1
|
Kary AD, Noelle H, Magin CM. Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering. ACS Macro Lett 2025; 14:434-447. [PMID: 40102038 DOI: 10.1021/acsmacrolett.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Irreversible progressive pulmonary diseases drastically reduce the patient quality of life, while transplantation remains the only definitive cure. Research into lung regeneration pathways holds significant potential to expand and promote the discovery of new treatment options. Polymeric biomaterials designed to replicate key tissue characteristics (i.e., biochemical composition and mechanical cues) show promise for creating environments in which to study chronic lung diseases and initiate lung tissue regeneration. In this Viewpoint, we explore how naturally derived materials can be employed alone or combined with engineered polymer systems to create advanced tissue culture platforms. Pulmonary tissue models have historically leveraged natural materials, including basement membrane extracts and a decellularized extracellular matrix, as platforms for lung regeneration studies. Here, we provide an overview of the progression of pulmonary regenerative engineering, exploring how innovations in the growing field of tissue-informed biomaterials have the potential to advance lung regeneration research by bridging the gap between biological relevance and mechanical precision.
Collapse
Affiliation(s)
- Anton D Kary
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Haley Noelle
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Shih JH, Chern E. Decellularized Porcine Aorta as a Scaffold for Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering. Stem Cell Rev Rep 2025:10.1007/s12015-025-10875-y. [PMID: 40227487 DOI: 10.1007/s12015-025-10875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Tissue engineering has been an integral part of regenerative medicine. Functional biomimetic structures were assembled by combining appropriate scaffolds with specific cells. The decellularization of animal tissue preserved the natural biochemical components and structural properties of the extracellular matrix (ECM) of specific organs, thereby providing a suitable niche for tissue-specific cell differentiation and growth. In this study, the extracellular matrix (ECM) of the porcine aorta was obtained through trypsin-based decellularization. The resulting porcine aortic ECM retained a favorable collagen composition, exhibited no cytotoxicity, and demonstrated chemophilic properties for mesenchymal stem cells. Human adipose-derived mesenchymal stem cells (hADSCs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiMSCs) were transplanted onto the decellularized porcine aortic ECM, where successful differentiation into a mature cartilage layer was observed. These findings suggested that the porcine aortic ECM could serve as a potential scaffold with tubular and linear structures for tissue engineering applications. Functional human iMSCs (induced-mesenchymal stem cells) were generated from human iPSCs (induced-pluripotent stem cells) and analyzed for differences compared to primary MSCs via RNA-seq. The hiMSCs were applied to decellularized porcine aortic ECM (extracellular matrix), demonstrating chondrogenic differentiation and confirming the usability of xenogeneic ECM.
Collapse
Affiliation(s)
- Jheng-Hong Shih
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
van Hengel EVA, van der Laan LJW, de Jonge J, Verstegen MMA. Towards Safety and Regulation Criteria for Clinical Applications of Decellularized Organ-Derived Matrices. Bioengineering (Basel) 2025; 12:136. [PMID: 40001655 PMCID: PMC11851377 DOI: 10.3390/bioengineering12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Whole-organ decellularization generates scaffolds containing native extracellular matrix (ECM) components with preserved tissue microarchitecture, providing a promising advancement in tissue engineering and regenerative medicine. Decellularization retains the ECM integrity which is important for supporting cell attachment, growth, differentiation, and biological function. Although there are consensus guidelines to standardize decellularization processes and ECM characterization, no specific criteria or standards regarding matrix sterility and biosafety have been established so far. This regulatory gap in safety, sterilization, and regulation criteria has hampered the clinical translation of decellularized scaffolds. In this review, we identify essential criteria for the safe clinical use of decellularized products from both human and animal sources. These include the decellularization efficacy, levels of chemical residue, preservation of ECM composition and physical characteristics, and criteria for the aseptic processing of decellularization to assure sterility. Furthermore, we explore key considerations for advancing decellularized scaffolds into clinical practice, focusing on regulatory frameworks and safety requirements. Addressing these challenges is crucial for minimizing risks of adverse reactions or infection transmission, thereby accelerating the adoption of tissue-engineered products. This review aims to provide a foundation for establishing robust guidelines, supporting the safe and effective integration of decellularized scaffolds into regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (E.V.A.v.H.); (L.J.W.v.d.L.); (J.d.J.)
| |
Collapse
|
4
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
5
|
Vikranth T, Dale T, Forsyth NR. Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering. J Tissue Eng Regen Med 2024; 2024:9940673. [PMID: 40225750 PMCID: PMC11918256 DOI: 10.1155/2024/9940673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 04/15/2025]
Abstract
Persistent air leaks caused by thoracic surgery, physical trauma, or spontaneous pneumothoraces are a cause of patient morbidity with need for extended chest tube durations and surgical interventions. Current treatment measures involve mechanical closure of air leaks in the compromised pleura. Organ and membrane decellularisation offers a broad range of biomimetic scaffolds of allogeneic and xenogeneic origins, exhibiting innate tissue-specific characteristics. We explored a physicochemical method for decellularising porcine pleural membranes (PPM) as potential tissue-engineered surrogates for lung tissue repair. Decellularised PPM (dPPM) was characterised with histology, quantitative assays, mechanical testing, and sterility evaluation. Cytotoxicity and recellularisation assays assessed biocompatibility of decellularised PPM (dPPM). Haematoxylin and Eosin (H&E) staining showed an evident reduction in stained nuclei in the dPPM, confirmed with nuclear staining and analysis ( ∗∗∗∗ p < 0.0001). Sulphated glycosaminoglycans (sGAG) and collagen histology demonstrated minimal disruption to the gross structural assembly of core extracellular matrix (ECM) in dPPM. Confocal imaging demonstrated realignment of ECM fibres in dPPM against native control. Quantitative analysis defined a significant change in the angular distribution ( ∗∗∗∗ p < 0.0001) and coherence ( ∗∗∗ p < 0.001) of fibre orientations in dPPM versus native ECM. DNA quantification indicated ≥85% reduction in native nuclear dsDNA in dPPM ( ∗∗ p < 0.01). Collagen and sGAG quantification indicated reductions of both ( ∗∗ p < 0.01). dPPM displayed increased membrane thickness ( ∗∗∗ p < 0.001). However, Young's modulus (459.67 ± 10.36 kPa) and ultimate tensile strength (4036.22 ± 155.1 kPa) of dPPM were comparable with those of native controls at (465.82 ± 10.51 kPa) and (3912.9 ± 247.42 kPa), respectively. In vitro cytotoxicity and scaffold biocompatibility assays demonstrated robust human mesothelial cell line (MeT-5A) attachment and viability. DNA quantification in reseeded dPPM with MeT-5A cells exhibited significant increase in DNA content at day 7 ( ∗∗ p < 0.01) and day 15 ( ∗∗∗∗ p < 0.0001) against unseeded dPPM. Here, we define a decellularisation protocol for porcine pleura that represents a step forward in their potential tissue engineering applications as bioscaffolds.
Collapse
Affiliation(s)
| | - Tina Dale
- School of Pharmacy and BioengineeringGuy Hilton Research CentreKeele University, Keele, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and BioengineeringGuy Hilton Research CentreKeele University, Keele, UK
| |
Collapse
|
6
|
Kasravi M, Yaghoobi A, Tayebi T, Hojabri M, Taheri AT, Shirzad F, Nooshin BJ, Mazloomnejad R, Ahmadi A, Tehrani FA, Yazdanpanah G, Farjoo MH, Niknejad H. MMP inhibition as a novel strategy for extracellular matrix preservation during whole liver decellularization. BIOMATERIALS ADVANCES 2024; 156:213710. [PMID: 38035639 DOI: 10.1016/j.bioadv.2023.213710] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
As the only reliable treatment option for end-stage liver diseases, conventional liver transplantation confronts major supply limitations. Accordingly, the decellularization of discarded livers to produce bioscaffolds that support recellularization with progenitor/stem cells has emerged as a promising translational medicine approach. The success of this approach will substantially be determined by the extent of extracellular matrix (ECM) preservation during the decellularization process. Here, we assumed that the matrix metalloproteinase (MMP) inhibition could reduce the ECM damage during the whole liver decellularization of an animal model using a perfusion-based system. We demonstrated that the application of doxycycline as an MMP inhibitor led to significantly higher preservation of collagen, glycosaminoglycans, and hepatic growth factor (HGF) contents, as well as mechanical and structural features, including tensile strength, fiber integrity, and porosity. Notably, produced bioscaffolds were biocompatible and efficiently supported cell viability and proliferation in vitro. We also indicated that produced bioscaffolds efficiently supported HepG2 cell function upon seeding onto liver ECM discs using albumin and urea assay. Additionally, MMP inhibitor pretreated decellularized livers were more durable in contact with collagenase digestion compared to control bioscaffolds in vitro. Using zymography, we confirmed the underlying mechanism that results in these promising effects is through the inhibition of MMP2 and MMP9. Overall, we demonstrated a novel method based on MMP inhibition to ameliorate the ECM structure and composition preservation during liver decellularization as a critical step in fabricating transplantable bioengineered livers.
Collapse
Affiliation(s)
- Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Hojabri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shirzad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Jambar Nooshin
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh A Tehrani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Chen TA, Sharma D, Jia W, Ha D, Man K, Zhang J, Yang Y, Zhou Y, Kamp TJ, Zhao F. Detergent-Based Decellularization for Anisotropic Cardiac-Specific Extracellular Matrix Scaffold Generation. Biomimetics (Basel) 2023; 8:551. [PMID: 37999192 PMCID: PMC10669368 DOI: 10.3390/biomimetics8070551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Cell-derived extracellular matrix (ECM) has become increasingly popular in tissue engineering applications due to its ability to provide tailored signals for desirable cellular responses. Anisotropic cardiac-specific ECM scaffold decellularized from human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts (hiPSC-CFs) mimics the native cardiac microenvironment and provides essential biochemical and signaling cues to hiPSC-derived cardiomyocytes (hiPSC-CMs). The objective of this study was to assess the efficacy of two detergent-based decellularization methods: (1) a combination of ethylenediaminetetraacetic acid and sodium dodecyl sulfate (EDTA + SDS) and (2) a combination of sodium deoxycholate and deoxyribonuclease (SD + DNase), in preserving the composition and bioactive substances within the aligned ECM scaffold while maximumly removing cellular components. The decellularization effects were evaluated by characterizing the ECM morphology, quantifying key structural biomacromolecules, and measuring preserved growth factors. Results showed that both treatments met the standard of cell removal (less than 50 ng/mg ECM dry weight) and substantially preserved major ECM biomacromolecules and growth factors. The EDTA + SDS treatment was more time-efficient and has been determined to be a more efficient method for generating an anisotropic ECM scaffold from aligned hiPSC-CFs. Moreover, this cardiac-specific ECM has demonstrated effectiveness in supporting the alignment of hiPSC-CMs and their expression of mature structural and functional proteins in in vitro cultures, which is crucial for cardiac tissue engineering.
Collapse
Affiliation(s)
- Te-An Chen
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dhavan Sharma
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Wenkai Jia
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Donggi Ha
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jianhua Zhang
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy J. Kamp
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Hoffman E, Song Y, Zhang F, Asarian L, Downs I, Young B, Han X, Ouyang Y, Xia K, Linhardt RJ, Weiss DJ. Regional and disease-specific glycosaminoglycan composition and function in decellularized human lung extracellular matrix. Acta Biomater 2023; 168:388-399. [PMID: 37433361 PMCID: PMC10528722 DOI: 10.1016/j.actbio.2023.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Decellularized lung scaffolds and hydrogels are increasingly being utilized in ex vivo lung bioengineering. However, the lung is a regionally heterogenous organ with proximal and distal airway and vascular compartments of different structures and functions that may be altered as part of disease pathogenesis. We previously described decellularized normal whole human lung extracellular matrix (ECM) glycosaminoglycan (GAG) composition and functional ability to bind matrix-associated growth factors. We now determine differential GAG composition and function in airway, vascular, and alveolar-enriched regions of decellularized lungs obtained from normal, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) patients. Significant differences were observed in heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA) content and CS/HS compositions between both different lung regions and between normal and diseased lungs. Surface plasmon resonance demonstrated that HS and CS from decellularized normal and COPD lungs similarly bound fibroblast growth factor 2, but that binding was decreased in decellularized IPF lungs. Binding of transforming growth factor β to CS was similar in all three groups but binding to HS was decreased in IPF compared to normal and COPD lungs. In addition, cytokines dissociate faster from the IPF GAGs than their counterparts. The differences in cytokine binding features of IPF GAGs may result from different disaccharide compositions. The purified HS from IPF lung is less sulfated than that from other lungs, and the CS from IPF contains more 6-O-sulfated disaccharide. These observations provide further information for understanding functional roles of ECM GAGs in lung function and disease. STATEMENT OF SIGNIFICANCE: Lung transplantation remains limited due to donor organ availability and need for life-long immunosuppressive medication. One solution, the ex vivo bioengineering of lungs via de- and recellularization has not yet led to a fully functional organ. Notably, the role of glycosaminoglycans (GAGs) remaining in decellularized lung scaffolds is poorly understood despite their important effects on cell behaviors. We have previously investigated residual GAG content of native and decellularized lungs and their respective functionality, and role during scaffold recellularization. We now present a detailed characterization of GAG and GAG chain content and function in different anatomical regions of normal diseased human lungs. These are novel and important observations that further expand knowledge about functional GAG roles in lung biology and disease.
Collapse
Affiliation(s)
- Evan Hoffman
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Yuefan Song
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Fuming Zhang
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Loredana Asarian
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Isaac Downs
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Brad Young
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Xiaorui Han
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Yilan Ouyang
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Ke Xia
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Robert J Linhardt
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Daniel J Weiss
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA.
| |
Collapse
|
9
|
Derman ID, Singh YP, Saini S, Nagamine M, Banerjee D, Ozbolat IT. Bioengineering and Clinical Translation of Human Lung and its Components. Adv Biol (Weinh) 2023; 7:e2200267. [PMID: 36658734 PMCID: PMC10121779 DOI: 10.1002/adbi.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.
Collapse
Affiliation(s)
- I. Deniz Derman
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Shweta Saini
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Chemistry, Penn State University; University Park, PA,16802, USA
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University; University Park, PA, 16802, USA
- Materials Research Institute, Penn State University; University Park, PA, 16802, USA
- Cancer Institute, Penn State University; University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University; University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
10
|
Weiss DJ. What is the need and why is it time for innovative models for understanding lung repair and regeneration? Front Pharmacol 2023; 14:1130074. [PMID: 36860303 PMCID: PMC9968746 DOI: 10.3389/fphar.2023.1130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Advances in tissue engineering continue at a rapid pace and have provided novel methodologies and insights into normal cell and tissue homeostasis, disease pathogenesis, and new potential therapeutic strategies. The evolution of new techniques has particularly invigorated the field and span a range from novel organ and organoid technologies to increasingly sophisticated imaging modalities. This is particularly relevant for the field of lung biology and diseases as many lung diseases, including chronic obstructive pulmonary disease (COPD) and idiopathic fibrosis (IPF), among others, remain incurable with significant morbidity and mortality. Advances in lung regenerative medicine and engineering also offer new potential avenues for critical illnesses such as the acute respiratory distress syndrome (ARDS) which also continue to have significant morbidity and mortality. In this review, an overview of lung regenerative medicine with focus on current status of both structural and functional repair will be presented. This will serve as a platform for surveying innovative models and techniques for study, highlighting the need and timeliness for these approaches.
Collapse
|
11
|
Shakir S, Hackett TL, Mostaço-Guidolin LB. Bioengineering lungs: An overview of current methods, requirements, and challenges for constructing scaffolds. Front Bioeng Biotechnol 2022; 10:1011800. [PMID: 36394026 PMCID: PMC9649450 DOI: 10.3389/fbioe.2022.1011800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 09/28/2023] Open
Abstract
Chronic respiratory diseases remain a significant health burden worldwide. The only option for individuals with end-stage lung failure remains Lung Transplantation. However, suitable organ donor shortages and immune rejection following transplantation remain a challenge. Since alternative options are urgently required to increase tissue availability for lung transplantation, researchers have been exploring lung bioengineering extensively, to generate functional, transplantable organs and tissue. Additionally, the development of physiologically-relevant artificial tissue models for testing novel therapies also represents an important step toward finding a definite clinical solution for different chronic respiratory diseases. This mini-review aims to highlight some of the most common methodologies used in bioengineering lung scaffolds, as well as the benefits and disadvantages associated with each method in conjunction with the current areas of research devoted to solving some of these challenges in the area of lung bioengineering.
Collapse
Affiliation(s)
- Shahad Shakir
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - Tillie Louise Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
12
|
Nicholls DL, Rostami S, Karoubi G, Haykal S. Perfusion decellularization for vascularized composite allotransplantation. SAGE Open Med 2022; 10:20503121221123893. [PMID: 36120388 PMCID: PMC9478687 DOI: 10.1177/20503121221123893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/12/2022] [Indexed: 11/01/2022] Open
Abstract
Vascularized composite allotransplantation is becoming the emerging standard for reconstructive surgery treatment for patients with limb trauma and facial injuries involving soft tissue loss. Due to the complex immunogenicity of composite grafts, patients who undergo vascularized composite allotransplantation are reliant on lifelong immunosuppressive therapy. Decellularization of donor grafts to create an extracellular matrix bio-scaffold provides an immunomodulatory graft that preserves the structural and bioactive function of the extracellular matrix. Retention of extracellular matrix proteins, growth factors, and signaling cascades allow for cell adhesion, migration, proliferation, and tissue regeneration. Perfusion decellularization of detergents through the graft vasculature allows for increased regent access to all tissue layers, and removal of cellular debris through the venous system. Grafts can subsequently be repopulated with appropriate cells through the vasculature to facilitate tissue regeneration. The present work reviews methods of decellularization, process parameters, evaluation of adequate cellular and nuclear removal, successful applications of perfusion decellularization for use in vascularized composite allotransplantation, and current limitations.
Collapse
Affiliation(s)
| | - Sara Rostami
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Departments of Mechanical and Industrial Engineering and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Panahi F, Baheiraei N, Sistani MN, Salehnia M. Analysis of decellularized mouse liver fragment and its recellularization with human endometrial mesenchymal cells as a candidate for clinical usage. Prog Biomater 2022; 11:409-420. [PMID: 36117225 DOI: 10.1007/s40204-022-00203-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022] Open
Abstract
Decellularized tissue has been used as a natural extracellular matrix (ECM) or bioactive biomaterial for tissue engineering. The present study aims to compare and analyze different decellularization protocols for mouse liver fragments and cell seeding and attachment in the created scaffold using human endometrial mesenchymal cells (hEMCs).After collecting and dissecting the mouse liver into small fragments, they were decellularized by Triton X-100 and six concentrations of sodium dodecyl sulfate (SDS; 0.025, 0.05, 0.1, 0.25, 0.5, and 1%) at different exposure times. The morphology and DNA content of decellularized tissues were studied, and the group with better morphology and lower DNA content was selected for additional assessments. Masson's tri-chrome and periodic acid Schiff staining were performed to evaluate ECM materials. Raman confocal spectroscopy analysis was used to quantify the amount of collagen type I, III and IV, glycosaminoglycans and elastin. Scanning electron microscopy and MTT assay were applied to assess the ultrastructure and porosity and cytotoxicity of decellularized scaffolds, respectively. In the final step, hEMCs were seeded on the decellularized scaffold and cultured for one week, and finally the cell attachment and homing were studied morphologically.The treated group with 0.1% SDS for 24 h showed a well preserved ECM morphology similar to native control and showing the minimum level of DNA. Raman spectroscopy results demonstrated that the amount of collagen type I and IV was not significantly changed in this group compared to the control, but a significant reduction in collagen III and elastin protein levels was seen (P < 0.001). The micrographs showed a porous ECM in decellularized sample similar to the native control with the range of 2.25 µm to 7.86 µm. After cell seeding, the infiltration and migration of cells in different areas of the scaffold were seen. In conclusion, this combined protocol for mouse liver decellularization is effective and its recellularization with hEMCs could be suitable for clinical applications in the future.
Collapse
Affiliation(s)
- Fatomeh Panahi
- Department of Biomaterial Engineering, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering Division, Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nezhad Sistani
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Biomaterial Engineering, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran. .,Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran.
| |
Collapse
|
14
|
Li P, Feng M, Hu X, Zhang C, Zhu J, Xu G, Li L, Zhao Y. Biological evaluation of acellular bovine bone matrix treated with NaOH. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:58. [PMID: 35838844 PMCID: PMC9287214 DOI: 10.1007/s10856-022-06678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
We mainly proceed from the view of biological effect to study the acellular bovine bone matrix (ABBM) by the low concentration of hydrogen oxidation. After cleaning the bovine bone routinely, it was cleaned with different concentrations of NaOH and stained with hematoxylin-eosin (HE) to observe the effect of decellulization. The effect of bovine bone matrix treated with NaOH were observed by optical microscopy and scanning electron microscopy (SEM), and compared by DNA residue detection. Cell toxicity was also evaluated in MC3T3-E1 cells by CCK-8. For the in vitro osteogenesis detection, alkaline phosphatase (ALP) staining and alizarin red (AR) staining were performed in MC3T3-E1 cells. And the in vivo experiment, Micro CT, HE and Masson staining were used to observe whether the osteogenic effect of the materials treated with 1% NaOH solution was affected at 6 and 12 weeks. After the bovine bone was decellularized with different concentrations of NaOH solution, HE staining showed that ultrasonic cleaning with 1% NaOH solution for 30 min had the best effect of decellularization. The SEM showed that ABBM treated with 1% NaOH solution had few residual cells on the surface of the three-dimensional porous compared to ABBM treated with conventional chemical reagents. DNA residues and cytotoxicity of ABBM treated with 1% NaOH were both reduced. The results of ALP staining and AR staining showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis effect. The results of micro-CT, HE staining and Masson staining in animal experiments also showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis ability. The decellularization treatment of ABBM with the low concentration of NaOH can be more cost-effective, effectively remove the residual cellular components, without affecting the osteogenic ability. Our work may provide a novelty thought and a modified method to applicate the acellular bovine bone matrix clinically better. Graphical abstract.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Mengchun Feng
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Xiantong Hu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Chunli Zhang
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Jialiang Zhu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, 116011, Liaoning Province, PR China.
| | - Li Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, PR China.
| |
Collapse
|
15
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
16
|
Chan JK, Chadwick EA, Taniguchi D, Ahmadipour M, Suzuki T, Romero D, Amon C, Waddell TK, Karoubi G, Bazylak A. Cell Inertia: Predicting Cell Distributions in Lung Vasculature to Optimize Re-endothelialization. Front Bioeng Biotechnol 2022; 10:891407. [PMID: 35573256 PMCID: PMC9092599 DOI: 10.3389/fbioe.2022.891407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 12/05/2022] Open
Abstract
We created a transient computational fluid dynamics model featuring a particle deposition probability function that incorporates inertia to quantify the transport and deposition of cells in mouse lung vasculature for the re-endothelialization of the acellular organ. Our novel inertial algorithm demonstrated a 73% reduction in cell seeding efficiency error compared to two established particle deposition algorithms when validated with experiments based on common clinical practices. We enhanced the uniformity of cell distributions in the lung vasculature by increasing the injection flow rate from 3.81 ml/min to 9.40 ml/min. As a result, the cell seeding efficiency increased in both the numerical and experimental results by 42 and 66%, respectively.
Collapse
Affiliation(s)
- Jason K.D. Chan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Eric A. Chadwick
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Mohammadali Ahmadipour
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
| | - Takaya Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - David Romero
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Cristina Amon
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering (BME), University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Golnaz Karoubi
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Aimy Bazylak
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- *Correspondence: Aimy Bazylak,
| |
Collapse
|
17
|
Pai AC, Lynch TJ, Ahlers BA, Ievlev V, Engelhardt JF, Parekh KR. A Novel Bioreactor for Reconstitution of the Epithelium and Submucosal Glands in Decellularized Ferret Tracheas. Cells 2022; 11:1027. [PMID: 35326478 PMCID: PMC8947657 DOI: 10.3390/cells11061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Tracheal grafts introduce the possibility to treat airway pathologies that require resection. While there has been success with engraftment of the surface airway epithelium (SAE) onto decellularized tracheas, there has been minimal advancement in regenerating the submucosal glands (SMGs). We designed a cost-effective open-system perfusion bioreactor to investigate the engraftment potential of ferret SAEs and murine myoepithelial cells (MECs) on a partly decellularized ferret trachea with the goal of creating a fully functional tracheal replacement. An air-liquid interface was also arranged by perfusing humidified air through the lumen of a recellularized conduit to induce differentiation. Our versatile bioreactor design was shown to support the successful partial decellularization and recellularization of ferret tracheas. The decellularized grafts maintained biomechanical integrity and chondrocyte viability, consistent with other publications. The scaffolds supported SAE basal cell engraftment, and early differentiation was observed once an air-liquid interface had been established. Lastly, MEC engraftment was sustained, with evidence of diffuse SMG reconstitution. This model will help shed light on SMG regeneration and basal cell differentiation in vitro for the development of fully functional tracheal grafts before transplantation.
Collapse
Affiliation(s)
- Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Bethany A. Ahlers
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
18
|
Pedroza-Montoya FE, Tamez-Mata YA, Simental-Mendía M, Soto-Domínguez A, García-Pérez MM, Said-Fernández S, Montes-de-Oca-Luna R, González-Flores JR, Martínez-Rodríguez HG, Vilchez-Cavazos F. Repair of ovine peripheral nerve injuries with xenogeneic human acellular sciatic nerves prerecellularized with allogeneic Schwann-like cells-an innovative and promising approach. Regen Ther 2022; 19:131-143. [PMID: 35229011 PMCID: PMC8850753 DOI: 10.1016/j.reth.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The iatrogenic effects of repairing peripheral nerve injuries (PNIs) with autografts (AGTs) encouraged the present study to involve a new approach consisting of grafting xenogeneic prerecellularized allogeneic cells instead of AGTs. METHODS We compared sheep's AGT regenerative and functional capacity with decellularized human nerves prerecellularized with allogeneic Schwann-like cell xenografts (onwards called xenografts). Mesenchymal stem cells were isolated from ovine adipose tissue and induced in vitro to differentiate into Schwann-like cells (SLCs). Xenografts were grafted in ovine sciatic nerves. Left sciatic nerves (20 mm) were excised from 10 sheep. Then, five sheep were grafted with 20 mm xenografts, and five were reimplanted with their nerve segment rotated 180° (AGT). RESULTS All sheep treated with xenografts or AGT progressively recovered the strength, movement, and coordination of their intervened limb, which was still partial when the study was finished at sixth month postsurgery. At this time, numerous intrafascicular axons were observed in the distal and proximal graft extremes of both xenografts or AGTs, and submaximal nerve electrical conduction was observed. The xenografts and AGT-affected muscles appeared partially stunted. CONCLUSIONS Xenografts and AGT were equally efficacious in starting PNI repair and justified further studies using longer observation times. The hallmarks from this study are that human xenogeneic acellular scaffolds were recellularized with allogenic SCL and were not rejected by the nonhuman receptors but were also as functional as AGT within a relatively short time postsurgery. Thus, this innovative approach promises to be more practical and accessible than AGT or allogenic allografts and safer than AGT for PNI repair.
Collapse
Affiliation(s)
- Florencia-E. Pedroza-Montoya
- Autonomous University of Nuevo Leon (UANL), Medicine School, Department of Biochemistry and Molecular Medicine, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Yadira-A. Tamez-Mata
- UANL, Medicine School and University Hospital “Dr. José Eleuterio González”, Orthopedics and Traumatology Service, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Mario Simental-Mendía
- UANL, Medicine School and University Hospital “Dr. José Eleuterio González”, Orthopedics and Traumatology Service, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Adolfo Soto-Domínguez
- UANL, Medicine School, Department of Histology, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Mauricio-M. García-Pérez
- UANL, Medicine School and University Hospital “Dr. José. Eleuterio González” Service of Plastic Surgery, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Salvador Said-Fernández
- Autonomous University of Nuevo Leon (UANL), Medicine School, Department of Biochemistry and Molecular Medicine, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Roberto Montes-de-Oca-Luna
- UANL, Medicine School, Department of Histology, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - José-R. González-Flores
- UANL, Medicine School and University Hospital “Dr. José. Eleuterio González” Service of Plastic Surgery, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Herminia-G. Martínez-Rodríguez
- Autonomous University of Nuevo Leon (UANL), Medicine School, Department of Biochemistry and Molecular Medicine, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| | - Félix Vilchez-Cavazos
- UANL, Medicine School and University Hospital “Dr. José Eleuterio González”, Orthopedics and Traumatology Service, Av. Madero and Dr. Eduardo Aguirre Pequeño S/N Col. Mitras Centro, Monterrey, Nuevo Leon C.P 64460, Mexico
| |
Collapse
|
19
|
Moffat D, Ye K, Jin S. Decellularization for the retention of tissue niches. J Tissue Eng 2022; 13:20417314221101151. [PMID: 35620656 PMCID: PMC9128068 DOI: 10.1177/20417314221101151] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/01/2022] [Indexed: 12/25/2022] Open
Abstract
Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types.
Collapse
Affiliation(s)
- Deana Moffat
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| |
Collapse
|
20
|
Ahmadipour M, Taniguchi D, Duchesneau P, Aoki FG, Phillips G, Sinderby C, Waddell TK, Karoubi G. Use of High-Rate Ventilation Results in Enhanced Recellularization of Bioengineered Lung Scaffolds. Tissue Eng Part C Methods 2021; 27:661-671. [PMID: 34847779 DOI: 10.1089/ten.tec.2021.0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While transplantation is a viable treatment option for end-stage lung diseases, this option is highly constrained by the availability of organs and postoperative complications. A potential solution is the use of bioengineered lungs generated from repopulated acellular scaffolds. Effective recellularization, however, remains a challenge. In this proof-of-concept study, mice lung scaffolds were decellurized and recellurized using human bronchial epithelial cells (BEAS2B). We present a novel liquid ventilation protocol enabling control over tidal volume and high rates of ventilation. The use of a physiological tidal volume (300 μL) for mice and a higher ventilation rate (40 breaths per minute vs. 1 breath per minute) resulted in higher cell numbers and enhanced cell surface coverage in mouse lung scaffolds as determined via histological evaluation, genomic polymerase chain reaction (PCR) analysis, and immunohistochemistry. A biomimetic lung bioreactor system was designed to include the new ventilation protocol and allow for simultaneous vascular perfusion. We compared the lungs cultured in our dual system to lungs cultured with a bioreactor allowing vascular perfusion only and showed that our system significantly enhances cell numbers and surface coverage. In summary, our results demonstrate the importance of the physical environment and forces for lung recellularization. Impact statement New bioreactor systems are required to further enhance the regeneration process of bioengineered lungs. This proof-of-concept study describes a novel ventilation protocol that allows for control over ventilation parameters such as rate and tidal volume. Our data show that a higher rate of ventilation is correlated with higher cell numbers and increased surface coverage. We designed a new biomimetic bioreactor system that allows for ventilation and simultaneous perfusion. Compared to a traditional perfusion only system, recellularization was enhanced in lungs recellularized with our new biomimetic bioreactor.
Collapse
Affiliation(s)
- MohammadAli Ahmadipour
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Pascal Duchesneau
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada
| | - Fabio Gava Aoki
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Science and Technology (ICT), Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | | | - Christer Sinderby
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Critical Care, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Ontario, Canada
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, and University of Toronto, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, University Health Network, Toronto, Ontario, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Ahmed E, Saleh T, Xu M. Recellularization of Native Tissue Derived Acellular Scaffolds with Mesenchymal Stem Cells. Cells 2021; 10:cells10071787. [PMID: 34359955 PMCID: PMC8304639 DOI: 10.3390/cells10071787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The functionalization of decellularized scaffolds is still challenging because of the recellularization-related limitations, including the finding of the most optimal kind of cell(s) and the best way to control their distribution within the scaffolds to generate native mimicking tissues. That is why researchers have been encouraged to study stem cells, in particular, mesenchymal stem cells (MSCs), as alternative cells to repopulate and functionalize the scaffolds properly. MSCs could be obtained from various sources and have therapeutic effects on a wide range of inflammatory/degenerative diseases. Therefore, in this mini-review, we will discuss the benefits using of MSCs for recellularization, the factors affecting their efficiency, and the drawbacks that may need to be overcome to generate bioengineered transplantable organs.
Collapse
Affiliation(s)
- Ebtehal Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Tarek Saleh
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Correspondence: or ; Tel.: +1-513-558-4725; Fax: +1-513-558-2141
| |
Collapse
|
22
|
Bergmann S, Schindler M, Munger C, Penfold CA, Boroviak TE. Building a stem cell-based primate uterus. Commun Biol 2021; 4:749. [PMID: 34140619 PMCID: PMC8211708 DOI: 10.1038/s42003-021-02233-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
The uterus is the organ for embryo implantation and fetal development. Most current models of the uterus are centred around capturing its function during later stages of pregnancy to increase the survival in pre-term births. However, in vitro models focusing on the uterine tissue itself would allow modelling of pathologies including endometriosis and uterine cancers, and open new avenues to investigate embryo implantation and human development. Motivated by these key questions, we discuss how stem cell-based uteri may be engineered from constituent cell parts, either as advanced self-organising cultures, or by controlled assembly through microfluidic and print-based technologies.
Collapse
Affiliation(s)
- Sophie Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Magdalena Schindler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Clara Munger
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Christopher A Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
- Wellcome Trust - Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, UK.
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
23
|
Sargazi Z, Zavareh S, Jafarabadi M, Salehnia M. An efficient protocol for decellularization of the human endometrial fragments for clinical usage. Prog Biomater 2021; 10:119-130. [PMID: 34021494 DOI: 10.1007/s40204-021-00156-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022] Open
Abstract
The present study was aimed to compare different decellularization protocols for human endometrial fragments. The freeze-thaw cycles in combination with treatment by Triton X-100 and four concentrations of sodium dodecyl sulfate (SDS; 0.1, 0.5, 1, and 1.5%) with two exposure times (24 and 72 h) were applied for tissues decellularization. After analysis the morphology and DNA content of tissues the group with better morphology and lower DNA content was selected for further assessments. The nucleus by Acridine orange and extracellular matrix (ECM) using Masson's trichrome, Alcian blue, and periodic acid-Schiff staining were studied. The amount of tissues collagen types I and IV, fibronectin, glycosaminoglycans (GAGs), and elastin was analyzed by Raman spectroscopy. The ultrastructure and porosity of decellularized scaffold were studied by scanning electron microscopy (SEM). The MTT assay was applied for assessments of cytotoxicity of scaffold. The treated group with 1% SDS for 72 h showed the morphology similar to native control in having the minimum level of DNA and well preserved ECM. Raman spectroscopy results demonstrated, the amount of collagen types I and IV, GAG, and fibronectin was not significantly different in decellularized scaffold compared with native group but the elastin protein level was significantly decreased (P < 0.001). SEM micrographs also showed a porous and fiber rich ECM in decellularized sample similar to the native control. This combined protocol for decellularization of human endometrial tissue is effective and it could be suitable for recellularization and clinical applications in the future.
Collapse
Affiliation(s)
- Zinat Sargazi
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran
| | - Saeed Zavareh
- School of Biology, Damghan University, Damghan, Iran
| | - Mina Jafarabadi
- Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehnia
- Anatomy Department, Faculty of Medical Sciences, Tarbiat Modares University, 14115-111, Tehran, Iran.
| |
Collapse
|
24
|
Xing Y, Varghese B, Ling Z, Kar AS, Reinoso Jacome E, Ren X. Extracellular Matrix by Design: Native Biomaterial Fabrication and Functionalization to Boost Tissue Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00210-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Shirani A, Ganji F, Golmohammadi M, Hashemi SM, Mozafari M, Amoabediny G, Karkuki Osguei N, Samadikuchaksaraei A. Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111938. [PMID: 33641926 DOI: 10.1016/j.msec.2021.111938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
The concept of providing tissue engineering scaffolds with natural physical properties and minimal immunogenicity has not been systematically approached for the lungs yet. Here, the rat acellular lung tissue (ALT) was cross-linked to provide either EDC/NHS cross-linked tissue (EDC/NHS-CLT) or tannic acid cross-linked tissue (TA-CLT). Young's modulus revealed that EDC/NHS-CLT had mechanical properties similar to the native lung and culture of lung mesenchymal cells showed a higher potential of cell proliferation on EDC/NHS-CLT versus TA-CLT and ALT. The in vitro immunogenicity tests showed a strong induction of T-cell proliferation by TA-CLT and an attenuated macrophage induction by TA-CLT. Processed rat lungs were implanted xenogenically into the mouse peritoneal cavity and the host-implant interactions showed that tannic acid is not released from TA-CLT in a physiologically effective dose. The profile of peritoneal fluid proinflammatory (TNFα, IL-1β, IL-12p70 and IL-17) and anti-inflammatory (IL-10 and TGFβ1) cytokines, and CD3+ T-lymphocytes and CD11b+ macrophages revealed that apart from induction of high levels of IL-17 during the first week and IL-10 during the second to third weeks after implantation by TA-CLT, other indicators of immune reactions to cross-linked tissues were not significantly different from ALT. Also, a high fibrotic reaction to TA-CLT was observed on the weeks 2-3, but alveolar structures were preserved in EDC/NHS-CLT. Our findings show that by controlled EDC/NHS cross-linking, an acellular lung scaffold could be provided with mechanical properties similar to native lung, which promotes mesenchymal lung cells proliferation and does not stimulate recipient's immune system more than a non-cross-linked tissue.
Collapse
Affiliation(s)
- Ali Shirani
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ganji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Golmohammadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | | | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zaminy A, Sayad-Fathi S, Kasmaie FM, Jahromi Z, Zendedel A. Decellularized peripheral nerve grafts by a modified protocol for repair of rat sciatic nerve injury. Neural Regen Res 2021; 16:1086-1092. [PMID: 33269754 PMCID: PMC8224104 DOI: 10.4103/1673-5374.300449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that acellular nerve xenografts do not require immunosuppression and use of acellular nerve xenografts for repair of peripheral nerve injury is safe and effective. However, there is currently no widely accepted standard chemical decellularization method. The purpose of this study is to investigate the efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol in the repair of rat sciatic nerve injury. In the modified Hudson’s protocol, Triton X-200 was replaced by Triton X-100, and DNase and RNase were used to prepare accelular nerve xenografts. The efficiency of bovine-derived nerves decellularized by the modified Hudson’s protocol was tested in vitro by hematoxylin & eosin, Alcian blue, Masson’s trichrome, and Luxol fast blue staining, immunohistochemistry, and biochemical assays. The decellularization approach excluded cells, myelin, and axons of nerve xenografts, without affecting the organization of nerve xenografts. The decellularized nerve xenograft was used to bridge a 7 mm-long sciatic nerve defect to evaluate its efficiency in the repair of peripheral nerve injury. At 8 weeks after transplantation, sciatic function index in rats subjected to transplantation of acellular nerve xenograft was similar to that in rats undergoing transplantation of nerve allograft. Morphological analysis revealed that there were a large amount of regenerated myelinated axons in acellular nerve xenograft; the number of Schwann cells in the acellular nerve xenograft was similar to that in the nerve allograft. These findings suggest that acellular nerve xenografts prepared by the modified Hudson’s protocol can be used for repair of peripheral nerve injury. This study was approved by the Research Ethics Committee, Research and Technology Chancellor of Guilan University of Medical Sciences, Iran (approval No. IR.GUMS.REC.1395.332) on February 11, 2017.
Collapse
Affiliation(s)
- Arash Zaminy
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Sayad-Fathi
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zohreh Jahromi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
27
|
Ahmadipour M, Duchesneau P, Taniguchi D, Waddell TK, Karoubi G. Negative Pressure Cell Delivery Augments Recellularization of Decellularized Lungs. Tissue Eng Part C Methods 2021; 27:1-11. [PMID: 33307958 DOI: 10.1089/ten.tec.2020.0251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For end-stage lung disease, lung transplantation remains the only treatment but is limited by the availability of organs. Production of bioengineered lungs via recellularization is an alternative but is hindered by inadequate repopulation. We present a cell delivery method via the generation of negative pressure. Decellularized lungs were seeded with human bronchial epithelial cells using gravity-based perfusion or negative pressure (via air removal). After delivery, lungs were maintained in static conditions for 18 h, and cell surface coverage was qualitatively assessed using histology and analyzed by subjective scoring and an image analysis software. Negative pressure seeded lungs had higher cell surface coverage area, and this effect was maintained following 5 days of culture. Enhanced coverage via negative pressure cell delivery was also observed when vasculature seeded with endothelial cells. Our findings show that negative pressure cell delivery is a superior approach for the recellularization of the bioengineered lung. Impact statement New strategies are required to overcome the shortage of organ donors for lung transplantation. Recellularization of acellular biological scaffolds is an exciting potential alternative. Adequate recellularization, however, remains a significant challenge. This proof of concept study describes a novel cell delivery approach, which further enhances the recellularization of decellularized lungs. Organs seeded and cultured with this method possess higher cell surface coverage and number compared to those seeded via traditional gravity-based perfusion approaches.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Pascal Duchesneau
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daisuke Taniguchi
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Thomas K Waddell
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Golnaz Karoubi
- Latner Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Predeina AL, Dukhinova MS, Vinogradov VV. Bioreactivity of decellularized animal, plant, and fungal scaffolds: perspectives for medical applications. J Mater Chem B 2020; 8:10010-10022. [PMID: 33063072 DOI: 10.1039/d0tb01751e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous biomedical applications imply supportive materials to improve protective, antibacterial, and regenerative abilities upon surgical interventions, oncotherapy, regenerative medicine, and others. With the increasing variability of the possible sources, the materials of natural origin are among the safest and most accessible biomedical tools. Animal, plant, and fungal tissues can further undergo decellularization to improve their biocompatibility. Decellularized scaffolds lack the most reactive cellular material, nuclear and cytoplasmic components, that predominantly trigger immune responses. At the same time, the outstanding initial three-dimensional microarchitecture, biomechanical properties, and general composition of the scaffolds are preserved. These unique features make the scaffolds perfect ready-to-use platforms for various biomedical applications, implying cell growth and functionalization. Decellularized materials can be repopulated with various cells upon request, including epithelial, endothelial, muscle and neuronal cells, and applied for structural and functional biorepair within diverse biological sites, including the skin and musculoskeletal, cardiovascular, and central nervous systems. However, the molecular and cellular mechanisms behind scaffold and host tissue interactions remain not fully understood, which significantly restricts their integration into clinical practice. In this review, we address the essential aspects of decellularization, scaffold preparation techniques, and its biochemical composition and properties, which determine the biocompatibility and immunogenicity of the materials. With the integrated evaluation of the scaffold profile in living systems, decellularized animal, plant, and fungal scaffolds have the potential to become essential instruments for safe and controllable biomedical applications.
Collapse
|
29
|
Karakioulaki M, Papakonstantinou E, Stolz D. Extracellular matrix remodelling in COPD. Eur Respir Rev 2020; 29:29/158/190124. [PMID: 33208482 DOI: 10.1183/16000617.0124-2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/16/2020] [Indexed: 12/30/2022] Open
Abstract
The extracellular matrix (ECM) of the lung plays several important roles in lung function, as it offers a low resistant pathway that allows the exchange of gases, provides compressive strength and elasticity that supports the fragile alveolar-capillary intersection, controls the binding of cells with growth factors and cell surface receptors and acts as a buffer against retention of water.COPD is a chronic inflammatory respiratory condition, characterised by various conditions that result in progressive airflow limitation. At any stage in the course of the disease, acute exacerbations of COPD may occur and lead to accelerated deterioration of pulmonary function. A key factor of COPD is airway remodelling, which refers to the serious alterations of the ECM affecting airway wall thickness, resistance and elasticity. Various studies have shown that serum biomarkers of ECM turnover are significantly associated with disease severity in patients with COPD and may serve as potential targets to control airway inflammation and remodelling in COPD. Unravelling the complete molecular composition of the ECM in the diseased lungs will help to identify novel biomarkers for disease progression and therapy.
Collapse
Affiliation(s)
- Meropi Karakioulaki
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland.,Dept of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daiana Stolz
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital, Basel, Switzerland
| |
Collapse
|
30
|
Laker L, Dohmen PM, Smit FE. The sequential effects of a multifactorial detergent based decellularization process on bovine pericardium. Biomed Phys Eng Express 2020; 6. [PMID: 35066494 DOI: 10.1088/2057-1976/abb5e9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/12/2022]
Abstract
Decellularization is a promising method for obtaining extracellular matrix scaffolds (ECM) to be used as replacement material in reconstructive procedures. The effectiveness of decellularization and the alterations to the ECM vary, depending on several factors, including the tissue source, composition and density. With an optimized decellularization process, decellularized scaffolds can preserve the spatial and temporal ECM microenvironment, which play an integral role in modulating cell migration, proliferation and differentiation. The exploration of a variety of decellularization protocols has led to mixed outcomes and comparisons between decellularization protocols could not attribute these differences to any single step in a multiple-step process. This study aimed to characterize the effects of each step of a multifactorial decellularization method on the scaffold structure and mechanical integrity of bovine pericardium. Each step of the decellularization process and the effect on the tissue was assessed using hematoxylin and eosin staining, electron microscopy, total protein, ECM protein and triglyceride quantification. The biomechanical properties were assessed using uniaxial tensile strength testing. Cell lysis occurred mainly during the detergent and alcohol steps. Collagen structural damage occurred during the detergent and alcohol steps, with no significant decreased in collagen concentration. No significant damage to elastin could be shown throughout the process, however glycosaminoglycans were significantly removed by detergent treatment. Triglycerides were removed mostly by the alcohol treatment. The strength of the pericardium decreased somewhat after each step of the protocol. It is important to characterize each decellularization protocol with regards to the decellularization efficiency and the effect on the ECM proteins structure and function to accurately evaluatein vivooutcomes.
Collapse
Affiliation(s)
- L Laker
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), Bloemfontein, South Africa
| | - P M Dohmen
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), Bloemfontein, South Africa.,Department of Cardiac Surgery, Heart Centre Rostock, University of Rostock, Rostock, Germany
| | - F E Smit
- Department of Cardiothoracic Surgery, Faculty of Health Sciences, University of the Free State (UFS), Bloemfontein, South Africa
| |
Collapse
|
31
|
Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020; 21:E5447. [PMID: 32751654 PMCID: PMC7432490 DOI: 10.3390/ijms21155447] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Collapse
Affiliation(s)
- Unai Mendibil
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Raquel Ruiz-Hernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Sugoi Retegi-Carrion
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
| | - Nerea Garcia-Urquia
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Beatriz Olalde-Graells
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 Donostia-San Sebastian, Spain; (N.G.-U.); (B.O.-G.)
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain; (U.M.); (R.R.-H.); (S.R.-C.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
32
|
Emami A, Talaei-Khozani T, Vojdani Z, Zarei Fard N. Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2020; 109:19-32. [PMID: 32627321 DOI: 10.1002/jbm.b.34677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
Bone regeneration can be possible through grafts or engineered bone replacement when bone defects are larger than the critical size. Decellularized bone extracellular matrix (ECM) is an alternative that is able to accelerate tissue regeneration, while decellularization protocols influence engineered bone quality. The objective of this study was to compare the quality of decellularized bone produced through different methods. Four decellularization methods were employed using (a) sodium lauryl ether sulfate (SLES), (b) sodium dodecyl sulfate (SDS) 0.5%, (c) SDS 1% and (d) trypsin/EDTA. All samples were then washed in triton X-100. DNA quantification, hematoxylin and eosin, and Hoechst staining showed that although DNA was depleted in all scaffolds, treatment with SLES led to a significantly lower DNA content. Glycosaminoglycan quantification, Raman confocal microscopy, alcian blue and PAS staining exhibited higher carbohydrate retention in the scaffolds treated with SLES and SDS 0.5%. Raman spectra, scanning electron microscopy and trichrom Masson staining showed more collagen content in SLES and SDS-treated scaffolds compared to trypsin/EDTA-treated scaffolds. Therefore, although trypsin/EDTA could efficiently decellularize the scaffolds, it washed out the ECM contents. Also, both MTT and attachment tests showed a significantly higher cell viability in SLES-treated scaffolds. Raman spectra revealed that while the first washing procedure did not remove SLES traces in the scaffolds, excessive washing reduced ECM contents. In conclusion, SLES and, to a lesser degree, SDS 0.5% protocols could efficiently preserve ultrastructure and ECM constituents of decellularized bone tissue and can thus be suggested as nontoxic and safe protocols for bone regeneration.
Collapse
Affiliation(s)
- Asrin Emami
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei Fard
- Department of Anatomical Sciences, School of Medicine, Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Ohata K, Ott HC. Human-scale lung regeneration based on decellularized matrix scaffolds as a biologic platform. Surg Today 2020; 50:633-643. [PMID: 32363425 PMCID: PMC7305261 DOI: 10.1007/s00595-020-02000-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
Lung transplantation is currently the only curative treatment for patients with end-stage lung disease; however, donor organ shortage and the need for intense immunosuppression limit its broad clinical application. Bioartificial lungs created by combining native matrix scaffolds with patient-derived cells might overcome these problems. Decellularization involves stripping away cells while leaving behind the extracellular matrix scaffold. Cadaveric lungs are decellularized by detergent perfusion, and histologic examination confirms the absence of cellular components but the preservation of matrix proteins. The resulting lung scaffolds are recellularized in a bioreactor that provides biomimetic conditions, including vascular perfusion and liquid ventilation. Cell seeding, engraftment, and tissue maturation are achieved in whole-organ culture. Bioartificial lungs are transplantable, similarly to donor lungs, because the scaffolds preserve the vascular and airway architecture. In rat and porcine transplantation models, successful anastomoses of the vasculature and the airway were achieved, and gas exchange was evident after reperfusion. However, long-term function has not been achieved because of the immaturity of the vascular bed and distal lung epithelia. The goal of this strategy is to create patient-specific transplantable lungs using induced pluripotent stem cell (iPSC)-derived cells. The repopulation of decellularized scaffolds to create transplantable organs is one of possible future clinical applications of iPSCs.
Collapse
Affiliation(s)
- Keiji Ohata
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, CPZN 4800, Boston, MA, 02114, USA
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, CPZN 4800, Boston, MA, 02114, USA.
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
De Santis MM, Wagner DE. Collagen IV: a critical new starting point for engineering upper airways. Eur Respir J 2020; 55:2001130. [PMID: 32554777 DOI: 10.1183/13993003.01130-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Martina M De Santis
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Molecular Medicine Center, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Molecular Medicine Center, Faculty of Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Yanagiya M, Kitano K, Yotsumoto T, Asahina H, Nagayama K, Nakajima J. Transplantation of Bioengineered Lungs Created From Recipient-Derived Cells Into a Large Animal Model. Semin Thorac Cardiovasc Surg 2020; 33:263-271. [PMID: 32348880 DOI: 10.1053/j.semtcvs.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/28/2022]
Abstract
The use of bioartificial lungs may represent a breakthrough for the treatment of end-stage lung disease. The present study aimed to evaluate the feasibility of transplanting bioengineered lungs created from autologous cells. Porcine decellularized lung scaffolds were seeded with porcine recipient-derived airway and vascular cells. The porcine recipient-derived cells were collected from lung tissue obtained by pulmonary wedge resection. Following culture of autologous cells in the scaffolds, the resulting grafts were unilaterally transplanted into porcine recipients (n = 3). Allograft left unilateral lung transplantation was performed in the control group (n = 3). Left unilateral transplantation of decellularized grafts was also performed in a separate control group (n = 2). In vivo functions were assessed for 2 hours after transplantation. Histologic evaluation and immunostaining showed the presence of airway and vascular cells in the bioengineered lungs. No animals survived in the decellularized transplant group, whereas all animals survived in the bioengineered transplant and allotransplant groups. However, bioengineered lung grafts showed marked bullous changes. The oxygen exchange was comparable between the bioengineered lung graft transplant and allograft transplant groups. However, the carbon dioxide gas exchange of the bioengineered lung graft transplant group was significantly lower than that of the allograft transplant group at 2 hours after transplantation (4.10 ± 0.87 mm Hg vs 24.7 ± 10.1 mm Hg, P = 0.02). Transplantation of bioartificial lung grafts created from autologous cells was feasible in the super-acute phase. However, bullous changes and poor carbon dioxide gas exchange remain limitations of this method.
Collapse
Affiliation(s)
- Masahiro Yanagiya
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Kentaro Kitano
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuma Yotsumoto
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiromichi Asahina
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Lopera Higuita M, Griffiths LG. Antigen removal process preserves function of small diameter venous valved conduits, whereas SDS-decellularization results in significant valvular insufficiency. Acta Biomater 2020; 107:115-128. [PMID: 32151701 DOI: 10.1016/j.actbio.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Chronic venous disease (CVD) is the most common reported chronic condition in the United States, affecting more than 25 million Americans. Regardless of its high occurrence, current therapeutic options are far from ideal due to their palliative nature. For best treatment outcomes, challenging cases of chronic venous insufficiency (CVI) are treated by repair or replacement of venous valves. Regrettably, the success of venous valve transplant is dependent on the availability of autologous venous valves and hindered by the possibility of donor site complications and increased patient morbidity. Therefore, the use of alternative tissue sources to provide off-the-shelf venous valve replacements has potential to be extremely beneficial to the field of CVI. This manuscript demonstrates the capability of producing off-the-shelf fully functional venous valved extracellular matrix (ECM) scaffold conduits from bovine saphenous vein (SV), using an antigen removal (AR) method. AR ECM scaffolds maintained native SV structure-function relationships and associated venous valves function. Conversely, SDS decellularization caused significant changes to the collagen and elastin macromolecular structures, resulting in collagen fibril merging, elimination of fibril crimp, amalgaming collagen fibers and fragmentation of the inner elastic lamina. ECM changes induced by SDS decellularization resulted in significant venous valve dysfunction. Venous valved conduits generated using the AR approach have potential to serve as off-the-shelf venous valve replacements for CVI. STATEMENT OF SIGNIFICANCE: Retention of the structure and composition of extracellular matrix (ECM) proteins within xenogeneic scaffolds for tissue engineering is of crucial importance, due to the undeniable effect ECM proteins can impose on repopulating cells and function of the resultant biomaterial. This manuscript demonstrates that alteration or elimination of ECM proteins via commonly utilized decellularization approach results in complete disruption of venous valve function. Conversely, retention of the delicate ECM structure and composition of native venous tissue, using an antigen removal tissue processing method, results in preservation of native venous valve function.
Collapse
|
37
|
Dorrello NV, Vunjak-Novakovic G. Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Front Bioeng Biotechnol 2020; 8:269. [PMID: 32351946 PMCID: PMC7174601 DOI: 10.3389/fbioe.2020.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The shortage of transplantable donor organs directly affects patients with end-stage lung disease, for which transplantation remains the only definitive treatment. With the current acceptance rate of donor lungs of only 20%, rescuing even one half of the rejected donor lungs would increase the number of transplantable lungs threefold, to 60%. We review recent advances in lung bioengineering that have potential to repair the epithelial and vascular compartments of the lung. Our focus is on the long-term support and recovery of the lung ex vivo, and the replacement of defective epithelium with healthy therapeutic cells. To this end, we first review the roles of the lung epithelium and vasculature, with focus on the alveolar-capillary membrane, and then discuss the available and emerging technologies for ex vivo bioengineering of the lung by decellularization and recellularization. While there have been many meritorious advances in these technologies for recovering marginal quality lungs to the levels needed to meet the standards for transplantation – many challenges remain, motivating further studies of the extended ex vivo support and interventions in the lung. We propose that the repair of injured epithelium with preservation of quiescent vasculature will be critical for the immediate blood supply to the lung and the lung survival and function following transplantation.
Collapse
Affiliation(s)
- N Valerio Dorrello
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
38
|
Abstract
The pulmonary blood-gas barrier represents a remarkable feat of engineering. It achieves the exquisite thinness needed for gas exchange by diffusion, the strength to withstand the stresses and strains of repetitive and changing ventilation, and the ability to actively maintain itself under varied demands. Understanding the design principles of this barrier is essential to understanding a variety of lung diseases, and to successfully regenerating or artificially recapitulating the barrier ex vivo. Many classical studies helped to elucidate the unique structure and morphology of the mammalian blood-gas barrier, and ongoing investigations have helped to refine these descriptions and to understand the biological aspects of blood-gas barrier function and regulation. This article reviews the key features of the blood-gas barrier that enable achievement of the necessary design criteria and describes the mechanical environment to which the barrier is exposed. It then focuses on the biological and mechanical components of the barrier that preserve integrity during homeostasis, but which may be compromised in certain pathophysiological states, leading to disease. Finally, this article summarizes recent key advances in efforts to engineer the blood-gas barrier ex vivo, using the platforms of lung-on-a-chip and tissue-engineered whole lungs. © 2020 American Physiological Society. Compr Physiol 10:415-452, 2020.
Collapse
Affiliation(s)
- Katherine L. Leiby
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Anesthesiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung Microvascular Niche, Repair, and Engineering. Front Bioeng Biotechnol 2020; 8:105. [PMID: 32154234 PMCID: PMC7047880 DOI: 10.3389/fbioe.2020.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomaterials have been used for a long time in the field of medicine. Since the success of "tissue engineering" pioneered by Langer and Vacanti in 1993, tissue engineering studies have advanced from simple tissue generation to whole organ generation with three-dimensional reconstruction. Decellularized scaffolds have been widely used in the field of reconstructive surgery because the tissues used to generate decellularized scaffolds can be easily harvested from animals or humans. When a patient's own cells can be seeded onto decellularized biomaterials, theoretically this will create immunocompatible organs generated from allo- or xeno-organs. The most important aspect of lung tissue engineering is that the delicate three-dimensional structure of the organ is maintained during the tissue engineering process. Therefore, organ decellularization has special advantages for lung tissue engineering where it is essential to maintain the extremely thin basement membrane in the alveoli. Since 2010, there have been many methodological developments in the decellularization and recellularization of lung scaffolds, which includes improvements in the decellularization protocols and the selection and preparation of seeding cells. However, early transplanted engineered lungs terminated in organ failure in a short period. Immature vasculature reconstruction is considered to be the main cause of engineered organ failure. Immature vasculature causes thrombus formation in the engineered lung. Successful reconstruction of a mature vasculature network would be a major breakthrough in achieving success in lung engineering. In order to regenerate the mature vasculature network, we need to remodel the vascular niche, especially the microvasculature, in the organ scaffold. This review highlights the reconstruction of the vascular niche in a decellularized lung scaffold. Because the vascular niche consists of endothelial cells (ECs), pericytes, extracellular matrix (ECM), and the epithelial-endothelial interface, all of which might affect the vascular tight junction (TJ), we discuss ECM composition and reconstruction, the contribution of ECs and perivascular cells, the air-blood barrier (ABB) function, and the effects of physiological factors during the lung microvasculature repair and engineering process. The goal of the present review is to confirm the possibility of success in lung microvascular engineering in whole organ engineering and explore the future direction of the current methodology.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
40
|
Laker L, Dohmen PM, Smit FE. Synergy in a detergent combination results in superior decellularized bovine pericardial extracellular matrix scaffolds. J Biomed Mater Res B Appl Biomater 2020; 108:2571-2578. [DOI: 10.1002/jbm.b.34588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/14/2020] [Accepted: 02/02/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Leana Laker
- Department of Cardiothoracic Surgery, Faculty of Health SciencesUniversity of the Free State (UFS) Bloemfontein South Africa
| | - Pascal M. Dohmen
- Department of Cardiothoracic Surgery, Faculty of Health SciencesUniversity of the Free State (UFS) Bloemfontein South Africa
- Department of Cardiac Surgery, Heart Centre RostockUniversity of Rostock Rostock Germany
| | - Francis E. Smit
- Department of Cardiothoracic Surgery, Faculty of Health SciencesUniversity of the Free State (UFS) Bloemfontein South Africa
| |
Collapse
|
41
|
Uhl FE, Zhang F, Pouliot RA, Uriarte JJ, Rolandsson Enes S, Han X, Ouyang Y, Xia K, Westergren-Thorsson G, Malmström A, Hallgren O, Linhardt RJ, Weiss DJ. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater 2020; 102:231-246. [PMID: 31751810 PMCID: PMC8713186 DOI: 10.1016/j.actbio.2019.11.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. Using a commonly utilized detergent-based decellularization approach in human autopsy lungs resulted in disproportionate losses of GAGs with depletion of chondroitin sulfate/dermatan sulfate (CS/DS) > heparan sulfate (HS) > hyaluronic acid (HA). Specific changes in disaccharide composition of remaining GAGs were observed with disproportionate loss of NS and NS2S for HS groups and of 4S for CS/DS groups. No significant influence of smoking history, sex, time to autopsy, or age was observed in native vs. decellularized lungs. Notably, surface plasmon resonance demonstrated that GAGs remaining in decellularized lungs were unable to bind key matrix-associated growth factors FGF2, HGF, and TGFβ1. Growth of lung epithelial, pulmonary vascular, and stromal cells cultured on the surface of or embedded within gels derived from decellularized human lungs was differentially and combinatorially enhanced by replenishing specific GAGs and FGF2, HGF, and TGFβ1. In summary, lung decellularization results in loss and/or dysfunction of specific GAGs or side chains significantly affecting matrix-associated growth factor binding and lung cell metabolism. GAG and matrix-associated growth factor replenishment thus needs to be incorporated into schemes for investigations utilizing gels and other materials produced from decellularized human lungs. STATEMENT OF SIGNIFICANCE: Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. In the current studies, we demonstrate that glycosaminoglycans (GAGs) are significantly depleted during decellularization and those that remain are dysfunctional and unable to bind matrix-associated growth factors critical for cell growth and differentiation. Systematically repleting GAGs and matrix-associated growth factors to gels derived from decellularized human lung significantly and differentially affects cell growth. These studies highlight the importance of considering GAGs in decellularized lungs and their derivatives.
Collapse
Affiliation(s)
- Franziska E Uhl
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert A Pouliot
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Juan J Uriarte
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Sara Rolandsson Enes
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yilan Ouyang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Anders Malmström
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Daniel J Weiss
- University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
42
|
Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110142. [DOI: 10.1016/j.msec.2019.110142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
|
43
|
Yanagiya M, Kitano K, Yotsumoto T, Takai D, Asahina H, Nagayama K, Nakajima J. Effect of normal saline flush injection into a bronchus on lung decellularization. J Thorac Dis 2019; 11:5321-5327. [PMID: 32030249 PMCID: PMC6988010 DOI: 10.21037/jtd.2019.11.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The aim of this study was to evaluate effect of normal saline flush injection into bronchus on creation of decellularized lung scaffolds. METHODS Pigs were used: 3 lung grafts for decellularization with pre-treatment of normal saline injection into a bronchus, 3 for decellularization without pre-treatment and 3 treated as normal controls. We compared the characteristics of lung scaffolds created by each method. RESULTS The pretreatment procedure significantly reduced the DNA content of lung grafts, suggesting effective removal of cellular components. However, this pretreatment also reduced the elastin contents of lung grafts. CONCLUSIONS Considering this characteristic of saline pretreatment, we must continue to look for better methods to produce ideal decellularized lung grafts.
Collapse
Affiliation(s)
- Masahiro Yanagiya
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kentaro Kitano
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuma Yotsumoto
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daiya Takai
- Department of Clinical Laboratory, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Asahina
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Nagayama
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Lung bioengineering: advances and challenges in lung decellularization and recellularization. Curr Opin Organ Transplant 2019; 23:673-678. [PMID: 30300330 DOI: 10.1097/mot.0000000000000584] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Bioengineering the lung based on its natural extracellular matrix (ECM) offers novel opportunities to overcome the shortage of donors, to reduce chronic allograft rejections, and to improve the median survival rate of transplanted patients. During the last decade, lung tissue engineering has advanced rapidly to combine scaffolds, cells, and biologically active molecules into functional tissues to restore or improve the lung's main function, gas exchange. This review will inspect the current progress in lung bioengineering using decellularized and recellularized lung scaffolds and highlight future challenges in the field. RECENT FINDINGS Lung decellularization and recellularization protocols have provided researchers with tools to progress toward functional lung tissue engineering. However, there is continuous evolution and refinement particularly for optimization of lung recellularization. These further the possibility of developing a transplantable bioartificial lung. SUMMARY Bioengineering the lung using recellularized scaffolds could offer a curative option for patients with end-stage organ failure but its accomplishment remains unclear in the short-term. However, the state-of-the-art of techniques described in this review will increase our knowledge of the lung ECM and of chemical and mechanical cues which drive cell repopulation to improve the advances in lung regeneration and lung tissue engineering.
Collapse
|
45
|
Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R. Evaluating two ovarian decellularization methods in three species. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:670-682. [PMID: 31147040 DOI: 10.1016/j.msec.2019.04.092] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
Since there is dearth of practical ways to obtain mature follicles from cryopreserved or native ovarian tissues, especially in patients suffering from ovarian dysfunction, tissue engineering may help in restoring ovarian function and/or fertility. In the present study, the effects of sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) on the decellularization of ovarian tissues were studied in order to ascertain their suitability in creating suitable bioscaffolds. Cells were removed from the ovarian tissues of mouse, sheep and human. The samples were distributed among three groups, viz., control (not treated), SDS and NaOH treated. Qualitative histological evaluations, quantitative assessments (nuclear contents, collagen and glycosaminoglycan), immunohistochemistry staining (for laminin, fibronectin and Collagen I), cell viability and scanning electron microscopic (SEM) assays were performed for all experimental groups. Finally, suspensions of mouse ovarian cells were injected into human NaOH treated scaffolds and subsequently auto-transplanted to ovariectomized mice. H&E and IHC staining (GDF-9) were performed on human recellularized NaOH treated scaffolds 1 month after auto-transplantation. Although histological studies and quantitative evaluations confirmed the successful decellularization and presence of key factors in ovarian scaffolds under both treatment methods, NaOH showed more interesting outcomes. Cell metabolic activity in sheep and human ovaries treated with NaOH was statistically (p < 0.05) higher than for SDS treated samples after 72 h. Moreover, spherical associations with cuboidal cells in human NaOH treated scaffolds were observed and this follicular reconstruction was also confirmed by GDF-9. NaOH was found to be more suitable than SDS for the decellularization of ovarian tissues and it supports follicular reconstruction better than SDS. This is a valuable finding in tissue engineering research and can help in the creation of appropriate ovarian bioscaffolds.
Collapse
Affiliation(s)
- Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Abedi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
46
|
Tebyanian H, Karami A, Nourani MR, Motavallian E, Barkhordari A, Yazdanian M, Seifalian A. Lung tissue engineering: An update. J Cell Physiol 2019; 234:19256-19270. [PMID: 30972749 DOI: 10.1002/jcp.28558] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022]
Abstract
Pulmonary disease is a worldwide public health problem that reduces the life quality and increases the need for hospital admissions as well as the risk of premature death. A common problem is the significant shortage of lungs for transplantation as well as patients must also take immunosuppressive drugs for the rest of their lives to keep the immune system from attacking transplanted organs. Recently, a new strategy has been proposed in the cellular engineering of lung tissue as decellularization approaches. The main components for the lung tissue engineering are: (1) A suitable biological or synthetic three-dimensional (3D) scaffold, (2) source of stem cells or cells, (3) growth factors required to drive cell differentiation and proliferation, and (4) bioreactor, a system that supports a 3D composite biologically active. Although a number of synthetic as well biological 3D scaffold suggested for lung tissue engineering, the current favorite scaffold is decellularized extracellular matrix scaffold. There are a large number of commercial and academic made bioreactors, the favor has been, the one easy to sterilize, physiologically stimuli and support active cell growth as well as clinically translational. The challenges would be to develop a functional lung will depend on the endothelialized microvascular network and alveolar-capillary surface area to exchange gas. A critical review of the each components of lung tissue engineering is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry and consider unmet clinical need.
Collapse
Affiliation(s)
- Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Karami
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ebrahim Motavallian
- Department of General Surgery, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Aref Barkhordari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
47
|
Bölükbas DA, De Santis MM, Alsafadi HN, Doryab A, Wagner DE. The Preparation of Decellularized Mouse Lung Matrix Scaffolds for Analysis of Lung Regenerative Cell Potential. Methods Mol Biol 2019; 1940:275-295. [PMID: 30788833 DOI: 10.1007/978-1-4939-9086-3_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung transplantation is the only option for patients with end-stage lung disease, but there is a shortage of available lung donors. Furthermore, efficiency of lung transplantation has been limited due to primary graft dysfunction. Recent mouse models mimicking lung disease in humans have allowed for deepening our understanding of disease pathomechanisms. Moreover, new techniques such as decellularization and recellularization have opened up new possibilities to contribute to our understanding of the regenerative mechanisms involved in the lung. Stripping the lung of its native cells allows for unprecedented analyses of extracellular matrix and sets a physiologic platform to study the regenerative potential of seeded cells. A comprehensive understanding of the molecular pathways involved for lung development and regeneration in mouse models can be translated to regeneration strategies in higher organisms, including humans. Here we describe and discuss several techniques used for murine lung de- and recellularization, methods for evaluation of efficacy including histology, protein/RNA isolation at the whole lung, as well as lung slices level.
Collapse
Affiliation(s)
- Deniz A Bölükbas
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Martina M De Santis
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Hani N Alsafadi
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Ali Doryab
- Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Institute of Lung Biology and Disease, Neuherberg, Germany
| | - Darcy E Wagner
- Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden. .,Wallenberg Centre for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden. .,Stem Cell Centre, Lund University, Lund, Sweden.
| |
Collapse
|
48
|
A Comparative Study of the Effects of Different Decellularization Methods and Genipin-Cross-Linking on the Properties of Tracheal Matrices. Tissue Eng Regen Med 2018; 16:39-50. [PMID: 30815349 DOI: 10.1007/s13770-018-0170-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Background Different decellularization methods can affect the integrity and the biomechanical and biocompatible properties of the tracheal matrix. Natural cross-linking with genipin can be applied to improve those properties. The goals of this study were to evaluate the effects of different decellularization methods on the properties of genipin-cross-linked decellularized tracheal matrices in rabbits. Methods The tracheas of New Zealand rabbits were decellularized by the Triton-X 100-processed method (TPM) and the detergent-enzymatic method (DEM) and were then cross-linked with genipin. Mechanical tests, haematoxylin-eosin staining, Masson trichrome staining, Safranin O staining, DAPI staining, scanning electronic microscopy (SEM), and biocompatibility tests were used to evaluate the treatment. The bioengineered trachea and control trachea were then implanted into allogeneic rabbits for 30 days. The structural and functional analyses were performed after transplantation. Results The biomechanical tests demonstrated that the biomechanical properties of the decellularized tracheas decreased and that genipin improved them (p < 0.05). The histological staining results revealed that most of the mucosal epithelial cells were removed and that the decellularized trachea had lower immunogenicity than the control group. The analysis of SEM revealed that the decellularized trachea retained the micro- and ultra-structural architectures of the trachea and that the matrices cross-linked with genipin were denser. The biocompatibility evaluation and in vivo implantation experiments showed that the decellularized trachea treated with the DEM had better biocompatibility than that treated with the TPM and that immunogenicity in the cross-linked tissues was lower than that in the uncross-linked tissues (p < 0.05). Conclusions Compared with the trachea treated with the TPM, the rabbit trachea processed by the DEM had better biocompatibility and lower immunogenicity, and its structural and mechanical characteristics were effectively improved after the genipin treatment, which is suitable for engineering replacement tracheal tissue.
Collapse
|
49
|
Tebyanian H, Karami A, Motavallian E, Samadikuchaksaraei A, Arjmand B, Nourani MR. Rat lung decellularization using chemical detergents for lung tissue engineering. Biotech Histochem 2018; 94:214-222. [PMID: 30516069 DOI: 10.1080/10520295.2018.1544376] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although pulmonary diseases account for a large number of deaths in the world, most have no treatment other than transplantation. New therapeutic methods for lung treatment include lung tissue engineering and regenerative medicine. Lung decellularization has been used to produce an appropriate scaffold for recellularization and implantation. We investigated 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) with sodium dodecyl sulfate (SDS) and Triton X-100 detergents for effecting rat lung decellularization. We evaluated using conventional histology, immunofluorescence staining and SEM methods for removing nuclear material while leaving intact extracellular matrix proteins and three-dimensional architecture. We investigated different concentrations of CHAPS, SDS and Triton X-100 for different periods. We found that 2 mM CHAPS + 0/1% SDS for 48 h was the best among the treatments investigated. Our method can be used to produce an appropriate scaffold for recellularization by stem cells and for investigations ex vivo and in vivo.
Collapse
Affiliation(s)
- H Tebyanian
- a Department of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran.,b Research Center for Prevention of Oral and Dental Diseases , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - A Karami
- a Department of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran.,b Research Center for Prevention of Oral and Dental Diseases , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - E Motavallian
- c Department of General Surgery, Faculty of Medicine , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - A Samadikuchaksaraei
- d Cellular and Molecular Research Center , Iran University of Medical Sciences , Tehran , Iran.,e Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - B Arjmand
- f Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Cellular-Molecular Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran
| | - M R Nourani
- a Department of Tissue Engineering and Regenerative Medicine, Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
50
|
da Palma RK, Fratini P, Schiavo Matias GS, Cereta AD, Guimarães LL, Anunciação ARDA, de Oliveira LVF, Farre R, Miglino MA. Equine lung decellularization: a potential approach for in vitro modeling the role of the extracellular matrix in asthma. J Tissue Eng 2018; 9:2041731418810164. [PMID: 30450188 PMCID: PMC6236489 DOI: 10.1177/2041731418810164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
Contrary to conventional research animals, horses naturally develop asthma, a
disease in which the extracellular matrix of the lung plays a significant role.
Hence, the horse lung extracellular matrix appears to be an ideal candidate
model for in vitro studying the mechanisms and potential treatments for asthma.
However, so far, such model to study cell–extracellular matrix interactions in
asthma has not been developed. The aim of this study was to establish a protocol
for equine lung decellularization that maintains the architecture of the
extracellular matrix and could be used in the future as an in vitro model for
therapeutic treatment in asthma. For this the equine lungs were decellularized
by sodium dodecyl sulfate detergent perfusion at constant gravitational pressure
of 30 cmH2O. Lung scaffolds were assessed by immunohistochemistry
(collagen I, III, IV, laminin, and fibronectin), scanning electron microscopy,
and DNA quantification. Their mechanical property was assessed by measuring lung
compliance using the super-syringe technique. The optimized protocol of lung
equine decellularization was effective to remove cells (19.8 ng/mg) and to
preserve collagen I, III, IV, laminin, and fibronectin. Moreover, scanning
electron microscopy analysis demonstrated maintained microscopic lung
structures. The decellularized lungs presented lower compliance compared to
native lung. In conclusion we described a reproducible decellularization
protocol that can produce an acellular equine lung feasible for the future
development of novel treatment strategies in asthma.
Collapse
Affiliation(s)
- Renata Kelly da Palma
- Post Graduate Program in Science of Rehabilitation, University Nove de Julho (UNINOVE), São Paulo, Brazil.,Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andressa Daronco Cereta
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leticia Lopes Guimarães
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Ramon Farre
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|