1
|
Kandaswamy K, Panda SP, Shaik MR, Hussain SA, Deepak P, Thiyagarajulu N, Jain D, Antonyraj APM, Subramanian R, Guru A, Arockiaraj J. Formulation of Asiatic acid-loaded polymeric chitosan-based hydrogel for effective MRSA infection control and enhanced wound healing in zebrafish models. Int J Biol Macromol 2025; 293:137425. [PMID: 39542332 DOI: 10.1016/j.ijbiomac.2024.137425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Wound healing relies on a controlled inflammatory process vital for tissue regeneration. Chronic wounds, characterized by persistent inflammation and high infection risk, pose significant challenges in healthcare. Hydrogel dressings offer promise in wound care; however, the understanding of their role in managing inflammation and infection remains unclear. This study aimed to elucidate these processes and assess the efficacy of Asiatic acid (AA)-infused hydrogels in reducing inflammation and preventing infection. The unique properties of AA suggest its potential to modulate inflammation, promote tissue regeneration, and inhibit microbial colonization, thereby paving the way for specialized dressings that optimize healing outcomes. METHODS The investigation encompassed the antibacterial, anti-biofilm, antioxidant activity, and biocompatibility of AA using a fibroblast cell line. A hydrogel incorporating AA was developed and characterized through scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle analysis, tensile testing, swelling capacity, and thermal stability assessments. Biodegradability was evaluated via enzymatic degradation, alongside controlled drug release and antibacterial efficacy against MRSA. In vivo studies using a zebrafish model examined wound healing and immune response. RESULTS Results confirmed AA's potent antibacterial activity against MRSA and its effectiveness in disrupting mature biofilms. Additionally, AA exhibited strong antioxidant activity and biocompatibility. Morphological analysis revealed a pore structure conducive to wound healing, and the hydrogel demonstrated enhanced tensile strength, swelling properties, and thermal stability. In vivo, the AA-infused hydrogel accelerated wound closure, re-epithelialization, and immune response, supporting its potential for advanced wound care applications. In conclusion, the AA-infused chitosan hydrogel emerges as a promising candidate for advanced wound care therapies.
Collapse
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box - 2454, Riyadh 11451, Saudi Arabia
| | - Paramasivam Deepak
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Kothanur (PO), Bengaluru 560077, India
| | - Nathiya Thiyagarajulu
- Department of Life sciences, Kristu Jayanti College (Autonomous) K. Narayanapura, Kothanur (PO), Bengaluru 560077, India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee, Chennai 600 077, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Cancer and Stem Cell Research Lab, Department of pharmacology, Saveetha Dental College and Hospitals, Chennai 600 077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Castro VIB, Araújo AR, Reis RL, Pashkuleva I, Pires RA. Nanoengineered Self-Assembling Peptides with Increased Proteolytic Stability Promote Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11624-11633. [PMID: 39937124 DOI: 10.1021/acsami.4c18221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The copper complex of the tripeptide glycine-histidine-lysine (GHK) has proven benefits in wound healing and tissue remodeling by promoting blood vessel growth and increasing skin oxygen levels, but its activity is reduced in body fluids due to fast proteolytic cleavage. Herein, we designed several peptides that bear the GHK sequence and can self-assemble into supramolecular nanostructures aiming for enhanced bioactivity. The design involves a phenylalanine (F) backbone known for its ability to form supramolecular assemblies. We tested either coassembly between the structural peptide F4D and the functional sequence GHK or assembly of covalently bound peptides, in which the GHK is bound via the glycine (F4D-GHK) or lysine (F4D-KHG, i.e., inverted GHK sequence). All tested peptides assembled into nanotapes, but their resistance to proteolytic degradation was different: covalently bound peptides generated more stable assemblies. Wound healing assays demonstrated that the supramolecular structures have enhanced bioactivity when compared to GHK alone. Multiplex immunoassay analyses demonstrated the secretion of key regulators of the healing process, such as cytokines, matrix metalloproteinases, and growth factors. Altogether our data show that incorporation of GHK/KHG into supramolecular structures improves its stability, bioactivity, and efficacy in promoting wound healing.
Collapse
Affiliation(s)
- Vânia I B Castro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Ana Rita Araújo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Stadelmann N, Horch RE, Schmid R, Ostendorf D, Peddi A, Promny T, Boos AM, Kengelbach-Weigand A. Growth factors IGF-1 and KGF and adipose-derived stem cells promote migration and viability of primary human keratinocytes in an in vitro wound model. Front Med (Lausanne) 2025; 12:1516116. [PMID: 39981084 PMCID: PMC11839819 DOI: 10.3389/fmed.2025.1516116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction In the field of plastic surgery, epidermal transplantation is a potential treatment for chronic wounds that results in only minor donor site morbidity. Improving the regenerative capacities of epidermal grafts or single-cell suspensions and therefore accelerating healing processes would be of significant interest. Methods In the present study, we analyzed the effects of growth factors and adipose-derived stem cells (ADSCs) on keratinocyte properties. For optimum translation into the clinical setting, primary human keratinocytes and patient-matched ADSCs were isolated and used in an in vitro wound model. Results The keratinocyte migration and viability increased after treatment with the growth factors insulin-like growth factor 1 (IGF-1) and keratinocyte growth factor (KGF). A similar effect was observed with the use of a concentrated ADSC-conditioned medium (ADSC-CM). It was further possible to isolate the keratinocytes in a xenogen-free medium, which is essential for clinical translation. Importantly, a patient-dependent influence on the effects of the growth factors and ADSC-CM was observed. Discussion This study provides potential for the improvement of epidermal transplantation in the treatment of chronic wounds using xenogen-free isolated and cultivated keratinocytes, growth factors, and ADSC. Translating these results into clinical application may help accelerate wound healing and shorten the time until patients can return to everyday life.
Collapse
Affiliation(s)
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Marnin L, Valencia LM, Bogale HN, Laukaitis-Yousey HJ, Rolandelli A, Ferraz CR, O’Neal AJ, Schmitter-Sánchez AD, Cuevas EB, Nguyen TT, Leal-Galvan B, Rickert DM, Mendes MT, Samaddar S, Butler LR, Singh N, Cabrera Paz FE, Oliver JD, Jameson JM, Munderloh UG, Oliva Chávez AS, Mulenga A, Park S, Serre D, Pedra JH. Tick extracellular vesicles undermine epidermal wound healing during hematophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566612. [PMID: 37986907 PMCID: PMC10659423 DOI: 10.1101/2023.11.10.566612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wound healing has been extensively studied through the lens of inflammatory disorders and cancer, but limited attention has been given to hematophagy and arthropod-borne diseases. Hematophagous ectoparasites, including ticks, subvert the wound healing response to maintain prolonged attachment and facilitate blood-feeding. Here, we unveil a strategy by which extracellular vesicles (EVs) ensure blood-feeding and arthropod survival in three medically relevant tick species. We demonstrate through single cell RNA sequencing and murine genetics that wildtype animals infested with EV-deficient Ixodes scapularis display a unique population of keratinocytes with an overrepresentation of pathways connected to wound healing. Tick feeding affected keratinocyte proliferation in a density-dependent manner, which relied on EVs and dendritic epidermal T cells (DETCs). This occurrence was linked to phosphoinositide 3-kinase activity, keratinocyte growth factor (KGF) and transforming growth factor β (TGF-β) levels. Collectively, we uncovered a strategy employed by a blood-feeding arthropod that impairs the integrity of the epithelial barrier, contributing to ectoparasite fitness.
Collapse
Affiliation(s)
- Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luisa M. Valencia
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haikel N. Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J. Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Camila Rodrigues Ferraz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anya J. O’Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Axel D. Schmitter-Sánchez
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Emily Bencosme Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David M. Rickert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Tays Mendes
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sourabh Samaddar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L. Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nisha Singh
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francy E. Cabrera Paz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Julie M Jameson
- Department of Biology, California State University San Marcos, San Marcos, CA, USA
| | | | | | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and BiomedicalSciences, Texas A&M University, College Station, TX, USA
| | - Sangbum Park
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Serre
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joao H.F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Ferorelli P, Doepp M, Lenzi S, Rovelli R, Gisonna G, Maierà G, Antonelli F, Radaelli M, Shevchenko A, Feriotto G, Mischiati C, Borromeo I, Beninati S. Therapeutic Potential of a Biodynamic Supplement on Skin Pressure Ulcers: A Randomized Clinical Study. Biomedicines 2024; 12:1918. [PMID: 39200385 PMCID: PMC11351901 DOI: 10.3390/biomedicines12081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Pressure ulcers (PUs) are a debilitating and often painful condition. They are localized lesions on the skin and/or underlying tissues and are common in the elderly, people with mobility difficulties, diabetics, and vascular disease or malnutrition, as well as in those requiring intensive or palliative care. The prevention and treatment of PUs involve strategies to optimize hydration, circulation, and nutrition. Nutrition plays a key role in pressure ulcer care because wounds require macronutrients and micronutrients to heal. Reports relating to the effectiveness of "Complementary Enzyme Therapy" also in the vulnological field led us to this study, the aim of which was to test the activity of a biodynamic food supplement (Citozym®) rich in carbohydrates, vitamins, and amylase and lactase and characterized by marked antioxidant activity. Citozym® administered topically and/or systemically, and in particular in both administrations, in patients suffering from Pus, has shown a marked reduction in bedsores and, in many cases, complete healing. Furthermore, it was possible to observe a lower incidence of side effects compared to conventional therapies. The results obtained, confirmed by various tests and recognized by the scientific community, allow us to conclude that treatment with Citozym® could represent a new and effective strategy for the treatment of PUs.
Collapse
Affiliation(s)
- Pasquale Ferorelli
- Saint George Campus—Scuola di Formazione Certificata Nazionale e Internazionale, Via Oprandi 1, 24065 Lovere, Italy; (P.F.); (G.G.); (G.M.); (M.R.)
| | - Manfred Doepp
- Department Psychology and Sports Science, Giessen Justus, Liebig University Gießen, 35398 Gießen, Germany;
| | - Stefano Lenzi
- Department of Health Engineering, Université Européenne de Bruxelles Jean Monnet, 1030 Brussels, Belgium;
| | - Roberto Rovelli
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy;
| | - Gennaro Gisonna
- Saint George Campus—Scuola di Formazione Certificata Nazionale e Internazionale, Via Oprandi 1, 24065 Lovere, Italy; (P.F.); (G.G.); (G.M.); (M.R.)
| | - Giuseppe Maierà
- Saint George Campus—Scuola di Formazione Certificata Nazionale e Internazionale, Via Oprandi 1, 24065 Lovere, Italy; (P.F.); (G.G.); (G.M.); (M.R.)
| | - Francesco Antonelli
- Scientific Association “A.R.S.S.—Associazione Ricerca Scientifica Sgurgola”, 00100 Rome, Italy;
| | - Massimo Radaelli
- Saint George Campus—Scuola di Formazione Certificata Nazionale e Internazionale, Via Oprandi 1, 24065 Lovere, Italy; (P.F.); (G.G.); (G.M.); (M.R.)
| | - Anna Shevchenko
- Department of Dermatology, Kabardine University, 121005 Nalchik, Russia;
| | - Giordana Feriotto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carlo Mischiati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilaria Borromeo
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00100 Rome, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00100 Rome, Italy;
| |
Collapse
|
6
|
He H, Huang W, Zhang S, Li J, Zhang J, Li B, Xu J, Luo Y, Shi H, Li Y, Xiao J, Ezekiel OC, Li X, Wu J. Microneedle Patch for Transdermal Sequential Delivery of KGF-2 and aFGF to Enhance Burn Wound Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307485. [PMID: 38623988 DOI: 10.1002/smll.202307485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Indexed: 04/17/2024]
Abstract
Severe burn wounds usually destroy key cells' functions of the skin resulting in delayed re-epithelization and wound regeneration. Promoting key cells' activities is crucial for burn wound repair. It is well known that keratinocyte growth factor-2 (KGF-2) participates in the proliferation and morphogenesis of epithelial cells while acidic fibroblast growth factor (aFGF) is a key mediator for fibroblast and endothelial cell growth and differentiation. However, thick eschar and the harsh environment of a burn wound often decrease the delivery efficiency of fibroblast growth factor (FGF) to the wound site. Therefore, herein a novel microneedle patch for sequential transdermal delivery of KGF-2 and aFGF is fabricated to enhance burn wound therapy. aFGF is first loaded in the nanoparticle (NPaFGF) and then encapsulated NPaFGF with KGF-2 in the microneedle patch (KGF-2/NPaFGF@MN). The result shows that KGF-2/NPaFGF@MN can successfully get across the eschar and sequentially release KGF-2 and aFGF. Additional data demonstrated that KGF-2/NPaFGF@MN achieved a quicker wound closure rate with reduced necrotic tissues, faster re-epithelialization, enhanced collagen deposition, and increased neo-vascularization. Further evidence suggests that improved wound healing is regulated by significantly elevated expressions of hypoxia-inducible factor-1 alpha (HIF-1ɑ) and heat shock protein 90 (Hsp90) in burn wounds. All these data proved that KGF-2/NPaFGF@MN is an effective treatment for wound healing of burns.
Collapse
Affiliation(s)
- Huacheng He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, P. R. China
| | - Wen Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shihui Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Bingxin Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jie Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yuting Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Huiling Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yue Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jian Xiao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Odinaka Cassandra Ezekiel
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
7
|
Karam M, Faraj M, Jaffa MA, Jelwan J, Aldeen KS, Hassan N, Mhanna R, Jaffa AA. Development of alginate and alginate sulfate/polycaprolactone nanoparticles for growth factor delivery in wound healing therapy. Biomed Pharmacother 2024; 175:116750. [PMID: 38749174 DOI: 10.1016/j.biopha.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024] Open
Abstract
Connective tissue growth factor (CTGF) holds great promise for enhancing the wound healing process; however, its clinical application is hindered by its low stability and the challenge of maintaining its effective concentration at the wound site. Herein, we developed novel double-emulsion alginate (Alg) and heparin-mimetic alginate sulfate (AlgSulf)/polycaprolactone (PCL) nanoparticles (NPs) for controlled CTGF delivery to promote accelerated wound healing. The NPs' physicochemical properties, cytocompatibility, and wound healing activity were assessed on immortalized human keratinocytes (HaCaT), primary human dermal fibroblasts (HDF), and a murine cutaneous wound model. The synthesized NPs had a minimum hydrodynamic size of 200.25 nm. Treatment of HaCaT and HDF cells with Alg and AlgSulf2.0/PCL NPs did not show any toxicity when used at concentrations <50 µg/mL for up to 72 h. Moreover, the NPs' size was not affected by elevated temperatures, acidic pH, or the presence of a protein-rich medium. The NPs have slow lysozyme-mediated degradation implying that they have an extended tissue retention time. Furthermore, we found that treatment of HaCaT and HDF cells with CTGF-loaded Alg and AlgSulf2.0/PCL NPs, respectively, induced rapid cell migration (76.12% and 79.49%, P<0.05). Finally, in vivo studies showed that CTGF-loaded Alg and AlgSulf2.0/PCL NPs result in the fastest and highest wound closure at the early and late stages of wound healing, respectively (36.49%, P<0.001 on day 1; 90.45%, P<0.05 on day 10), outperforming free CTGF. Double-emulsion NPs based on Alg or AlgSulf represent a viable strategy for delivering heparin-binding GF and other therapeutics, potentially aiding various disease treatments.
Collapse
Affiliation(s)
- Mia Karam
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Marwa Faraj
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Joseph Jelwan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Nadine Hassan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut Lebanon.
| |
Collapse
|
8
|
Xi L, Du J, Xue W, Shao K, Jiang X, Peng W, Li W, Huang S. Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy. Peptides 2024; 175:171183. [PMID: 38423213 DOI: 10.1016/j.peptides.2024.171183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Diabetic patients often experience impaired wound healing. Human cathelicidin LL-37 possesses various biological functions, such as anti-microbial, anti-inflammatory, and pro-wound healing activities. Autophagy has important effects on skin wound healing. However, little is known about whether LL-37 accelerates diabetic wound healing by regulating autophagy. In the study, we aimed to investigate the role of autophagy in LL-37-induced wound healing and uncover the underlying mechanisms involved. A full-thickness wound closure model was established in diabetic mice to evaluate the effects of LL-37 and an autophagy inhibitor (3-MA) on wound healing. The roles of LL-37 and 3-MA in regulating keratinocyte migration were assessed using transwell migration and wound healing assays. The activation of transcription factor EB (TFEB) was measured using western blotting and immunofluorescence (IF) assays of its nuclear translocation. The results showed that LL-37 treatment improved wound healing in diabetic mice, whereas these effects were reversed by 3-MA. In vitro, 3-MA decreased the effects of LL-37 on promoting HaCat keratinocyte migration in the presence of high glucose (HG). Mechanistically, LL-37 promoted TFEB activation and resulted in subsequent activation of autophagy, as evidenced by increased nuclear translocation of TFEB and increased expression of ATG5, ATG7, and beclin 1 (BECN1), whereas these changes were blocked by TFEB knockdown. As expected, TFEB knockdown damaged the effects of LL-37 on promoting keratinocyte migration. Collectively, these results suggest that LL-37 accelerates wound healing in diabetic mice by activating TFEB-dependent autophagy, providing new insights into the mechanism by which LL-37 promotes diabetic wound healing.
Collapse
Affiliation(s)
- Liuqing Xi
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Xue
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Kan Shao
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Jiang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfang Peng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Li
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Harmon KA, Burnette MD, Avery JT, Kimmerling KA, Mowry KC. Varying Properties of Extracellular Matrix Grafts Impact Their Durability and Cell Attachment and Proliferation in an In Vitro Chronic Wound Model. J Tissue Eng Regen Med 2024; 2024:6632276. [PMID: 40225755 PMCID: PMC11918773 DOI: 10.1155/2024/6632276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2025]
Abstract
While acute wounds typically progress through the phases of wound healing, chronic wounds often stall in the inflammatory phase due to elevated levels of matrix metalloproteinases (MMPs) and proinflammatory cytokines. Dysregulated expression of MMPs can result in the breakdown of extracellular matrix (ECM) formed during the wound healing process, resulting in stalled wounds. Native collagen-based wound dressings offer a potential wound management option to sequester excess MMPs and support cellular interactions that allow wound progression through the natural healing process. Herein, we utilized commercially available ECM matrices, two derived from porcine small intestinal submucosa (PCMP, 2 layers; PCMP-XT, 5 layers) and one derived from propria submucosa (ovine forestomach matrix, OFM, 1 layer), to demonstrate the impact of processing methodologies (e.g., layering and crosslinking) on functional characteristics needed for the management of chronic wounds. Grafts were evaluated for structural composition using scanning electron microscopy and histology, ability to reduce MMPs using fluorometric assays, and durability in an in vitro degradation chronic wound model. Both intact (nondegraded) and partially degraded grafts were assessed for their ability to serve as a functional cell scaffold using primary human fibroblasts. Grafts differed in matrix substructure and composition. While all grafts demonstrated attenuation of MMP activity, PCMP and PCMP-XT showed larger reductions of MMP levels. OFM rapidly degraded in the in vitro degradation model (<3 hours), while PCMP and PCMP-XT were significantly more durable (>7 days). The ability of PCMP and PCMP-XT to serve as scaffolds for cellular attachment was not impacted by degradation in vitro. Three ECM grafts with varying structural and functional characteristics exhibited differential durability when degraded in a simulated chronic wound model. Those that withstood rapid degradation maintained their ability to function as a scaffold to support attachment and proliferation of fibroblasts, a cell type important for wound healing.
Collapse
Affiliation(s)
- Katrina A. Harmon
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Miranda D. Burnette
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Justin T. Avery
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Kelly A. Kimmerling
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| | - Katie C. Mowry
- Organogenesis, 2 Perimeter Park South, Suite 310E, Birmingham, AL 35243, USA
| |
Collapse
|
10
|
Chen T, Jiang Y, Huang JP, Wang J, Wang ZK, Ding PH. Essential elements for spatiotemporal delivery of growth factors within bio-scaffolds: A comprehensive strategy for enhanced tissue regeneration. J Control Release 2024; 368:97-114. [PMID: 38355052 DOI: 10.1016/j.jconrel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The precise delivery of growth factors (GFs) in regenerative medicine is crucial for effective tissue regeneration and wound repair. However, challenges in achieving controlled release, such as limited half-life, potential overdosing risks, and delivery control complexities, currently hinder their clinical implementation. Despite the plethora of studies endeavoring to accomplish effective loading and gradual release of GFs through diverse delivery methods, the nuanced control of spatial and temporal delivery still needs to be elucidated. In response to this pressing clinical imperative, our review predominantly focuses on explaining the prevalent strategies employed for spatiotemporal delivery of GFs over the past five years. This review will systematically summarize critical aspects of spatiotemporal GFs delivery, including judicious bio-scaffold selection, innovative loading techniques, optimization of GFs activity retention, and stimulating responsive release mechanisms. It aims to identify the persisting challenges in spatiotemporal GFs delivery strategies and offer an insightful outlook on their future development. The ultimate objective is to provide an invaluable reference for advancing regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yao Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jia-Ping Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zheng-Ke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Pei-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
11
|
Guo D, Li X, Wang J, Liu X, Wang Y, Huang S, Dang N. Single-cell RNA-seq reveals keratinocyte and fibroblast heterogeneity and their crosstalk via epithelial-mesenchymal transition in psoriasis. Cell Death Dis 2024; 15:207. [PMID: 38472183 PMCID: PMC10933286 DOI: 10.1038/s41419-024-06583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
The pathogenesis of psoriasis, a chronic inflammatory autoimmune skin disease with a high global prevalence, remains unclear. We performed a high-resolution single-cell RNA sequencing analysis of 94,759 cells from 13 samples, including those from psoriasis model mice and wild-type mice. We presented a single-cell atlas of the skin of imiquimod-induced mice with psoriasis and WT mice, especially the heterogeneity of keratinocytes and fibroblasts. More interestingly, we discovered that special keratinocyte subtypes and fibroblast subtypes could interact with each other through epithelial-mesenchymal transition and validated the results with drug verification. Moreover, we conducted a tentative exploration of the potential pathways involved and revealed that the IL-17 signalling pathway may be the most relevant pathway. Collectively, we revealed the full-cycle landscape of key cells associated with psoriasis and provided a more comprehensive understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Dianhao Guo
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaokang Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wang
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, China
| | - Xin Liu
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yibo Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuhong Huang
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ningning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Wang P, Cai F, Li Y, Yang X, Feng R, Lu H, Bai X, Han J. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. Int J Biol Macromol 2024; 261:129300. [PMID: 38216016 DOI: 10.1016/j.ijbiomac.2024.129300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Currently, there is a rising global incidence of diverse acute and chronic wounds, underscoring the immediate necessity for research and treatment advancements in wound repair. Hydrogels have emerged as promising materials for wound healing due to their unique physical and chemical properties. This review explores the classification and characteristics of hydrogel dressings, innovative preparation strategies, and advancements in delivering and releasing bioactive substances. Furthermore, it delves into the functional applications of hydrogels in wound healing, encompassing areas such as infection prevention, rapid hemostasis and adhesion adaptation, inflammation control and immune regulation, granulation tissue formation, re-epithelialization, and scar prevention and treatment. The mechanisms of action of various functional hydrogels are also discussed. Finally, this article also addresses the current limitations of hydrogels and provides insights into their potential future applications and upcoming innovative designs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yu Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Rongqin Feng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - He Lu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Ning Y, Yuan Z, Wang Q, He J, Zhu W, Ren DN, Wo D. Epigallocatechin-3-gallate promotes wound healing response in diabetic mice by activating keratinocytes and promoting re-epithelialization. Phytother Res 2024; 38:1013-1027. [PMID: 38140774 DOI: 10.1002/ptr.8099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Type 2 diabetes (T2D) is a metabolic disorder that causes numerous complications including impaired wound healing and poses a significant challenge for the management of diabetic patients. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol that exhibits anti-inflammatory and anti-oxidative benefits in skin wounds, however, the direct effect of EGCG on epidermal keratinocytes, the primary cells required for re-epithelialization in wound healing remains unknown. Our study aims to examine the underlying mechanisms of EGCG's ability to promote re-epithelialization and wound healing in T2D-induced wounds. Murine models of wound healing in T2D were established via feeding high-fat high-fructose diet (HFFD) and the creation of full-thickness wounds. Mice were administered daily with EGCG or vehicle to examine the wound healing response and underlying molecular mechanisms of EGCG's protective effects. Systemic administration of EGCG in T2D mice robustly accelerated the wound healing response following injury. EGCG induced nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2) and promoted cytokeratin 16 (K16) expression to activate epidermal keratinocytes and robustly promoted re-epithelialization of wounds in diabetic mice. Further, EGCG demonstrated high binding affinity with Kelch-like ECH-associated protein 1 (KEAP1), thereby inhibiting KEAP1-mediated degradation of NRF2. Our findings provide important evidence that EGCG accelerates the wound healing response in diabetic mice by activating epidermal keratinocytes, thereby promoting re-epithelialization of wounds via K16/NRF2/KEAP1 signaling axis. These mechanistic insights into the protective effects of EGCG further suggest its therapeutic potential as a promising drug for treating chronic wounds in T2D.
Collapse
Affiliation(s)
- Yongling Ning
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhiying Yuan
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Wang
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jia He
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weidong Zhu
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dan-Ni Ren
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Da Wo
- Academy of Integrative Medicine, Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
14
|
Choi CR, Kim EJ, Choi TH, Han J, Kang D. Enhancing Human Cutaneous Wound Healing through Targeted Suppression of Large Conductance Ca 2+-Activated K + Channels. Int J Mol Sci 2024; 25:803. [PMID: 38255877 PMCID: PMC10815220 DOI: 10.3390/ijms25020803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The modulation of K+ channels plays a crucial role in cell migration and proliferation, but the effect of K+ channels on human cutaneous wound healing (CWH) remains underexplored. This study aimed to determine the necessity of modulating K+ channel activity and expression for human CWH. The use of 25 mM KCl as a K+ channel blocker markedly improved wound healing in vitro (in keratinocytes and fibroblasts) and in vivo (in rat and porcine models). K+ channel blockers, such as quinine and tetraethylammonium, aided in vitro wound healing, while Ba2+ was the exception and did not show similar effects. Single-channel recordings revealed that the Ba2+-insensitive large conductance Ca2+-activated K+ (BKCa) channel was predominantly present in human keratinocytes. NS1619, an opener of the BKCa channel, hindered wound healing processes like proliferation, migration, and filopodia formation. Conversely, charybdotoxin and iberiotoxin, which are BKCa channel blockers, dramatically enhanced these processes. The downregulation of BKCa also improved CWH, whereas its overexpression impeded these healing processes. These findings underscore the facilitative effect of BKCa channel suppression on CWH, proposing BKCa channels as potential molecular targets for enhancing human cutaneous wound healing.
Collapse
Affiliation(s)
- Chang-Rok Choi
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
| | - Eun-Jin Kim
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Tae Hyun Choi
- Thenevus Plastic Surgery Clinic, Seoul 07013, Republic of Korea;
| | - Jaehee Han
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
| | - Dawon Kang
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (C.-R.C.); (E.-J.K.); (J.H.)
- Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
15
|
Yu T, Cui Y, Xin S, Fu Y, Ding Y, Hao L, Nie H. Mesenchymal stem cell conditioned medium alleviates acute lung injury through KGF-mediated regulation of epithelial sodium channels. Biomed Pharmacother 2023; 169:115896. [PMID: 37984305 DOI: 10.1016/j.biopha.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Acute lung injury (ALI) is a progressive inflammatory injury, and mesenchymal stem cells (MSCs) can be used to treat ALI. MSC-conditioned medium (MSC-CM) contains many cytokines, in which keratinocyte growth factor (KGF) is a soluble factor that plays a role in lung development. We aim to explore the protective effects of MSCs secreted KGF on ALI, and investigate the involvement of epithelial sodium channel (ENaC), which are important in alveolar fluid reabsorption. Both lipopolysaccharides (LPS)-induced mouse and alveolar organoid ALI models were established to confirm the potential therapeutic effect of MSCs secreted KGF. Meanwhile, the expression and regulation of ENaC were determined in alveolar type II epithelial (ATII) cells. The results demonstrated that MSC-CM and KGF could alleviate the extent of inflammation-related pulmonary edema in ALI mice, which was abrogated by a KGF neutralizing antibody. In an alveolar organoid ALI model, KGF in MSC-CM could improve the proliferation and decrease the differentiation of ATII cells. At the cellular level, the LPS-inhibited protein expression of ENaC could be reversed by KGF in MSC-CM. In addition, bioinformatics analysis and our experimental data provided the evidence that the NF-κB signaling pathway may be involved in the regulation of ENaC. Our research confirmed that the therapeutic effect of MSC-CM on edematous ALI was closely related to KGF, which may be involved in the proliferation and differentiation of ATII cells, as well as the upregulation of ENaC expression by the inhibition of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China; Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Shuning Xin
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
16
|
Telgenhoff D. Claudin-2 in hyperproliferative migrating keratinocytes and migration inhibition via siRNA knockdown. Anat Histol Embryol 2023; 52:723-731. [PMID: 37147871 DOI: 10.1111/ahe.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
Claudin-2 is a tight junction protein found in various tissues including the epidermis of the skin. Intracellular signalling via claudin-2 may have an effect on cell proliferation and migration. While the role of claudin-2 in the epidermis has not been established, here we show an increase in claudin-2 expression in hyperproliferative archival skin samples. To further examine the role of claudin-2 in cell migration we examined its expression in cultured keratinocytes and found it was increased in wound margins in an in vitro scratch test assay. We then used a claudin-2 knockdown assay using small interfering ribonucleic acid (siRNA) with a 77% transfection efficiency and decrease in claudin-2 protein via Western blot analysis to examine cell migration, which was inhibited following claudin-2 knockdown over a 5-day period. Cells transfected with claudin-2 siRNA also showed a decreased size compared to controls and a more diffuse staining pattern. Lastly we examined claudin-2 expression in migrating keratinocytes by Western blot analysis and found a significant decrease in protein staining in scratch-test assay cultures after 4 h, followed by a significant increase in claudin-2 protein after 24 h. Taken together these results indicate a role for claudin-2 signalling in proliferation and cell migration in the epidermis of the skin.
Collapse
Affiliation(s)
- Dale Telgenhoff
- Clinical and Diagnostic Sciences, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
17
|
Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Applications of MXene and its modified materials in skin wound repair. Front Bioeng Biotechnol 2023; 11:1154301. [PMID: 36994359 PMCID: PMC10042448 DOI: 10.3389/fbioe.2023.1154301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
The rapid healing and repair of skin wounds has been receiving much clinical attention. Covering the wound with wound dressing to promote wound healing is currently the main treatment for skin wound repair. However, the performance of wound dressing prepared by a single material is limited and cannot meet the requirements of complex conditions for wound healing. MXene is a new two-dimensional material with electrical conductivity, antibacterial and photothermal properties and other physical and biological properties, which has a wide range of applications in the field of biomedicine. Based on the pathophysiological process of wound healing and the properties of ideal wound dressing, this review will introduce the preparation and modification methods of MXene, systematically summarize and review the application status and mechanism of MXene in skin wound healing, and provide guidance for subsequent researchers to further apply MXene in the design of skin wound dressing.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weijian Kong
- The Second Hospital of Jilin University, Changchun, China
| | - Renfeng Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Chunli Yao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Chunli Yao,
| |
Collapse
|
18
|
Jia Y, Shao JH, Zhang KW, Zou ML, Teng YY, Tian F, Chen MN, Chen WW, Yuan ZD, Wu JJ, Yuan FL. Emerging Effects of Resveratrol on Wound Healing: A Comprehensive Review. Molecules 2022; 27:molecules27196736. [PMID: 36235270 PMCID: PMC9570564 DOI: 10.3390/molecules27196736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
Resveratrol (RSV) is a natural extract that has been extensively studied for its significant anti-inflammatory and antioxidant effects, which are closely associated with a variety of injurious diseases and even cosmetic medicine. In this review, we have researched and summarized the role of resveratrol and its different forms of action in wound healing, exploring its role and mechanisms in promoting wound healing through different modes of action such as hydrogels, fibrous scaffolds and parallel ratio medical devices with their anti-inflammatory, antioxidant, antibacterial and anti-ageing properties and functions in various cells that may play a role in wound healing. This will provide a direction for further understanding of the mechanism of action of resveratrol in wound healing for future research.
Collapse
Affiliation(s)
- Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Jia-Hao Shao
- Wuxi Clinical Medicine Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
| | - Ying-Ying Teng
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Fan Tian
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Meng-Nan Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Wei-Wei Chen
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi 214041, China
- Department of Burns and Plastic Surgery, the Affiliated Hospital of Jiangnan University, Wuxi 214041, China
- Correspondence: ; Tel./Fax: +86-510-82603332
| |
Collapse
|
19
|
Wu X, Sun Q, He S, Wu Y, Du S, Gong L, Yu J, Guo H. Ropivacaine inhibits wound healing by suppressing the proliferation and migration of keratinocytes via the PI3K/AKT/mTOR Pathway. BMC Anesthesiol 2022; 22:106. [PMID: 35428182 PMCID: PMC9011930 DOI: 10.1186/s12871-022-01646-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background After surgery, millions of people suffer from delayed healing or wound dehiscence with subsequent severe complications, even death. Previous studies have reported that ropivacaine exhibits anti-proliferative and anti-migratory activities on numerous cells. Whether ropivacaine is able to influence the proliferation and migration of keratinocytes is still unclear. This study aimed to investigate the effect of ropivacaine on keratinocytes and its underlying molecular mechanism. Methods Adult male Sprague–Dawley rats were allocated to establish wound healing models with or without 0.75% ropivacaine treatment and assessed the epidermal thickness by HE staining. HaCaT cells were cultured to evaluate the effect of ropivacaine on wound healing. The cell proliferation, apoptosis status and migration were detected in vitro. Moreover, western blotting was used to examine expression to with PI3K/AKT/mTOR signaling pathways for molecular studies and the changes in inflammatory factors (IL-6, IL-10, TNF-α) were detected by ELISA. Results In the present study, we found that ropivacaine delayed wound closure in vivo. In vitro experiments, it was demonstrated that ropivacaine significantly inhibited the proliferation and migration of HaCaT cells via the suppression of PI3K/AKT/mTOR signaling pathway. Activation of PI3K/AKT/mTOR signaling pathway reversed the effects of ropivacaine on the proliferation and migration of HaCaT cells. Furthermore, ropivacaine contributed to the release of pro-inflammatory cytokines (IL-6 and TNF-α) and inhibited the secretion of anti-inflammatory cytokines of keratinocytes (IL-10). Conclusions Our research demonstrated that ropivacaine treatment showed a more decreased wound closure rate. Mechanistically, we found that ropivacaine suppressed the proliferation and migration of keratinocytes and altered the expression of cytokines by inhibiting PI3K/AKT/mTOR pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-022-01646-0.
Collapse
|