1
|
Weekes A, Davern JW, Pinto N, Jenkins J, Li Z, Meinert C, Klein TJ. Enhancing compliance and extracellular matrix properties of tissue-engineered vascular grafts through pulsatile bioreactor culture. BIOMATERIALS ADVANCES 2025; 175:214346. [PMID: 40378643 DOI: 10.1016/j.bioadv.2025.214346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/06/2025] [Accepted: 05/11/2025] [Indexed: 05/19/2025]
Abstract
Biofabrication techniques represent a promising avenue for the production of small diameter vascular grafts. However, while current tissue-engineered vascular grafts (TEVGs) fulfil certain functional requirements of native blood vessels, most exhibit very poor mechanical compliance, directly reducing patency in vivo. Here, highly compliant TEVGs were cultured in a dynamic pulsatile bioreactor which ensured enhanced compliance, using biomimetic melt electrowritten (MEW) tubular scaffolds as substrates for tissue growth. Through 6-week in vitro culture, we investigated differences in extracellular matrix (ECM) production and mechanical performance of TEVGs cultured with placental mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) in static and dynamic conditions. Pulsatile stimulation successfully maintained the high compliance (12.4 ± 0.8 % per 100 mmHg) of our biomimetic scaffolds, substantially greater than existing small diameter grafts. Dynamic TEVGs demonstrated physiologically relevant burst pressure (1125 ± 212 mmHg) and suture pull-out force (3.0 ± 0.4 N), while also accumulating greater ECM components than static TEVGs. To assess off-the-shelf suitability, grafts were decellularized and lyophilised to produce d-TEVGs, which exhibited negligible loss of mechanics or ECM integrity. Finally, rehydrated d-TEVGs were seeded with endothelial cells in vitro, with an intimal endothelial lining forming after 7 days. These findings demonstrate the production of TEVGs with specifically engineered mechanical compliance which has been maintained by dynamic in vitro culture, supporting continued work toward biofabrication of the next generation of vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia.
| | - Jordan W Davern
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| | - Zhiyong Li
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Cantor J. The Competitive Interaction of Alveolar Wall Distention with Elastin Crosslinking: A Mechanistic Approach to Emergent Phenomena in Pulmonary Emphysema. Cells 2025; 14:702. [PMID: 40422205 DOI: 10.3390/cells14100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Emergent phenomena arise from the interaction of competing forces at multiple scale levels, resulting in complex outcomes that are not readily apparent from analyzing the individual components. Regarding biological systems, when a critical threshold is reached, a phase transition occurs, producing a spontaneous system reorganization characterized by recognizable molecular, microscopic, and macroscopic changes. The current paper explores the emergent phenomena underlying the pathogenesis of pulmonary emphysema, a disease characterized by progressive airspace enlargement. The competitive relationship between mechanical strain imposed on alveolar walls and a countervailing increase in elastin crosslinking to prevent alveolar wall rupture leads to airspace enlargement as the balance between these two processes shifts toward increasing lung injury. This phase transition is also accompanied by an accelerated release of peptide-free elastin-specific desmosine crosslinks as the mean alveolar wall diameter begins to increase, suggesting their potential use as a biomarker for the molecular changes that precede the development of pulmonary emphysema. Early detection of the disease would allow more timely therapeutic intervention involving multiple agents that address the complexities of emergent phenomena at different scale levels.
Collapse
Affiliation(s)
- Jerome Cantor
- School of Pharmacy and Allied Health Sciences, St John's University, Queens, NY 11439, USA
| |
Collapse
|
3
|
Cai J, Zhou H, Luo W, Chen W, Li J, Liang J, Yang J, Sun X, Lin Z. Modeling and Optimization of Nonlinear Viscoelastic Behavior for Tissue-Engineered Blood Vessels. Tissue Eng Part C Methods 2025; 31:191-202. [PMID: 40331879 DOI: 10.1089/ten.tec.2025.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Vascular tissue engineering technology uses tubular viscoelastic materials as intermediaries to transmit the mechanical stimuli required for the construction of vascular grafts. However, most existing studies rely on elastic models, which fail to capture the time-dependent nature of viscoelastic materials. Moreover, the long fabrication cycles, high costs, and complex parameter measurements in tissue engineering pose significant challenges to experimental approaches. There is thus an urgent need to develop a viscoelastic mechanical model that combines physical interpretability, computational efficiency, and predictive accuracy, enabling precise characterization of material responses and unified quantification across experimental platforms. Here, we propose an error-corrected linear solid (ECLS) model with an embedded correction term to address the predictive deviations of conventional models in nonlinear viscoelastic scenarios. Instead of expanding the traditional model structure, the ECLS incorporates an error correction method that improves predictive performance while maintaining structural simplicity. Experiments were conducted on three representative viscoelastic materials-silicone rubber, polyurethane, and polytetrafluoroethylene-to acquire time-resolved response data through stress relaxation and creep tests. The fitting performance was quantitatively evaluated using the Euclidean norm and the Akaike information criterion, enabling a systematic comparison between the ECLS model and three classical models (Kelvin-Voigt, Maxwell, and standard linear solid [SLS]). The results show that the ECLS model exhibits higher predictive accuracy over a wide time range, with an average goodness of fit (R2) of 0.99, representing an improvement of ∼6% compared to the SLS model. Furthermore, the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the ECLS model are at least one order of magnitude lower than those of the traditional models, significantly improving the description of nonlinear viscoelastic behavior and providing more accurate predictions of material viscoelastic mechanical behavior. Therefore, the ECLS model not only improves the modeling accuracy of viscoelastic behavior but also establishes a unified and scalable framework for predicting and optimizing the mechanical performance of tissue-engineered vessels, expanding the application potential of mechanical modeling in bioreactor design and biomaterials development.
Collapse
Affiliation(s)
- Jianming Cai
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| | - Haohao Zhou
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| | - Weizhi Luo
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| | - Wanwen Chen
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiandong Li
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| | - Jierong Liang
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| | - Jing Yang
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| | - Xuheng Sun
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Jihua Institute of Biomedical Engineering and Technology, JIHUA Laboratory, Foshan, China
| |
Collapse
|
4
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
5
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Clevenger AJ, McFarlin MK, Gorley JPM, Solberg SC, Madyastha AK, Raghavan SA. Advances in cancer mechanobiology: Metastasis, mechanics, and materials. APL Bioeng 2024; 8:011502. [PMID: 38449522 PMCID: PMC10917464 DOI: 10.1063/5.0186042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Within the tumor microenvironment (TME), tumor cells are exposed to numerous mechanical forces, both internally and externally, which contribute to the metastatic cascade. From the initial growth of the tumor to traveling through the vasculature and to the eventual colonization of distant organs, tumor cells are continuously interacting with their surroundings through physical contact and mechanical force application. The mechanical forces found in the TME can be simplified into three main categories: (i) shear stress, (ii) tension and strain, and (iii) solid stress and compression. Each force type can independently impact tumor growth and progression. Here, we review recent bioengineering strategies, which have been employed to establish the connection between mechanical forces and tumor progression. While many cancers are explored in this review, we place great emphasis on cancers that are understudied in their response to mechanical forces, such as ovarian and colorectal cancers. We discuss the major steps of metastatic transformation and present novel, recent advances in model systems used to study how mechanical forces impact the study of the metastatic cascade. We end by summarizing systems that incorporate multiple forces to expand the complexity of our understanding of how tumor cells sense and respond to mechanical forces in their environment. Future studies would also benefit from the inclusion of time or the aspect of mechanical memory to further enhance this field. While the knowledge of mechanical forces and tumor metastasis grows, developing novel materials and in vitro systems are essential to providing new insight into predicting, treating, and preventing cancer progression and metastasis.
Collapse
Affiliation(s)
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
7
|
Rego BV, Weiss D, Humphrey JD. A Fast, Robust Method for Quantitative Assessment of Collagen Fibril Architecture from Transmission Electron Micrographs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2099-2107. [PMID: 37856696 PMCID: PMC11419845 DOI: 10.1093/micmic/ozad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Collagen is the most abundant protein in mammals; it exhibits a hierarchical organization and provides structural support to a wide range of soft tissues, including blood vessels. The architecture of collagen fibrils dictates vascular stiffness and strength, and changes therein can contribute to disease progression. While transmission electron microscopy (TEM) is routinely used to examine collagen fibrils under normal and pathological conditions, computational tools that enable fast and minimally subjective quantitative assessment remain lacking. In the present study, we describe a novel semi-automated image processing and statistical modeling pipeline for segmenting individual collagen fibrils from TEM images and quantifying key metrics of interest, including fibril cross-sectional area and aspect ratio. For validation, we show first-of-their-kind illustrative results for adventitial collagen in the thoracic aorta from three different mouse models.
Collapse
Affiliation(s)
- Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Thorsnes QS, Turner PR, Ali MA, Cabral JD. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature. Biomedicines 2023; 11:3139. [PMID: 38137359 PMCID: PMC10740633 DOI: 10.3390/biomedicines11123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
We demonstrate for the first time the combination of two additive manufacturing technologies used in tandem, fused deposition modelling (FDM) and melt electrowriting (MEW), to increase the range of possible MEW structures, with a focus on creating branched, hollow scaffolds for vascularization. First, computer-aided design (CAD) was used to design branched mold halves which were then used to FDM print conductive polylactic acid (cPLA) molds. Next, MEW was performed over the top of these FDM cPLA molds using polycaprolactone (PCL), an FDA-approved biomaterial. After the removal of the newly constructed MEW scaffolds from the FDM molds, complementary MEW scaffold halves were heat-melded together by placing the flat surfaces of each half onto a temperature-controlled platform, then pressing the heated halves together, and finally allowing them to cool to create branched, hollow constructs. This hybrid technique permitted the direct fabrication of hollow MEW structures that would otherwise not be possible to achieve using MEW alone. The scaffolds then underwent in vitro physical and biological testing. Specifically, dynamic mechanical analysis showed the scaffolds had an anisotropic stiffness of 1 MPa or 5 MPa, depending on the direction of the applied stress. After a month of incubation, normal human dermal fibroblasts (NHDFs) were seen growing on the scaffolds, which demonstrated that no deleterious effects were exerted by the MEW scaffolds constructed using FDM cPLA molds. The significant potential of our hybrid additive manufacturing approach to fabricate complex MEW scaffolds could be applied to a variety of tissue engineering applications, particularly in the field of vascularization.
Collapse
Affiliation(s)
- Quinn S. Thorsnes
- Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin 9054, New Zealand; (Q.S.T.); (M.A.A.)
| | - Paul R. Turner
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Mohammed Azam Ali
- Department of Oral Rehabilitation, School of Dentistry, University of Otago, Dunedin 9054, New Zealand; (Q.S.T.); (M.A.A.)
| | - Jaydee D. Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
9
|
Ji J, Xu H, Li C, Luo J. Small-Caliber Tissue-Engineered Vascular Grafts Based on Human-Induced Pluripotent Stem Cells: Progress and Challenges. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:441-455. [PMID: 36884294 DOI: 10.1089/ten.teb.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress. Implantable, small-caliber, hiPSC-TEVGs have been generated. These hiPSC-TEVGs displayed rupture pressure and suture retention strength approaching to those of human native saphenous veins, with vessel wall decellularized and luminal surface endothelialized with monolayer of hiPSC-endothelial cells. Meanwhile, a series of challenges remain in this field, including functional maturity of hiPSC-derived vascular cells, poor elastogenesis, suboptimal efficiency of obtaining hiPSC-derived seed cells, and relative low ready availability of hiPSC-TEVGs, which are waiting to be addressed. This review is conceived to introduce representative achievements and challenges in small-caliber TEVG generation using hiPSCs, and encapsulate the potential solution and future directions.
Collapse
Affiliation(s)
- Junyi Ji
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongju Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiesi Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
10
|
Inadvertent Viscoelastic Separation of the Pre-Descemet (Dua) Layer in Deep Anterior Lamellar Keratoplasty With Structural Features Revealed by Polarization Microscopy. Cornea 2023; 42:482-486. [PMID: 36633937 DOI: 10.1097/ico.0000000000003216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/05/2022] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Deep anterior lamellar keratoplasty (DALK) is a corneal transplant technique that removes the host stroma down to either the pre-Descemet (Dua) layer or Descemet membrane. It is most common for the big bubble technique to create a cleavage plane between the posterior stroma and the pre-Descemet layer. This is advantageous because the pre-Descemet layer has been found to be much stronger than Descemet membrane, and makes the procedure easier to perform. In this report, we present an uncommon viscoelastic-related complication of DALK that resulted in excising the pre-Descemet layer and allowing it to be studied using polarization microscopy. METHODS DALK was performed using a standard big bubble technique. Postoperatively, a double anterior chamber was found to have been created by the inadvertent passage of an ophthalmic viscoelastic device (OVD) through the pre-Descemet layer. This resulted in the OVD being trapped between the pre-Descemet layer and Descemet membrane. The pre-Descemet layer was then resected in a subsequent operation. The pre-Descemet layer and posterior stroma were studied by polarization microscopy using Sirius Red histochemical staining to elucidate the orientation of the collagen fibers. RESULTS The pre-Descemet layer is composed of lamellar arrays of collagen that have consistent polarization properties within each layer but show variable polarization of the strands, indicative of anisotropic strand orientation. The degree of variable polarization of the pre-Descemet layer is distinct from the overlying posterior stroma. CONCLUSIONS Injecting an OVD into a big bubble in DALK may result in it being trapped between the pre-Descemet layer and Descemet membrane. The pre-Descemet layer shows alternating layers of varying polarization of collagen. This anisotropic structure helps explain the basis for the additional strength that the pre-Descemet layer is known to have.
Collapse
|
11
|
Gou K, Hu JJ, Baek S. Mechanical characterization of human umbilical arteries by thick-walled models: Enhanced vascular compliance by removing an abluminal lining. J Mech Behav Biomed Mater 2023; 142:105811. [PMID: 37028123 DOI: 10.1016/j.jmbbm.2023.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The decellularized human umbilical artery (HUA) is considered as a promising option for small-diameter, tissue-engineered vascular grafts (TEVGs). Our previous study showed that the HUA bears a thin, watertight lining on its outermost abluminal surface. Removal of this abluminal lining layer improves efficacy of the perfusion-assisted decellularization of the HUA and increases its compliance. As stress across the wall is believed to affect growth and remodeling of the TEVG, it is imperative to mechanically characterize the HUA using thick-walled models. Combining inflation experiments and computational methods, we investigate the mechanical properties of the HUA before and after the abluminal lining removal to examine the HUA's wall mechanics. The inflation tests of five HUAs were performed to obtain the mechanical and geometrical response of the vessel wall before and after the lining layer removal. Using nonlinear hyperelastic models, the same responses are obtained computationally using the thick-walled models. The experimental data are incorporated into the computational models to estimate the mechanical and orientation parameters of the fibers and isotropic matrix of different layers in the HUAs. The parameter fitting of both thick-walled models (before and after the abluminal lining removal) results in most of the R-squared values for measuring the goodness of fitting to be over 0.90 for all samples. The compliance of the HUA increases from a mean value of 2.60% per 100 mmHg before the removal of the lining to a mean value of 4.21% per 100 mmHg after the removal. The results reveal that, although the abluminal lining is thin, it is stiff and capable of supporting majority of the high luminal pressure, and that the inner layer is far less stressed than the abluminal lining. Computational simulations also show that removal of the abluminal lining increases the circumferential wall stress by up to 280 kPa under the in vivo luminal pressure. The integrated computational and experimental approaches provide more accurate estimates of the material behaviors of HUAs employed in grafts and, in turn, the study enhances our understanding of interactions between the graft and the native vessel on vascular growth and remodeling.
Collapse
Affiliation(s)
- Kun Gou
- Department of Mathematical, Physical, and Engineering Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA.
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Rego BV, Weiss D, Humphrey JD. A fast, robust method for quantitative assessment of collagen fibril architecture from transmission electron micrographs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527383. [PMID: 36798181 PMCID: PMC9934578 DOI: 10.1101/2023.02.06.527383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Collagen is the most abundant protein in mammals; it exhibits a hierarchical organization and provides structural support to a wide range of soft tissues, including blood vessels. The architecture of collagen fibrils dictates vascular stiffness and strength, and changes therein can contribute to disease progression. While transmission electron microscopy (TEM) is routinely used to examine collagen fibrils under normal and pathological conditions, computational tools that enable fast and minimally subjective quantitative assessment remain lacking. In the present study, we describe a novel semi-automated image processing and statistical modeling pipeline for segmenting individual collagen fibrils from TEM images and quantifying key metrics of interest, including fibril cross-sectional area and aspect ratio. For validation, we show illustrative results for adventitial collagen in the thoracic aorta from three different mouse models.
Collapse
Affiliation(s)
- Bruno V. Rego
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA
| | - Dar Weiss
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
14
|
Lai MW, Chow N, Checco A, Kunar B, Redmond D, Rafii S, Rabbany SY. Systems Biology Analysis of Temporal Dynamics That Govern Endothelial Response to Cyclic Stretch. Biomolecules 2022; 12:1837. [PMID: 36551265 PMCID: PMC9775567 DOI: 10.3390/biom12121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells in vivo are subjected to a wide array of mechanical stimuli, such as cyclic stretch. Notably, a 10% stretch is associated with an atheroprotective endothelial phenotype, while a 20% stretch is associated with an atheroprone endothelial phenotype. Here, a systems biology-based approach is used to present a comprehensive overview of the functional responses and molecular regulatory networks that characterize the transition from an atheroprotective to an atheroprone phenotype in response to cyclic stretch. Using primary human umbilical vein endothelial cells (HUVECs), we determined the role of the equibiaxial cyclic stretch in vitro, with changes to the radius of the magnitudes of 10% and 20%, which are representative of physiological and pathological strain, respectively. Following the transcriptome analysis of next-generation sequencing data, we identified four key endothelial responses to pathological cyclic stretch: cell cycle regulation, inflammatory response, fatty acid metabolism, and mTOR signaling, driven by a regulatory network of eight transcription factors. Our study highlights the dynamic regulation of several key stretch-sensitive endothelial functions relevant to the induction of an atheroprone versus an atheroprotective phenotype and lays the foundation for further investigation into the mechanisms governing vascular pathology. This study has significant implications for the development of treatment modalities for vascular disease.
Collapse
Affiliation(s)
- Michael W. Lai
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
| | - Nathan Chow
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
| | - Antonio Checco
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
| | - Balvir Kunar
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| | - David Redmond
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| | - Sina Y. Rabbany
- Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, New York, NY 11549, USA
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine (WCM), New York, NY 10065, USA
| |
Collapse
|
15
|
Mitchell TC, Feng NL, Lam YT, Michael P, Santos M, Wise SG. Engineering vascular bioreactor systems to closely mimic physiological forces in vitro. TISSUE ENGINEERING PART B: REVIEWS 2022. [DOI: 10.1089/ten.teb.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Timothy C Mitchell
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Nicolas L Feng
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Yuen Ting Lam
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Praveesuda Michael
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Miguel Santos
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Steven G Wise
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| |
Collapse
|
16
|
Ryu D, Baek S, Kim J. Region-dependent mechanical characterization of porcine thoracic aorta with a one-to-many correspondence method to create virtual datasets using uniaxial tensile tests. Front Bioeng Biotechnol 2022; 10:937326. [PMID: 36304893 PMCID: PMC9595283 DOI: 10.3389/fbioe.2022.937326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
The simulation of the cardiovascular system and in silico clinical trials have garnered attention in the biomedical engineering field. Physics-based modeling is essential to associate with physical and clinical features. In physics-based constitutive modeling, the identification of the parameters and estimation of their ranges based on appropriate experiments are required. Uniaxial tests are commonly used in the field of vascular mechanics, but they have limitations in fully characterizing the regional mechanical behavior of the aorta. Therefore, this study is aimed at identifying a method to integrate constitutive models with experimental data to elucidate regional aortic behavior. To create a virtual two-dimensional dataset, a pair of uniaxial experimental datasets in the longitudinal and circumferential directions was combined using a one-to-many correspondence method such as bootstrap aggregation. The proposed approach is subsequently applied to three constitutive models, i.e., the Fung model, Holzapfel model, and constrained mixture model, to estimate the material parameters based on the four test regions of the porcine thoracic aorta. Finally, the regional difference in the mechanical behavior of the aorta, the correlation between the experimental characteristics and model parameters, and the inter-correlation of the material parameters are confirmed. This integrative approach will enhance the prediction capability of the model with respect to the regions of the aorta.
Collapse
Affiliation(s)
- Dongman Ryu
- Medical Research Institute, Pusan National University, Busan, South Korea
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Jungsil Kim
- Department of Convergent Biosystems Engineering, Sunchon National University, Suncheon, South Korea
- Institute of Human Harmonized Robotics, Sunchon National University, Suncheon, South Korea
- *Correspondence: Jungsil Kim,
| |
Collapse
|
17
|
Man K, Liu J, Phan KM, Wang K, Lee JY, Sun X, Story M, Saha D, Liao J, Sadat H, Yang Y. Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17081-17092. [PMID: 35380801 DOI: 10.1021/acsami.2c01266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A variety of cells are subject to mechanical stretch in vivo, which plays a critical role in the function and homeostasis of cells, tissues, and organs. Deviations from the physiologically relevant mechanical stretch are often associated with organ dysfunction and various diseases. Although mechanical stretch is provided in some in vitro cell culture models, the effects of stretch dimensionality on cells are often overlooked and it remains unclear whether and how stretch dimensionality affects cell behavior. Here we develop cell culture platforms that provide 1-D uniaxial, 2-D circumferential, or 3-D radial mechanical stretches, which recapitulate the three major types of mechanical stretches that cells experience in vivo. We investigate the behavior of human microvascular endothelial cells and human alveolar epithelial cells cultured on these platforms, showing that the mechanical stretch influences cell morphology and cell-cell and cell-substrate interactions in a stretch dimensionality-dependent manner. Furthermore, the endothelial and epithelial cells are sensitive to the physiologically relevant 2-D and 3-D stretches, respectively, which could promote the formation of endothelium and epithelium. This study underscores the importance of recreating the physiologically relevant mechanical stretch in the development of in vitro tissue/organ models.
Collapse
Affiliation(s)
- Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Khang Minh Phan
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Kai Wang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Jung Yeon Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Michael Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Hamid Sadat
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
18
|
Weekes A, Bartnikowski N, Pinto N, Jenkins J, Meinert C, Klein TJ. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater 2022; 138:92-111. [PMID: 34781026 DOI: 10.1016/j.actbio.2021.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Current clinical treatment strategies for the bypassing of small diameter (<6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. STATEMENT OF SIGNIFICANCE: Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Nicole Bartnikowski
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, 4035, Australia.
| | - Nigel Pinto
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Jason Jenkins
- Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4006, Australia.
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Services, Herston, QLD, 4006, Australia.
| | - Travis J Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia.
| |
Collapse
|
19
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
20
|
Gold KA, Saha B, Rajeeva Pandian NK, Walther BK, Palma JA, Jo J, Cooke JP, Jain A, Gaharwar AK. 3D Bioprinted Multicellular Vascular Models. Adv Healthc Mater 2021; 10:e2101141. [PMID: 34310082 PMCID: PMC9295047 DOI: 10.1002/adhm.202101141] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Indexed: 02/06/2023]
Abstract
3D bioprinting is an emerging additive manufacturing technique to fabricate constructs for human disease modeling. However, current cell-laden bioinks lack sufficient biocompatibility, printability, and structural stability needed to translate this technology to preclinical and clinical trials. Here, a new class of nanoengineered hydrogel-based cell-laden bioinks is introduced, that can be printed into 3D, anatomically accurate, multicellular blood vessels to recapitulate both the physical and chemical microenvironments of native human vasculature. A remarkably unique characteristic of this bioink is that regardless of cell density, it demonstrates a high printability and ability to protect encapsulated cells against high shear forces in the bioprinting process. 3D bioprinted cells maintain a healthy phenotype and remain viable for nearly one-month post-fabrication. Leveraging these properties, the nanoengineered bioink is printed into 3D cylindrical blood vessels, consisting of living co-culture of endothelial cells and vascular smooth muscle cells, providing the opportunity to model vascular function and pathophysiology. Upon cytokine stimulation and blood perfusion, this 3D bioprinted vessel is able to recapitulate thromboinflammatory responses observed only in advanced in vitro preclinical models or in vivo. Therefore, this 3D bioprinted vessel provides a potential tool to understand vascular disease pathophysiology and assess therapeutics, toxins, or other chemicals.
Collapse
Affiliation(s)
- Karli A Gold
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Biswajit Saha
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Brandon K Walther
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jorge A Palma
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Javier Jo
- Electrical and Computer Engineering, College of Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Abhishek Jain
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.,Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, 77843, USA.,Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
21
|
Kozel BA, Barak B, Ae Kim C, Mervis CB, Osborne LR, Porter M, Pober BR. Williams syndrome. Nat Rev Dis Primers 2021; 7:42. [PMID: 34140529 PMCID: PMC9437774 DOI: 10.1038/s41572-021-00276-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Williams syndrome (WS) is a relatively rare microdeletion disorder that occurs in as many as 1:7,500 individuals. WS arises due to the mispairing of low-copy DNA repetitive elements at meiosis. The deletion size is similar across most individuals with WS and leads to the loss of one copy of 25-27 genes on chromosome 7q11.23. The resulting unique disorder affects multiple systems, with cardinal features including but not limited to cardiovascular disease (characteristically stenosis of the great arteries and most notably supravalvar aortic stenosis), a distinctive craniofacial appearance, and a specific cognitive and behavioural profile that includes intellectual disability and hypersociability. Genotype-phenotype evidence is strongest for ELN, the gene encoding elastin, which is responsible for the vascular and connective tissue features of WS, and for the transcription factor genes GTF2I and GTF2IRD1, which are known to affect intellectual ability, social functioning and anxiety. Mounting evidence also ascribes phenotypic consequences to the deletion of BAZ1B, LIMK1, STX1A and MLXIPL, but more work is needed to understand the mechanism by which these deletions contribute to clinical outcomes. The age of diagnosis has fallen in regions of the world where technological advances, such as chromosomal microarray, enable clinicians to make the diagnosis of WS without formally suspecting it, allowing earlier intervention by medical and developmental specialists. Phenotypic variability is considerable for all cardinal features of WS but the specific sources of this variability remain unknown. Further investigation to identify the factors responsible for these differences may lead to mechanism-based rather than symptom-based therapies and should therefore be a high research priority.
Collapse
Affiliation(s)
- Beth A. Kozel
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Boaz Barak
- The Sagol School of Neuroscience and The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chong Ae Kim
- Department of Pediatrics, Universidade de São Paulo, São Paulo, Brazil
| | - Carolyn B. Mervis
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, USA
| | - Lucy R. Osborne
- Department of Medicine, University of Toronto, Ontario, Canada
| | - Melanie Porter
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Barbara R. Pober
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
22
|
Shi N, Li Y, Chang L, Zhao G, Jin G, Lyu Y, Genin GM, Ma Y, Xu F. A 3D, Magnetically Actuated, Aligned Collagen Fiber Hydrogel Platform Recapitulates Physical Microenvironment of Myoblasts for Enhancing Myogenesis. SMALL METHODS 2021; 5:e2100276. [PMID: 34927916 DOI: 10.1002/smtd.202100276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Indexed: 06/14/2023]
Abstract
Many cell responses that underlie the development, maturation, and function of tissues are guided by the architecture and mechanical loading of the extracellular matrix (ECM). Because mechanical stimulation must be transmitted through the ECM architecture, the synergy between these two factors is important. However, recapitulating the synergy of these physical microenvironmental cues in vitro remains challenging. To address this, a 3D magnetically actuated collagen hydrogel platform is developed that enables combined control of ECM architecture and mechanical stimulation. With this platform, it is demonstrated how these factors synergistically promote cell alignment of C2C12 myoblasts and enhance myogenesis. This promotion is driven in part by the dynamics of Yes-associated protein and structure of cellular microtubule networks. This facile platform holds great promises for regulating cell behavior and fate, generating a broad range of engineered physiologically representative microtissues in vitro, and quantifying the mechanobiology underlying their functions.
Collapse
Affiliation(s)
- Nianyuan Shi
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhui Li
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Le Chang
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Guorui Jin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yi Lyu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guy M Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
23
|
Decellularized dermis extracellular matrix alloderm mechanically strengthens biological engineered tunica adventitia-based blood vessels. Sci Rep 2021; 11:11384. [PMID: 34059745 PMCID: PMC8166942 DOI: 10.1038/s41598-021-91005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
The ideal engineered vascular graft would utilize human-derived materials to minimize foreign body response and tissue rejection. Current biological engineered blood vessels (BEBVs) inherently lack the structure required for implantation. We hypothesized that an ECM material would provide the structure needed. Skin dermis ECM is commonly used in reconstructive surgeries, is commercially available and FDA-approved. We evaluated the commercially-available decellularized skin dermis ECM Alloderm for efficacy in providing structure to BEBVs. Alloderm was incorporated into our lab’s unique protocol for generating BEBVs, using fibroblasts to establish the adventitia. To assess structure, tissue mechanics were analyzed. Standard BEBVs without Alloderm exhibited a tensile strength of 67.9 ± 9.78 kPa, whereas Alloderm integrated BEBVs showed a significant increase in strength to 1500 ± 334 kPa. In comparison, native vessel strength is 1430 ± 604 kPa. Burst pressure reached 51.3 ± 2.19 mmHg. Total collagen and fiber maturity were significantly increased due to the presence of the Alloderm material. Vessels cultured for 4 weeks maintained mechanical and structural integrity. Low probability of thrombogenicity was confirmed with a negative platelet adhesion test. Vessels were able to be endothelialized. These results demonstrate the success of Alloderm to provide structure to BEBVs in an effective way.
Collapse
|
24
|
Wen Z, Zhou H, Zhou J, Chen W, Wu Y, Lin Z. Quantitative Evaluation of Mechanical Stimulation for Tissue-Engineered Blood Vessels. Tissue Eng Part C Methods 2021; 27:337-347. [PMID: 33913766 DOI: 10.1089/ten.tec.2021.0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Functional small-diameter tissue-engineered blood vessels (TEBVs) have been developed in silico using biodegradable polymeric scaffolds under pulsatile perfusion. Accurate simulation of physiological mechanical stimulations in vitro is a crucial factor in vascular engineering. However, little is known about the patterns of mechanical stimulation on silicone tubes. This study aimed to determine the optimal mechanical conditions required for inducing circumferential deformations in silicone tubes during in vitro vascular development under pulsatile perfusion. For this purpose, we established a data acquisition (DAQ) system with a laser micrometer and pressure transducers to evaluate changes in the diameter of silicone tubes in response to pulsatile flow and validated the results on cultured TEBVs. The established DAQ system showed satisfactory reproducibility for measuring diameter variation in the in silico model. Furthermore, the hardness and thickness of the silicone tubes affected the mechanical conditioning in the three-dimensional culture system under different working pressures, frequencies, and circumferential deformations. We demonstrated a simple and reliable approach to quantify the circumferential strain and deformations to ensure optimal mechanical stimulation of the cultured TEBVs under pulsatile perfusion. Based on the results, we were able to dynamically culture dense cellularized small-diameter TEBVs. This study highlights the importance of mechanical stimulation in vascular tissue engineering. Impact statement This study demonstrated a direct and noncontact data acquisition system for quantifying the strain on the supporting silicone medium during three-dimensional tissue-engineered blood vessel culture, which can help optimize the mechanical parameters for vascular tissue engineering.
Collapse
Affiliation(s)
- Zhang Wen
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Haohao Zhou
- Department of Biomedical Engineering, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Jiahui Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Wanwen Chen
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yueheng Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhanyi Lin
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| |
Collapse
|
25
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
26
|
Shi X, He L, Zhang SM, Luo J. Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Rev Rep 2020; 17:862-877. [PMID: 33230612 DOI: 10.1007/s12015-020-10091-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) generated from human primary cells represent a promising vascular interventional therapy. However, generation and application of these TEVGs may be significantly hindered by the limited accessibility, finite expandability, donor-donor functional variation and immune-incompatibility of primary seed cells from donors. Alternatively, human induced pluripotent stem cells (hiPSCs) offer an infinite source to obtain functional vascular cells in large quantity and comparable quality for TEVG construction. To date, TEVGs (hiPSC-TEVGs) with significant mechanical strength and implantability have been generated using hiPSC-derived seed cells. Despite being in its incipient stage, this emerging field of hiPSC-TEVG research has achieved significant progress and presented promising future potential. Meanwhile, a series of challenges pertaining hiPSC differentiation, vascular tissue engineering technologies and future production and application await to be addressed. Herein, we have composed this review to introduce progress in TEVG generation using hiPSCs, summarize the current major challenges, and encapsulate the future directions of research on hiPSC-based TEVGs. Graphical abstract.
Collapse
Affiliation(s)
- Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, 06520, New Haven, CT, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA. .,Yale Stem Cell Center, 06520, New Haven, CT, USA.
| |
Collapse
|
27
|
Abstract
Since the advent of the vascular anastomosis by Alexis Carrel in the early 20th century, the repair and replacement of blood vessels have been key to treating acute injuries, as well as chronic atherosclerotic disease. Arteries serve diverse mechanical and biological functions, such as conducting blood to tissues, interacting with the coagulation system, and modulating resistance to blood flow. Early approaches for arterial replacement used artificial materials, which were supplanted by polymer fabrics in recent decades. With recent advances in the engineering of connective tissues, including arteries, we are on the cusp of seeing engineered human arteries become mainstays of surgical therapy for vascular disease. Progress in our understanding of physiology, cell biology, and biomanufacturing over the past several decades has made these advances possible.
Collapse
Affiliation(s)
- Laura E Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT, USA. .,Humacyte Inc., Durham, NC 27713, USA
| | - Jeffrey H Lawson
- Humacyte Inc., Durham, NC 27713, USA. .,Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
28
|
Wang Z, Liu L, Mithieux SM, Weiss AS. Fabricating Organized Elastin in Vascular Grafts. Trends Biotechnol 2020; 39:505-518. [PMID: 33019966 DOI: 10.1016/j.tibtech.2020.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Surgically bypassing or replacing a severely damaged artery using a biodegradable synthetic vascular graft is a promising treatment that allows for the remodeling and regeneration of the graft to form a neoartery. Elastin-based structures, such as elastic fibers, elastic lamellae, and laminae, are key functional components in the arterial extracellular matrix. In this review, we identify the lack of elastin in vascular grafts as a key factor that prevents their long-term success. We further summarize advances in vascular tissue engineering that are focused on either de novo production of organized elastin or incorporation of elastin-based biomaterials within vascular grafts to mitigate failure and enhance enduring in vivo performance.
Collapse
Affiliation(s)
- Ziyu Wang
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Linyang Liu
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Wu YL, Szafron JM, Blum KM, Zbinden JC, Khosravi R, Best CA, Reinhardt JW, Zeng Q, Yi T, Shinoka T, Humphrey JD, Breuer CK, Wang Y. Electrospun Tissue-Engineered Arterial Graft Thickness Affects Long-Term Composition and Mechanics. Tissue Eng Part A 2020; 27:593-603. [PMID: 32854586 DOI: 10.1089/ten.tea.2020.0166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Wall stress is often lower in tissue-engineered constructs than in comparable native tissues due to the use of stiff polymeric materials having thicker walls. In this work, we sought to design a murine arterial graft having a more favorable local mechanical environment for the infiltrating cells; we used electrospinning to enclose a compliant inner core of poly(glycerol sebacate) with a stiffer sheath of poly(caprolactone) to reduce the potential for rupture. Two scaffolds were designed that differed in the thickness of the core as previous computational simulations found that circumferential wall stresses could be increased in the core toward native values by increasing the ratio of the core:sheath. Our modified electrospinning protocols reduced swelling of the core upon implantation and eliminated residual stresses in the sheath, both of which had contributed to the occlusion of implanted grafts during pilot studies. For both designs, a subset of implanted grafts occluded due to thrombosis or ruptured due to suspected point defects in the sheath. However, there were design-based differences in collagen content and mechanical behavior during early remodeling of the patent samples, with the thinner-core scaffolds having more collagen and a stiffer behavior after 12 weeks of implantation than the thicker-core scaffolds. By 24 weeks, the thicker-core scaffolds also became stiff, with similar amounts of collagen but increased smooth muscle cell and elastin content. These data suggest that increasing wall stress toward native values may provide a more favorable environment for normal arterial constituents to form despite the overall stiffness of the construct remaining elevated due to the absolute increase in load-bearing constituents.
Collapse
Affiliation(s)
- Yen-Lin Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob C Zbinden
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Cameron A Best
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Qiang Zeng
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshiharu Shinoka
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
30
|
Fleischer S, Tavakol DN, Vunjak-Novakovic G. From arteries to capillaries: approaches to engineering human vasculature. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910811. [PMID: 33708027 PMCID: PMC7942836 DOI: 10.1002/adfm.201910811] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 05/02/2023]
Abstract
From micro-scaled capillaries to millimeter-sized arteries and veins, human vasculature spans multiple scales and cell types. The convergence of bioengineering, materials science, and stem cell biology has enabled tissue engineers to recreate the structure and function of different hierarchical levels of the vascular tree. Engineering large-scale vessels has been pursued over the past thirty years to replace or bypass damaged arteries, arterioles, and venules, and their routine application in the clinic may become a reality in the near future. Strategies to engineer meso- and microvasculature have been extensively explored to generate models to study vascular biology, drug transport, and disease progression, as well as for vascularizing engineered tissues for regenerative medicine. However, bioengineering of large-scale tissues and whole organs for transplantation, have failed to result in clinical translation due to the lack of proper integrated vasculature for effective oxygen and nutrient delivery. The development of strategies to generate multi-scale vascular networks and their direct anastomosis to host vasculature would greatly benefit this formidable goal. In this review, we discuss design considerations and technologies for engineering millimeter-, meso-, and micro-scale vessels. We further provide examples of recent state-of-the-art strategies to engineer multi-scale vasculature. Finally, we identify key challenges limiting the translation of vascularized tissues and offer our perspective on future directions for exploration.
Collapse
Affiliation(s)
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University
- Department of Medicine, Columbia University
| |
Collapse
|
31
|
Quint C. Tissue-engineered vessel derived from human fibroblasts with an electrospun scaffold. J Tissue Eng Regen Med 2020; 14:1652-1660. [PMID: 32889733 DOI: 10.1002/term.3130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 11/07/2022]
Abstract
Advanced cardiovascular disease often requires surgical revascularization for small diameter arterial bypass procedures, and there is a need for alternative grafts in those patients lacking autologous vein. A decellularized biological vessel with the characteristics of a small artery and the ability to remodel in vivo could replace currently available bypass grafts. In this study, a biodegradable electrospun scaffold was specifically designed to be placed in a biomimetic perfusion system to generate a tissue-engineered vessel from human dermal fibroblasts. The polyglycolic acid electrospun scaffold was co-electrosprayed with a sacrificial porogen microparticle, polyethylene oxide, to increase porosity and pore size. After a 10-week culture period in the biomimetic system, the tissue-engineered vessel derived from human fibroblasts was further processed with decellularization to form an allogeneic tissue-engineered vessel. The tissue-engineered vessel had a similar morphology by histological staining for collagen and elastin before and after decellularization. The mechanical properties (burst pressure, ultimate tensile strength, and elastic modulus) remained stable after decellularization and were on the same magnitude as a human saphenous vein. The decellularization processing demonstrated no loss of collagen, near complete removal of DNA, and no presence of intracellular proteins. The decellularized tissue-engineered vessel supported the growth of endothelial cells on the surface, and fibroblasts were able to migrate into the midportion of the matrix. Therefore, an electrospun scaffold provides a versatile biomaterial to create a decellularized tissue-engineered vessel derived from human dermal fibroblasts with morphological and mechanical properties for use as a small diameter vascular graft.
Collapse
Affiliation(s)
- Clay Quint
- Department of Surgery, South Texas Veterans Health System, San Antonio, TX, USA
| |
Collapse
|
32
|
Wu P, Wang L, Li W, Zhang Y, Wu Y, Zhi D, Wang H, Wang L, Kong D, Zhu M. Construction of vascular graft with circumferentially oriented microchannels for improving artery regeneration. Biomaterials 2020; 242:119922. [PMID: 32155476 PMCID: PMC7483276 DOI: 10.1016/j.biomaterials.2020.119922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/29/2022]
Abstract
Design and fabrication of scaffolds with three-dimensional (3D) topological cues inducing regeneration of the neo-tissue comparable to native one remains a major challenge in both scientific and clinical fields. Here, we developed a well-designed vascular graft with 3D highly interconnected and circumferentially oriented microchannels by using the sacrificial sugar microfiber leaching method. The microchannels structure was capable of promoting the migration, oriented arrangement, elongation, and the contractile phenotype expression of vascular smooth muscle cells (VSMCs) in vitro. After implantation into the rat aorta defect model, the microchannels in vascular grafts simultaneously improved the infiltration and aligned arrangement of VSMCs and the oriented deposition of extracellular matrix (ECM), as well as the recruitment and polarization of macrophages. These positive results also provided protection and support for ECs growth, and ultimately accelerated the endothelialization. Our research provides a new strategy for the fabrication of grafts with the capability of inducing arterial regeneration, which could be further extended to apply in preparing other kinds of oriented scaffolds aiming to guide oriented tissue in situ regeneration.
Collapse
Affiliation(s)
- Pingli Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lina Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dengke Zhi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Lianyong Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China; Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China.
| | - Meifeng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, 300071, China; Rongxiang Xu Center for Regenerative Life Science, Nankai University, Tianjin, 300071, China; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| |
Collapse
|
33
|
Venous Mechanical Properties After Arteriovenous Fistulae in Mice. J Surg Res 2020; 248:129-136. [PMID: 31901639 DOI: 10.1016/j.jss.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND An arteriovenous fistula (AVF) exposes the outflow vein to arterial magnitudes and frequencies of blood pressure and flow, triggering molecular pathways that result in venous remodeling and AVF maturation. It is unknown, however, how venous remodeling, that is lumen dilation and wall thickening, affects venous mechanical properties. We hypothesized that a fistula is more compliant compared with a vein because of altered contributions of collagen and elastin to the mechanical properties. METHODS Ephb4+/- and littermate wild-type (WT) male mice were treated with sham surgery or needle puncture to create an abdominal aortocaval fistulae. The thoracic inferior vena cava was harvested 3 wk postoperatively for mechanical testing and histological analyses of collagen and elastin. RESULTS Mechanical testing of the thoracic inferior vena cava from Ephb4+/- and WT mice showed increased distensibility and increased compliance of downstream veins after AVF compared with sham. Although Ephb4+/- veins were thicker than WT veins at the baseline, after AVF, both Ephb4+/- and WT veins showed similar wall thickness as well as similar collagen and elastin area fractions, but increased collagen undulation compared with sham. CONCLUSIONS Fistula-induced remodeling of the outflow vein results in circumferentially increased distensibility and compliance, likely due to post-translational modifications to collagen.
Collapse
|
34
|
Camasão DB, González-Pérez M, Palladino S, Alonso M, Rodríguez-Cabello JC, Mantovani D. Elastin-like recombinamers in collagen-based tubular gels improve cell-mediated remodeling and viscoelastic properties. Biomater Sci 2020; 8:3536-3548. [DOI: 10.1039/d0bm00292e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The partial substitution of collagen with elastin-like recombinamers in tubular gels improves cell-mediated remodeling, elastic moduli and strength during maturation.
Collapse
Affiliation(s)
- Dimitria Bonizol Camasão
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Québec
- Division of Regenerative Medicine
| | - Miguel González-Pérez
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology)
- CIBER-BBN
- University of Valladolid
- 47011 Valladolid
- Spain
| | - Sara Palladino
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Québec
- Division of Regenerative Medicine
| | - Matilde Alonso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology)
- CIBER-BBN
- University of Valladolid
- 47011 Valladolid
- Spain
| | | | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering
- Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery
- Department of Min-Met-Materials Engineering
- Research Center of CHU de Québec
- Division of Regenerative Medicine
| |
Collapse
|
35
|
Cong X, Zhang SM, Batty L, Luo J. Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells Dev 2019; 28:1581-1594. [PMID: 31663439 DOI: 10.1089/scd.2019.0234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In pace with the advancement of tissue engineering during recent decades, tissue-engineered blood vessels (TEBVs) have been generated using primary seed cells, and their impressive success in clinical trials have demonstrated the great potential of these TEBVs as implantable vascular grafts in human regenerative medicine. However, the production, therapeutic efficacy, and readiness in emergencies of current TEBVs could be hindered by the accessibility, expandability, and donor-donor variation of patient-specific primary seed cells. Alternatively, using human induced pluripotent stem cells (hiPSCs) to derive seed vascular cells for vascular tissue engineering could fundamentally address this current dilemma in TEBV production. As an emerging research field with a promising future, the generation of hiPSC-based TEBVs has been reported recently with significant progress. Simultaneously, to further promote hiPSC-based TEBVs into vascular grafts for clinical use, several challenges related to the safety, readiness, and structural integrity of vascular tissue need to be addressed. Herein, this review will focus on the evolution and role of hiPSCs in vascular tissue engineering technology and summarize the current progress, challenges, and future directions of research on hiPSC-based TEBVs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, ChangChun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Luke Batty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
36
|
Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Ding J, Chen X. Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201903279] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 05/14/2025]
Abstract
AbstractSuccessful regeneration of weight‐bearing bone defects and critical‐sized cartilage defects remains a major challenge in clinical orthopedics. In the past decades, biodegradable polymer materials with biomimetic chemical and physical properties have been rapidly developed as ideal candidates for bone and cartilage tissue engineering scaffolds. Due to their unique advantages over other materials of high specific‐surface areas, suitable mechanical strength, and tailorable characteristics, scaffolds made of polymer fibers have been increasingly used for the repair of bone and cartilage defects. This Review summarizes the preparation and compositions of polymer fibers, as well as their characteristics. More importantly, the applications of polymer fiber scaffolds with well‐designed structures or unique properties in bone, cartilage, and osteochondral tissue engineering have been comprehensively highlighted. On the whole, such a comprehensive summary affords constructive suggestions for the development of polymer fiber scaffolds in bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics China‐Japan Union Hospital of Jilin University 126 Xiantai Street Changchun 130033 P. R. China
| | - Xiaochen Liu
- College of Chemistry Fuzhou University 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Liangdan Zeng
- College of Chemical Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| | - Jin Zhang
- College of Chemical Engineering Fuzhou University 2 Xueyuan Road Fuzhou 350108 P. R. China
| | - Jianlin Zuo
- Department of Orthopedics China‐Japan Union Hospital of Jilin University 126 Xiantai Street Changchun 130033 P. R. China
| | - Jun Zou
- Department of Orthopaedic Surgery The First Affiliated Hospital of Soochow University Suzhou 215006 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
37
|
Keshavarzian M, Meyer CA, Hayenga HN. In Silico Tissue Engineering: A Coupled Agent-Based Finite Element Approach. Tissue Eng Part C Methods 2019; 25:641-654. [PMID: 31392930 DOI: 10.1089/ten.tec.2019.0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Over the past two decades, the increase in prevalence of cardiovascular diseases and the limited availability of autologous blood vessels and saphenous vein grafts have motivated the development of tissue-engineered vascular grafts (TEVGs). However, compliance mismatch and poor mechanical properties of the TEVGs remain as two major issues that need to be addressed. Researchers have investigated the role of various culture conditions and mechanical conditioning in deposition and orientation of collagen fibers, which are the key structural components in the vascular wall; however, the intrinsic complexity of mechanobiological interactions demands implementing new engineering approaches that allow researchers to investigate various scenarios more efficiently. In this study, we utilized a coupled agent-based finite element analysis (AB-FEA) modeling approach to study the effect of various loading modes (uniaxial, biaxial, and equibiaxial), boundary conditions, stretch magnitudes, and growth factor concentrations on growth and remodeling of smooth muscle cell-populated TEVGs, with specific focus on collagen deposition and orientation. Our simulations (12 weeks of culture) showed that biaxial cyclic loading (and not uniaxial or equibiaxial) leads to alignment of collagen fibers in the physiological directions. Moreover, axial boundary conditions of the TEVG act as determinants of fiber orientations. Decreasing the serum concentration, from 10% to 5% or 1%, significantly decreased the growth and remodeling speed, but only affected the fiber orientation in the 1% serum case. In conclusion, in silico tissue engineering has the potential to evolve the future of tissue engineering, as it will allow researchers to conceptualize various interactions and investigate numerous scenarios with great speed. In this study, we were able to predict the orientation of collagen fibers in TEVGs using a coupled AB-FEA model in less than 8 h. Impact Statement Tissue-engineered vascular grafts (TEVGs) hold potential to replace the current gold standard of vascular grafting, saphenous vein grafts. However, developing TEVGs that mimic the mechanical performance of the native tissue remains a challenging task. We developed a computational model of the grafts' remodeling processes and studied the effects of various loading mechanisms and culture conditions on collagen fiber orientation, which is a key factor in mechanical performance of the grafts. We were able to predict the fiber orientations accurately and show that biaxial loading and axial boundary conditions are important factors in collagen fiber organization.
Collapse
Affiliation(s)
| | - Clark A Meyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Heather N Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
38
|
Best CA, Szafron JM, Rocco KA, Zbinden J, Dean EW, Maxfield MW, Kurobe H, Tara S, Bagi PS, Udelsman BV, Khosravi R, Yi T, Shinoka T, Humphrey JD, Breuer CK. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater 2019; 94:183-194. [PMID: 31200116 PMCID: PMC6819998 DOI: 10.1016/j.actbio.2019.05.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
Electrospinning is commonly used to generate polymeric scaffolds for tissue engineering. Using this approach, we developed a small-diameter tissue engineered vascular graft (TEVG) composed of poly-ε-caprolactone-co-l-lactic acid (PCLA) fibers and longitudinally assessed its performance within both the venous and arterial circulations of immunodeficient (SCID/bg) mice. Based on in vitro analysis demonstrating complete loss of graft strength by 12 weeks, we evaluated neovessel formation in vivo over 6-, 12- and 24-week periods. Mid-term observations indicated physiologic graft function, characterized by 100% patency and luminal matching with adjoining native vessel in both the venous and arterial circulations. An active and robust remodeling process was characterized by a confluent endothelial cell monolayer, macrophage infiltrate, and extracellular matrix deposition and remodeling. Long-term follow-up of venous TEVGs at 24 weeks revealed viable neovessel formation beyond graft degradation when implanted in this high flow, low-pressure environment. Arterial TEVGs experienced catastrophic graft failure due to aneurysmal dilatation and rupture after 14 weeks. Scaffold parameters such as porosity, fiber diameter, and degradation rate informed a previously described computational model of vascular growth and remodeling, and simulations predicted the gross differential performance of the venous and arterial TEVGs over the 24-week time course. Taken together, these results highlight the requirement for in vivo implantation studies to extend past the critical time period of polymer degradation, the importance of differential neotissue deposition relative to the mechanical (pressure) environment, and further support the utility of predictive modeling in the design, use, and evaluation of TEVGs in vivo. STATEMENT OF SIGNIFICANCE: Herein, we apply a biodegradable electrospun vascular graft to the arterial and venous circulations of the mouse and follow recipients beyond the point of polymer degradation. While venous implants formed viable neovessels, arterial grafts experienced catastrophic rupture due to aneurysmal dilation. We then inform a previously developed computational model of tissue engineered vascular graft growth and remodeling with parameters specific to the electrospun scaffolds utilized in this study. Remarkably, model simulations predict the differential performance of the venous and arterial constructs over 24 weeks. We conclude that computational simulations should inform the rational selection of scaffold parameters to fabricate tissue engineered vascular grafts that must be followed in vivo over time courses extending beyond polymer degradation.
Collapse
Affiliation(s)
- Cameron A Best
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, United States.
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | | | - Jacob Zbinden
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Engineering Graduate Program, The Ohio State University College of Engineering, Columbus, OH, United States
| | - Ethan W Dean
- Department of Orthopaedic Surgery, University of Florida, Gainesville, FL, United States
| | - Mark W Maxfield
- Department of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, MA, United States
| | - Hirotsugu Kurobe
- Department of Cardiovascular Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Paul S Bagi
- Department of Orthopaedic Surgery, Yale-New Haven Hospital, New Haven, CT, United States
| | - Brooks V Udelsman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Tai Yi
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Cardiac Surgery, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher K Breuer
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
39
|
Ueda M, Saito S, Murata T, Hirano T, Bise R, Kabashima K, Suzuki S. Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis. Sci Rep 2019; 9:10644. [PMID: 31337875 PMCID: PMC6650477 DOI: 10.1038/s41598-019-47213-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/12/2019] [Indexed: 11/10/2022] Open
Abstract
The geometric organization of collagen fibers in human reticular dermis and its relationship to that of elastic fibers remain unclear. The tight packing and complex intertwining of dermal collagen fibers hinder accurate analysis of fiber orientation. We hypothesized that combined multiphoton microscopy and biaxial extension could overcome this issue. Continuous observation of fresh dermal sheets under biaxial extension revealed that the geometry of the elastic fiber network is maintained during expansion. Full-thickness human thigh skin samples were biaxially extended and cleared to visualize the entire reticular dermis. Throughout the dermis, collagen fibers straightened with increased inter-fiber spaces, making them more clearly identifiable after extension. The distribution of collagen fibers was evaluated with compilation of local orientation data. Two or three modes were confirmed in all superficial reticular layer samples. A high degree of local similarities in the direction of collagen and elastic fibers was observed. More than 80% of fibers had directional differences of ≤15°, regardless of layer. Understanding the geometric organization of fibers in the reticular dermis improves the understanding of mechanisms underlying the pliability of human skin. Combined multiphoton imaging and biaxial extension provides a research tool for studying the fibrous microarchitecture of the skin.
Collapse
Affiliation(s)
- Maho Ueda
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Teruasa Murata
- Department of Dermatology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoko Hirano
- Department of Dermatology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoma Bise
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
40
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
41
|
van Haaften EE, Wissing TB, Rutten MCM, Bulsink JA, Gashi K, van Kelle MAJ, Smits AIPM, Bouten CVC, Kurniawan NA. Decoupling the Effect of Shear Stress and Stretch on Tissue Growth and Remodeling in a Vascular Graft. Tissue Eng Part C Methods 2019; 24:418-429. [PMID: 29877143 DOI: 10.1089/ten.tec.2018.0104] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The success of cardiovascular tissue engineering (TE) strategies largely depends on the mechanical environment in which cells develop a neotissue through growth and remodeling processes. This mechanical environment is defined by the local scaffold architecture to which cells adhere, that is, the microenvironment, and by external mechanical cues to which cells respond, that is, hemodynamic loading. The hemodynamic environment of early developing blood vessels consists of both shear stress (due to blood flow) and circumferential stretch (due to blood pressure). Experimental platforms that recapitulate this mechanical environment in a controlled and tunable manner are thus critical for investigating cardiovascular TE. In traditional perfusion bioreactors, however, shear stress and stretch are coupled, hampering a clear delineation of their effects on cell and tissue response. In this study, we uniquely designed a bioreactor that independently combines these two types of mechanical cues in eight parallel vascular grafts. The system is computationally and experimentally validated, through finite element analysis and culture of tissue constructs, respectively, to distinguish various levels of shear stress (up to 5 Pa) and cyclic stretch (up to 1.10). To illustrate the usefulness of the system, we investigated the relative contribution of cyclic stretch (1.05 at 0.5 Hz) and shear stress (1 Pa) to tissue development. Both types of hemodynamic loading contributed to cell alignment, but the contribution of shear stress overruled stretch-induced cell proliferation and matrix (i.e., collagen and glycosaminoglycan) production. At a macroscopic level, cyclic stretching led to the most linear stress-stretch response, which was not related to the presence of shear stress. In conclusion, we have developed a bioreactor that is particularly suited to further unravel the interplay between hemodynamics and in situ TE processes. Using the new system, this work highlights the importance of hemodynamic loading to the study of developing vascular tissues.
Collapse
Affiliation(s)
- Eline E van Haaften
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands .,2 Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Tamar B Wissing
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands .,2 Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Marcel C M Rutten
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Jurgen A Bulsink
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Kujtim Gashi
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Mathieu A J van Kelle
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands .,2 Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Anthal I P M Smits
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands .,2 Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands .,2 Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Nicholas A Kurniawan
- 1 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands .,2 Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven, The Netherlands
| |
Collapse
|
42
|
Ellis MW, Luo J, Qyang Y. Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering. Cell Mol Life Sci 2019; 76:893-901. [PMID: 30460472 PMCID: PMC6433159 DOI: 10.1007/s00018-018-2969-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/17/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
Abstract
Elastin-associated vasculopathies are life-threatening conditions of blood vessel dysfunction. The extracellular matrix protein elastin endows the recoil and compliance required for physiologic arterial function, while disruption of function can lead to aberrant vascular smooth muscle cell proliferation manifesting through stenosis, aneurysm, or vessel dissection. Although research efforts have been informative, they remain incomplete as no viable therapies exist outside of a heart transplant. Induced pluripotent stem cell technology may be uniquely suited to address current obstacles as these present a replenishable supply of patient-specific material with which to study disease. The following review will cover the cutting edge in vascular smooth muscle cell modeling of elastin-associated vasculopathy, and aid in the development of human disease modeling and drug screening approaches to identify potential treatments. Vascular proliferative disease can affect up to 50% of the population throughout the world, making this a relevant and critical area of research for therapeutic development.
Collapse
Affiliation(s)
- Matthew W Ellis
- Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, Yale Cardiovascular Research Center, New Haven, CT, 06511, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06519, USA
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, Yale Cardiovascular Research Center, New Haven, CT, 06511, USA
- Yale Stem Cell Center, New Haven, CT, 06520, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, Yale Cardiovascular Research Center, New Haven, CT, 06511, USA.
- Yale Stem Cell Center, New Haven, CT, 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
43
|
Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials 2019; 196:2-17. [PMID: 30072038 PMCID: PMC6344330 DOI: 10.1016/j.biomaterials.2018.07.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023]
Abstract
Most biomedical and pharmaceutical research of the human vascular system aims to unravel the complex mechanisms that drive disease progression from molecular to organ levels. The knowledge gained can then be used to innovate diagnostic and treatment strategies which can ultimately be determined precisely for patients. Despite major advancements, current modeling strategies are often limited at identifying, quantifying, and dissecting specific cellular and molecular targets that regulate human vascular diseases. Therefore, development of multiscale modeling approaches are needed that can advance our knowledge and facilitate the design of next-generation therapeutic approaches in vascular diseases. This article critically reviews animal models, static in vitro systems, and dynamic in vitro culture systems currently used to model vascular diseases. A leading emphasis on the potential of emerging approaches, specifically organ-on-a-chip and three-dimensional (3D) printing, to recapitulate the innate human vascular physiology and anatomy is described. The applications of these approaches and future outlook in designing and screening novel therapeutics are also presented.
Collapse
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Material Sciences, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
44
|
Duijvelshoff R, van Engeland NCA, Gabriels KMR, Söntjens SHM, Smits AIPM, Dankers PYW, Bouten CVC. Host Response and Neo-Tissue Development during Resorption of a Fast Degrading Supramolecular Electrospun Arterial Scaffold. Bioengineering (Basel) 2018; 5:bioengineering5030061. [PMID: 30082586 PMCID: PMC6164451 DOI: 10.3390/bioengineering5030061] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 01/16/2023] Open
Abstract
In situ vascular tissue engineering aims to regenerate vessels "at the target site" using synthetic scaffolds that are capable of inducing endogenous regeneration. Critical to the success of this approach is a fine balance between functional neo-tissue formation and scaffold degradation. Circulating immune cells are important regulators of this process as they drive the host response to the scaffold and they play a central role in scaffold resorption. Despite the progress made with synthetic scaffolds, little is known about the host response and neo-tissue development during and after scaffold resorption. In this study, we designed a fast-degrading biodegradable supramolecular scaffold for arterial applications and evaluated this development in vivo. Bisurea-modified polycaprolactone (PCL2000-U4U) was electrospun in tubular scaffolds and shielded by non-degradable expanded polytetrafluoroethylene in order to restrict transmural and transanastomotic cell ingrowth. In addition, this shield prevented graft failure, permitting the study of neo-tissue and host response development after degradation. Scaffolds were implanted in 60 healthy male Lewis rats as an interposition graft into the abdominal aorta and explanted at different time points up to 56 days after implantation to monitor sequential cell infiltration, differentiation, and tissue formation in the scaffold. Endogenous tissue formation started with an acute immune response, followed by a dominant presence of pro-inflammatory macrophages during the first 28 days. Next, a shift towards tissue-producing cells was observed, with a striking increase in α-Smooth Muscle Actin-positive cells and extracellular matrix by day 56. At that time, the scaffold was resorbed and immune markers were low. These results suggest that neo-tissue formation was still in progress, while the host response became quiescent, favoring a regenerative tissue outcome. Future studies should confirm long-term tissue homeostasis, but require the strengthening of the supramolecular scaffold if a non-shielded model will be used.
Collapse
Affiliation(s)
- Renee Duijvelshoff
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, The Netherlands.
| | - Nicole C A van Engeland
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| | - Karen M R Gabriels
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, The Netherlands.
| | | | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, The Netherlands.
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, The Netherlands.
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
45
|
Lee PY, Liu YC, Wang MX, Hu JJ. Fibroblast-seeded collagen gels in response to dynamic equibiaxial mechanical stimuli: A biomechanical study. J Biomech 2018; 78:134-142. [PMID: 30107900 DOI: 10.1016/j.jbiomech.2018.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/03/2023]
Abstract
The remodeling of fibroblast-seeded collagen gels in response to dynamic mechanical stimuli was investigated by using a newly developed biaxial culture system capable of cyclically stretching planar soft tissues. Fibroblast-seeded collagen gels were subjected to three distinct dynamic mechanical conditions for six days: Cyclic Equibiaxial Stretching at two constant strain magnitudes (CES-7% and CES-20%), and Cyclic Equibiaxial Stretching with incrementally Increasing stain magnitude (ICES, 7% → 15% → 20% each for two days). The frequency of cyclic stretching was set at 1 Hz. At the end of culture, mechanical properties of the gels were examined by biaxial mechanical testing and checked again upon the removal of seeded cells. Collagen microstructure within the gels was illustrated by multiphoton microscopy. The mRNA levels of collagen type I and type III and fibronectin in the cells were examined by reverse transcription PCR. The protein expression of α-smooth muscle actin was detected by immunohistochemistry. We found that the gels cultured under cyclic stretching were stiffer than those cultured under static stretching. Particularly, the stiffness appeared to be significantly enhanced when the ICES was employed. The enhancement of mechanical properties by cyclic stretching appeared to persist upon cell removal, suggesting an irreversible remodeling of extracellular matrix. Second harmonic generation images showed that collagen fibers became thicker and more compact in the gels cultured under cyclic stretching, which may explain the mechanical findings. The mRNA expression of collagen type I in the cells of the ICES was significantly greater than that of the other groups except for the CES-20%. This study suggests that when cyclic stretching is to be used in engineering soft tissues, incrementally increasing strain magnitude may prove useful in the development of the tissue.
Collapse
Affiliation(s)
- Pei-Yuan Lee
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Orthopedics Surgery, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yen-Ching Liu
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Mei-Xuan Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Jia Hu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
46
|
Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74:74-89. [PMID: 29702289 DOI: 10.1016/j.actbio.2018.04.044] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/04/2023]
Abstract
Of all biologic matrices, decellularized extracellular matrix (dECM) has emerged as a promising tool used either alone or when combined with other biologics in the fields of tissue engineering or regenerative medicine - both preclinically and clinically. dECM provides a native cellular environment that combines its unique composition and architecture. It can be widely obtained from native organs of different species after being decellularized and is entitled to provide necessary cues to cells homing. In this review, the superiority of the macro- and micro-architecture of dECM is described as are methods by which these unique characteristics are being harnessed to aid in the repair and regeneration of organs and tissues. Finally, an overview of the state of research regarding the clinical use of different matrices and the common challenges faced in using dECM are provided, with possible solutions to help translate naturally derived dECM matrices into more robust clinical use. STATEMENT OF SIGNIFICANCE Ideal scaffolds mimic nature and provide an environment recognized by cells as proper. Biologically derived matrices can provide biological cues, such as sites for cell adhesion, in addition to the mechanical support provided by synthetic matrices. Decellularized extracellular matrix is the closest scaffold to nature, combining unique micro- and macro-architectural characteristics with an equally unique complex composition. The decellularization process preserves structural integrity, ensuring an intact vasculature. As this multifunctional structure can also induce cell differentiation and maturation, it could become the gold standard for scaffolds.
Collapse
|
47
|
Yeo GC, Mithieux SM, Weiss AS. The elastin matrix in tissue engineering and regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Szafron JM, Breuer CK, Wang Y, Humphrey JD. Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts. J Biomech Eng 2018; 139:2653976. [PMID: 28886204 DOI: 10.1115/1.4037856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 12/28/2022]
Abstract
Continuing advances in the fabrication of scaffolds for tissue-engineered vascular grafts (TEVGs) are greatly expanding the scope of potential designs. Increasing recognition of the importance of local biomechanical cues for cell-mediated neotissue formation, neovessel growth, and subsequent remodeling is similarly influencing the design process. This study examines directly the potential effects of different combinations of key geometric and material properties of polymeric scaffolds on the initial mechanical state of an implanted graft into which cells are seeded or migrate. Toward this end, we developed a bilayered computational model that accounts for layer-specific thickness and stiffness as well as the potential to be residually stressed during fabrication or to swell during implantation. We found that, for realistic ranges of parameter values, the circumferential stress that would be presented to seeded or infiltrating cells is typically much lower than ideal, often by an order of magnitude. Indeed, accounting for layer-specific intrinsic swelling resulting from hydrophilicity or residual stresses not relieved via annealing revealed potentially large compressive stresses, which could lead to unintended cell phenotypes and associated maladaptive growth or, in extreme cases, graft failure. Metrics of global hemodynamics were also found to be inversely related to markers of a favorable local mechanobiological environment, suggesting a tradeoff in designs that seek mechanical homeostasis at a single scale. These findings highlight the importance of the initial mechanical state in tissue engineering scaffold design and the utility of computational modeling in reducing the experimental search space for future graft development and testing.
Collapse
Affiliation(s)
- Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 e-mail:
| | - Christopher K Breuer
- Tissue Engineering Program, Nationwide Children's Hospital, Columbus, OH 43215 e-mail:
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 e-mail:
| | - Jay D Humphrey
- Fellow ASME Department of Biomedical Engineering, Yale University, New Haven, CT 06520 e-mail:
| |
Collapse
|
49
|
Masuda T, Ukiki M, Yamagishi Y, Matsusaki M, Akashi M, Yokoyama U, Arai F. Fabrication of engineered tubular tissue for small blood vessels via three-dimensional cellular assembly and organization ex vivo. J Biotechnol 2018; 276-277:46-53. [PMID: 29689281 DOI: 10.1016/j.jbiotec.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
Abstract
Although there is a great need for suitable vascular replacements in clinical practice, much progress needs to be made toward the development of a fully functional tissue-engineered construct. We propose a fabrication method of engineered tubular tissue for small blood vessels via a layer-by-layer cellular assembly technique using mouse smooth muscle cells, the construction of a poly-(l-lactide-co-ε-caprolactone) (PLCL) scaffold, and integration in a microfluidic perfusion culture system. The cylindrical PLCL scaffold is incised, expanded, and its surface is laminated with the cell layers. The construct confirms into tubular structures due to residual stress imposed by the cylindrical PLCL scaffold. The perfusion culture system allows simulation of static, perfusion (laminar flow), and perfusion with pulsatile pressure (Pulsatile flow) conditions in which mimicking the in vivo environments. The aim of this evaluation was to determine whether fabricated tubular tissue models developed their mechanical properties. The cellular response to hemodynamic stimulus imposed by the dynamic culture system is monitored through expression analysis of fibrillin-1 and fibrillin-2, elastin and smooth muscle myosin heavy chains isoforms transcription factors, which play an important role in tissue elastogenesis. Among the available materials for small blood vessel construction, these cellular hybrid vascular scaffolds hold much potential due to controllability of the mechanical properties of synthetic polymers and biocompatibility of integrated cellular components.
Collapse
Affiliation(s)
- Taisuke Masuda
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Mitsuhiro Ukiki
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuka Yamagishi
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Fumihito Arai
- Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
50
|
Cocciolone AJ, Hawes JZ, Staiculescu MC, Johnson EO, Murshed M, Wagenseil JE. Elastin, arterial mechanics, and cardiovascular disease. Am J Physiol Heart Circ Physiol 2018; 315:H189-H205. [PMID: 29631368 DOI: 10.1152/ajpheart.00087.2018] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large, elastic arteries are composed of cells and a specialized extracellular matrix that provides reversible elasticity and strength. Elastin is the matrix protein responsible for this reversible elasticity that reduces the workload on the heart and dampens pulsatile flow in distal arteries. Here, we summarize the elastin protein biochemistry, self-association behavior, cross-linking process, and multistep elastic fiber assembly that provide large arteries with their unique mechanical properties. We present measures of passive arterial mechanics that depend on elastic fiber amounts and integrity such as the Windkessel effect, structural and material stiffness, and energy storage. We discuss supravalvular aortic stenosis and autosomal dominant cutis laxa-1, which are genetic disorders caused by mutations in the elastin gene. We present mouse models of supravalvular aortic stenosis, autosomal dominant cutis laxa-1, and graded elastin amounts that have been invaluable for understanding the role of elastin in arterial mechanics and cardiovascular disease. We summarize acquired diseases associated with elastic fiber defects, including hypertension and arterial stiffness, diabetes, obesity, atherosclerosis, calcification, and aneurysms and dissections. We mention animal models that have helped delineate the role of elastic fiber defects in these acquired diseases. We briefly summarize challenges and recent advances in generating functional elastic fibers in tissue-engineered arteries. We conclude with suggestions for future research and opportunities for therapeutic intervention in genetic and acquired elastinopathies.
Collapse
Affiliation(s)
- Austin J Cocciolone
- Department of Biomedical Engineering, Washington University , St. Louis, Missouri
| | - Jie Z Hawes
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Elizabeth O Johnson
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| | - Monzur Murshed
- Faculty of Dentistry, Department of Medicine, and Shriners Hospital for Children, McGill University , Montreal, Quebec , Canada
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University , St. Louis, Missouri
| |
Collapse
|