1
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Johnson D, Li HH, Kimler BF. Dosimetry: Was and Is an Absolute Requirement for Quality Radiation Research. Radiat Res 2024; 202:102-129. [PMID: 38954476 DOI: 10.1667/rade-24-00107.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
This review aims to trace the evolution of dosimetry, highlight its significance in the advancement of radiation research, and identify the current trends and methodologies in the field. Key historical milestones, starting with the first publications in the journal in 1954, will be synthesized before addressing contemporary practices in radiation medicine and radiobiological investigation. Finally, possibilities for future opportunities in dosimetry will be offered. The overarching goal is to emphasize the indispensability of accurate and reproducible dosimetry in enhancing the quality of radiation research and practical applications of ionizing radiation.
Collapse
Affiliation(s)
- Daniel Johnson
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| | - Bruce F Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas 66160-7321
| |
Collapse
|
3
|
Singh R, Rawat H, Kumar A, Gandhi Y, Kumar V, Mishra SK, Narasimhaji CV. Graphene and its hybrid nanocomposite: A Metamorphoses elevation in the field of tissue engineering. Heliyon 2024; 10:e33542. [PMID: 39040352 PMCID: PMC11261797 DOI: 10.1016/j.heliyon.2024.e33542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024] Open
Abstract
In this discourse, we delve into the manifold applications of graphene-based nanomaterials (GBNs) in the realm of biomedicine. Graphene, characterized by its two-dimensional planar structure, superconductivity, mechanical robustness, chemical inertness, extensive surface area, and propitious biocompatibility, stands as an exemplary candidate for diverse biomedical utility. Graphene include various distinctive characteristics of its two-dimensional planar structure, enormous surface area, mechanical and chemical stability, high conductivity, and exceptional biocompatibility. We investigate graphene and its diverse derivatives, which include reduced graphene oxides (rGOs), graphene oxides (GOs), and graphene composites, with a focus on elucidating the unique attributes relevant to their biomedical utility. In this review article it highlighted the unique properties of graphene, synthesis methods of graphene and functionalization methods of graphene. In the quest for novel materials to advance regenerative medicine, researchers have increasingly turned their attention to graphene-based materials, which have emerged as a prominent innovation in recent years. Notably, it highlights their applications in the regeneration of various tissues, including nerves, skeletal muscle, bones, skin, cardiac tissue, cartilage, and adipose tissue, as well as their influence on induced pluripotent stem cells, marking significant breakthroughs in the field of regenerative medicine. Additionally, this review article explores future prospects in this evolving area of study.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Hemant Rawat
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Ashwani Kumar
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yashika Gandhi
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Vijay Kumar
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | - Sujeet K. Mishra
- Department of Chemistry, Central Ayurveda Research Institute Jhansi, U.P, 284003, India
| | | |
Collapse
|
4
|
Orlando JD, Li L, Limbu TB, Deng C, Wolf ME, Vickery WM, Yan F, Sydlik SA. Calcium phosphate graphene and Ti 3C 2T x MXene scaffolds with osteogenic and antibacterial properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35434. [PMID: 38874589 DOI: 10.1002/jbm.b.35434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Bioactive degradable scaffolds that facilitate bone healing while fighting off initial bacterial infection have the potential to change established strategies of dealing with traumatic bone injuries. To achieve this a composite material made from calcium phosphate graphene (CaPG), and MXene was synthesized. CaPG was created by functionalizing graphene oxide with phosphate groups in the presence of CaBr with a Lewis acid catalyst. Through this transformation, Ca2+ and PO4 3- inducerons are released as the material degrades thereby aiding in the process of osteogenesis. The 2D MXene sheets, which have shown to have antibacterial properties, were made by etching the Al from a layered Ti3AlC2 (MAX phase) using HF. The hot-pressed scaffolds made of these materials were designed to combat the possibility of infection during initial surgery and failure of osteogenesis to occur. These two failure modes account for a large percentage of issues that can arise during the treatment of traumatic bone injuries. These scaffolds were able to retain induceron-eluting properties in various weight percentages and bring about osteogenesis with CaPG alone and 2 wt% MXene scaffolds demonstrating increased osteogenic activity as compared to no treatment. Additionally, added MXene provided antibacterial properties that could be seen at as little as 2 wt%. This CaPG and MXene composite provides a possible avenue for developing osteogenic, antibacterial materials for treating bone injuries.
Collapse
Affiliation(s)
- Jason D Orlando
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Li Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Tej B Limbu
- Department of Physical and Applied Sciences, University of Houston-Clear Lake, Houston, Texas, USA
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, USA
| | - Chenyun Deng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michelle E Wolf
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Walker M Vickery
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Roma M, Hegde S. Implications of graphene-based materials in dentistry: present and future. Front Chem 2024; 11:1308948. [PMID: 38495056 PMCID: PMC10941955 DOI: 10.3389/fchem.2023.1308948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/26/2023] [Indexed: 03/19/2024] Open
Abstract
Since the advent of nanoscience, nanobiomaterials have been applied in the dental industry. Graphene and its derivatives have attracted the most interest of all of them due to their exceptional look, biocompatibility, multiplication differential, and antibacterial capabilities. We outlined the most recent developments about their applications to dentistry in our review. There is discussion of the synthesis processes, architectures, and characteristics of materials based on graphene. The implications of graphene and its counterparts are then meticulously gathered and described. Finally, in an effort to inspire more excellent research, this paper explores the obstacles and potential of graphene-based nanomaterials for dental aspects.
Collapse
Affiliation(s)
- M. Roma
- Manipal College of Dental Sciences, Mangalore, Mangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shreya Hegde
- Manipal College of Dental Sciences, Mangalore, Mangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Vickery WM, Wood HB, Orlando JD, Singh J, Deng C, Li L, Zhou JY, Lanni F, Porter AW, Sydlik SA. Environmental and health impacts of functional graphenic materials and their ultrasonically altered products. NANOIMPACT 2023; 31:100471. [PMID: 37315844 DOI: 10.1016/j.impact.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Graphenic materials have excited the scientific community due to their exciting mechanical, thermal, and optoelectronic properties for a potential range of applications. Graphene and graphene derivatives have demonstrated application in areas stretching from composites to medicine; however, the environmental and health impacts of these materials have not been sufficiently characterized. Graphene oxide (GO) is one of the most widely used graphenic derivatives due to a relatively easy and scalable synthesis, and the ability to tailor the oxygen containing functional groups through further chemical modification. In this paper, ecological and health impacts of fresh and ultrasonically altered functional graphenic materials (FGMs) were investigated. Model organisms, specifically Escherichia coli, Bacillus subtilis, and Caenorhabditis elegans, were used to assess the consequences of environmental exposure to fresh and ultrasonically altered FGMs. FGMs were selected to evaluate the environmental effects of aggregation state, degree of oxidation, charge, and ultrasonication. The major findings indicate that bacterial cell viability, nematode fertility, and nematode movement were largely unaffected, suggesting that a wide variety of FGMs may not pose significant health and environmental risks.
Collapse
Affiliation(s)
- Walker M Vickery
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Hunter B Wood
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Jason D Orlando
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Juhi Singh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Chenyun Deng
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States
| | - Li Li
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Jing-Yi Zhou
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Aidan W Porter
- Department of Pediatrics, Nephrology Division, University of Pittsburgh School of Medicine, 5th and Ruskin Ave, Pittsburg, PA 15260, United States; Division of Nephrology, Children's Hospital of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224, United States
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
7
|
Stocco TD, Bassous N, Oliveira Lobo A. Nanostructured materials for bone tissue replacement. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
8
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Evaluation of Bone-like Apatite Biomineralization on Biomimetic Graphene Oxide/Hydroxyapatite Nanocomposite. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Desai SR, Koulgikar KD, Alqhtani NR, Alqahtani AR, Alqahtani AS, Alenazi A, Heboyan A, Fernandes GVO, Mustafa M. Three-Dimensional FEA Analysis of the Stress Distribution on Titanium and Graphene Frameworks Supported by 3 or 6-Implant Models. Biomimetics (Basel) 2023; 8:biomimetics8010015. [PMID: 36648801 PMCID: PMC9844420 DOI: 10.3390/biomimetics8010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Titanium is the main component of dental implants. It is also routinely used as a framework material for implant-supported full-arch prostheses due to its low density, biocompatibility, and other mechanical properties. Remarkable mechanical properties such as lesser mass density and higher young's modulus of graphene have gained popularity among scientists, improving the properties of biomedical implants. Thus, our study aimed to compare the outcome through the von Mises stresses generated on All-on-6 and All-on-3 implant models, as well as on the framework, and evaluate the effect of stress patterns on the crestal bone around implants in the mandible. FEA (Finite Element Analysis) study was carried out using edentulous mandible models. Four 3D FEA models with 3 and 6 implants were used (Model 1: Titanium bar-supported 6 straight implants; Model 2: Graphene bar-supported 6 straight implants; Model 3: Titanium bar-supported 3 implants with 30 degrees-tilted; Model 4: Graphene bar-supported 3 implants with 30 degrees-tilted) in order to simulate endosseous implant designs. The implant measuring 4.2 mm in diameter and 11.5 mm in length were used. The most distal implants in the 3-implant models were placed with angulation of 30 degrees; in 6 implants, they were vertically placed. All the models were analyzed for vertical and oblique axis with a single force magnitude of 100 N. In all four implant models and under loading conditions, the peak stress points were always on the neck of the most distal implant. von Mises stresses were within the normal stress range. In a conventional six-straight implant model supported by a titanium framework, the cortical stress in the region of implants was 25.27 MPa, whereas, in the graphene framework, it was 12.18 MPa. Under vertical load, there was a significant difference in the cortical stress around the tilted implants (30 degrees) in the 3-implant system of titanium and graphene frameworks, respectively, 70.31 MPa and 21.27 MPa. The graphene framework demonstrated better results than the titanium framework for the conventional six-implant system under vertical load, achieving stress of 30.09 MPa and 76.60 MPa, respectively. In the case of the 3-implant system, a significant difference in the bar stress was observed between graphene and titanium, respectively, 256.32 MPa and 180.1 MPa of bar stress. Within the limitation of this study, the peri-implant stresses were decreased using graphene framework models. Hence, it was possible to conclude that the best load-bearing capacity results were found in the graphene framework group compared to the titanium framework for All-on-6 and All-on-3 implant models, even though both materials are reliable options used as framework materials in implant-supported full-arch prostheses.
Collapse
Affiliation(s)
- Shrikar R. Desai
- Department of Periodontology and Implantology, HKE’S S. Nijalingappa Institute of Dental Sciences and Research, Kalaburagi 585105, India
| | - Kiran Deepak Koulgikar
- Department of Periodontology and Implantology, HKE’S S. Nijalingappa Institute of Dental Sciences and Research, Kalaburagi 585105, India
| | - Nasser Raqe Alqhtani
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Robaian Alqahtani
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdullah Saad Alqahtani
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Adel Alenazi
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan 0025, Armenia
| | - Gustavo V. O. Fernandes
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, 1011 North University Ave, Ann Arbor, MI 48109, USA
- Correspondence: (G.V.O.F.); (M.M.)
| | - Mohammed Mustafa
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (G.V.O.F.); (M.M.)
| |
Collapse
|
11
|
Dayi B, Küçükyıldız EN, Taghizadehghalehjoughi A. Evaluation of Cytotoxic Effect of Graphene Oxide Added to Mineral Trioxide Aggregate. JOURNAL OF ADVANCED ORAL RESEARCH 2022. [DOI: 10.1177/23202068221142422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aim: Recently, although studies have shown that biomaterials containing graphene oxide (GO) in biomedicine stand out for their positive effects, the effect of GO on dental tissues when used with dental materials is not well known. The aim of this study was an evaluation of the cytotoxic effects of GO on gingival fibroblasts when it is combined in two different ratios with Mineral Trioxide Aggregate (MTA). Materials and Methods: In this in-vitro study, a homogenous mixture of adding +0.1 weight (wt)% and +0.3 wt% GO to Angelus MTA was created (two experimental groups) and compared with pure Angelus MTA and negative control groups. The materials were mixed according to the manufacturer’s instructions, and Teflon molds were used to form 24 disc-shaped samples for each group. The samples were divided into groups according to the simple random sampling method. The cytotoxic effect of samples was determined on gingival fibroblast cells by using the MTT test, and total oxidant status (TOS) and total antioxidant capacity (TAC) kits in 24 and 72 hours. The data were statistically analyzed using one-way ANOVA and Tukey tests. Results: A significant difference was found between the material-applied groups and the control group at the TAC 24 and 72 hours and between the groups containing GO and the control group at the MTT 72 hours and TAC and TOS 24 and 72 hours ( p < .05). Conclusion: The addition of GO to MTA increased the dose and time-based toxicity and oxidant amount, and decreased antioxidant capacity.
Collapse
Affiliation(s)
- Burak Dayi
- Department of Restorative Dentistry, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Elif Nihan Küçükyıldız
- Department of Restorative Dentistry, Faculty of Dentistry, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
12
|
Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022; 110:1695-1721. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Graphene-based nanocomposites have recently attracted increasing attention in tissue engineering because of their extraordinary features. These biocompatible substances, in the presence of an apt microenvironment, can stimulate and sustain the growth and differentiation of stem cells into different lineages. This review discusses the characteristics of graphene and its derivatives, such as their excellent electrical signal transduction, carrier mobility, outstanding mechanical strength with improving surface characteristics, self-lubrication, antiwear properties, enormous specific surface area, and ease of functional group modification. Moreover, safety issues in the application of graphene and its derivatives in terms of biocompatibility, toxicity, and interaction with immune cells are discussed. We also describe the applicability of graphene-based nanocomposites in tissue healing and organ regeneration, particularly in the bone, cartilage, teeth, neurons, heart, skeletal muscle, and skin. The impacts of special textural and structural characteristics of graphene-based nanomaterials on the regeneration of various tissues are highlighted. Finally, the present review gives some hints on future research for the transformation of these exciting materials in clinical studies.
Collapse
Affiliation(s)
- Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran.,Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Yousef Rasmi
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
13
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
14
|
Barzegar PEF, Mohammadi Z, Sattari S, Beiranvand Z, Salahvarzi M, Rossoli K, Adeli S, Beyranvand S, Maleki S, Kazeminava F, Mousazadeh H, Raisi A, Farjanikish G, Sadegh AB, Shahbazi F, Adeli M. Graphene-MoS 2 polyfunctional hybrid hydrogels for the healing of transected Achilles tendon. BIOMATERIALS ADVANCES 2022; 137:212820. [PMID: 35929257 DOI: 10.1016/j.bioadv.2022.212820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Healing of injured tendon is a major clinical challenge in orthopaedic medicine, due to the poor regenerative potential of this tissue. Two-dimensional nanomaterials, as versatile scaffolds, have shown a great potential to support, trigger and accelerate the tendon regeneration. However, weak mechanical properties, poor functionality and low biocompatibility of these scaffolds as well as post-surgery infections are main drawbacks that limit their development in the higher clinical phases. In this work, a series of hydrogels consisting polyglycerol functionalized reduced graphene oxide (PG), polyglycerol-functionalized molybdenum disulfide (PMoS2) and PG/PMoS2 hybrid within the gelatin matrix are formulated in new scaffolds and their ability for the healing of injured Achilles tendon, due to their high mechanical properties, low toxicity, cell proliferation enhancement, and antibacterial activities is investigated. While scaffolds containing PG and PMoS2 showed a moderate tendon regeneration and anti-inflammatory effect, respectively, their hybridization into PG/PMoS2 demonstrated a synergistic healing efficiency. Along the same line, an accelerated return of tendon function with low peritendinous adhesion and low cross-sectional area in animal group treated with scaffold containing PG/PMoS2 was observed. Taking advantage of the high biocompatibility, high strength, straightforward construction and fast tendon regeneration, PG/PMoS2 can be used as a new scaffold for the future tissue engineering.
Collapse
Affiliation(s)
| | - Zahra Mohammadi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Zahra Beiranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Maryam Salahvarzi
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Kiarash Rossoli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Saeid Adeli
- Research and Development of Razi Kimya Gahar Startup Company, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Sara Maleki
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mousazadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Ghasem Farjanikish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Amin Bigham Sadegh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Feizollah Shahbazi
- Department of Agricultural Machinery, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
15
|
Wu T, Li B, Huang W, Zeng X, Shi Y, Lin Z, Lin C, Xu W, Xia H, Zhang T. Developing a novel calcium magnesium silicate/graphene oxide incorporated silk fibroin porous scaffold with enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis. Biomed Mater 2022; 17. [PMID: 35395653 DOI: 10.1088/1748-605x/ac65cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
Recently, biofunctional ions (Mg2+, Si4+, etc.) and graphene derivatives are proved to be promising in stimulating bone formation. In this study, a novel inorganic/organic composite porous scaffold based on silk fibroin (SF), graphene oxide (GO), and calcium magnesium silicate (CMS) was developed for bone repair. The porous scaffolds obtained by lyophilization showed a little difference in pore structure while GO and CMS displayed a good interaction with SF matrix. The addition of CMS with good mineralization potential and sustainedly release ability of biofunctional ions (Ca2+, Mg2+ and Si4+) increased the strength of SF scaffolds a little and facilitated the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by upregulating bone formation-related genes (ALP, COL1, OC and Runx2). The further incorporation of GO in SF scaffolds enhanced the compressive strength and water retention, and also remarkably promoted the osteogenic differentiation of BMSCs. Besides, the angiogenesis of human umbilical vein endothelial cells was significantly promoted by CMS/GO/SF scaffold extract through the upregulation of angiogenesis genes (eNOs and bFGF). Moreover, the osteoclastic formation ability of RAW264.7 cells was suppressed by the released ions from CMS/GO/SF scaffold through the down-regulation of CAK, MMP9 and TRAP. The promoted osteogenesis, angiogenesis and inhibited osteoclastogenesis functions of CMS/GO/SF composite scaffold may enable it as a novel therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Tingting Wu
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Binglin Li
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, Guangdong, 510010, CHINA
| | - Wenhan Huang
- Department of Orthopaedics, Guangdong Academy of Medical Sciences, No.06, Zhongshan 2nd Road, Guangzhou, 510080, CHINA
| | - Xianli Zeng
- Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, 510515, CHINA
| | - YiWan Shi
- Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510630, CHINA
| | - Zefeng Lin
- Department of Orthopedics,, PLA General Hospital of Southern Theatre Command, No.111, Liuhua road, Guangzhou, Guangdong, 510010, CHINA
| | - Chengxiong Lin
- Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Weikang Xu
- Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Hong Xia
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, Guangdong, 510010, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, 510010, CHINA
| |
Collapse
|
16
|
Li X, Liang X, Wang Y, Wang D, Teng M, Xu H, Zhao B, Han L. Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Front Bioeng Biotechnol 2022; 10:804201. [PMID: 35360406 PMCID: PMC8961302 DOI: 10.3389/fbioe.2022.804201] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the development of nanotechnology, nanomaterials have been used in dental fields over the past years. Among them, graphene and its derivatives have attracted great attentions, owing to their excellent physicochemical property, morphology, biocompatibility, multi-differentiation activity, and antimicrobial activity. In our review, we summarized the recent progress about their applications on the dentistry. The synthesis methods, structures, and properties of graphene-based materials are discussed. Then, the dental applications of graphene-based materials are emphatically collected and described. Finally, the challenges and outlooks of graphene-based nanomaterials on the dental applications are discussed in this paper, aiming at inspiring more excellent studies.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dashan Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Minhua Teng
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Xu
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Baodong Zhao, ; Lei Han,
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Baodong Zhao, ; Lei Han,
| |
Collapse
|
17
|
Zhang S, Feng Z, Hu Y, Zhao D, Guo X, Du F, Wang N, Sun C, Liu C, Liu H. Endowing Polyetheretherketone Implants with Osseointegration Properties: In Situ Construction of Patterned Nanorod Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105589. [PMID: 34908234 DOI: 10.1002/smll.202105589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Polyetheretherketone (PEEK) is widely used in orthopedic and craniomaxillofacial surgeries as it exhibits excellent biocompatibility, mechanical property, and chemical stability. However, its clinical application is limited by the biological inertness of PEEK. Numerous efforts have been made to improve the bioactivity of this polymer over the years. However, modification methods that can not only promote osteogenesis but also maintain excellent properties are still limited. Hence, a facile hot die formation technique is developed for establishing patterned nanorod arrays on the PEEK surface in situ. This method can maintain the excellent properties of PEEK and can be used in implantation as it can facilitate osteogenic activity in the absence of any organic/inorganic differentiation-inducing factors. PEEK with 200-nm patterned nanorod arrays on the surface exhibits excellent osteogenic properties. This result is obtained by assessing the osteogenic differentiation properties of rat adipose-derived stem cells at the gene and protein levels in vitro. In vivo experimental results reveal that the surface-modified cylindrical PEEK 200 implants present with excellent osseointegration properties. Moreover, they can tightly bind with the surrounding bone tissue. A practical method for manufacturing single-component PEEK implants with excellent osseointegration properties is reported, and the materials can be possibly used as orthopedic implants.
Collapse
Affiliation(s)
- Shengmin Zhang
- Department of Stomotology, Cangzhou Medical College, Cangzhou, 061001, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Ying Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Dawang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xu Guo
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Fengzhi Du
- Department of Stomotology, Cangzhou Medical College, Cangzhou, 061001, China
| | - Ningning Wang
- Department of Stomotology, Cangzhou Medical College, Cangzhou, 061001, China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250022, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| |
Collapse
|
18
|
Amurin LG, Felisberto MD, Ferreira FL, Soraes PH, Oliveira PN, Santos BF, Valeriano JC, de Miranda DC, Silva GG. Multifunctionality in ultra high molecular weight polyethylene nanocomposites with reduced graphene oxide: Hardness, impact and tribological properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan WE, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Mater Today Bio 2022; 13:100211. [PMID: 35198959 PMCID: PMC8841887 DOI: 10.1016/j.mtbio.2022.100211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/09/2023] Open
Abstract
Peripheral nerve injury usually impairs neurological functions. The excessive oxidative stress and disrupted bioelectrical conduction gives rise to a hostile microenvironment and impedes nerve regeneration. Therefore, it is of urgent need to develop tissue engineering products which help alleviate the oxidative insults and restore bioelectrical signals. Melatonin (MLT) is an important endogenous hormone that diminishes the accumulation of reactive oxygen species. Reduced graphene oxide (RGO) possesses the excellent electrical conductivity and biocompatibility. In this study, a multilayered MLT/RGO/Polycaprolactone (PCL) composite scaffold was fabricated with beaded nanostructures to improve cell attachment and proliferation. It also exhibited stable mechanical properties by high elastic modulus and guaranteed structural integrity for nerve regeneration. The live/dead cell staining and cell counting kit assay were performed to evaluate the toxicity of the scaffold. JC-1 staining was carried out to assess the mitochondrial potential. The composite scaffold provided a biocompatible interface for cell viability and improved ATP production for energy supply. The scaffold improved the sensory and locomotor function recovery by walking track analysis and electrophysiological evaluation, reduced Schwann cell apoptosis and increased its proliferation. It further stimulated myelination and axonal outgrowth by enhancing S100β, myelin basic protein, β3-tubulin, and GAP43 levels. The findings demonstrated functional and morphological recovery by this biomimetic scaffold and indicated its potential for translational application.
Collapse
Affiliation(s)
- Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
20
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
21
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
Tupone MG, Panella G, d’Angelo M, Castelli V, Caioni G, Catanesi M, Benedetti E, Cimini A. An Update on Graphene-Based Nanomaterials for Neural Growth and Central Nervous System Regeneration. Int J Mol Sci 2021; 22:13047. [PMID: 34884851 PMCID: PMC8657785 DOI: 10.3390/ijms222313047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.
Collapse
Affiliation(s)
- Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
- Center for Microscopy, University of L’Aquila, 67100 L’Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.T.); (G.P.); (M.d.); (V.C.); (G.C.); (M.C.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
23
|
Xue W, Du J, Li Q, Wang Y, Lu Y, Fan J, Yu S, Yang Y. Preparation, properties and application of graphene-based materials in tissue engineering scaffolds. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1121-1136. [PMID: 34751592 DOI: 10.1089/ten.teb.2021.0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue engineering has great application prospect as an effective treatment for tissue and organ injury, functional reduction or loss. Bioactive tissues are reconstructed and damaged organs are repaired by the three elements including cells, scaffold materials and growth factors. Graphene-based composites can be used as reinforcing auxiliary materials for tissue scaffold preparation because of their large specific surface area, and good mechanical support. Tissue engineering scaffolds with graphene-based composites have been widely studied. Part of research have focused on the application of graphene-based composites in single tissue engineering; The basic principles of graphene materials used in tissue engineering are summarized in some researches. Some studies emphasized the key problems and solutions urgently needed to be solved in the development of tissue engineering, and discussed their application prospect. Some related studies mainly focused on the conductivity of graphene, and discussed the application of electroactive scaffolds in tissue engineering. In this review, the composite materials for preparing tissue engineering scaffolds are briefly described, which emphasizes the preparation methods, biological properties and practical applications of graphene-based composite scaffolds. The synthetic techniques with stressing solvent casting, electrospinning and 3D printing are introduced in detail. The mechanical, cell-oriented and biocompatible properties of graphene-based composite scaffolds in tissue engineering are analyzed and summarized. Their applications in bone tissue engineering, nerve tissue engineering, cardiovascular tissue engineering and other tissue engineering are summarized systematically. In addition, this work also looks forward to the difficulties and challenges in the future research, providing some references for the follow-up research of graphene-based composites in tissue engineering scaffolds.
Collapse
Affiliation(s)
- Wenqiang Xue
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jinglei Du
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Qiang Li
- Second Hospital of Shanxi Medical University, 74761, Taiyuan, Shanxi , China;
| | - Yan Wang
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Yemin Lu
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Jiangbo Fan
- Shanxi Medical University, 74648, Taiyuan, Shanxi , China;
| | - Shiping Yu
- Second Hospital of Shanxi Medical University, 74761, 582 Wuyi Road, Taiyuan City, Shanxi Province, Taiyuan, China, 030001;
| | - Yongzhen Yang
- Taiyuan University of Technology, 47846, Taiyuan, Shanxi , China;
| |
Collapse
|
24
|
Cámara-Torres M, Sinha R, Eqtesadi S, Wendelbo R, Scatto M, Scopece P, Sanchez A, Villanueva S, Egizabal A, Álvarez N, Patelli A, Mota C, Moroni L. Effect of the reduced graphene oxide (rGO) compaction degree and concentration on rGO-polymer composite printability and cell interactions. NANOSCALE 2021; 13:14382-14398. [PMID: 34473168 DOI: 10.1039/d1nr02927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene derivatives combined with polymers have attracted enormous attention for bone tissue engineering applications. Among others, reduced graphene oxide (rGO) is one of the preferred graphene-based fillers for the preparation of composites via melt compounding, and their further processing into 3D scaffolds, due to its established large-scale production method, thermal stability, and electrical conductivity. In this study, rGO (low bulk density 10 g L-1) was compacted by densification using a solvent (either acetone or water) prior to melt compounding, to simplify its handling and dosing into a twin-screw extrusion system. The effects of rGO bulk density (medium and high), densification solvent, and rGO concentration (3, 10 and 15% in weight) on rGO dispersion within the composite, electrical conductivity, printability and cell-material interactions were studied. High bulk density rGO (90 g L-1) occupied a low volume fraction within polymer composites, offering poor electrical properties but a reproducible printability up to 15 wt% rGO. On the other hand, the volume fraction within the composites of medium bulk density rGO (50 g L-1) was higher for a given concentration, enhancing rGO particle interactions and leading to enhanced electrical conductivity, but compromising the printability window. For a given bulk density (50 g L-1), rGO densified in water was more compacted and offered poorer dispersability within the polymer than rGO densified in acetone, and resulted in scaffolds with poor layer bonding or even lack of printability at high rGO percentages. A balance in printability and electrical properties was obtained for composites with medium bulk density achieved with rGO densified in acetone. Here, increasing rGO concentration led to more hydrophilic composites with a noticeable increase in protein adsorption. Moreover, scaffolds prepared with such composites presented antimicrobial properties even at low rGO contents (3 wt%). In addition, the viability and proliferation of human mesenchymal stromal cells (hMSCs) were maintained on scaffolds with up to 15% rGO and with enhanced osteogenic differentiation on 3% rGO scaffolds.
Collapse
Affiliation(s)
- María Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | | | | | - Marco Scatto
- Nadir S.r.l., Via Torino, 155/b, 30172 Venice, Italy
| | - Paolo Scopece
- Nadir S.r.l., Via Torino, 155/b, 30172 Venice, Italy
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Sara Villanueva
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Ainhoa Egizabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Noelia Álvarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131 Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
25
|
Effect of Atmospheric-Pressure Plasma Treatments on Fracture Toughness of Carbon Fibers-Reinforced Composites. Molecules 2021; 26:molecules26123698. [PMID: 34204424 PMCID: PMC8233790 DOI: 10.3390/molecules26123698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, nano-scale fillers are added to epoxy matrix-based carbon fibers-reinforced composites (CFRPs) to improve the mechanical properties of multi-scale composites. Single-walled carbon nanotubes (SWCNTs) used as nano-scale fillers are treated with atmospheric-pressure plasma to introduce oxygen functional groups on the fillers’ surface to increase the surface free energy and polar component, which relates to the mechanical properties of multi-scale composites. In addition, the effect of dispersibility was analyzed through the fracture surfaces of multi-scale composites containing atmospheric-pressure plasma-treated SWCNTs (P-SWCNTs) under high load conditions. The fillers content has an optimum weight percent load at 0.5 wt.% and the fracture toughness (KIC) method is used to demonstrate an improvement in mechanical properties. Here, KIC was calculated by three equations based on different models and we analyzed the correlation between mechanical properties and surface treatment. Compared to the composites of untreated SWCNTs, the KIC value is improved by 23.7%, suggesting improved mechanical properties by introducing selective functional groups through surface control technology to improve interfacial interactions within multi-scale composites.
Collapse
|
26
|
Nanocomposites for Enhanced Osseointegration of Dental and Orthopedic Implants Revisited: Surface Functionalization by Carbon Nanomaterial Coatings. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5010023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few decades, carbon nanomaterials, including carbon nanofibers, nanocrystalline diamonds, fullerenes, carbon nanotubes, carbon nanodots, and graphene and its derivatives, have gained the attention of bioengineers and medical researchers as they possess extraordinary physicochemical, mechanical, thermal, and electrical properties. Recently, surface functionalization with carbon nanomaterials in dental and orthopedic implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for osseointegration. Numerous developments in fabrication and biological studies of carbon nanostructures have provided various novel opportunities to expand their application to hard tissue regeneration and restoration. In this minireview, the recent research trends in surface functionalization of orthopedic and dental implants with coating carbon nanomaterials are summarized. In addition, some seminal methodologies for physicomechanical and electrochemical coatings are discussed. In conclusion, it is shown that further development of surface functionalization with carbon nanomaterials may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
|
27
|
Wang R, Shi M, Xu F, Qiu Y, Zhang P, Shen K, Zhao Q, Yu J, Zhang Y. Graphdiyne-modified TiO 2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Commun 2020; 11:4465. [PMID: 32901012 PMCID: PMC7479592 DOI: 10.1038/s41467-020-18267-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/07/2020] [Indexed: 02/03/2023] Open
Abstract
Titanium implants have been widely used in bone tissue engineering for decades. However, orthopedic implant-associated infections increase the risk of implant failure and even lead to amputation in severe cases. Although TiO2 has photocatalytic activity to produce reactive oxygen species (ROS), the recombination of generated electrons and holes limits its antibacterial ability. Here, we describe a graphdiyne (GDY) composite TiO2 nanofiber that combats implant infections through enhanced photocatalysis and prolonged antibacterial ability. In addition, GDY-modified TiO2 nanofibers exert superior biocompatibility and osteoinductive abilities for cell adhesion and differentiation, thus contributing to the bone tissue regeneration process in drug-resistant bacteria-induced implant infection.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, PR China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Feiyan Xu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, 528200, Foshan, PR China
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, 430070, Wuhan, PR China
| | - Yun Qiu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Peng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Kailun Shen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Qin Zhao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China
| | - Jiaguo Yu
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, 528200, Foshan, PR China.
- State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, 430070, Wuhan, PR China.
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, PR China.
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, PR China.
| |
Collapse
|
28
|
Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020; 15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.
Collapse
Affiliation(s)
- Guo Ye
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Bao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianzhu Zhang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhe Song
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Youguo Liao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yang Fei
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Varitsara Bunpetch
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Weiliang Shen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hua Liu
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Jing Zhou
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| |
Collapse
|
29
|
Zhang T, Gao Y, Cui W, Li Y, Xiao D, Zhou R. Nanomaterials-based Cell Osteogenic Differentiation and Bone Regeneration. Curr Stem Cell Res Ther 2020; 16:36-47. [PMID: 32436831 DOI: 10.2174/1574888x15666200521083834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Kumar S, Parekh SH. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun Chem 2020; 3:8. [PMID: 36703309 PMCID: PMC9814659 DOI: 10.1038/s42004-019-0254-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023] Open
Abstract
Graphene, an allotrope of carbon, consists of a single layer of carbon atoms with uniquely tuneable properties. As such, graphene-based materials (GBMs) have gained interest for tissue engineering applications. GBMs are often discussed in the context of how different physicochemical properties affect cell physiology, without explicitly considering the impact of adsorbed proteins. Establishing a relationship between graphene properties, adsorbed proteins, and cell response is necessary as these proteins provide the surface upon which cells attach and grow. This review highlights the molecular adsorption of proteins on different GBMs, protein structural changes, and the connection to cellular function.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX, 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, TX, 78712, USA.
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, DE, USA.
| |
Collapse
|
31
|
Zhang J, Fu Y, Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Int J Nanomedicine 2019; 14:10091-10103. [PMID: 31920305 PMCID: PMC6939400 DOI: 10.2147/ijn.s227830] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose MXenes are two-dimensional (2D) materials that are increasingly being applied in biomedical fields. This is ascribed to their good physiochemical properties, unique structure and high biological compatibility. However, the osteogenic activity and suitability of these materials for bone tissue engineering are not clearly understood. Thus, the aim of this study is to evaluate the biocompatibility, osteoinductivity and guided bone regeneration ability of Ti3C2Tx MXene in vitro and in vivo. Methods Multilayered Ti3C2Tx MXene films were prepared and characterized by XRD and SEM. In vitro experiments were performed to evaluate the effect of MXene films on cell adhesion and morphology with SEM and fluorescence microscopy. The cytotoxicity of MXene films was detected with the Live/Dead double-staining tests. The EdU assay was employed to evaluate cell proliferation on MXene films and ALP activity was tested to determine the effect of the films on osteogenic differentiation in vitro. The mRNA expression of osteogenic differentiation-related markers was measured using qRT-PCR. In vivo animal studies were performed in which the MXene films were implanted subcutaneously in rats to evaluate biocompatibility and host tissue response in vivo. In addition, a rat calvarial defect model was established to examine the bone regeneration performance of the Ti3C2Tx MXene films. The specimens were analyzed with micro-CT evaluation and histological tests. Results The XRD and SEM analyses revealed that the Ti3C2Tx MXene film was successfully synthesized. The cellular experiments showed that MXene films were highly cytocompatible and enhanced osteogenic differentiation in vitro. When implanted into subcutaneous sites and calvarial defect sites in rats, MXene films showed good biocompatibility, osteoinductivity and bone regeneration activity in vivo. Conclusion In summary, this study presents new applications of MXenes in bone tissue engineering and in guided bone regeneration therapy.
Collapse
Affiliation(s)
- Jiebing Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
32
|
Dinescu S, Ionita M, Ignat SR, Costache M, Hermenean A. Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone Tissue Engineering. Int J Mol Sci 2019; 20:E5077. [PMID: 31614903 PMCID: PMC6834324 DOI: 10.3390/ijms20205077] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
The main goal of bone tissue engineering (BTE) is to refine and repair major bone defects based on bioactive biomaterials with distinct properties that can induce and support bone tissue formation. Graphene and its derivatives, such as graphene oxide (GO), display optimal properties for BTE, being able to support cell growth and proliferation, cell attachment, and cytoskeleton development as well as the activation of osteogenesis and bone development pathways. Conversely, the presence of GO within a polymer matrix produces favorable changes to scaffold morphologies that facilitate cell attachment and migration i.e., more ordered morphologies, greater surface area, and higher total porosity. Therefore, there is a need to explore the potential of GO for tissue engineering applications and regenerative medicine. Here, we aim to promote one novel scaffold based on a natural compound of chitosan, improved with 3 wt.% GO, for BTE approaches, considering its good biocompatibility, remarkable 3D characteristics, and ability to support stem cell differentiation processes towards the bone lineage.
Collapse
Affiliation(s)
- Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Mariana Ionita
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania.
| | - Simona-Rebeca Ignat
- Department of Biochemistry and Molecular Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Anca Hermenean
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania.
| |
Collapse
|
33
|
Huang Y, Deng H, Fan Y, Zheng L, Che J, Li X, Aifantis KE. Conductive nanostructured Si biomaterials enhance osteogeneration through electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109748. [PMID: 31349398 DOI: 10.1016/j.msec.2019.109748] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
It is well known that the differentiation of stem cells is affected by the cell culture medium, the scaffold surface and electrochemical signals. However, stimulation of patterned biomaterials seeded with stem cell cultures has not been explored. Herein the effect of electrical stimulation on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) cultured on solid and nanoporous micropyramid patterned Si surfaces was evaluated. It was found that both stimulation and scaffold patterning significantly enhanced osteo-differentiation. The stimulated nanoporous micropyramid scaffolds were more promising compared to the stimulated solid micropyramid surfaces, as they significantly promoted the osteogenic differentiation of rBMSCs via BMP/Smad signaling pathway. Particularly, as compared to the unstimulated patterned biomaterials, the stimulated patterned scaffolds allowed for a significant increase in core binding factor alpha l, alkaline phosphatase, the alpha l chain of type I Col, osteocalcin, and osteonectin, all of which are characteristic for osteo-differentiation. The proposed combination of electrical stimulation with scaffold patterning may provide novel promising strategies for bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | | | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Jifei Che
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Katerina E Aifantis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
34
|
Hu X, Man Y, Li W, Li L, Xu J, Parungao R, Wang Y, Zheng S, Nie Y, Liu T, Song K. 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds. Polymers (Basel) 2019; 11:E1601. [PMID: 31574999 PMCID: PMC6835996 DOI: 10.3390/polym11101601] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 01/10/2023] Open
Abstract
Cartilage is an important tissue contributing to the structure and function of support and protection in the human body. There are many challenges for tissue cartilage repair. However, 3D bio-printing of osteochondral scaffolds provides a promising solution. This study involved preparing bio-inks with different proportions of chitosan (Cs), Gelatin (Gel), and Hyaluronic acid (HA). The rheological properties of each bio-ink was used to identify the optimal bio-ink for printing. To improve the mechanical properties of the bio-scaffold, Graphene (GR) with a mass ratio of 0.024, 0.06, and 0.1% was doped in the bio-ink. Bio-scaffolds were prepared using 3D printing technology. The mechanical strength, water absorption rate, porosity, and degradation rate of the bio-scaffolds were compared to select the most suitable scaffold to support the proliferation and differentiation of cells. P3 Bone mesenchymal stem cells (BMSCs) were inoculated onto the bio-scaffolds to study the biocompatibility of the scaffolds. The results of SEM showed that the Cs/Gel/HA scaffolds with a GR content of 0, 0.024, 0.06, and 0.1% had a good three-dimensional porous structure and interpenetrating pores, and a porosity of more than 80%. GR was evenly distributed on the scaffold as observed by energy spectrum analyzer and polarizing microscope. With increasing GR content, the mechanical strength of the scaffold was enhanced, and pore walls became thicker and smoother. BMSCs were inoculated on the different scaffolds. The cells distributed and extended well on Cs/Gel/HA/GR scaffolds. Compared to traditional methods in tissue-engineering, this technique displays important advantages in simulating natural cartilage with the ability to finely control the mechanical and chemical properties of the scaffold to support cell distribution and proliferation for tissue repair.
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yuan Man
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Liying Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Roxanne Parungao
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW 2139, Australia.
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, NSW 2139, Australia.
| | - Shuangshuang Zheng
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
35
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
36
|
Han S, Sun J, He S, Tang M, Chai R. The application of graphene-based biomaterials in biomedicine. Am J Transl Res 2019; 11:3246-3260. [PMID: 31312342 PMCID: PMC6614642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Graphene-based nanocomposites have attracted more and more attention recently in the field of biology and biomedicine. Graphene and its derivatives have been integrated with drugs, nucleic acids, antibodies, and other molecules. And these materials could be use as nanocomposite carriers or scaffold materials taking advantages of their enormous specific surface area, good elasticity and ductility, excellent biocompatibility, and outstanding mechanical strength. In addition, these composites have strong near-infrared absorbance and can act as photothermal agents to kill target cells through physical or chemical mechanisms. Along with significant advances in cell and organ transplantation, many of these materials have been explored in recent years for use in tissue engineering and regenerative medicine. Tissue engineering includes bone, nerve, heart, and muscle tissue engineering based on two-dimensional and three-dimensional graphene-based matrices or scaffolds possessing certain mechanical strengths and electrical conductivities, and the aim is to produce bioactive tissues to replace or repair natural tissue by promoting osteogenic, neuronal, and myogenic differentiation and myocardial cell growth. In this review, the basic properties of graphene-based complexes are systematically described and the biomedical applications of graphene-based materials in vivo and in vitro are summarized. This review first discusses the safety of graphene-based materials in terms of their biocompatibility and toxicity, and then it discusses these materials' applications in biosensing, photothermal therapy, stem cell culture, and tissue engineering. This review therefore provides a comprehensive understanding of graphene and its derivatives and their present and future applications.
Collapse
Affiliation(s)
- Shanying Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast UniversityNanjing 210096, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast UniversityNanjing 210096, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast UniversityNanjing 211102, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast UniversityNanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong 226001, China
- Joint Research Institute of Southeast University and Monash UniversitySuzhou 215123, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast UniversityNanjing 210096, China
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast UniversityNanjing 211102, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast UniversityNanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong UniversityNantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of ScienceBeijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical UniversityBeijing 100069, China
- Joint Research Institute of Southeast University and Monash UniversitySuzhou 215123, China
| |
Collapse
|
37
|
Nie L, Wang C, Hou R, Li X, Sun M, Suo J, Wang Z, Cai R, Yin B, Fang L, Wei X, Yuan H. Preparation and characterization of dithiol-modified graphene oxide nanosheets reinforced alginate nanocomposite as bone scaffold. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0581-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
38
|
Pahlevanzadeh F, Ebrahimian-Hosseinabadi M. Poly (Methyl Methacrylate)/Biphasic Calcium Phosphate/Nano Graphene Bone Cement for Orthopedic Application. JOURNAL OF MEDICAL SIGNALS & SENSORS 2019; 9:33-41. [PMID: 30967988 PMCID: PMC6419566 DOI: 10.4103/jmss.jmss_34_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: The aim of this study was to make a bioactive bone cement based on poly (methyl methacrylate) (PMMA) with suitable mechanical properties. Methods: PMMA has been modified by fabricating a composite consisting of biphasic calcium phosphate (BCP) 68 wt%, PMMA 31 wt% and graphene (Gr) 1 wt% (PMMA/BCP/Gr), 32 wt% of PMMA, and 68 wt% of BCP (PMMA/BCP) and pure PMMA by milling, mixing with monomer liquid, and casting. The modified cements were evaluated regarding mechanical properties, bioactivity, degradation rate, and biocompatibility. Results: The scanning electron microscopy (SEM) images of hydroxyapatite (HA) formed on samples surface after 28 days of immersion in simulated body fluid (SBF) demonstrated that bioactivity was obtained due to the addition of BCP, and the degradation rate of the cement was enhanced as well. Investigations of mechanical properties revealed that BCP increased the elastic modulus of PMMA more than 1.5 times, but predictably decreased elongation. The addition of 1 wt% Gr increased elongation and yield strength from 16.39% ± 1.02% and 61.67 ± 1.52 Mpa for PMMA/BCP to 35.18% ± 2.42% and 78.40 ± 2.06 Mpa for PMMA/BCP/Gr, respectively. MG63 cells survival and proliferation improved from 127.55% ± 7.03% for PMMA to 201.41% ± 10.7% for PMMA/BCP/Gr on Day 4 of culture. Conclusion: According to the obtained results of mechanical and biological tests, it seems that new PMMA/BCP/Gr bone cement has a potentiality for usage in orthopedic applications.
Collapse
Affiliation(s)
- Farnoosh Pahlevanzadeh
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | | |
Collapse
|
39
|
Shamekhi MA, Mirzadeh H, Mahdavi H, Rabiee A, Mohebbi-Kalhori D, Baghaban Eslaminejad M. Graphene oxide containing chitosan scaffolds for cartilage tissue engineering. Int J Biol Macromol 2019; 127:396-405. [DOI: 10.1016/j.ijbiomac.2019.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
|
40
|
López Tenorio D, Valencia CH, Valencia C, Zuluaga F, Valencia ME, Mina JH, Grande Tovar CD. Evaluation of the Biocompatibility of CS-Graphene Oxide Compounds In Vivo. Int J Mol Sci 2019; 20:E1572. [PMID: 30934823 PMCID: PMC6480102 DOI: 10.3390/ijms20071572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022] Open
Abstract
In the last few years, graphene oxide (GO) has gained considerable importance in scaffold preparation for tissue engineering due to the presence of functional groups that allow the interaction between the extracellular matrix and the components of the cellular membrane. The interaction between GO and chitosan (CS) can not only improve the biomechanical properties of the scaffold but also generate a synergistic effect, facilitating tissue recovery. In vivo studies on GO are scarce; therefore, biocompatibility tests on CS-GO scaffolds and bone regeneration experiments on critical size defects were carried out on Wistar rats. Scaffolds made of CS, CS-GO 0.5%, and CS-GO 1% were prepared and implanted on Wistar rats cranial bones for three months. Scaffold samples were analyzed through histochemistry and scanning electron microscopy. The analysis performed showed reabsorption of the material by phagocytic activity and new bone formation. The CS-GO 0.5% formulation gave the best performance in bone regeneration, with excellent biocompatibility. These results show the potential of this compound for tissue regeneration opening and medical applications.
Collapse
Affiliation(s)
- Diego López Tenorio
- Escuela de Odontología, Grupo biomateriales dentales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Carlos H Valencia
- Escuela de Odontología, Grupo biomateriales dentales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Cesar Valencia
- Laboratorio SIMERQO polímeros, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Fabio Zuluaga
- Laboratorio SIMERQO polímeros, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Mayra E Valencia
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - José H Mina
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Carlos David Grande Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 No. 8-49, 081008 Puerto Colombia, Colombia.
| |
Collapse
|
41
|
Jindal P, Worcester F, Gupta A, Breedon P. Efficiency of nanoparticle reinforcement using finite element analysis of titanium alloy mandible plate. Proc Inst Mech Eng H 2019; 233:309-317. [PMID: 30638135 DOI: 10.1177/0954411918823801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nanoparticles in the form nanotubes and nanoplatelets have been compared for von Mises stresses by using them as low-composition reinforcements in titanium alloy-based mandible plate for different compositions and orientations. A finite element model has been designed to reconstruct a fractured human mandible with a titanium alloy mandible plate. A 500 N compressive force was applied on the mandible, and stress distribution across the plate sections was analysed for aligned two-dimensional random and three-dimensional random orientations for both tubes and platelets. Carbon material as graphene has been used for tube and platelet in the form of nanotubes and nanoplatelets, respectively. Using properties of graphene as the filler in titanium alloy plate, for both nanoplatelets and nanotubes, the stresses reduced between 5% and 25% for nanoplatelets and nanotubes graphene-titanium composite plates in comparison to non-reinforced plates, at critically stressed sections. Nanotubes exhibited stress reduction of nearly 23.4% for aligned configurations, while nanoplatelets exhibited stress reduction up to 21.2% for two-dimensional and three-dinemsional random configurations in comparison to non-reinforced titanium plates. Hence, it has been suggested that nanotubes exhibited superior mechanical reinforcement potential beyond that of aligned nanoplatelets, while nanoplatelets provided enhanced mechanical reinforcements for random configurations. Therefore, for biomedical implant applications nanocomposite materials can be designed with the same dimensional form but with lower compositions of filler materials by simply manipulating the appropriate orientations.
Collapse
Affiliation(s)
- Prashant Jindal
- 1 University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Frank Worcester
- 2 Medical Engineering Design Research Group, Nottingham Trent University, Nottingham, UK
| | - Anand Gupta
- 3 Department of Dentistry, Government Medical College & Hospital, Chandigarh, India
| | - Philip Breedon
- 2 Medical Engineering Design Research Group, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
42
|
Wang J, Cheng Y, Chen L, Zhu T, Ye K, Jia C, Wang H, Zhu M, Fan C, Mo X. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater 2019; 84:98-113. [PMID: 30471474 DOI: 10.1016/j.actbio.2018.11.032] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 12/30/2022]
Abstract
Graphene, as a promising biomaterial, has received great attention in biomedical fields due to its intriguing properties, especially the conductivity and biocompatibility. Given limited studies on the effects of graphene-based scaffolds on peripheral nerve regeneration in vitro and in vivo under electrical stimulation (ES), the present study was intended to systematically investigate how conductive graphene-based nanofibrous scaffolds regulate Schwann cell (SC) behavior including migration, proliferation and myelination, and PC12 cell differentiation in vitro via ES, and whether these conductive scaffolds could guide SC migration and promote nerve regeneration in vivo. Briefly, the reduced graphene oxide (RGO) was coated onto ApF/PLCL nanofibrous scaffolds via in situ redox reaction of the graphene oxide (GO). In vitro, RGO-coated ApF/PLCL (AP/RGO) scaffolds significantly enhanced SC migration, proliferation, and myelination including myelin-specific gene expression and neurotrophic factor secretion. The conditioned media of SCs cultured on AP/RGO scaffolds under ES could induce the differentiation of PC12 cells in a separate culture. In addition, PC12 cells cultured on the conductive AP/RGO scaffolds also showed elevated differentiation upon ES. In vivo implantation of the conductive AP/RGO nerve guidance conduits into rat sciatic nerve defects exhibited a similar healing capacity to autograft, which is the current gold standard in peripheral nerve regeneration. In view of the performance of AP/RGO scaffolds in modulating cell functions in vitro and promoting nerve regeneration in vivo, it is expected that the graphene-based conductive nanofibrous scaffolds would exhibit their potential in peripheral nerve repair and regeneration. STATEMENT OF SIGNIFICANCE: Despite the demonstrated capability of bridging the distal and proximal peripheral nerves, it remains a significant challenge with current artificial nerve conduits to achieve the desired physiological functions, e.g., the transmission of electrical stimuli. Herein, we explored the possibility of combining the conductive properties of graphene with electrospun nanofiber to create the electroactive biomimetic scaffolds for nerve tissue regeneration. In vitro and in vivo studies were carried out: (1) In vitro, the conductive nanofibrous scaffolds significantly promoted SC migration, proliferation and myelination including myelin specific gene expression and neurotrophicfactor secretion, and induced PC12 cell differentiation with electrical stimulation. (2) In vivo, the conductive nerve guidance conduit exhibited similar effects with the gold standard autograft. In view of the performance of this conductive scaffold in modulating the cell functions in vitro and promoting nerve regeneration in vivo, it is expected that the graphene-modified nanofibrous scaffolds will exhibit their potential in peripheral nerve repair and regeneration.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yuan Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Tonghe Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kaiqiang Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Chao Jia
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
43
|
Jindal P, Worcester F, Walia K, Gupta A, Breedon P. Finite element analysis of titanium alloy-graphene based mandible plate. Comput Methods Biomech Biomed Engin 2019; 22:324-330. [PMID: 30621444 DOI: 10.1080/10255842.2018.1555244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Titanium alloy based maxillofacial plates and implants are widely used in fracture treatment and reconstructions. Filler materials Graphene Nanoplatlets(GNPs) were used in a Titanium alloy maxillofacial plate and a Finite Element Model (FEM) was designed to reconstruct a fractured human mandible. Both 50N and 500N bite forces were applied on the mandible and stress distribution using Von mises failure theory across the plate sections was analyzed. A pure plate was critically stressed at a section near the mandible fracture region for a Von mises stress of nearly 27.5GPa while this stress reduced by nearly 10-22% with the presence of minor composition of GNPs in the plate. GNPs orientation in parallel (21.1 GPa) to the plate axis were more effective in comparison to other orientations(90°, 45° and 135°) and the location variation of these GNPs along the plate had no significant effect on the stress distribution. The fatigue analyses showed that, under these stresses and forces the plate with GNP was able to endure for nearly 7000 days, while the pure Titanium plate could fail by fatigue in approximately 70 days. Hence, presence of minor compositions of GNPs could enhance endurance life of the Titanium plate by reducing stress concentrations at critical sections of the plate.
Collapse
Affiliation(s)
- Prashant Jindal
- a University Institute of Engineering & Technology , Panjab University , Chandigarh , India
| | - Frank Worcester
- b Medical Engineering Design Research Group , Nottingham Trent University , Nottingham , UK
| | - Kartikeya Walia
- a University Institute of Engineering & Technology , Panjab University , Chandigarh , India
| | - Anand Gupta
- c Department of Dentistry , Government Medical College and Hospital , Chandigarh , India
| | - Philip Breedon
- b Medical Engineering Design Research Group , Nottingham Trent University , Nottingham , UK
| |
Collapse
|
44
|
|
45
|
Yan JH, Wang CH, Li KW, Zhang Q, Yang M, Di-Wu WL, Yan M, Song Y, Ba JJ, Bi L, Han YS. Enhancement of surface bioactivity on carbon fiber-reinforced polyether ether ketone via graphene modification. Int J Nanomedicine 2018; 13:3425-3440. [PMID: 29942128 PMCID: PMC6005322 DOI: 10.2147/ijn.s160030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and objective The modulus of carbon fiber-reinforced polyether ether ketone (CFR-PEEK), a composite containing layers of carbon fiber sheets, can be precisely controlled to match bone. However, CFR-PEEK is biologically inert and cannot promote bone apposition. The objective of this study was to investigate whether graphene modification could enhance the bioactivity of CFR-PEEK. Methods and results In vitro, the proliferation and differentiation of rat bone marrow stromal cells on scaffolds were quantified via cell-counting kit-8 assay and Western blotting analysis of osteoblast-specific proteins. Graphene modification significantly promoted bone marrow stromal cell proliferation and accelerated induced differentiation into osteogenic lineages compared to cells seeded onto nongraphene-coated CFR-PEEK. An in vivo rabbit extraarticular graft-to-bone healing model was established. At 4, 8, and 12 weeks after surgery, microcomputed tomography analyses and histological observations revealed significantly better microstructural parameters and higher average mineral apposition rates for graphene-modified CFR-PEEK implants than CFR-PEEK implants (P<0.05). van Gieson staining indicated more new bone was formed around graphene-modified CFR-PEEK implants than CFR-PEEK implants. Conclusion Graphene may have considerable potential to enhance the bioactivity and osseointegration of CFR-PEEK implants for clinical applications.
Collapse
Affiliation(s)
- Jin-Hong Yan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Chun-Hui Wang
- Department of Army Military Medical Frontier Medical Service Brigade, Urumqi Ethnic Cadre College, Urumqi, Xinjiang Uyghur
| | - Ke-Wen Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi.,Department of Orthopedics, Qinghai University Affiliated Hospital, Xining, Qinghai
| | - Qi Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Min Yang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Wei-Long Di-Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Ming Yan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Jing-Jing Ba
- Shandong Weigao Orthopedic Mechanics Laboratory, Weihai, Shandong, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| | - Yi-Sheng Han
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi
| |
Collapse
|
46
|
Amărandi RM, Becheru DF, Vlăsceanu GM, Ioniță M, Burns JS. Advantages of Graphene Biosensors for Human Stem Cell Therapy Potency Assays. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1676851. [PMID: 30003089 PMCID: PMC5996421 DOI: 10.1155/2018/1676851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is challenged by the need to conform to rigorous guidelines for establishing safe and effective development and translation of stem cell-based therapies. Counteracting widespread concerns regarding unproven cell therapies, stringent cell-based assays seek not only to avoid harm but also to enhance quality and efficacy. Potency indicates that the cells are functionally fit for purpose before they are administered to the patient. It is a paramount quantitative critical quality attribute serving as a decisive release criterion. Given a broad range of stem cell types and therapeutic contexts the potency assay often comprises one of the most demanding hurdles for release of a cell therapy medicinal product. With need for improved biomarker assessment and expedited measurement, recent advances in graphene-based biosensors suggest that they are poised to be valuable platforms for accelerating potency assay development. Among several potential advantages, they offer versatility for sensitive measurement of a broad range of potential biomarker types, cell biocompatibility for direct measurement, and small sample sufficiency, plus ease of use and point-of-care applicability.
Collapse
Affiliation(s)
- Roxana-Maria Amărandi
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Diana F. Becheru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - George M. Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Department of Medical and Surgical Sciences of Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
47
|
Kang ES, Kim DS, Suhito IR, Lee W, Song I, Kim TH. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res 2018; 22:10. [PMID: 29619243 PMCID: PMC5879765 DOI: 10.1186/s40824-018-0120-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. Main text In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). Conclusion Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Ee-Seul Kang
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Da-Seul Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Intan Rosalina Suhito
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wanhee Lee
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Inbeom Song
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Tae-Hyung Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea.,2Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
48
|
Luo H, Dong J, Yao F, Yang Z, Li W, Wang J, Xu X, Hu J, Wan Y. Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties. NANO-MICRO LETTERS 2018; 10:42. [PMID: 30393691 PMCID: PMC6199091 DOI: 10.1007/s40820-018-0195-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 05/25/2023]
Abstract
Uniform dispersion of two-dimensional (2D) graphene materials in polymer matrices remains challenging. In this work, a novel layer-by-layer assembly strategy was developed to prepare a sophisticated nanostructure with highly dispersed 2D graphene oxide in a three-dimensional matrix consisting of one-dimensional bacterial cellulose (BC) nanofibers. This method is a breakthrough, with respect to the conventional static culture method for BC that involves multiple in situ layer-by-layer assembly steps at the interface between previously grown BC and the culture medium. In the as-prepared BC/GO nanocomposites, the GO nanosheets are mechanically bundled and chemically bonded with BC nanofibers via hydrogen bonding, forming an intriguing nanostructure. The sophisticated nanostructure of the BC/GO leads to greatly enhanced mechanical properties compared to those of bare BC. This strategy is versatile, facile, scalable, and can be promising for the development of high-performance BC-based nanocomposite hydrogels.
Collapse
Affiliation(s)
- Honglin Luo
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiaojiao Dong
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Fanglian Yao
- School of Chemical Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhiwei Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Wei Li
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Jie Wang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jian Hu
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China.
| | - Yizao Wan
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, People's Republic of China.
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
49
|
Li K, Wang C, Yan J, Zhang Q, Dang B, Wang Z, Yao Y, Lin K, Guo Z, Bi L, Han Y. Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 2018; 8:1843. [PMID: 29382859 PMCID: PMC5790016 DOI: 10.1038/s41598-018-19742-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to investigate whether a surface coating with graphene could enhance the surface bioactivation of titanium alloys (Ti6Al4V) to further accelerate in vivo osteogenesis and osseointegration at the implant surface. In this study, a New Zealand white rabbit femoral condyle defect model was established. After 4, 12 and 24 weeks, biomechanical testing, micro-computed tomography (Micro-CT) analyses and histological observations were performed. At the highest push-out forces during the test, microstructure parameters, such as the bone volume/total volume fraction (BV/TV) and mineral apposition rate (MAR), of the new bone were significantly higher in the graphene-coated Ti6Al4V group (G-Ti6Al4V) than in the Ti6Al4V group (P < 0.05). Van Gieson (VG) staining showed that the G-Ti6Al4V group had more new bone formation than the Ti6Al4V group, and the G-Ti6Al4V group showed a closer fit between the bone and implant. In conclusion, graphene might be a novel type of nano-coating material for enhancing the surface biological activity of Ti-based alloy materials and may further promote in vivo osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Kewen Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
- Department of Orthopedics, Qinghai University Affiliated Hospital, Xining, 810001, P.R. China.
| | - Chunhui Wang
- Military Frontier Defence Medical Service Tranning Group, Army Medical University, Hutubi, Xinjiang, 831200, P.R. China
| | - Jinhong Yan
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Qi Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Baoping Dang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhuo Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yun Yao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Kaifeng Lin
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Zhongshang Guo
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China
| | - Yisheng Han
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, P.R. China.
| |
Collapse
|
50
|
Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:103-117. [PMID: 30357620 DOI: 10.1007/978-981-13-0950-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tissues are often damaged by physical trauma, infection or tumors. A slight injury heals naturally through the normal healing process, while severe injury causes serious health implications. Therefore, many efforts have been devoted to treat and repair various tissue defects. Recently, tissue engineering approaches have attracted a rapidly growing interest in biomedical fields to promote and enhance healing and regeneration of large-scale tissue defects. On the other hand, with the recent advances in nanoscience and nanotechnology, various nanomaterials have been suggested as novel biomaterials. Graphene, a two-dimensional atomic layer of graphite, and its derivatives have recently been found to possess promoting effects on various types of cells. In addition, their unique properties, such as outstanding mechanical and biological properties, allow them to be a promising option for hard tissue regeneration. Herein, we summarized recent research advances in graphene-based nanocomposites for hard tissue regeneration, and highlighted their promising potentials in biomedical and tissue engineering.
Collapse
|