritical technology (sCO2) to allow an industrial scale-up. The resulting bilayer material presented high porosity (>85%) and interconnectivity while promoting cell adhesion, proliferation, and infiltration of human dermal fibroblasts (HDFs). SS and SF exhibit distinct secondary structures, pore sizes, and swelling properties, opening new possibilities for dual-phased systems that accommodate the different needs of a wound during the healing process. The innovative SS hydrogel layer highlights the transformative potential of the proposed bilayer system for biomedical therapeutics and TE, offering insights into novel wound dressing fabrication.
Collapse
Affiliation(s)
- Anabela Veiga
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês V. Silva
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.A.)
| | - Nuno M. Alves
- Centre for Rapid and Sustainable Product Development, Instituto Politécnico de Leiria, 2430-028 Marinha Grande, Portugal; (J.R.D.); (N.M.A.)
| | - Ana L. Oliveira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| | - Viviana P. Ribeiro
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.V.); (I.V.S.); (V.P.R.)
| |
Collapse
|
6
|
Halm-Pozniak A, Lohmann CH, Awiszus F, Rudolf M, Bertrand J, Berth A. Injection of autologous conditioned plasma combined with a collagen scaffold may improve the clinical outcome in shoulder impingement syndrome: a prospective study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:3623-3630. [PMID: 37253875 PMCID: PMC10651528 DOI: 10.1007/s00590-023-03595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Shoulder impingement syndrome (SIS) is one of the most common diseases of the shoulder and can be addressed with various therapeutic concepts. Orthobiological agents such as platelet rich plasma with a low side effect rate gain importance in the conservative treatment of SIS. Currently, the knowledge about success rate influencing factors, such as the growth factors (GF) concentration or acromion type, is limited. The aim of this study was to analyze the clinical outcome in the therapy of external SIS using autologous conditioned plasma combined with recombinant human collagen scaffold (ACP/STR) injection in comparison with a corticosteroid-local anesthetic (CSA) injection. Additionally, the influence of potential limiting factors such as GF concentration, age and acromial morphology was proved. MATERIALS AND METHODS This prospective pseudo-randomized trial recruited 58 patients with external SIS who received an ultrasound-guided subacromial injection either an ACP/STR or a CSA followed by physical therapy. Follow-up (FU) was performed at 6 weeks, 3 and 6 months. The outcome was assessed with Constant-Murley score, disability of arm, shoulder and hand score and simple shoulder test. The concentration of GF was measured using ELISA. RESULTS During the FU, the improvement of outcome measures was observed with no differences between both groups. Shoulder force was significantly increased in the ACP/STR group (p < 0.01). We found no correlation between the amount of GF and age or gender in the ACP/STR patients. An acromion Bigliani type III predisposes for therapy failure (p < 0.001, OR = 56) in both treatment groups. CONCLUSIONS Patients with SIS benefit regarding to PROMs after both ACP/STR and CSA injection and physical therapy. Patients who received ACP/STR obtained superior improvement in force. The quantity of GF did not vary depending on the age, so that ACP/STR can be a treatment option for SIS in elderly patients with multimorbidity. The presence of an acromion type III seems to be a predictive factor for limited effectivity of injections in the clinical management of SIS.
Collapse
Affiliation(s)
- Agnieszka Halm-Pozniak
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany.
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Margit Rudolf
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| | - Alexander Berth
- Department of Orthopaedic Surgery, Otto-Von-Guericke-University Magdeburg, 44 Leipziger St., 39120, Magdeburg, Germany
| |
Collapse
|
7
|
Levin A, Gong S, Cheng W. Wearable Smart Bandage-Based Bio-Sensors. BIOSENSORS 2023; 13:bios13040462. [PMID: 37185537 PMCID: PMC10136806 DOI: 10.3390/bios13040462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Bandage is a well-established industry, whereas wearable electronics is an emerging industry. This review presents the bandage as the base of wearable bioelectronics. It begins with introducing a detailed background to bandages and the development of bandage-based smart sensors, which is followed by a sequential discussion of the technical characteristics of the existing bandages, a more practical methodology for future applications, and manufacturing processes of bandage-based wearable biosensors. The review then elaborates on the advantages of basing the next generation of wearables, such as acceptance by the customers and system approvals, and disposal.
Collapse
Affiliation(s)
- Arie Levin
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
8
|
Mason J, Öhlund D. Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Front Bioeng Biotechnol 2023; 11:1150764. [PMID: 37091337 PMCID: PMC10119418 DOI: 10.3389/fbioe.2023.1150764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The tumor microenvironment is crucial in the initiation and progression of cancers. The interplay between cancer cells and the surrounding stroma shapes the tumor biology and dictates the response to cancer therapies. Consequently, a better understanding of the interactions between cancer cells and different components of the tumor microenvironment will drive progress in developing novel, effective, treatment strategies. Co-cultures can be used to study various aspects of these interactions in detail. This includes studies of paracrine relationships between cancer cells and stromal cells such as fibroblasts, endothelial cells, and immune cells, as well as the influence of physical and mechanical interactions with the extracellular matrix of the tumor microenvironment. The development of novel co-culture models to study the tumor microenvironment has progressed rapidly over recent years. Many of these models have already been shown to be powerful tools for further understanding of the pathophysiological role of the stroma and provide mechanistic insights into tumor-stromal interactions. Here we give a structured overview of different co-culture models that have been established to study tumor-stromal interactions and what we have learnt from these models. We also introduce a set of guidelines for generating and reporting co-culture experiments to facilitate experimental robustness and reproducibility.
Collapse
Affiliation(s)
- James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Öhlund,
| |
Collapse
|
9
|
Carr BP, Chen Z, Chung JHY, Wallace GG. Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review. Polymers (Basel) 2022; 14:4270. [PMID: 36297848 PMCID: PMC9609630 DOI: 10.3390/polym14204270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
As the most prevalent structural protein in the extracellular matrix, collagen has been extensively investigated for biofabrication-based applications. However, its utilisation has been impeded due to a lack of sufficient mechanical toughness and the inability of the scaffold to mimic complex natural tissues. The anisotropic alignment of collagen fibres has been proven to be an effective method to enhance its overall mechanical properties and produce biomimetic scaffolds. This review introduces the complicated scenario of collagen structure, fibril arrangement, type, function, and in addition, distribution within the body for the enhancement of collagen-based scaffolds. We describe and compare existing approaches for the alignment of collagen with a sharper focus on electro-compaction. Additionally, various effective processes to further enhance electro-compacted collagen, such as crosslinking, the addition of filler materials, and post-alignment fabrication techniques, are discussed. Finally, current challenges and future directions for the electro-compaction of collagen are presented, providing guidance for the further development of collagenous scaffolds for bioengineering and nanotechnology.
Collapse
Affiliation(s)
| | | | - Johnson H. Y. Chung
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G. Wallace
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
10
|
Collagen extracted from rabbit: meat and by-products: isolation and physicochemical assessment. Food Res Int 2022; 162:111967. [DOI: 10.1016/j.foodres.2022.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
11
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Qin J, Zhao J, Wu Y, Li L, Li D, Deng H, Liu J, Zhang L. Chitosan/collagen layer-by-layer deposition for improving the esophageal regeneration ability of nanofibrous mats. Carbohydr Polym 2022; 286:119269. [DOI: 10.1016/j.carbpol.2022.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/02/2022]
|
13
|
Laurano R, Boffito M, Ciardelli G, Chiono V. Wound Dressing Products: a Translational Investigation from the Bench to the Market. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Binlateh T, Thammanichanon P, Rittipakorn P, Thinsathid N, Jitprasertwong P. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics (Basel) 2022; 7:34. [PMID: 35466251 PMCID: PMC9036199 DOI: 10.3390/biomimetics7020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Collagen is the most widely distributed protein in human body. Within the field of tissue engineering and regenerative medical applications, collagen-based biomaterials have been extensively growing over the past decades. The focus of this review is mainly on periodontal regeneration. Currently, multiple innovations of collagen-based biomaterials have evolved, from hemostatic collagen sponges to bone/tissue regenerative scaffolds and injectable collagen matrices for gene or cell regenerative therapy. Collagen sources also differ from animal to marine and plant-extracted recombinant human type I collagen (rhCOL1). Animal-derived collagen has a number of substantiated concerns such as pathogenic contamination and transmission and immunogenicity, and rhCOL1 is a potential solution to those aforementioned issues. This review presents a brief overview of periodontal regeneration. Also, current applications of collagen-based biomaterials and their mechanisms for periodontal regeneration are provided. Finally, special attention is paid to mechanical, chemical, and biological properties of rhCOL1 in pre-clinical and clinical studies, and its future perspectives in periodontal regeneration are discussed.
Collapse
Affiliation(s)
- Thunwa Binlateh
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Peungchaleoy Thammanichanon
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Pawornwan Rittipakorn
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Natthapol Thinsathid
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.T.); (P.R.); (N.T.)
| |
Collapse
|
15
|
Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers (Basel) 2022; 14:polym14051012. [PMID: 35267835 PMCID: PMC8912626 DOI: 10.3390/polym14051012] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Wounds are a major health concern affecting the lives of millions of people. Some wounds may pass a threshold diameter to become unrecoverable by themselves. These wounds become chronic and may even lead to mortality. Recently, 3D printing technology, in association with biocompatible hydrogels, has emerged as a promising platform for developing smart wound dressings, overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items, such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ to produce the dressings desired. In this review, recent developments in hydrogel-based wound dressings made using 3D printing are covered. The most common biosensors integrated with 3D printed hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based hydrogels are recommended for future consideration.
Collapse
|
16
|
Mbese Z, Alven S, Aderibigbe BA. Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers (Basel) 2021; 13:4368. [PMID: 34960918 PMCID: PMC8703599 DOI: 10.3390/polym13244368] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Skin regeneration after an injury is very vital, but this process can be impeded by several factors. Regenerative medicine is a developing biomedical field with the potential to decrease the need for an organ transplant. Wound management is challenging, particularly for chronic injuries, despite the availability of various types of wound dressing scaffolds in the market. Some of the wound dressings that are in clinical practice have various drawbacks such as poor antibacterial and antioxidant efficacy, poor mechanical properties, inability to absorb excess wound exudates, require frequent change of dressing and fails to offer a suitable moist environment to accelerate the wound healing process. Collagen is a biopolymer and a major constituent of the extracellular matrix (ECM), making it an interesting polymer for the development of wound dressings. Collagen-based nanofibers have demonstrated interesting properties that are advantageous both in the arena of skin regeneration and wound dressings, such as low antigenicity, good biocompatibility, hemostatic properties, capability to promote cellular proliferation and adhesion, and non-toxicity. Hence, this review will discuss the outcomes of collagen-based nanofibers reported from the series of preclinical trials of skin regeneration and wound healing.
Collapse
|
17
|
Chen L, Guttieres D, Koenigsberg A, Barone PW, Sinskey AJ, Springs SL. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials 2021; 280:121274. [PMID: 34871881 DOI: 10.1016/j.biomaterials.2021.121274] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Food systems of the future will need to face an increasingly clear reality - that a protein-rich diet is essential for good health, but traditional meat products will not suffice to ensure safety, sustainability, and equity of food supply chains at a global scale. This paper provides an in-depth analysis of bioprocess technologies needed for cell-based meat production and challenges in reaching commercial scale. Specifically, it reviews state-of-the-art bioprocess technologies, current limitations, and opportunities for research across four domains: cell line development, cell culture media, scaffolding, and bioreactors. This also includes exploring innovations to make cultured meat a viable protein alternative across numerous key performance indicators and for specific applications where traditional livestock is not an option (e.g., local production, space exploration). The paper explores tradeoffs between production scale, product quality, production cost, and footprint over different time horizons. Finally, a discussion explores various factors that may impact the ability to successfully scale and market cultured meat products: social acceptance, environmental tradeoffs, regulatory guidance, and public health benefits. While the exact nature of the transition from traditional livestock to alternative protein products is uncertain, it has already started and will likely continue to build momentum in the next decade.
Collapse
Affiliation(s)
- Lu Chen
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Donovan Guttieres
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Andrea Koenigsberg
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Paul W Barone
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Anthony J Sinskey
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States
| | - Stacy L Springs
- Massachusetts Institute of Technology, Center for Biomedical Innovation, Cambridge, MA, United States.
| |
Collapse
|
18
|
Seror J, Stern M, Zarka R, Orr N. The Potential Use of Novel Plant-Derived Recombinant Human Collagen in Aesthetic Medicine. Plast Reconstr Surg 2021; 148:32S-38S. [PMID: 34847096 DOI: 10.1097/prs.0000000000008784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SUMMARY Recombinant human type I collagen, identical in structure and functionality to human type I collagen, was successfully expressed and extracted from genetically modified tobacco plants. Contrarily to tissue extracted protein, rhCollagen is not immunogenic and not allergenic and has an intact triple helix structure showing superior biological functionality. A photocurable rhCollagen was developed by chemically modifying the protein to allow cross-linking under illumination at various wavelengths, maintaining the protein structural and biological functions. The use of the photocurable rhCollagen in aesthetic medicine, especially as a dermal filler and as a bioink for 3D-printed breast implant is discussed in this article.
Collapse
|
19
|
Guo Y, Bian Z, Xu Q, Wen X, Kang J, Lin S, Wang X, Mi Z, Cui J, Zhang Z, Chen Z, Chen F. Novel tissue-engineered skin equivalent from recombinant human collagen hydrogel and fibroblasts facilitated full-thickness skin defect repair in a mouse model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112469. [PMID: 34702544 DOI: 10.1016/j.msec.2021.112469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Tissue-engineered skin equivalent (TESE) is an optimized alternative for the treatment of skin defects. Designing and fabricating biomaterials with desired properties to load cells is critical for the approach. In this study, we aim to develop a novel TESE with recombinant human collagen (rHC) hydrogel and fibroblasts to improve full-thickness skin defect repair. First, the bioactive effect of rHC on fibroblast proliferation, migration and phenotype was assayed. The results showed that rHC had good biocompatibility and could stimulate fibroblasts migration and secrete various growth factors. Then, rHC was cross-linked with transglutaminase (TG) to prepare rHC hydrogel. Rheometer tests indicated that 10% rHC/TG hydrogel could reach a oscillate stress of 251 Pa and remained stable. Fibroblasts were seeded into rHC/TG hydrogel to prepare TESE. Confocal microscope and scanning electronic microscope observation showed that seeded fibroblasts survived well in the hydrogel. Finally, the therapeutic effect of the newly prepared TESE was tested in a mouse full-thickness skin defect model. The results demonstrated that TESE could significantly improve skin defect repair in vivo. Conclusively, TESE prepared from rHC and fibroblasts in this study exhibits great potential for clinical application in the future.
Collapse
Affiliation(s)
- Yayuan Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhengyue Bian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Qian Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xiaomin Wen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juan Kang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shuai Lin
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xue Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhaoxiang Mi
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jihong Cui
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhen Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
20
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 373] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
21
|
Baltzer AWA, Ostapczuk MS. Magnetic resonance imaging and clinically controlled improvement of a combined autologous conditioned plasma combined with rh collagen type I injections in lateral epicondylitis. Orthop Rev (Pavia) 2021; 13:9018. [PMID: 33936573 PMCID: PMC8082168 DOI: 10.4081/or.2021.9018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/27/2021] [Indexed: 01/13/2023] Open
Abstract
The purpose of the study was to investigate the effect of combined autologous conditioned plasma and recombinant human collagen type I injections on lateral epicondylitis. Outcome was measured in 5 patients before the single application of ACP+rhCollagen type I (Arthrex ACP® Tendo) and after 10.60±3.58wks by means of (i) the Visual Analogue Scale for pain, (ii) range of motion for wrist extension/flexion as well as supination/pronation, and (iii) MRI-scans. VAS-scores significantly decreased from 6.40±1.14 at baseline to 1.80±2.49 at follow- up, and the effect was very large (p=0.04, dz=2.22). In addition, range of motion either improved or remained unrestricted, and MRI-scans showed healing of the extensor carpi radialis brevis tendon in most cases. A combined ACP+rhCollageninjection successfully reduces pain in lateral epicondylitis. Due to the small sample size, however, these promising preliminary results need further investigation in future research.
Collapse
Affiliation(s)
| | - Martin S Ostapczuk
- Clinic for Orthopaedics and Trauma Surgery, St. Josef Hospital Moers, Germany
| |
Collapse
|
22
|
Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review. Bioengineering (Basel) 2021; 8:bioengineering8030039. [PMID: 33803598 PMCID: PMC8003061 DOI: 10.3390/bioengineering8030039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.
Collapse
|
23
|
Fertala A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 2020; 7:E155. [PMID: 33276472 PMCID: PMC7712652 DOI: 10.3390/bioengineering7040155] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Collagens provide the building blocks for diverse tissues and organs. Furthermore, these proteins act as signaling molecules that control cell behavior during organ development, growth, and repair. Their long half-life, mechanical strength, ability to assemble into fibrils and networks, biocompatibility, and abundance from readily available discarded animal tissues make collagens an attractive material in biomedicine, drug and food industries, and cosmetic products. About three decades ago, pioneering experiments led to recombinant human collagens' expression, thereby initiating studies on the potential use of these proteins as substitutes for the animal-derived collagens. Since then, scientists have utilized various systems to produce native-like recombinant collagens and their fragments. They also tested these collagens as materials to repair tissues, deliver drugs, and serve as therapeutics. Although many tests demonstrated that recombinant collagens perform as well as their native counterparts, the recombinant collagen technology has not yet been adopted by the biomedical, pharmaceutical, or food industry. This paper highlights recent technologies to produce and utilize recombinant collagens, and it contemplates their prospects and limitations.
Collapse
Affiliation(s)
- Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Curtis Building, Room 501, 1015 Walnut Street, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Solovieva EV, Teterina AY, Klein OI, Komlev VS, Alekseev AA, Panteleyev AA. Sodium alginate-based composites as a collagen substitute for skin bioengineering. ACTA ACUST UNITED AC 2020; 16:015002. [PMID: 33245048 DOI: 10.1088/1748-605x/abb524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The skin is a combination of two different types of tissue-epithelial and connective (mesenchymal). The outer protective layer of the skin, the epidermis, consists of multiple layers of keratinocytes residing on the basement membrane that separates them from the underlying dermis, which consists of a well-vascularized fibrous extracellular matrix seeded mainly by fibroblasts and mesenchymal stromal cells. These skin features suggest that the development of a fibroblast-friendly porous scaffold covered with a flat dense sheath mimicking the basement membrane, and sufficient to support keratinocyte attachment, would be a reasonable approach in the generation of clinically-relevant skin substitutes useful for reconstructive dermatology and burn treatment. Therefore, we developed a procedure to obtain biocompatible composite bilayer scaffolds comprising a spongy dermis-like body (supporting vascularization and appropriate fibroblast and multipotent stromal cell activity) fused with a film-like cover (supporting keratinocyte attachment, growth and differentiation). The sodium alginate (SA), an algae-derived biopolymer, has been used as a base component for these scaffolds while collagen (CL) and fibrinogen (FG) were used as minor additives in variable concentrations. The slow rates of composite SA-based scaffold biodegradation were achieved by using Ba2+ as cross-linking cations. By manipulating the SA/CL/FG ratio we managed to obtain sponge scaffolds with highly interconnected porous structures, with an average pore size ranging from 60 to 300 μm, and sufficient tensile strength (3.12-5.26 MPa). The scaffolds biocompatibility with the major human skin cell types was confirmed by seeding the scaffold sponge compartment with primary skin fibroblasts and subcutaneous adipose-derived stromal cells while the film side biocompatibility was tested using primary human keratinocytes. The obtained results have shown that bilayer alginate-based scaffolds have biological and mechanical properties comparable with CL scaffolds but surpass them in cost efficiency and vascularization ability in the subcutaneous implantation model in laboratory mice.
Collapse
|
25
|
Krok-Borkowicz M, Reczyńska K, Rumian Ł, Menaszek E, Orzelski M, Malisz P, Silmanowicz P, Dobrzyński P, Pamuła E. Surface-Modified Poly(l-lactide- co-glycolide) Scaffolds for the Treatment of Osteochondral Critical Size Defects-In Vivo Studies on Rabbits. Int J Mol Sci 2020; 21:E7541. [PMID: 33066080 PMCID: PMC7590021 DOI: 10.3390/ijms21207541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 12/27/2022] Open
Abstract
Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250-320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson-Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.
Collapse
Affiliation(s)
- Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Katarzyna Reczyńska
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Łucja Rumian
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Collegium Medicum, Jagiellonian University, ul. Medyczna 9, 30-688 Kraków, Poland;
| | - Maciej Orzelski
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, ul. Głęboka 30, 20-612 Lublin, Poland; (M.O.); (P.S.)
| | - Piotr Malisz
- Department of Electroradiology, Collegium Medicum, Faculty of Health Science, Jagiellonian University, ul. Michałowskiego 12, 31-126 Kraków, Poland;
| | - Piotr Silmanowicz
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, ul. Głęboka 30, 20-612 Lublin, Poland; (M.O.); (P.S.)
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. Curie-Sklodowskiej 34, 41-800 Zabrze, Poland;
- Faculty of Science & Technology, Jan Długosz University in Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland; (M.K.-B.); (K.R.); (Ł.R.)
| |
Collapse
|
26
|
Shelah O, Wertheimer S, Haj-Ali R, Lesman A. Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Eng Part A 2020; 27:187-200. [PMID: 32524890 DOI: 10.1089/ten.tea.2020.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.
Collapse
Affiliation(s)
- Ortal Shelah
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Shir Wertheimer
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| |
Collapse
|
27
|
Sharath SS, Ramu J, Nair SV, Iyer S, Mony U, Rangasamy J. Human Adipose Tissue Derivatives as a Potent Native Biomaterial for Tissue Regenerative Therapies. Tissue Eng Regen Med 2020; 17:123-140. [PMID: 31953618 PMCID: PMC7105544 DOI: 10.1007/s13770-019-00230-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human adipose tissue is a great source of translatable biomaterials owing to its ease of availability and simple processing. Reusing discardable adipose tissue for tissue regeneration helps in mimicking the exact native microenvironment of tissue. Over the past 10 years, extraction, processing, tuning and fabrication of adipose tissue have grabbed the attention owing to their native therapeutic and regenerative potential. The present work gives the overview of next generation biomaterials derived from human adipose tissue and their development with clinical relevance. METHODS Around 300 articles have been reviewed to widen the knowledge on the isolation, characterization techniques and medical applications of human adipose tissue and its derivatives from bench to bedside. The prospective applications of adipose tissue derivatives like autologous fat graft, stromal vascular fraction, stem cells, preadipocyte, adipokines and extracellular matrix, their behavioural mechanism, rational property of providing native bioenvironment, circumventing their translational abilities, recent advances in featuring them clinically have been reviewed extensively to reveal the dormant side of human adipose tissue. RESULTS Basic understanding about the molecular and structural aspect of human adipose tissue is necessary to employ it constructively. This review has nailed the productive usage of human adipose tissue, in a stepwise manner from exploring the methods of extracting derivatives, concerns during processing and its formulations to turning them into functional biomaterials. Their performance as functional biomaterials for skin regeneration, wound healing, soft tissue defects, stem cell and other regenerative therapies under in vitro and in vivo conditions emphasizes the translational efficiency of adipose tissue derivatives. CONCLUSION In the recent years, research interest has inclination towards constructive tissue engineering and regenerative therapies. Unravelling the maximum utilization of human adipose tissue derivatives paves a way for improving existing tissue regeneration and cellular based therapies and other biomedical applications.
Collapse
Affiliation(s)
- Siva Sankari Sharath
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Janarthanan Ramu
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Shantikumar Vasudevan Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Subramaniya Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| |
Collapse
|
28
|
Sohutskay DO, Puls TJ, Voytik-Harbin SL. Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Peng CA, Kozubowski L, Marcotte WR. Advances in Plant-Derived Scaffold Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:122. [PMID: 32161608 PMCID: PMC7052361 DOI: 10.3389/fpls.2020.00122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/27/2020] [Indexed: 05/13/2023]
Abstract
Scaffold proteins form critical biomatrices that support cell adhesion and proliferation for regenerative medicine and drug screening. The increasing demand for such applications urges solutions for cost effective and sustainable supplies of hypoallergenic and biocompatible scaffold proteins. Here, we summarize recent efforts in obtaining plant-derived biosynthetic spider silk analogue and the extracellular matrix protein, collagen. Both proteins are composed of a large number of tandem block repeats, which makes production in bacterial hosts challenging. Furthermore, post-translational modification of collagen is essential for its function which requires co-transformation of multiple copies of human prolyl 4-hydroxylase. We discuss our perspectives on how the GAANTRY system could potentially assist the production of native-sized spider dragline silk proteins and prolyl hydroxylated collagen. The potential of recombinant scaffold proteins in drug delivery and drug discovery is also addressed.
Collapse
|
30
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Ahn S, Ardoña HAM, Campbell PH, Gonzalez GM, Parker KK. Alfalfa Nanofibers for Dermal Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33535-33547. [PMID: 31369233 DOI: 10.1021/acsami.9b07626] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Engineering bioscaffolds for improved cutaneous tissue regeneration remains a healthcare challenge because of the increasing number of patients suffering from acute and chronic wounds. To help address this problem, we propose to utilize alfalfa, an ancient medicinal plant that contains antibacterial/oxygenating chlorophylls and bioactive phytoestrogens, as a building block for regenerative wound dressings. Alfalfa carries genistein, which is a major phytoestrogen known to accelerate skin repair. The scaffolds presented herein were built from composite alfalfa and polycaprolactone (PCL) nanofibers with hydrophilic surface and mechanical stiffness that recapitulate the physiological microenvironments of skin. This composite scaffold was engineered to have aligned nanofibrous architecture to accelerate directional cell migration. As a result, alfalfa-based composite nanofibers were found to enhance the cellular proliferation of dermal fibroblasts and epidermal keratinocytes in vitro. Finally, these nanofibers exhibited reproducible regenerative functionality by promoting re-epithelialization and granulation tissue formation in both mouse and human skin, without requiring additional proteins, growth factors, or cells. Overall, these findings demonstrate the potential of alfalfa-based nanofibers as a regenerative platform toward accelerating cutaneous tissue repair.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Herdeline Ann M Ardoña
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
32
|
Davison-Kotler E, Marshall WS, García-Gareta E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering (Basel) 2019; 6:E56. [PMID: 31261996 PMCID: PMC6783949 DOI: 10.3390/bioengineering6030056] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Collagen is the most frequently used protein in the fields of biomaterials and regenerative medicine. Within the skin, collagen type I and III are the most abundant, while collagen type VII is associated with pathologies of the dermal-epidermal junction. The focus of this review is mainly collagens I and III, with a brief overview of collagen VII. Currently, the majority of collagen is extracted from animal sources; however, animal-derived collagen has a number of shortcomings, including immunogenicity, batch-to-batch variation, and pathogenic contamination. Recombinant collagen is a potential solution to the aforementioned issues, although production of correctly post-translationally modified recombinant human collagen has not yet been performed at industrial scale. This review provides an overview of current collagen sources, associated shortcomings, and potential resolutions. Recombinant expression systems are discussed, as well as the issues associated with each method of expression.
Collapse
Affiliation(s)
- Evan Davison-Kotler
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - William S Marshall
- Biology Department, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| |
Collapse
|
33
|
Haagdorens M, Cėpla V, Melsbach E, Koivusalo L, Skottman H, Griffith M, Valiokas R, Zakaria N, Pintelon I, Tassignon MJ. In Vitro Cultivation of Limbal Epithelial Stem Cells on Surface-Modified Crosslinked Collagen Scaffolds. Stem Cells Int 2019; 2019:7867613. [PMID: 31065280 PMCID: PMC6466865 DOI: 10.1155/2019/7867613] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To investigate the efficacy of recombinant human collagen type I (RHC I) and collagen-like peptide (CLP) hydrogels as alternative carrier substrates for the cultivation of limbal epithelial stem cells (LESC) under xeno-free culture conditions. METHODS Human LESC were cultivated on seven different collagen-derived hydrogels: (1) unmodified RHC I, (2) fibronectin-patterned RHC I, (3) carbodiimide-crosslinked CLP (CLP-12 EDC), (4) DMTMM- (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium-) crosslinked CLP (CLP-12), (5) fibronectin-patterned CLP-12, (6) "3D limbal niche-mimicking" CLP-12, and (7) DMTMM-crosslinked CLP made from higher CLP concentration solution. Cell proliferation, cell morphology, and expression of LESC markers were analyzed. All data were compared to cultures on human amniotic membrane (HAM). RESULTS Human LESC were successfully cultivated on six out of seven hydrogel formulations, with primary cell cultures on CLP-12 EDC being deemed unsuccessful since the area of outgrowth did not meet quality standards (i.e., inconsistence in outgrowth and confluence) after 14 days of culture. Upon confluence, primary LESC showed high expression of the stem cell marker ΔNp63, proliferation marker cytokeratin (KRT) 14, adhesion markers integrin-β4 and E-cadherin, and LESC-specific extracellular matrix proteins laminin-α1, and collagen type IV. Cells showed low expression of differentiation markers KRT3 and desmoglein 3 (DSG3). Significantly higher gene expression of KRT3 was observed for cells cultured on CLP hydrogels compared to RHC I and HAM. Surface patterning of hydrogels influenced the pattern of proliferation but had no significant effect on the phenotype or genotype of cultures. Overall, the performance of RHC I and DMTMM-crosslinked CLP hydrogels was equivalent to that of HAM. CONCLUSION RHC I and DMTMM-crosslinked CLP hydrogels, irrespective of surface modification, support successful cultivation of primary human LESC using a xeno-free cultivation protocol. The regenerated epithelium maintained similar characteristics to HAM-based cultures.
Collapse
Affiliation(s)
- Michel Haagdorens
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| | - Vytautas Cėpla
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- Ferentis UAB, Savanorių 235, 02300 Vilnius, Lithuania
| | - Eline Melsbach
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Laura Koivusalo
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Finland
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre and Department of Ophthalmology, University of Montreal, Montreal, QC, Canada H1T 4B3
| | - Ramūnas Valiokas
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
- Ferentis UAB, Savanorių 235, 02300 Vilnius, Lithuania
| | - Nadia Zakaria
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, CCRG-Oogheelkunde, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Antwerp University, Campus Drie Eiken, T building, T1-Veterinary Sciences, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Campus Drie Eiken, T building, T4-Ophthalmology, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Antwerp, Belgium
| |
Collapse
|
34
|
Andrée B, Ichanti H, Kalies S, Heisterkamp A, Strauß S, Vogt PM, Haverich A, Hilfiker A. Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Sci Rep 2019; 9:5437. [PMID: 30932006 PMCID: PMC6443732 DOI: 10.1038/s41598-019-41985-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
Implementation of tubular endothelial cell networks is a prerequisite for 3D tissue engineering of constructs with clinically relevant size as nourishment of cells is challenged by the diffusion limit. In vitro generation of 3D networks is often achieved under conditions using serum containing cell culture medium and/or animal derived matrices. Here, 3D endothelial cell networks were generated by using human umbilical vein endothelial cells (HUVECs) in combination with human adipose tissue derived stromal cells (hASCs) employing human collagen I as hydrogel and decellularized porcine small intestinal submucosa as starter matrix. Matrigel/rat tail collagen I hydrogel was used as control. Resulting constructs were cultivated either in serum-free medium or in endothelial growth medium-2 serving as control. Endothelial cell networks were quantified, tested for lumen formation, and interaction of HUVECs and hASCs. Tube diameter was slightly larger in constructs containing human collagen I compared to Matrigel/rat tail collagen I constructs under serum-free conditions. All other network parameters were mostly similar. Thereby, the feasibility of generating 3D endothelial cell networks under serum-free culture conditions in human collagen I as hydrogel was demonstrated. In summary, the presented achievements pave the way for the generation of clinical applicable constructs.
Collapse
Affiliation(s)
- Birgit Andrée
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Houda Ichanti
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Asthetic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter-Maria Vogt
- Department of Plastic, Asthetic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
35
|
Anton-Sales I, Beekmann U, Laromaine A, Roig A, Kralisch D. Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Curr Drug Targets 2019; 20:808-822. [PMID: 30488795 PMCID: PMC7046991 DOI: 10.2174/1389450120666181129092144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
In this mini-review, we highlight the potential of the biopolymer bacterial cellulose to treat damaged epithelial tissues. Epithelial tissues are cell sheets that delimitate both the external body surfaces and the internal cavities and organs. Epithelia serve as physical protection to underlying organs, regulate the diffusion of molecules and ions, secrete substances and filtrate body fluids, among other vital functions. Because of their continuous exposure to environmental stressors, damage to epithelial tissues is highly prevalent. Here, we first compare the properties of bacterial cellulose to the current gold standard, collagen, and then we examine the use of bacterial cellulose patches to heal specific epithelial tissues; the outer skin, the ocular surface, the oral mucosa and other epithelial surfaces. Special emphasis is made on the dermis since, to date, this is the most widespread medical use of bacterial cellulose. It is important to note that some epithelial tissues represent only the outermost layer of more complex structures such as the skin or the cornea. In these situations, depending on the penetration of the lesion, bacterial cellulose might also be involved in the regeneration of, for instance, inner connective tissue.
Collapse
Affiliation(s)
| | | | - Anna Laromaine
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | - Anna Roig
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | | |
Collapse
|
36
|
|
37
|
Abstract
Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.
Collapse
Affiliation(s)
| | - Thomas Bley
- Bioprocess Engineering, Institute of Food Technology and Bioprocess Engineering, TU Dresden, Dresden, Germany
| |
Collapse
|
38
|
Zhang L, Niu X, Sun L, She Z, Tan R, Wang W. Immune response of bovine sourced cross-linked collagen sponge for hemostasis. J Biomater Appl 2017; 32:920-931. [PMID: 29199891 DOI: 10.1177/0885328217744080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A comprehensive immunogenicity scheme is proposed to examine immune response of bovine sourced hemostasis collagen sponge to establish foundation for further researches and decrease the incidence of adverse reaction in clinical trials. Compared with negative control group without any implant, spleen and lymph nodes morphology show no apparent swelling in mice with different doses of collagen sponge implants. Immune cells population, especially lymph nodes cells population, is practically coincident with organs. However, splenic cells display slight proliferation in early phase following collagen sponge implantation. Splenic cells apoptosis also demonstrates no significant difference among all groups. T lymphocytes subsets, CD4/CD8 cells ratio, in spleen and lymph nodes are practically normal. Splenic cells Ki67 + proportions do not exhibit significant difference between collagen sponge groups and negative control group. Humoral response is determined by detection of IgG and IgM concentration in serum, not exhibiting remarkable increase with collagen sponge implantation, compared to the drastic increase in positive control group with bovine tendon implantation. Local analysis around implants by hematoxylin-eosin staining discovers slight cell infiltration around collagen sponge. Tumour necrosis factor-α immunostaining indicates slight inflammation in early phase following collagen sponge implantation, but interferon-γ immunostaining is negligible even in positive control group. Collagen sponge, especially in high dose, may have evoked benign immune response in BALB/c mice, but this response is transient. The present evaluation scheme for immune response is integrated and comprehensive, suitable for various biomaterials.
Collapse
Affiliation(s)
- Lin Zhang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Xufeng Niu
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Lei Sun
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, P. R. China
| | - Zhending She
- 2 Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, P. R. China
| | - Rongwei Tan
- 2 Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, P. R. China
| | - Wei Wang
- 3 Department of Immunology, School of Basic Medical Sciences, 33133 Peking University , Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, P. R. China
| |
Collapse
|
39
|
Law JX, Liau LL, Saim A, Yang Y, Idrus R. Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering. Tissue Eng Regen Med 2017; 14:699-718. [PMID: 30603521 DOI: 10.1007/s13770-017-0075-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
Electrospinning is a simple and versatile technique to fabricate continuous fibers with diameter ranging from micrometers to a few nanometers. To date, the number of polymers that have been electrospun has exceeded 200. In recent years, electrospinning has become one of the most popular scaffold fabrication techniques to prepare nanofiber mesh for tissue engineering applications. Collagen, the most abundant extracellular matrix protein in the human body, has been electrospun to fabricate biomimetic scaffolds that imitate the architecture of native human tissues. As collagen nanofibers are mechanically weak in nature, it is commonly cross-linked or blended with synthetic polymers to improve the mechanical strength without compromising the biological activity. Electrospun collagen nanofiber mesh has high surface area to volume ratio, tunable diameter and porosity, and excellent biological activity to regulate cell function and tissue formation. Due to these advantages, collagen nanofibers have been tested for the regeneration of a myriad of tissues and organs. In this review, we gave an overview of electrospinning, encompassing the history, the instrument settings, the spinning process and the parameters that affect fiber formation, with emphasis given to collagen nanofibers' fabrication and application, especially the use of collagen nanofibers in skin tissue engineering.
Collapse
Affiliation(s)
- Jia Xian Law
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- 2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Aminuddin Saim
- Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor Malaysia
| | - Ying Yang
- 4Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| | - Ruszymah Idrus
- 2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Stynes GD, Kiroff GK, Page RS, Morrison WA, Kirkland MA. Surface-bound collagen 4 is significantly more stable than collagen 1. J Biomed Mater Res A 2017; 105:1364-1373. [PMID: 28130865 DOI: 10.1002/jbm.a.36019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/31/2016] [Accepted: 01/24/2017] [Indexed: 02/04/2023]
Abstract
Collagen 1 (C1) is commonly used to improve biological responses to implant surfaces. Here, the stability of C1 was compared with collagen 4 (C4) on a mixed macrodiol polyurethane, both adsorbed and covalently bound via acetaldehyde glow discharge polymerization and reductive amination. Substrate specimens were incubated in solutions of C1 and C4. The strength of conjugation was tested by incubation in 8 M urea followed by enzyme linked immunosorbent assays to measure residual C1 and C4. The basal lamina protein, laminin-332 (L332) was superimposed via adsorption on C4-treated specimens. Keratinocytes were grown on untreated, C1-treated, C4-treated, and C4 + L332-treated specimens, followed by measurement of cell area, proliferation, and focal adhesion density. Adsorbed C4 was shown to be significantly more stable than C1 and covalent conjugation conferred even greater stability, with no degradation of C4 over twenty days in 8 M urea. Cell growth was similar for C1 and C4, with no additional benefit conferred by superimposition of L332. The greater resistance of C4 to degradation may be consequent to cysteine residues and disulphide bonds in its non-collagenous domains. The use of C4 on implants, rather than C1, may improve their long-term stability in tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1364-1373, 2017.
Collapse
Affiliation(s)
- Gil D Stynes
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Manufacturing Flagship, Melbourne, Victoria, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - George K Kiroff
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- Department of Surgery, Queen Elizabeth Hospital, The University of Adelaide, Adelaide, South Australia, Australia
| | - Richard S Page
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Wayne A Morrison
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Mark A Kirkland
- Barwon Biomedical Research, University Hospital Geelong, Victoria, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
41
|
Miranda-Nieves D, Chaikof EL. Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomater Sci Eng 2016; 3:694-711. [PMID: 33440491 DOI: 10.1021/acsbiomaterials.6b00250] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Collagen and elastin represent the two most predominant proteins in the body and are responsible for modulating important biological and mechanical properties. Thus, the focus of this review is the use of collagen and elastin as biomaterials for the fabrication of living tissues. Considering the importance of both biomaterials, we first propose the notion that many tissues in the human body represent a reinforced composite of collagen and elastin. In the rest of the review, collagen and elastin biosynthesis and biophysics, as well as molecular sources and biomaterial fabrication methodologies, including casting, fiber spinning, and bioprinting, are discussed. Finally, we summarize the current attempts to fabricate a subset of living tissues and, based on biochemical and biomechanical considerations, suggest that future tissue-engineering efforts consider direct incorporation of collagen and elastin biomaterials.
Collapse
Affiliation(s)
- David Miranda-Nieves
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States
| | - Elliot L Chaikof
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| |
Collapse
|
42
|
Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:163-171. [PMID: 27524008 DOI: 10.1016/j.msec.2016.05.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- M B Fauzi
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Y Lokanathan
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - B S Aminuddin
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia; Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor, Malaysia
| | - B H I Ruszymah
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia; Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - S R Chowdhury
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
43
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
44
|
Girotti A, Orbanic D, Ibáñez-Fonseca A, Gonzalez-Obeso C, Rodríguez-Cabello JC. Recombinant Technology in the Development of Materials and Systems for Soft-Tissue Repair. Adv Healthc Mater 2015; 4:2423-55. [PMID: 26172311 DOI: 10.1002/adhm.201500152] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Indexed: 12/16/2022]
Abstract
The field of biomedicine is constantly investing significant research efforts in order to gain a more in-depth understanding of the mechanisms that govern the function of body compartments and to develop creative solutions for the repair and regeneration of damaged tissues. The main overall goal is to develop relatively simple systems that are able to mimic naturally occurring constructs and can therefore be used in regenerative medicine. Recombinant technology, which is widely used to obtain new tailored synthetic genes that express polymeric protein-based structures, now offers a broad range of advantages for that purpose by permitting the tuning of biological and mechanical properties depending on the intended application while simultaneously ensuring adequate biocompatibility and biodegradability of the scaffold formed by the polymers. This Progress Report is focused on recombinant protein-based materials that resemble naturally occurring proteins of interest for use in soft tissue repair. An overview of recombinant biomaterials derived from elastin, silk, collagen and resilin is given, along with a description of their characteristics and suggested applications. Current endeavors in this field are continuously providing more-improved materials in comparison with conventional ones. As such, a great effort is being made to put these materials through clinical trials in order to favor their future use.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Doriana Orbanic
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Arturo Ibáñez-Fonseca
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - Constancio Gonzalez-Obeso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| | - José Carlos Rodríguez-Cabello
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology); CIBER-BBN; University of Valladolid, Edificio LUCIA; Paseo de Belén, 19 47011 Valladolid Spain
| |
Collapse
|
45
|
Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Lim KHC, Ramakrishna S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 2015; 44:790-814. [PMID: 25408245 DOI: 10.1039/c4cs00226a] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nanotechnology refers to the fabrication, characterization, and application of substances in nanometer scale dimensions for various ends. The influence of nanotechnology on the healthcare industry is substantial, particularly in the areas of disease diagnosis and treatment. Recent investigations in nanotechnology for drug delivery and tissue engineering have delivered high-impact contributions in translational research, with associated pharmaceutical products and applications. Over the past decade, the synthesis of nanofibers or nanoparticles via electrostatic spinning or spraying, respectively, has emerged as an important nanostructuring methodology. This is due to both the versatility of the electrospinning/electrospraying process and the ensuing control of nanofiber/nanoparticle surface parameters. Electrosprayed nanoparticles and electrospun nanofibers are both employed as natural or synthetic carriers for the delivery of entrapped drugs, growth factors, health supplements, vitamins, and so on. The role of nanofiber/nanoparticle carriers is substantiated by the programmed, tailored, or targeted release of their contents in the guise of tissue engineering scaffolds or medical devices for drug delivery. This review focuses on the nanoformulation of natural materials via the electrospraying or electrospinning of nanoparticles or nanofibers for tissue engineering or drug delivery/pharmaceutical purposes. Here, we classify the natural materials with respect to their animal/plant origin and macrocyclic, small molecule or herbal active constituents, and further categorize the materials according to their proteinaceous or saccharide nature.
Collapse
Affiliation(s)
- Radhakrishnan Sridhar
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576.
| | | | | | | | | | | |
Collapse
|
46
|
Accelerated Regeneration of Skin Injury by Co-transplantation of Mesenchymal Stem Cells from Wharton’s Jelly of the Human Umbilical Cord Mixed with Microparticles. Cell Biochem Biophys 2014; 71:951-6. [DOI: 10.1007/s12013-014-0292-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Lloyd C, Besse J, Boyce S. Controlled-rate freezing to regulate the structure of collagen-glycosaminoglycan scaffolds in engineered skin substitutes. J Biomed Mater Res B Appl Biomater 2014; 103:832-40. [PMID: 25132427 DOI: 10.1002/jbm.b.33253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/18/2014] [Accepted: 07/16/2014] [Indexed: 01/14/2023]
Abstract
Controlled-rate freezing (CRF) of biopolymer scaffolds may increase reproducibility of microstructure compared with analog processes. Freezing of collagen-glycosaminoglycan (CG) scaffolds by CRF with liquid nitrogen at chamber cooling rates of -80, -40, -20, or -10°C/min, was compared with submersion in 95% ethanol at -55°C. Cooling rates of -80 or -40°C/min generated scaffolds with pore areas and pore fractions that were comparable to scaffolds frozen in ethanol. Test and control scaffolds were populated with human dermal fibroblasts and epidermal keratinocytes to generate engineered skin substitutes (ESS) and evaluated for surface hydration and mitochondrial metabolism. ESS with scaffolds frozen by CRF at -80 or -40°C/min were comparable with, or better than, ESS with control scaffolds (p < 0.05). These results demonstrate that fabrication of CG scaffolds by CRF offers advantages of digital programming, as well as greater reproducibility, safety, and simplicity than submersion in chilled ethanol without compromise of biological properties required for biomedical applications.
Collapse
Affiliation(s)
- Christopher Lloyd
- University of Cincinnati, Surgery; Shriners Hospitals for Children, Research
| | | | | |
Collapse
|
48
|
Campbell JJ, Hume RD, Watson CJ. Engineering Mammary Gland in Vitro Models for Cancer Diagnostics and Therapy. Mol Pharm 2014; 11:1971-81. [DOI: 10.1021/mp500121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan J. Campbell
- Department
of Materials Science and Metallurgy, University of Cambridge, 27 Charles
Babbage Road, Cambridge CB3 0FS, U.K
| | - Robert D. Hume
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| | - Christine J. Watson
- Department
of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP. U.K
| |
Collapse
|
49
|
Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:277-93. [PMID: 24004443 DOI: 10.1089/ten.teb.2013.0276] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymeric nanofibers have potential as tissue engineering scaffolds, as they mimic the nanoscale properties and structural characteristics of native extracellular matrix (ECM). Nanofibers composed of natural and synthetic polymers, biomimetic composites, ceramics, and metals have been fabricated by electrospinning for various tissue engineering applications. The inherent advantages of electrospinning nanofibers include the generation of substrata with high surface area-to-volume ratios, the capacity to precisely control material and mechanical properties, and a tendency for cellular in-growth due to interconnectivity within the pores. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro- to nanoscale topography similar to the natural ECM. This review describes the fundamental aspects of the electrospinning process when applied to spinnable natural and synthetic polymers; particularly, those parameters that influence fiber geometry, morphology, mesh porosity, and scaffold mechanical properties. We describe cellular responses to fiber morphology achieved by varying processing parameters and highlight successful applications of electrospun nanofibrous scaffolds when used to tissue engineer bone, skin, and vascular grafts.
Collapse
Affiliation(s)
- Ganesh C Ingavle
- 1 Department of Biomedical Engineering, University of California Davis , Davis, California
| | | |
Collapse
|
50
|
Shoseyov O, Posen Y, Grynspan F. Human collagen produced in plants: more than just another molecule. Bioengineered 2013; 5:49-52. [PMID: 23941988 DOI: 10.4161/bioe.26002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Consequential to its essential role as a mechanical support and affinity regulator in extracellular matrices, collagen constitutes a highly sought after scaffolding material for regeneration and healing applications. However, substantiated concerns have been raised with regard to quality and safety of animal tissue-extracted collagen, particularly in relation to its immunogenicity, risk of disease transmission and overall quality and consistency. In parallel, contamination with undesirable cellular factors can significantly impair its bioactivity, vis-a-vis its impact on cell recruitment, proliferation and differentiation. High-scale production of recombinant human collagen Type I (rhCOL1) in the tobacco plant provides a source of an homogenic, heterotrimeric, thermally stable "virgin" collagen which self assembles to fine homogenous fibrils displaying intact binding sites and has been applied to form numerous functional scaffolds for tissue engineering and regenerative medicine. In addition, rhCOL1 can form liquid crystal structures, yielding a well-organized and mechanically strong membrane, two properties indispensable to extracellular matrix (ECM) mimicry. Overall, the shortcomings of animal- and cadaver-derived collagens arising from their source diversity and recycled nature are fully overcome in the plant setting, constituting a collagen source ideal for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Oded Shoseyov
- The Robert H. Smith Institute of Plant Science and Genetics; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot, Israel; CollPlant Ltd.; Ness-Ziona, Israel
| | | | | |
Collapse
|