1
|
Elhabal SF, Ghaffar SA, Hager R, Elzohairy NA, Khalifa MM, Mohie PM, Gad RA, Omar NN, Elkomy MH, Khasawneh MA, Abdelaal N. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. Int J Pharm X 2023; 5:100174. [PMID: 36908304 PMCID: PMC9992749 DOI: 10.1016/j.ijpx.2023.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.
Collapse
Key Words
- A, aqueous phase
- AMP, Amphotericin-B
- ANOVA, Analysis of variance
- Amphotericin-B
- Atomic force microscopy (AFM)
- BCS, Biopharmaceutical Classification System
- BLF, Bovine Lactoferrin
- CD14, Cluster of differentiation 14
- CK, Creatine kinase
- Candida albicans
- Confocal laser scanning microscopy (CLSM)
- DLS, dynamic light scattering
- DMSO, dimethyl sulfoxide
- DSC, Differential scanning calorimetry
- Draize test
- EDC, ethyl-3-(3-dimethyl aminopropyl) carbodiimide
- EE%, Entrapment efficiency
- FT-IR, Fourier transform infrared
- FT-IR, Fourier-transform infrared spectroscopy
- GRAS, Generally recognized as a safe
- HCE-2, human corneal epithelial cells
- J, steady-state flux
- Kp, permeability coefficient
- LPS, Lipopolysaccharide
- Lactoferrin
- MIC, minimum inhibitory concentration
- NCCLS, National Committee for Clinical Laboratory Standards
- NHS, N-hydroxysuccinimide
- NPs, nanoparticles
- Nanoparticles
- O, organic phase
- P188, Kolliphor®P188
- P407, Poloxamer 407
- PBS, Phosphate buffered saline solution
- PDI, Polydispersity index
- PEG, polyethylene glycol
- PEI, poly-ethylene imine
- PLGA, Poly (lactic-co-glycolic acid)
- PS, Particle size
- Q24, amount penetrated after 24 h
- QR, Quantity retained
- REC, rules of the Study Ethics Committee
- SD, Standard deviations
- SE, Standard error
- SEM, Scanning electron microscope
- TEM, Transmission electron microscopy
- Triblock polymers PLGA-PEG-PEI
- ZP, Zeta potential.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Shrouk A. Ghaffar
- Tactical Medical Department, Caduceus Lane Healthcare, Alexandria 21532, Egypt
| | - Raghda Hager
- Department of Medicinal Microbiology and Immunology, Faculty of Medicine King Salman International University, El-Tor, South Siniai, Egypt
| | - Nahla A. Elzohairy
- Air Force Specialized Hospital, Cairo 19448, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine, Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, 62511, Saudi Arabia
| | - Passant M. Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21532, Egypt
| | - Rania A. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Nasreen N. Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 17551, United Arab Emirates
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
3
|
Mousavi SJ, Ejeian F, Razmjou A, Nasr-Esfahani MH. In vivo evaluation of bone regeneration using ZIF8-modified polypropylene membrane in rat calvarium defects. J Clin Periodontol 2023; 50:1390-1405. [PMID: 37485621 DOI: 10.1111/jcpe.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
AIM The profound potential of zeolitic imidazolate framework 8 (ZIF8) thin film for inducing osteogenesis has been previously established under in vitro conditions. As the next step towards the clinical application of ZIF8-modified substrates in periodontology, this in vivo study aimed to evaluate the ability of the ZIF8 crystalline layer to induce bone regeneration in an animal model defect. MATERIALS AND METHODS Following the mechanical characterization of the membranes and analysing the in vitro degradation of the ZIF8 layer, in vivo bone regeneration was evaluated in a critical-sized (5-mm) rat calvarial bone defect model. For each animal, one defect was randomly covered with either a polypropylene (PP) or a ZIF8-modified membrane (n = 7 per group), while the other defect was left untreated as a control. Eight weeks post surgery, bone formation was assessed by microcomputed tomography scanning, haematoxylin and eosin staining and immunohistochemical analysis. RESULTS The ZIF8-modified membrane outperformed the PP membrane in terms of mechanical properties and revealed a trace Zn+2 release. Results of in vivo evaluation verified the superior barrier function of the ZIF8-coated membrane compared with pristine PP membrane. Compared with the limited marginal bone formation in the control and PP groups, the defect area was almost filled with mature bone in the ZIF8-coated membrane group. CONCLUSIONS Our results support the effectiveness of the ZIF8-coated membrane as a promising material for improving clinical outcomes of guided bone regeneration procedures, without using biological components.
Collapse
Affiliation(s)
- Seyed Javad Mousavi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Perth, Western Australia, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
4
|
Wang G, Cui Y, Liu H, Tian Y, Li S, Fan Y, Sun S, Wu D, Peng C. Antibacterial peptides-loaded bioactive materials for the treatment of bone infection. Colloids Surf B Biointerfaces 2023; 225:113255. [PMID: 36924650 DOI: 10.1016/j.colsurfb.2023.113255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Bacterial bone infection in open fractures is an urgent problem to solve in orthopedics. Antimicrobial peptides (AMPs), as a part of innate immune defense, have good biocompatibility. Their antibacterial mechanism and therapeutic application against bacteria have been widely studied. Compared with traditional antibiotics, AMPs do not easily cause bacterial resistance and can be a reliable substitute for antibiotics in the future. Therefore, various physical and chemical strategies have been developed for the combined application of AMPs and bioactive materials to infected sites, which are conducive to maintaining the local stability of AMPs, reducing many complications, and facilitating bone infection resolution. This review explored the molecular structure, function, and direct and indirect antibacterial mechanisms of AMPs, introduced two important AMPs (LL-37 and β-defensins) in bone tissues, and reviewed advanced AMP loading strategies and different bioactive materials. Finally, the latest progress and future development of AMPs-loaded bioactive materials for the promotion of bone infection repair were discussed. This study provided a theoretical basis and application strategy for the treatment of bone infection with AMP-loaded bioactive materials.
Collapse
Affiliation(s)
- Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
5
|
Chang Y, Ping A, Chang C, Betz VM, Cai L, Ren B. Lactoferrin Mediates Enhanced Osteogenesis of Adipose-Derived Stem Cells: Innovative Molecular and Cellular Therapy for Bone Repair. Int J Mol Sci 2023; 24:ijms24021749. [PMID: 36675267 PMCID: PMC9864243 DOI: 10.3390/ijms24021749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/17/2023] Open
Abstract
A prospective source of stem cells for bone tissue engineering is adipose-derived stem cells (ADSCs), and BMP-2 has been proven to be highly effective in promoting the osteogenic differentiation of stem cells. Rarely has research been conducted on the impact of lactoferrin (LF) on ADSCs' osteogenic differentiation. As such, in this study, we examined the effects of LF and BMP-2 to assess the ability of LF to stimulate ADSCs' osteogenic differentiation. The osteogenic medium was supplemented with the LF at the following concentrations to culture ADSCs: 0, 10, 20, 50, 100, and 500 μg/mL. The Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of ADSCs. Calcium deposition, alkaline phosphatase (ALP) staining, real-time polymerase chain reaction (RT-PCR), and an ALP activity assay were used to establish osteogenic differentiation. RNA sequencing analysis was carried out to investigate the mechanism of LF boosting the osteogenic development of ADSCs. In the concentration range of 0-100 μg/mL, LF concentration-dependently increased the proliferative vitality and osteogenic differentiation of ADSCs. At a dose of 500 μg/mL, LF sped up and enhanced differentiation, but inhibited ADSCs from proliferating. LF (100 and 500 μg/mL) produced more substantial osteoinductive effects than BMP-2. The PI3 kinase/AKT (PI3K/AKT) and IGF-R1 signaling pathways were significantly activated in LF-treated ADSCs. The in vitro study results showed that LF could effectively promote osteogenic differentiation of ADSCs by activating the PI3K/AKT and IGF-R1 pathways. In our in vitro investigation, an LF concentration of 100 μg/mL was optimal for osteoinduction and proliferation. Our study suggests that LF is an attractive alternative to BMP-2 in bone tissue engineering. As a bioactive molecule capable of inducing adipose stem cells to form osteoblasts, LF is expected to be clinically used in combination with biomaterials as an innovative molecular and cellular therapy to promote bone repair.
Collapse
Affiliation(s)
- Yiqiang Chang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Ansong Ping
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Volker M. Betz
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital LMU Munich, 81377 Munich, Germany
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| | - Bin Ren
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| |
Collapse
|
6
|
Fu L, Feng Q, Chen Y, Fu J, Zhou X, He C. Nanofibers for the Immunoregulation in Biomedical Applications. ADVANCED FIBER MATERIALS 2022; 4:1334-1356. [DOI: 10.1007/s42765-022-00191-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2025]
|
7
|
Wang B, Feng C, Liu Y, Mi F, Dong J. Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:233-248. [PMID: 36065207 PMCID: PMC9440077 DOI: 10.1016/j.jdsr.2022.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
The anatomy of the oral and maxillofacial sites is complex, and bone defects caused by trauma, tumors, and inflammation in these zones are extremely difficult to repair. Among the most effective and reliable methods to attain osteogenesis, the guided bone regeneration (GBR) technique is extensively applied in defective oral and maxillofacial GBR. Furthermore, endowing biofunctions is crucial for GBR materials applied in repairing defective alveolar and maxillofacial bones. In this review, recent advances in designing and fabricating GBR materials applied in oral and maxillofacial sites are classified and discussed according to their biofunctions, including maintaining space for bone growth; facilitating the adhesion, migration, and proliferation of osteoblasts; facilitating the migration and differentiation of progenitor cells; promoting vascularization; providing immunoregulation to induce osteogenesis; suppressing infection; and effectively mimicking natural tissues using graded biomimetic materials. In addition, new processing strategies (e.g., 3D printing) and new design concepts (e.g., developing bone mimetic extracellular matrix niches and preparing scaffolds to suppress connective tissue to actively acquire space for bone regeneration), are particularly worthy of further study. In the future, GBR materials with richer biological functions are expected to be developed based on an in-depth understanding of the mechanism of bone-GBR-material interactions.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| | - Chengmin Feng
- Department of Otorhinolaryngology & Head Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiming Liu
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Fanglin Mi
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Corresponding author at: Department of Stomatology, North Sichuan Medical College, Nanchong, China.
| | - Jun Dong
- Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Corresponding author.
| |
Collapse
|
8
|
Li Y, Dong L, Mu Z, Liu L, Yang J, Wu Z, Pan D, Liu L. Research Advances of Lactoferrin in Electrostatic Spinning, Nano Self-Assembly, and Immune and Gut Microbiota Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10075-10089. [PMID: 35968926 DOI: 10.1021/acs.jafc.2c04241] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactoferrin (LF) is a naturally present iron-binding globulin with the structural properties of an N-lobe strongly positively charged terminus and a cage-like structure of nano self-assembly encapsulation. These unique structural properties give it potential for development in the fields of electrostatic spinning, targeted delivery systems, and the gut-brain axis. This review will provide an overview of LF's unique structure, encapsulation, and targeted transport capabilities, as well as its applications in immunity and gut microbiota regulation. First, the microstructure of LF is summarized and compared with its homologous ferritin, revealing both structural and functional similarities and differences between them. Second, the electrostatic interactions of LF and its application in electrostatic spinning are summarized. Its positive charge properties can be applied to functional environmental protection packaging materials and to improving drug stability and antiviral effects, while electrostatic spinning can promote bone regeneration and anti-inflammatory effects. Then the nano self-assembly behavior of LF is exploited as a cage-like protein to encapsulate bioactive substances to construct functional targeted delivery systems for applications such as contrast agents, antibacterial dressings, anti-cancer therapy, and gene delivery. In addition, some covalent and noncovalent interactions of LF in the Maillard reaction and protein interactions and other topics are briefly discussed. Finally, LF may affect immunological function via controlling the gut microbiota. In conclusion, this paper reviews the research advances of LF in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation, aiming to provide a reference for its application in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhishen Mu
- Inner Mongolia Enterprise Technology Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska─Lincoln, Lincoln, Nebraska 68588-6205, United States
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
9
|
Various Coated Barrier Membranes for Better Guided Bone Regeneration: A Review. COATINGS 2022. [DOI: 10.3390/coatings12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A good barrier membrane is one of the important factors for effective guided bone/tissue regeneration (GBR/GTR) in the case of periodontal bone defects. Several methods are being discussed to overcome and improve the shortcomings of commercially available membranes. One of the methods is to coat the membrane with bioactive materials. In this study, 41 studies related to coated membranes for GBR/GTR published in the last 5 years were reviewed. These studies reported coating the membrane with various bioactive materials through different techniques to improve osteogenesis, antimicrobial properties, and physical/mechanical properties. The reported studies have been classified and discussed based on the purpose of coating. The goal of the most actively studied research on coating or surface modification of membranes is to improve new bone formation. For this purpose, calcium phosphate, bioactive glass, polydopamine, osteoinduced drugs, chitosan, platelet-rich fibrin, enamel matrix derivatives, amelotin, hyaluronic acid, tantalum, and copper were used as membrane coating materials. The paradigm of barrier membranes is changing from only inert (or biocompatible) physical barriers to bioactive osteo-immunomodulatory for effective guided bone and tissue regeneration. However, there is a limitation that there exists only a few clinical studies on humans to date. Efforts are needed to implement the use of coated membranes from the laboratory bench to the dental chair unit. Further clinical studies are needed in the patients’ group for long-term follow-up to confirm the effect of various coating materials.
Collapse
|
10
|
López-Machado A, Díaz N, Cano A, Espina M, Badía J, Baldomà L, Calpena AC, Biancardi M, Souto EB, García ML, Sánchez-López E. Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. Int J Pharm 2021; 609:121188. [PMID: 34655707 DOI: 10.1016/j.ijpharm.2021.121188] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Ocular inflammation is one of the most common comorbidities associated to ophthalmic surgeries and disorders. Since conventional topical ophthalmic treatments present disadvantages such as low bioavailability and relevant side effects, natural alternatives constitute an unmet medical need. In this sense, lactoferrin, a high molecular weight protein, is a promising alternative against inflammation. However, lactoferrin aqueous instability and high nasolacrimal duct drainage compromises its potential effectiveness. Moreover, nanotechnology has led to an improvement in the administration of active compounds with compromised biopharmaceutical profiles. Here, we incorporate lactoferrin into biodegradable polymeric nanoparticles and optimized the formulation using the design of experiments approach. A monodisperse nanoparticles population was obtained with an average size around 130 nm and positive surface charge. Pharmacokinetic and pharmacodynamic behaviour were improved by the nanoparticles showing a prolonged lactoferrin release profile. Lactoferrin nanoparticles were non-cytotoxic and non-irritant neither in vitro nor in vivo. Moreover, nanoparticles exhibited significantly increased anti-inflammatory efficacy in cell culture and preclinical assays. In conclusion, lactoferrin loaded nanoparticles constitute a safe and novel nanotechnological tool suitable for the treatment of ocular inflammation.
Collapse
Affiliation(s)
- Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Natalia Díaz
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badía
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal; CEB-Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
11
|
Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021; 13:pharmaceutics13101698. [PMID: 34683990 PMCID: PMC8539938 DOI: 10.3390/pharmaceutics13101698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.
Collapse
|
12
|
Xu D, Song W, Zhang J, Liu Y, Lu Y, Zhang X, Liu Q, Yuan T, Liu R. Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin. J Biosci Bioeng 2021; 132:132-139. [PMID: 34052115 DOI: 10.1016/j.jbiosc.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Polymethyl methacrylate (PMMA) bone cement is a commonly used filling material in orthopedic surgery. Its good and stable performances make it the most widely used in all kinds of bone cement. With the advancement of the application and research of PMMA bone cement by surgeons, its disadvantages such as non-degradation and non-bioactivity are gradually exposed. In recent years, the biological functions of lactoferrin (LF) have been gradually explored, especially its role in promoting osteogenesis. In this study, LF was modified on the surface of solidified PMMA bone cement (LF/PMMA bone cement) by physical/chemical mixed modification and verified by cytological experiments in vitro. In vitro studies have implicated that PMMA bone cement modified with LF can improve the attachment, expansion, proliferation, extracellular matrix secretion and osteogenic differentiation of mouse preosteoblasts (MC3T3-E1) cells, indicating biocompatibility. This experiment provides a novel insight for improving the biological activity of PMMA bone cement and lays a foundation for broadening the clinical application of PMMA bone cement.
Collapse
Affiliation(s)
- Derui Xu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Wenlong Song
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Jun Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Yanting Liu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Yanyan Lu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Xuewei Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Qinyi Liu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China.
| | - Tianyang Yuan
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Rui Liu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| |
Collapse
|
13
|
Amirthalingam S, Lee SS, Rajendran AK, Kim I, Hwang NS, Rangasamy J. Addition of lactoferrin and substance P in a chitin/PLGA-CaSO 4 hydrogel for regeneration of calvarial bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112172. [PMID: 34082973 DOI: 10.1016/j.msec.2021.112172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Calcium-based injectable hydrogels with various bioactive active molecules possess a great potential for bone regeneration. Herein, we have synthesized a chitin-PLGA-calcium sulfate hydrogel (CSG) containing bioactive molecules - lactoferrin (LF) and substance P (SP). SEM and XRD analysis revealed that CS crystal growth was altered with the addition of LF. Rheological measurements indicated that the injectability of the hydrogels was maintained after the addition of LF, however, there was a reduction in storage modulus after LF addition. The addition of LF increased stem cell proliferation whereas, SP enhanced the cell migration. Osteogenic gene expression revealed that LF concentration at 25 μg/mg of CSG was optimal for a favourable outcome. To this optimized LF containing CSG, SP was incorporated and 0.05 μg/mg was found to be most effective (CSG-L3S2) in vitro studies. Further, the μ-CT and histological studies confirmed that CSG-L3S2 showed enhanced bone regeneration compared to the controls in critical-sized calvarial defect of mice. Thus the results indicate that a combination of the chemotactic agent (SP), pleiotropic growth protein (LF), and CS in the chitin-PLGA hydrogel could be a promising approach for non-load bearing bone defects.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi-682041, India; School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Inseon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea; School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea; Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Jayakumar Rangasamy
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi-682041, India.
| |
Collapse
|
14
|
Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng Transl Med 2021; 6:e10206. [PMID: 34027093 PMCID: PMC8126827 DOI: 10.1002/btm2.10206] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical terms, bone grafting currently involves the application of autogenous, allogeneic, or xenogeneic bone grafts, as well as natural or artificially synthesized materials, such as polymers, bioceramics, and other composites. Many of these are associated with limitations. The ideal scaffold for bone tissue engineering should provide mechanical support while promoting osteogenesis, osteoconduction, and even osteoinduction. There are various structural complications and engineering difficulties to be considered. Here, we describe the biomimetic possibilities of the modification of natural or synthetic materials through physical and chemical design to facilitate bone tissue repair. This review summarizes recent progresses in the strategies for constructing biomimetic scaffolds, including ion-functionalized scaffolds, decellularized extracellular matrix scaffolds, and micro- and nano-scale biomimetic scaffold structures, as well as reactive scaffolds induced by physical factors, and other acellular scaffolds. The fabrication techniques for these scaffolds, along with current strategies in clinical bone repair, are described. The developments in each category are discussed in terms of the connection between the scaffold materials and tissue repair, as well as the interactions with endogenous cells. As the advances in bone tissue engineering move toward application in the clinical setting, the demonstration of the therapeutic efficacy of these novel scaffold designs is critical.
Collapse
Affiliation(s)
- Sijing Jiang
- Department of Plastic SurgeryFirst Affiliated Hospital of Anhui Medical University, Anhui Medical UniversityHefeiChina
| | - Mohan Wang
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| | - Jiacai He
- Stomatologic Hospital & College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui ProvinceHefeiChina
| |
Collapse
|
15
|
Ferreira FV, Otoni CG, Lopes JH, de Souza LP, Mei LHI, Lona LMF, Lozano K, Lobo AO, Mattoso LHC. Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111853. [PMID: 33812570 DOI: 10.1016/j.msec.2020.111853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Filipe V Ferreira
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Caio G Otoni
- Department of Materials Engineering (DEMa), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - João H Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Lucas P de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - Lucia H I Mei
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Liliane M F Lona
- School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karen Lozano
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Anderson O Lobo
- Interdisciplinary Laboratory for Advanced Materials, BioMatLab, Materials Science and Engineering Graduate Program, Federal University of Piaui, Teresina, PI, Brazil.
| | - Luiz H C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, SP, Brazil.
| |
Collapse
|
16
|
Pall E, Roman A. Lactoferrin Functionalized Biomaterials: Tools for Prevention of Implant-Associated Infections. Antibiotics (Basel) 2020; 9:E522. [PMID: 32824241 PMCID: PMC7459815 DOI: 10.3390/antibiotics9080522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is one of the most important biotechnologies in the biomedical field. It requires the application of the principles of scientific engineering in order to design and build natural or synthetic biomaterials feasible for the maintenance of tissues and organs. Depending on the specific applications, the selection of the proper material remains a significant clinical concern. Implant-associated infection is one of the most severe complications in orthopedic implant surgeries. The treatment of these infections is difficult because the surface of the implant serves not only as a substrate for the formation of the biofilm, but also for the selection of multidrug-resistant bacterial strains. Therefore, a promising new approach for prevention of implant-related infection involves development of new implantable, non-antibiotic-based biomaterials. This review provides a brief overview of antimicrobial peptide-based biomaterials-especially those coated with lactoferrin.
Collapse
Affiliation(s)
- Emoke Pall
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania;
| |
Collapse
|
17
|
Câmara DAD, Shibli JA, Müller EA, De-Sá-Junior PL, Porcacchia AS, Blay A, Lizier NF. Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3210. [PMID: 32708508 PMCID: PMC7420246 DOI: 10.3390/ma13143210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be "immune privileged" since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful.
Collapse
Affiliation(s)
| | - Jamil Awad Shibli
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., Jundiaí 13212-213, Brazil;
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07040-170, Brazil;
| | - Eduardo Alexandre Müller
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07040-170, Brazil;
| | | | - Allan Saj Porcacchia
- Department of Psychobiology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| | - Alberto Blay
- M3 Health Ind. Com. de Prod. Med. Odont. e Correlatos S.A., Jundiaí 13212-213, Brazil;
| | - Nelson Foresto Lizier
- Nicell-Pesquisa e Desenvolvimento Científico LTDA, São Paulo 04006-000, Brazil;
- Department of Psychobiology, Federal University of São Paulo, São Paulo 04021-001, Brazil;
| |
Collapse
|