1
|
Mossenta M, Argenziano M, Capolla S, Busato D, Durigutto P, Mangogna A, Polano M, Sblattero D, Cavalli R, Macor P, Toffoli G, Dal Bo M. Idarubicin-loaded chitosan nanobubbles to improve survival and decrease drug side effects in hepatocellular carcinoma. Nanomedicine (Lond) 2025; 20:255-270. [PMID: 39815170 PMCID: PMC11792799 DOI: 10.1080/17435889.2025.2452154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Drug delivery strategies using chitosan nanobubbles (CS-NBs) could be used to reduce drug side effects and improve outcomes in hepatocellular carcinoma (HCC) treatment. To enhance their action, a targeting agent, such as the humanized anti-GPC3 antibody GC33 (condrituzumab), could be attached to their surface. Here, we investigated the use of idarubicin-loaded CS-NBs for HCC treatment and a GC33-derived minibody (that we named 4A1) to enhance CS-NB delivery. METHODS Various CS-NB formulations were prepared with or without 4A1 conjugation and idarubicin loading. RESULTS CS-NBs had a positive charge and a diameter of about 360 nm. In in-vitro experiments using the HCC-like HUH7 cell line, CS-NBs showed a cytotoxic effect once loaded with idarubicin. In-vivo biodistribution in HUH7 tumor-bearing xenograft mice demonstrated that CS-NBs can accumulate in the tumor mass. This effect was enhanced by 4A1 conjugation (p = 0.0317). In HUH7 tumor-bearing xenograft mice, CS-NBs loaded with idarubicin and conjugated or not conjugated with 4A1 were both able to slow tumor growth, to increase mouse survival time compared to free idarubicin (p = 0.00044 and 0.0018, respectively) as well as to reduce drug side effects. CONCLUSIONS CS-NBs loaded with idarubicin can be a useful drug delivery strategy for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paolo Durigutto
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Institute of Pathological Anatomy, Department of Medicine, University of Udine, Udine, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | | | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico (CRO) di Aviano IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Ma D, Zhang X, Fu Q, Qing S, Wang H. Characterization of the Dynamic Behavior of Multinanobubble System under Shock Wave Influence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9068-9081. [PMID: 38628152 DOI: 10.1021/acs.langmuir.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Shockwave-induced changes in nanobubbles cause cavitation erosion and membrane damage but can also be applied to biocarrier transport. Currently, research focuses on single nanobubbles; however, in reality, nanobubbles usually appear as a multibubble system. Therefore, this study proposes a method based on cutting and replicating to construct a multibubble model. This method can be widely applied to molecular dynamics (MD) models and enhance the customization capabilities of MD models. The dynamic behavior of a multinanobubble system with different numbers and arrangements of nanobubbles is investigated with the MD method under the influence of shock waves in a liquid argon system. The study also explores the range of influence between nanobubbles. The results show that in the case of two nanobubbles, when the distance between the bubbles is constant, the smaller the angle between the direction of the shock wave and the line connecting the bubbles, the greater is the influence between nanobubbles, and the moment of collapse of the nanobubbles farther away from the shock wave is slower. When three nanobubbles are arranged with a right offset, after the first bubble collapses, the effect on the other two bubbles is similar to the changes in bubbles when the angle of arrangement is 30° or 60°. Under a different arrangement, the change of shock wave velocity on the nanobubble size only affects its collapse time and contraction collapse rate. When the shock wave with a radian of about 2.87 or greater than 2.87 touches the bubbles, the collapse of the second nanobubble will not be affected.
Collapse
Affiliation(s)
- Ding Ma
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Xiaohui Zhang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Qi Fu
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Shan Qing
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, PR China
| |
Collapse
|
3
|
Ma D, Zhang X, Dong R, Wang H. The impact of low-velocity shock waves on the dynamic behaviour characteristics of nanobubbles. Phys Chem Chem Phys 2024; 26:11945-11957. [PMID: 38573064 DOI: 10.1039/d3cp06259g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Low-velocity shock wave-induced contraction and expansion of nanobubbles can be applied to biocarriers and microfluidic systems. Although experiments have been conducted to study the application effects, the dynamic behavior characteristics of nanobubbles remain unexplored. In this work, we utilize molecular dynamics (MD) simulations to investigate the dynamic behavior characteristics of nanobubbles influenced by low-velocity shock waves in a liquid argon system. The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) machine learning method is used to calculate the equivalent radius of nanobubbles. Two statistical methods are then utilized to predict the time series changes in the equivalent radius of nanobubbles without rebound shock waves. The piston velocity is analyzed using the bisection method to obtain the critical impact states of the nanobubble. The results show that at the low velocity shock wave (piston velocity of 0.1 km s-1), the shock wave pressure is small, the non-vacuum nanobubbles contract and expand in a circular shape, and the gas particles inside the bubble are not dispersed. In contrast, the vacuum nanobubbles collapse directly. As the shock wave rebounds upon impact, it triggers periodic contraction and expansion of the nanobubbles. The predictions indicate that the equivalent radius will vary within a small range according to the pre-predicted values in the absence of the rebound shock wave. Nanobubbles are present in four critical impact states: dispersed gaps, multiple smaller bubbles, two split bubbles, and a concave bubble.
Collapse
Affiliation(s)
- Ding Ma
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
| | - Xiaohui Zhang
- Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
| | - Rensong Dong
- National University Science and Technology Park, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, P. R. China
| |
Collapse
|
4
|
Wang J, Wang Y, Zhong L, Yan F, Zheng H. Nanoscale contrast agents: A promising tool for ultrasound imaging and therapy. Adv Drug Deliv Rev 2024; 207:115200. [PMID: 38364906 DOI: 10.1016/j.addr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhong
- School of public health, Nanchang University, Nanchang, Jiangxi, 330019, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Uppalapati SS, Guha L, Kumar H, Mandoli A. Nanotechnological Advancements for the Theranostic Intervention in Anaplastic Thyroid Cancer: Current Perspectives and Future Direction. Curr Cancer Drug Targets 2024; 24:245-270. [PMID: 37424349 DOI: 10.2174/1568009623666230707155145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Anaplastic thyroid cancer is the rarest, most aggressive, and undifferentiated class of thyroid cancer, accounting for nearly forty percent of all thyroid cancer-related deaths. It is caused by alterations in many cellular pathways like MAPK, PI3K/AKT/mTOR, ALK, Wnt activation, and TP53 inactivation. Although many treatment strategies, such as radiation therapy and chemotherapy, have been proposed to treat anaplastic thyroid carcinoma, they are usually accompanied by concerns such as resistance, which may lead to the lethality of the patient. The emerging nanotechnology-based approaches cater the purposes such as targeted drug delivery and modulation in drug release patterns based on internal or external stimuli, leading to an increase in drug concentration at the site of the action that gives the required therapeutic action as well as modulation in diagnostic intervention with the help of dye property materials. Nanotechnological platforms like liposomes, micelles, dendrimers, exosomes, and various nanoparticles are available and are of high research interest for therapeutic intervention in anaplastic thyroid cancer. The pro gression of the disease can also be traced by using magnetic probes or radio-labeled probes and quantum dots that serve as a diagnostic intervention in anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| |
Collapse
|
6
|
Wang J, Tan J, Wu B, Wu R, Han Y, Wang C, Gao Z, Jiang D, Xia X. Customizing cancer treatment at the nanoscale: a focus on anaplastic thyroid cancer therapy. J Nanobiotechnology 2023; 21:374. [PMID: 37833748 PMCID: PMC10571362 DOI: 10.1186/s12951-023-02094-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Jie Tan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ruolin Wu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Yanmei Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, 430022, Wuhan, Hubei, PR China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China.
| |
Collapse
|
7
|
Al Mamun A, Ullah A, Chowdhury MEH, Marei HE, Madappura AP, Hassan M, Rizwan M, Gomes VG, Amirfazli A, Hasan A. Oxygen releasing patches based on carbohydrate polymer and protein hydrogels for diabetic wound healing: A review. Int J Biol Macromol 2023; 250:126174. [PMID: 37558025 DOI: 10.1016/j.ijbiomac.2023.126174] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Diabetic wounds are among the major healthcare challenges, consuming billions of dollars of resources and resulting in high numbers of morbidity and mortality every year. Lack of sufficient oxygen supply is one of the most dominant causes of impaired healing in diabetic wounds. Numerous clinical and experimental studies have demonstrated positive outcomes as a result of delivering oxygen at the diabetic wound site, including enhanced angiogenesis, antibacterial and cell proliferation activities. However, prolonged and sustained delivery of oxygen to improve the wound healing process has remained a major challenge due to rapid release of oxygen from oxygen sources and limited penetration of oxygen into deep skin tissues. Hydrogels made from sugar-based polymers such as chitosan and hyaluronic acid, and proteins such as gelatin, collagen and hemoglobin have been widely used to deliver oxygen in a sustained delivery mode. This review presents an overview of the recent advances in oxygen releasing hydrogel based patches as a therapeutic modality to enhance diabetic wound healing. Various types of oxygen releasing wound healing patch have been discussed along with their fabrication method, release profile, cytocompatibility and in vivo results. We also briefly discuss the challenges and prospects related to the application of oxygen releasing biomaterials as wound healing therapeutics.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Asad Ullah
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | | | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alakananda Parassini Madappura
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Mahbub Hassan
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | | | - Vincent G Gomes
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Argenziano M, Arduino I, Rittà M, Molinar C, Feyles E, Lembo D, Cavalli R, Donalisio M. Enhanced Anti-Herpetic Activity of Valacyclovir Loaded in Sulfobutyl-ether-β-cyclodextrin-decorated Chitosan Nanodroplets. Microorganisms 2023; 11:2460. [PMID: 37894118 PMCID: PMC10609596 DOI: 10.3390/microorganisms11102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach to increase the concentration of the drug at the site of infection, limiting systemic drug exposure and reducing systemic toxicity. In this study, VACV-loaded nanodroplet (ND) formulations, optimized for vaginal delivery, were designed. Cell-based assays were then carried out to evaluate the antiviral activity of VACV loaded in the ND system. The chitosan-shelled ND exhibited an average diameter of about 400 nm and a VACV encapsulation efficiency of approximately 91% and was characterized by a prolonged and sustained release of VACV. Moreover, a modification of chitosan shell with an anionic cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD), as a physical cross-linker, increased the stability and mucoadhesion capability of the nanosystem. Biological experiments showed that SBEβCD-chitosan NDs enhanced VACV antiviral activity against the herpes simplex viruses type 1 and 2, most likely due to the long-term controlled release of VACV loaded in the ND and an improved delivery of the drug in sub-cellular compartments.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Massimo Rittà
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Elisa Feyles
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| |
Collapse
|
9
|
Baroni S, Argenziano M, La Cava F, Soster M, Garello F, Lembo D, Cavalli R, Terreno E. Hard-Shelled Glycol Chitosan Nanoparticles for Dual MRI/US Detection of Drug Delivery/Release: A Proof-of-Concept Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2227. [PMID: 37570545 PMCID: PMC10420971 DOI: 10.3390/nano13152227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This paper describes a novel nanoformulation for dual MRI/US in vivo monitoring of drug delivery/release. The nanosystem was made of a perfluoropentane core coated with phospholipids stabilized by glycol chitosan crosslinked with triphosphate ions, and it was co-loaded with the prodrug prednisolone phosphate (PLP) and the structurally similar MRI agent Gd-DTPAMA-CHOL. Importantly, the in vitro release of PLP and Gd-DTPAMA-CHOL from the nanocarrier showed similar profiles, validating the potential impact of the MRI agent as an imaging reporter for the drug release. On the other hand, the nanobubbles were also detectable by US imaging both in vitro and in vivo. Therefore, the temporal evolution of both MRI and US contrast after the administration of the proposed nanosystem could report on the delivery and the release kinetics of the transported drug in a given lesion.
Collapse
Affiliation(s)
- Simona Baroni
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca La Cava
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - Marco Soster
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043 Orbassano, Italy;
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy; (M.A.); (M.S.)
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (S.B.); (F.L.C.); (F.G.)
| |
Collapse
|
10
|
Kancheva M, Aronson L, Pattilachan T, Sautto F, Daines B, Thommes D, Shar A, Razavi M. Bubble-Based Drug Delivery Systems: Next-Generation Diagnosis to Therapy. J Funct Biomater 2023; 14:373. [PMID: 37504868 PMCID: PMC10382061 DOI: 10.3390/jfb14070373] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Current radiologic and medication administration is systematic and has widespread side effects; however, the administration of microbubbles and nanobubbles (MNBs) has the possibility to provide therapeutic and diagnostic information without the same ramifications. Microbubbles (MBs), for instance, have been used for ultrasound (US) imaging due to their ability to remain in vessels when exposed to ultrasonic waves. On the other hand, nanobubbles (NBs) can be used for further therapeutic benefits, including chronic treatments for osteoporosis and cancer, gene delivery, and treatment for acute conditions, such as brain infections and urinary tract infections (UTIs). Clinical trials are also being conducted for different administrations and utilizations of MNBs. Overall, there are large horizons for the benefits of MNBs in radiology, general medicine, surgery, and many more medical applications. As such, this review aims to evaluate the most recent publications from 2016 to 2022 to report the current uses and innovations for MNBs.
Collapse
Affiliation(s)
- Mihaela Kancheva
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Lauren Aronson
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Tara Pattilachan
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Francesco Sautto
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Benjamin Daines
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Donald Thommes
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Angela Shar
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
11
|
Busato D, Mossenta M, Dal Bo M, Macor P, Toffoli G. The Proteoglycan Glypican-1 as a Possible Candidate for Innovative Targeted Therapeutic Strategies for Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810279. [PMID: 36142190 PMCID: PMC9499405 DOI: 10.3390/ijms231810279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all pancreatic cancers, with a 5-year survival rate of 7% and 80% of patients diagnosed with advanced or metastatic malignancies. Despite recent advances in diagnostic testing, surgical techniques, and systemic therapies, there remain limited options for the effective treatment of PDAC. There is an urgent need to develop targeted therapies that are able to differentiate between cancerous and non-cancerous cells to reduce side effects and better inhibit tumor growth. Antibody-targeted strategies are a potentially effective option for introducing innovative therapies. Antibody-based immunotherapies and antibody-conjugated nanoparticle-based targeted therapies with antibodies targeting specific tumor-associated antigens (TAA) can be proposed. In this context, glypican-1 (GPC1), which is highly expressed in PDAC and not expressed or expressed at very low levels in non-malignant lesions and healthy pancreatic tissues, is a useful TAA that can be achieved by a specific antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy. In this review, we describe the main clinical features of PDAC. We propose the proteoglycan GPC1 as a useful TAA for PDAC-targeted therapies. We also provide a digression on the main developed approaches of antibody-based immunotherapy and antibody-conjugated nanoparticle-based targeted therapy, which can be used to target GPC1.
Collapse
Affiliation(s)
- Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0434-659816
| | - Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
12
|
Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int J Mol Sci 2022; 23:10038. [PMID: 36077433 PMCID: PMC9456072 DOI: 10.3390/ijms231710038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal tumor, with a 5-year survival rate of 18%. Early stage HCC is potentially treatable by therapies with curative intent, whereas chemoembolization/radioembolization and systemic therapies are the only therapeutic options for intermediate or advanced HCC. Drug resistance is a critical obstacle in the treatment of HCC that could be overcome by the use of targeted nanoparticle-based therapies directed towards specific tumor-associated antigens (TAAs) to improve drug delivery. Glypican 3 (GPC3) is a member of the glypican family, heparan sulfate proteoglycans bound to the cell surface via a glycosylphosphatidylinositol anchor. The high levels of GPC3 detected in HCC and the absence or very low levels in normal and non-malignant liver make GPC3 a promising TAA candidate for targeted nanoparticle-based therapies. The use of nanoparticles conjugated with anti-GPC3 agents may improve drug delivery, leading to a reduction in severe side effects caused by chemotherapy and increased drug release at the tumor site. In this review, we describe the main clinical features of HCC and the common treatment approaches. We propose the proteoglycan GPC3 as a useful TAA for targeted therapies. Finally, we describe nanotechnology approaches for anti-GPC3 drug delivery systems based on NPs for HCC treatment.
Collapse
Affiliation(s)
- Monica Mossenta
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
13
|
Argenziano M, Occhipinti S, Scomparin A, Angelini C, Novelli F, Soster M, Giovarelli M, Cavalli R. Exploring chitosan-shelled nanobubbles to improve HER2 + immunotherapy via dendritic cell targeting. Drug Deliv Transl Res 2022; 12:2007-2018. [PMID: 35672651 PMCID: PMC9172608 DOI: 10.1007/s13346-022-01185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Immunotherapy is a valuable approach to cancer treatment as it is able to activate the immune system. However, the curative methods currently in clinical practice, including immune checkpoint inhibitors, present some limitations. Dendritic cell vaccination has been investigated as an immunotherapeutic strategy, and nanotechnology-based delivery systems have emerged as powerful tools for improving immunotherapy and vaccine development. A number of nanodelivery systems have therefore been proposed to promote cancer immunotherapy. This work aims to design a novel immunotherapy nanoplatform for the treatment of HER2 + breast cancer, and specially tailored chitosan-shelled nanobubbles (NBs) have been developed for the delivery of a DNA vaccine. The NBs have been functionalized with anti-CD1a antibodies to target dendritic cells (DCs). The NB formulations possess dimensions of approximately 300 nm and positive surface charge, and also show good physical stability up to 6 months under storage at 4 °C. In vitro characterization has confirmed that these NBs are capable of loading DNA with good encapsulation efficiency (82%). The antiCD1a-functionalized NBs are designed to target DCs, and demonstrated the ability to induce DC activation in both human and mouse cell models, and also elicited a specific immune response that was capable of slowing tumor growth in mice in vivo. These findings are the proof of concept that loading a tumor vaccine into DC-targeted chitosan nanobubbles may become an attractive nanotechnology approach for the future immunotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Marco Soster
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Science, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
14
|
Argenziano M, Bessone F, Dianzani C, Cucci MA, Grattarola M, Pizzimenti S, Cavalli R. Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma. Pharmaceutics 2022; 14:341. [PMID: 35214073 PMCID: PMC8878772 DOI: 10.3390/pharmaceutics14020341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive approach to overcome chemoresistance in various malignant tumors, including melanoma. This work aims at designing a new type of chitosan-shelled nanobubble for the delivery of siRNA against Nrf2 in combination with an ultrasound. A new preparation method based on a water-oil-water (W/O/W) double-emulsion was purposely developed for siRNA encapsulation in aqueous droplets within a nanobubble core. Stable, very small NB formulations were obtained, with sizes of about 100 nm and a positive surface charge. siRNA was efficiently loaded in NBs, reaching an encapsulation efficiency of about 90%. siNrf2-NBs downregulated the target gene in M14 cells, sensitizing the resistant melanoma cells to the cisplatin treatment. The combination with US favored NB cell uptake and transfection efficiency. Based on the results, nanobubbles have shown to be a promising US responsive tool for siRNA delivery, able to overcome chemoresistance in melanoma cancer cells.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Federica Bessone
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| |
Collapse
|
15
|
Pasupathy R, Pandian P, Selvamuthukumar S. Nanobubbles: A Novel Targeted Drug Delivery System. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Antimicrobial oxygen-loaded nanobubbles as promising tools to promote wound healing in hypoxic human keratinocytes. Toxicol Rep 2022; 9:154-162. [PMID: 35145879 PMCID: PMC8818485 DOI: 10.1016/j.toxrep.2022.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
Chitosan-shelled/perfluoropentane-filled OLNBs are innovative oxygen nanocarriers. OLNBs are biocompatible with human keratinocytes after cell internalization. OLNBs promote normoxia-like migration of hypoxic human keratinocytes. Chitosan-shelled OLNBs display antimicrobial activity against MRSA and C. albicans. Oxygen-loaded nanobubbles appear promising tools to treat infected chronic wounds.
Chronic wounds (CWs) are typically characterized by persistent hypoxia, exacerbated inflammation, and impaired skin tissue remodeling. Additionally, CWs are often worsened by microbial infections. Oxygen-loaded nanobubbles (OLNBs), displaying a peculiar structure based on oxygen-solving perfluorocarbons such as perfluoropentane in the inner core and polysaccharydes including chitosan in the outer shell, have proven effective in delivering oxygen to hypoxic tissues. Antimicrobial properties have been largely reported for chitosan. In the present work chitosan/perfluoropentane OLNBs were challenged for biocompatibility with human skin cells and ability to promote wound healing processes, as well as for their antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. After cellular internalization, OLNBs were not toxic to human keratinocytes (HaCaT), whereas oxygen-free NBs (OFNBs) slightly affected their viability. Hypoxia-dependent inhibition of keratinocyte migratory ability after scratch was fully reversed by OLNBs, but not OFNBs. Both OLNBs and OFNBs exerted chitosan-induced short-term bacteriostatic activity against MRSA (up to 6 h) and long-term fungistatic activity against C. albicans (up to 24 h). Short-term antibacterial activity associated with NB prolonged adhesion to MRSA cell wall (up to 24 h) while long-term antifungal activity followed NB early internalization by C. albicans (already after 3 h of incubation). Taken altogether, these data support chitosan-shelled and perfluoropentane-cored OLNB potential as innovative, promising, non-toxic, and cost-effective antimicrobial devices promoting repair processes to be used for treatment of MRSA- and C. albicans-infected CWs.
Collapse
|
17
|
Zahiri M, Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Theranostic nanobubbles towards smart nanomedicines. J Control Release 2021; 339:164-194. [PMID: 34592384 DOI: 10.1016/j.jconrel.2021.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023]
Abstract
Targeted therapy and early accurate detection of malignant lesions are essential for the effectiveness of treatment and prognosis in cancer patients. The development of gaseous system as a versatile platform for the fabricated nanobubbles, has attracted much interest in improving the efficacy of ultrasound therapeutic, diagnostic, and theranostic platforms. Nano-sized bubble, as an ultrasound contrast agent, with spherical gas-filled structures exhibited contrast enhancement capability due to their inherent EPR effect. Additionally, nanobubbles exhibited good stability with extended retention time in the blood stream. The current review summarized various nanobubbles and discussed about the crucial parameters affecting the stability of ultrafine bubbles. Furthermore, therapeutic and theranostic gaseous systems for fighting against cancer were described.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Hosseinzadeh S, Nazari H, Esmaeili E, Hatamie S. Polyethylene glycol triggers the anti-cancer impact of curcumin nanoparticles in sw-1736 thyroid cancer cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:112. [PMID: 34453618 PMCID: PMC8403115 DOI: 10.1007/s10856-021-06593-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Curcumin has been recognized as an effective anticancer agent. However, due to its hydrophobic property, the cell absorption is not satisfied. Herein, the curcumin nanoparticles were prepared in the presence of polyethylene glycol 6000 (PEG6000) to reduce its elimination by immune system. For first time, not only the curcumin was encapsulated within the niosome nanoparticles modified by PEG, there are no reports related to the anticancer property of curcumin against thyroid cancers. The nanoparticles was developed and its anticancer was studied on sw-1736 cancer cell line. The nanoparticles were examined by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Also, the release profile of curcumin, the IC50 concentration, the radical amount and the gene expression were evaluated. The optimized nanoparticles showed a diameter of 212 ± 31 nm by SEM and the encapsulation efficiency and loading capacity of 76% and 16.8% respectively. DLS confirmed the polydispersity index (PDI) of 0.596 and the release model was shown a sustained release with the delivery of 68% curcumin after 6 days. Also, the nanoparticles indicated the higher storage stability at 4 °C. After the cell treatment, the apoptotic bodies were appeared and IC50 was obtained as 0.159 mM. Moreover, the generated radicals by the treated cells was 86% after 72 h and the gene pattern indicated the bax/bcl2 ratio of 6.83 confirming the apoptosis effect of the nanoparticles. The results approved the nanoparticles could be suggested as an anticancer drug candidate for thyroid cancers. The encapsulated curcumin within the niosome nanoparticles modified with PEG, could be released and up-taken by the thyroid cancer cell line due to the same hydrophobic property of cell membrane and the niosome particles. The reaction between curcumin and cellular components generates radicals and activates the apoptotic pathway. The corresponding reaction finally makes cell death.
Collapse
Affiliation(s)
- Simzar Hosseinzadeh
- Medical nanotechnology and tissue engineering research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hojjatollah Nazari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shadie Hatamie
- Institute of NanoEngineering and MicroSystems National Tsing Hua University Hsinchu, 30013, Hsinchu, Taiwan, ROC
- Department of Power Mechanical Engineering National Tsing Hua University Hsinchu, 30013, Hsinchu, Taiwan, ROC
| |
Collapse
|
19
|
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
21
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
22
|
Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Mar Drugs 2021; 19:md19020112. [PMID: 33672056 PMCID: PMC7919482 DOI: 10.3390/md19020112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.
Collapse
|
23
|
Han X, Xu X, Tang Y, Zhu F, Tian Y, Liu W, He D, Lu G, Gu Y, Wang S. BSA-Stabilized Mesoporous Organosilica Nanoparticles Reversed Chemotherapy Resistance of Anaplastic Thyroid Cancer by Increasing Drug Uptake and Reducing Cellular Efflux. Front Mol Biosci 2020; 7:610084. [PMID: 33344508 PMCID: PMC7744685 DOI: 10.3389/fmolb.2020.610084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a highly aggressive and the most lethal type of thyroid cancer. The standard-of-care for unresectable ATC is radiotherapy and chemotherapy, usually based on doxorubicin (Dox). However, most patients develop resistance shortly after treatment. To overcome the drug resistance, we synthesized the mesoporous organosilica nanoparticles (MONPs) loaded with Dox and stabilized the nanocomposites by bovine serum albumin (BSA). The surface area and pore volume of MONPs were 612.653 m2/g and 0.589 cm3/g. The loading capacity of Dox-MONPs reached 47.02%. Compared to Dox-MONPs and free Dox, BSA-Dox-MONPs had more durable tumor-killing power on both drug-sensitive cell line HTh74 and drug-resistant cell line HTh74R. The cellular uptake of BSA-Dox-MONPs was 28.14 and 65.53% higher than that of Dox-MONP in HTh74 and HTh74R. Furthermore, the BSA coating decreased the efflux rate of nanocomposites in HTh74 (from 38.95 to 33.05%) and HTh74R (from 43.03 to 32.07%). In summary, BSA-Dox-MONPs reversed the chemotherapy resistance of ATC cells via increased drug uptake and inhibited drug efflux, offering a promising platform for the treatment of chemo-resistant ATC.
Collapse
Affiliation(s)
- Xiao Han
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxia Tang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Tian
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Doudou He
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yunfei Gu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouju Wang
- Department of Radiology, Jinling Hospital, Nanjing Medical University, Nanjing, China.,Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. Int J Nanomedicine 2020; 15:9717-9743. [PMID: 33299313 PMCID: PMC7721306 DOI: 10.2147/ijn.s276001] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic wound shows delayed and incomplete healing processes, which in turn exposes patients to an environment with a high risk of infection. This article has summarized current developments of nanoparticles/hydrogels and nanotechnology used for promoting the wound healing process in either diabetic animal models or patients with diabetes mellitus. These nanoparticles/hydrogels promote diabetic wound healing by loading bioactive molecules (such as growth factors, genes, proteins/peptides, stem cells/exosomes, etc.) and non-bioactive substances (metal ions, oxygen, nitric oxide, etc.). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favored by researchers. In addition, nanoparticles/hydrogels can be combined with some technology (including PTT, LBL self-assembly technique and 3D-printing technology) to treat diabetic wound repair. By reviewing the recent literatures, we also proposed new strategies for improving multifunctional treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Que Bai
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Qianfa Long
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an710003, People’s Republic of China
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| |
Collapse
|
25
|
Rinella L, Pizzo B, Frairia R, Delsedime L, Calleris G, Gontero P, Zunino V, Fortunati N, Arvat E, Catalano MG. Modulating tumor reactive stroma by extracorporeal shock waves to control prostate cancer progression. Prostate 2020; 80:1087-1096. [PMID: 32609927 DOI: 10.1002/pros.24037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Prostate cancer is the second most common cancer worldwide. Tumor microenvironment is composed of activated fibroblasts, the so called carcinoma-associated fibroblasts (CAFs). They express high levels of α-smooth muscle actin (α-SMA) and type I collagen (COL1), and support proliferation and migration of tumor epithelial cells. Extracorporeal shock waves (ESWs), acoustic waves, are effective in the treatment of hypertrophic scars, due to their ability to modulate fibrosis. Based on this rationale, the study evaluated the effects of ESWs on CAF activation and the influence of ESW-treated CAFs on the growth and migration of epithelial prostatic carcinoma cells. METHODS Primary cultures of CAFs (n = 10) were prepared from tumors of patients undergoing surgery for high-risk prostate carcinoma. CAFs were treated with ESWs (energy levels: 0.32 mJ/mm2 , 1000 pulses; 0.59 mJ/mm2 , 250 pulses). After treatment, the messenger RNA and protein levels of the stromal activation markers α-SMA and COL1 were determined. Subsequently, two different stabilized cell lines (PC3 and DU145) of androgen-resistant prostate cancer were treated with the conditioned media produced by ESW-treated CAFs. At different times, viability and migration of PC3 and DU145 cells were evaluated. Viability was also assessed by coculture system using CAFs and PC3 or DU145 cells. RESULTS ESWs reduced gene expression and protein level of α-SMA and COL1 in CAFs. The treatment of PC3 and DU145 with conditioned media of ESW-treated CAFs determined a reduction of their growth and invasive potential. Coculture systems between ESW-treated CAFs and PC3 or DU145 cells confirmed the epithelial cell number reduction. CONCLUSIONS This in vitro study demonstrates for the first time that ESWs are able to modulate the activation of prostate CAFs in favor of a less "reactive" stroma, with consequent slowing of the growth and migration of prostate cancer epithelial cells. However, only further studies to be performed in vivo will confirm the possibility of using this new therapy in patients with prostate cancer.
Collapse
Affiliation(s)
- Letizia Rinella
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benedetta Pizzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Frairia
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luisa Delsedime
- Department of Oncology, Pathology Unit, A.O.U., Città della Salute e della Scienza Hospital, Turin, Italy
| | - Giorgio Calleris
- Division of Urology, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paolo Gontero
- Division of Urology, Department of Surgical Sciences, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Valentina Zunino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Fortunati
- Department of Oncology, Oncological Endocrinology Unit, AO Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Oncology, Oncological Endocrinology Unit, AO Città della Salute e della Scienza di Torino, Turin, Italy
| | | |
Collapse
|
26
|
Falzarano MS, Argenziano M, Marsollier AC, Mariot V, Rossi D, Selvatici R, Dumonceaux J, Cavalli R, Ferlini A. Chitosan-Shelled Nanobubbles Irreversibly Encapsulate Morpholino Conjugate Antisense Oligonucleotides and Are Ineffective for Phosphorodiamidate Morpholino-Mediated Gene Silencing of DUX4. Nucleic Acid Ther 2020; 31:201-207. [PMID: 32679000 DOI: 10.1089/nat.2020.0862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Orphan drugs, including antisense oligonucleotides (AONs), siRNAs/miRNAs, Cas9 nuclease, and recombinant genes, have recently been made available for rare diseases. However, the main bottleneck for these new therapies is delivery. Drugs/synthetic genes need to reach the affected tissues with minimal off-target effects and immune reactions. AON molecules are currently delivered as backboned naked compounds or via viral vectors. Nanocarriers are considered promising vehicles, able to improve drug distribution by organ targeting and limiting safety issues. We tested perfluoropentane-based nanobubbles (NBs) as vehicles for loading phosphorodiamidate morpholino (PMO) AON to suppress DUX4 expression in a facioscapulohumeral muscular dystrophy cell model. In vitro cell-free analysis demonstrated a good loading capacity of PMO into NBs, while experiments in cell cultures showed lack of therapeutic effect since expression of DUX4 and its targets remained unmodified. We conclude that these types of chitosan-shelled NBs do not release PMO-AON and are therefore not ideal for PMO AON-related therapies.
Collapse
Affiliation(s)
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Anne Chalotte Marsollier
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Davide Rossi
- Department of Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Torino, Torino, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.,The Dubowitz Neuromuscular Centre, UCL Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
27
|
Beyond Oncological Hyperthermia: Physically Drivable Magnetic Nanobubbles as Novel Multipurpose Theranostic Carriers in the Central Nervous System. Molecules 2020; 25:molecules25092104. [PMID: 32365941 PMCID: PMC7248690 DOI: 10.3390/molecules25092104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.
Collapse
|
28
|
Daga M, de Graaf IAM, Argenziano M, Barranco ASM, Loeck M, Al-Adwi Y, Cucci MA, Caldera F, Trotta F, Barrera G, Casini A, Cavalli R, Pizzimenti S. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol In Vitro 2020; 65:104800. [PMID: 32084521 DOI: 10.1016/j.tiv.2020.104800] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/27/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
The potential mammalian hepatotoxicity of a new class of GSH-responsive cyclodextrin-based nanosponges loaded with the anticancer drug doxorubicin (Dox-GSH-NS) was investigated. Previous studies showed that these nanosponges can release medicaments preferentially in cells having high GSH content, a common feature of chemoresistant cells, and showed enhanced anti-tumoral activity compared to free Dox in vitro and in vivo in cells with high GSH content. Following these promising results, we investigated here the Dox-GSH-NS hepatotoxicity in human HepG2 cells (in vitro) and in the organotypic cultures of rat precision-cut liver slices (PCLS, ex vivo), while their accumulation in rat liver was assessed in vivo. Moreover, the transport in Dox uptake, as well as its efflux, was studied in vitro. Overall, benefiting of the integration of different investigational models, a good safety profile of Dox-GSH-NSs was evidenced, and their hepatotoxicity resulted to be comparable with respect to free Dox both in vitro and ex vivo. Furthermore, in vivo studies showed that the hepatic accumulation of the Dox loaded in the NS is comparable with respect to the free drug. In addition, Dox-GSH-NSs are taken up by active mechanisms, and can escape the efflux drug pump, thus, contributing to overcoming drug resistance.
Collapse
Affiliation(s)
- Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Inge A M de Graaf
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Maximillian Loeck
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Yehya Al-Adwi
- Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Garching b. München, Germany.
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy.
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
29
|
Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers (Basel) 2020; 12:cancers12010162. [PMID: 31936526 PMCID: PMC7016577 DOI: 10.3390/cancers12010162] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline widely used in cancer therapy and in particular in breast cancer treatment. The treatment with DOX appears successful, but it is limited by a severe cardiotoxicity. This work evaluated the in vitro and in vivo anticancer effect of a new formulation of β-cyclodextrin nanosponges containing DOX (BNS-DOX). The BNS-DOX effectiveness was evaluated in human and mouse breast cancer cell lines in vitro in terms of effect on cell growth, cell cycle distribution, and apoptosis induction; and in vivo in BALB-neuT mice developing spontaneous breast cancer in terms of biodistribution, cancer growth inhibition, and heart toxicity. BNS-DOX significantly inhibited cancer cell proliferation, through the induction of apoptosis, with higher efficiency than free DOX. The breast cancer growth in BALB-neuT mice was inhibited by 60% by a BNS-DOX dose five times lower than the DOX therapeutic dose, with substantial reduction of tumor neoangiogenesis and lymphangiogenesis. Biodistribution after BNS-DOX treatment revealed a high accumulation of DOX in the tumor site and a low accumulation in the hearts of mice. Results indicated that use of BNS may be an efficient strategy to deliver DOX in the treatment of breast cancer, since it improves the anti-cancer effectiveness and reduces cardiotoxicity.
Collapse
|
30
|
Khan MS, Hwang J, Lee K, Choi Y, Seo Y, Jeon H, Hong JW, Choi J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel) 2019; 11:cancers11101464. [PMID: 31569523 PMCID: PMC6826834 DOI: 10.3390/cancers11101464] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is a key concern during the treatment of tumors, and hypoxia-inducible factor 1 alpha (HIF-1α) has been associated with increased tumor resistance to therapeutic modalities. In this study, doxorubicin-loaded oxygen nanobubbles (Dox/ONBs) were synthesized, and the effectiveness of drug delivery to MDA-MB-231 breast cancer and HeLa cells was evaluated. Dox/ONBs were characterized using optical and fluorescence microscopy, and size measurements were performed through nanoparticle tracking analysis (NTA). The working mechanism of Dox was evaluated using reactive oxygen species (ROS) assays, and cellular penetration was assessed with confocal microscopy. Hypoxic conditions were established to assess the effect of Dox/ONBs under hypoxic conditions compared with normoxic conditions. Our results indicate that Dox/ONBs are effective for drug delivery, enhancing oxygen levels, and ROS generation in tumor-derived cell lines.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jangsun Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Youngmin Seo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Jong Wook Hong
- Department of Bionano Technology, Hanyang University, Seoul 426-791, Korea.
- Department of Bionano Engineering, Hanyang University, Ansan 426-791, Korea.
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
31
|
Wang S, Yin C, Han X, Guo A, Chen X, Liu S, Liu Y. Improved Healing of Diabetic Foot Ulcer upon Oxygenation Therapeutics through Oxygen-Loading Nanoperfluorocarbon Triggered by Radial Extracorporeal Shock Wave. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5738368. [PMID: 31485296 PMCID: PMC6710755 DOI: 10.1155/2019/5738368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcers (DFUs), the most serious complication of diabetes mellitus, can induce high morbidity, the need to amputate lower extremities, and even death. Although many adjunctive strategies have been applied for the treatment of DFUs, the low treatment efficiency, potential side effects, and high cost are still huge challenges. Recently, nanomaterial-based drug delivery systems (NDDSs) have achieved targeted drug delivery and controlled drug release, offering great promises in various therapeutics for diverse disorders. Additionally, the radial extracorporeal shock wave (rESW) has been shown to function as a robust trigger source for the NDDS to release its contents, as the rESW harbors a potent capability in generating pressure waves and in creating the cavitation effect. Here, we explored the performance of oxygen-loaded nanoperfluorocarbon (Nano-PFC) combined with the rESW as a treatment for DFUs. Prior to in vivo assessment, we first demonstrated the high oxygen affinity in vitro and great biocompatibility of Nano-PFC. Moreover, the rESW-responsive oxygen release behavior from oxygen-saturated Nano-PFC was also successfully verified in vitro and in vivo. Importantly, the wound healing of DFUs was significantly accelerated due to improved blood microcirculation, which was a result of rESW therapy (rESWT), and the targeted release of oxygen into the wound from oxygen-loaded Nano-PFC, which was triggered by the rESW. Collectively, the oxygen-saturated Nano-PFC and rESW provide a completely new approach to treat DFUs, and this study highlights the advantages of combining nanotechnology with rESW in therapeutics.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoguang Han
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, Beijing 100035, China
| | - Anyi Guo
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, Beijing 100035, China
| | - Xiaodong Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Liu
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, Beijing 100035, China
| |
Collapse
|
32
|
Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater 2019; 93:135-151. [PMID: 30685475 PMCID: PMC6615977 DOI: 10.1016/j.actbio.2019.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Musculoskeletal disorders are a significant burden on the global economy and public health. Advanced drug delivery plays a key role in the musculoskeletal field and holds the promise of enhancing the repair of degenerated and injured musculoskeletal tissues. Ideally, drug delivery should have the ability to directly deliver therapeutic agents to the diseased/injured sites with a desirable drug level over a period of time. Here, we present a mini-review of the current state-of-the-art research associated with local drug delivery and its use for the treatment of musculoskeletal disorders. First, an overview of drug delivery strategies, with a focus on issues related to musculoskeletal pathology, potential therapeutic strategies, conventional and non-conventional drugs, and various delivery systems, is introduced. Then, we highlight recent advances in the emerging fields of musculoskeletal local drug delivery, involving therapeutic drugs (e.g., genes, small molecule therapeutics, and stem cells), novel delivery vehicles (e.g., 3D printing and tissue engineering techniques), and innovative delivery approaches (e.g., multi-drug delivery and smart stimuli-responsive delivery). The review concludes with future perspectives and associated challenges for developing local drug delivery for musculoskeletal applications. STATEMENT OF SIGNIFICANCE: Three important aspects are highlighted in this manuscript: 1) The advanced musculoskeletal drug delivery is introduced from the aspects ranging from musculoskeletal disorders, potential therapeutic solutions, and various drug delivery systems. 2) The recent advances in the emerging fields of musculoskeletal local drug delivery, involving therapeutic drugs (e.g., genes, small molecule therapeutics, and stem cells), novel delivery vehicles (e.g., 3D printing and tissue engineering technique), and innovative delivery approaches (e.g., multi-drug delivery and smart stimuli-responsive delivery), are highlighted. 3) The challenges and perspectives of future research directions in the development of musculoskeletal local drug delivery are presented.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, United States.
| |
Collapse
|
33
|
Yin C, Wang S, Ren Q, Shen X, Chen X, Liu Y, Liu S. Radial extracorporeal shock wave promotes the enhanced permeability and retention effect to reinforce cancer nanothermotherapeutics. Sci Bull (Beijing) 2019; 64:679-689. [PMID: 36659650 DOI: 10.1016/j.scib.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/21/2023]
Abstract
Since most cancer nanomedicine relies on the enhanced permeability and retention (EPR) effect to eradicate tumors, strategies that are able to promote nanoparticle (NP) delivery and extravasation are presupposed to elevate the EPR effect for more effective cancer therapeutics. However, nanothermotherapeutics still suffers from limited drug delivery into tumor sites, for even though numerous efforts have been made to enhance the selective tumor targeting of NPs. In this study, we uncovered that radial extracorporeal shock wave therapy (rESWT), an important approach in physical therapy that has been overlooked in cancer treatment in the past, can largely improve the EPR-dependent tumor uptake of NPs. We here defined the optimal low dosage and desirable combinatory manner for rESWT in driving NP accumulation towards tumors. Two underlying biophysical mechanisms responsible for the rESWT-enhanced EPR effect were proposed. On one hand, rESWT-conducted compressive and tensile forces could relieve high intra-tumoral pressure; on the other hand, rESWT-induced cavitation bubbles could directly distend and disrupt tumor blood vessels. All these together synergistically promoted vessel vasodilation, tumor perfusion and NP extravasation. Further experiments revealed that the combinatory therapeutics between rESWT and nanothermotherapeutics greatly improved the tumor-killing efficacy. Thus, our findings open a new path to improve EPR-mediated drug delivery with the assistance of rESWT.
Collapse
Affiliation(s)
- Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinming Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yajun Liu
- Orthopedic Shock Wave Treatment Center, Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Bessone F, Argenziano M, Grillo G, Ferrara B, Pizzimenti S, Barrera G, Cravotto G, Guiot C, Stura I, Cavalli R, Dianzani C. Low-dose curcuminoid-loaded in dextran nanobubbles can prevent metastatic spreading in prostate cancer cells. NANOTECHNOLOGY 2019; 30:214004. [PMID: 30654342 DOI: 10.1088/1361-6528/aaff96] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preventing recurrences and metastasis of prostate cancer after prostatectomy by administering adjuvant therapies is quite a controversial issue. In addition to effectiveness, absence of side effects and long term toxicity are mandatory. Curcuminoids (Curc) extracted with innovative techniques and effectively loaded by polymeric nanobubbles (Curc-NBs) satisfy such requirements. Curc-NBs showed stable over 30 d, were effectively internalized by tumor cells and were able to slowly release Curc in a sustained way. Significant biological effects were detected in PC-3 and DU-145 cell lines where Curc-NBs were able to inhibit adhesion and migration, to promote cell apoptosis and to affect cell viability and colony-forming capacity in a dose-dependent manner. Since the favourable effects are already detectable at very low doses, which can be reached at a clinical level, the actual drug concentration can be visualized and monitored by US or MRI, Curc-NBs can be proposed as an effective adjuvant theranostic tool.
Collapse
Affiliation(s)
- F Bessone
- Department of Drug Science & Technology, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Andrews LE, Chan MH, Liu RS. Nano-lipospheres as acoustically active ultrasound contrast agents: evolving tumor imaging and therapy technique. NANOTECHNOLOGY 2019; 30:182001. [PMID: 30645984 DOI: 10.1088/1361-6528/aafeb9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Applying nanobubbles (NBs) for contrast-enhanced ultrasound imaging has received increased attention. NBs are biocompatible, multifunctional, theranostic agents. Their properties of high echogenicity and stability create an agent suitable for ultrasonography diagnosis. Their favorable properties of size, in vivo stability, and ease of modification are being exploited to implement a theranostic platform for cancer treatment. The considerable development offers the potential to overcome drug resistance and adverse side effects that are associated with traditional chemotherapy. This review outlines the principles of ultrasonography and angiogenesis. Microbubbles and micelles are also discussed to underline the superior capabilities of NBs for the application. NBs could passively accumulate to tumor tissue by enhanced permeability and retention effect. In addition, it can also achieve the active transportation by surface modification. Active targeting modalities and stimuli-responsive drug delivery modifications generate a therapeutic vehicle. The cytotoxicity of NBs formulations, multimodal imaging capability, active targeting mechanisms, and drug delivery methods are highlighted to confirm the NB as a vehicle for targeted treatment and enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Laura Emma Andrews
- Department of Chemistry, National Taiwan University, Taiwan. School of Chemistry, The University of Edinburgh, United Kingdom
| | | | | |
Collapse
|
36
|
Zhou X, Guo L, Shi D, Duan S, Li J. Biocompatible Chitosan Nanobubbles for Ultrasound-Mediated Targeted Delivery of Doxorubicin. NANOSCALE RESEARCH LETTERS 2019; 14:24. [PMID: 30649655 PMCID: PMC6335234 DOI: 10.1186/s11671-019-2853-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/03/2019] [Indexed: 05/18/2023]
Abstract
Ultrasound-targeted delivery of nanobubbles (NBs) has become a promising strategy for noninvasive drug delivery. The biosafety and drug-transporting ability of NBs have been a research hotspot, especially regarding chitosan NBs due to their biocompatibility and high biosafety. Since the drug-carrying capacity of chitosan NBs and the performance of ultrasound-assisted drug delivery remain unclear, the aim of this study was to synthesize doxorubicin hydrochloride (DOX)-loaded biocompatible chitosan NBs and assess their drug delivery capacity. In this study, the size distribution of chitosan NBs was measured by dynamic light scattering, while their drug-loading capacity and ultrasound-mediated DOX release were determined by a UV spectrophotometer. In addition, a clinical ultrasound imaging system was used to evaluate the ability of chitosan NBs to achieve imaging enhancement, while the biosafety profile of free chitosan NBs was evaluated by a cytotoxicity assay in MCF-7 cells. Furthermore, NB-mediated DOX uptake and the apoptosis of Michigan Cancer Foundation-7 (MCF-7) cells were measured by flow cytometry. The results showed that the DOX-loaded NBs (DOX-NBs) exhibited excellent drug-loading ability as well as the ability to achieve ultrasound enhancement. Ultrasound (US) irradiation promoted the release of DOX from DOX-NBs in vitro. Furthermore, DOX-NBs effectively delivered DOX into mammalian cancer cells. In conclusion, biocompatible chitosan NBs are suitable for ultrasound-targeted DOX delivery and are thus a promising strategy for noninvasive and targeted drug delivery worthy of further investigation.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, West Wenhua Road, Jinan, Shandong China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, West Wenhua Road, Jinan, Shandong China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, West Wenhua Road, Jinan, Shandong China
| | - Sujuan Duan
- Department of Ultrasound, Qilu Hospital of Shandong University, West Wenhua Road, Jinan, Shandong China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, West Wenhua Road, Jinan, Shandong China
| |
Collapse
|
37
|
Martina K, Serpe L, Cavalli R, Cravotto G. Enabling technologies for the preparation of multifunctional “bullets” for nanomedicine. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2018.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in nanotechnology, including modern enabling techniques that can improve synthetic preparation and drug formulations, have opened up new frontiers in nanomedicine with the development of nanoscale carriers and assemblies. The use of delivery platforms has attracted attention over the past decade as researchers shift their focus away from the development of new drug candidates, and toward new means with which to deliver therapeutic and/or diagnostic agents. This work will explore a transdisciplinary approach for the production of a number of nanomaterials, nanocomplexes and nanobubbles and their application in a variety of potential biological and theranostic protocols. Particular attention will be paid to nanobubbles, stimuli responsive nanoparticles and cyclodextrin grafted nanosystems produced under non-conventional conditions, such as microwave and ultrasound irradiation. Besides nanoparticles preparation, ultrasound can also act as an enabling technology when activating sensitive nanobubbles and nanoparticles.
Collapse
Affiliation(s)
- K. Martina
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| | - L. Serpe
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| | - R. Cavalli
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| | - G. Cravotto
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| |
Collapse
|
38
|
Lafond M, Watanabe A, Yoshizawa S, Umemura SI, Tachibana K. Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles. Sci Rep 2018; 8:7472. [PMID: 29748624 PMCID: PMC5945894 DOI: 10.1038/s41598-018-25913-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/25/2018] [Indexed: 12/24/2022] Open
Abstract
Nanobubbles (NBs) are of high interest for ultrasound (US) imaging as contrast agents and therapy as cavitation nuclei. Because of their instability (Laplace pressure bubble catastrophe) and low sensitivity to US, reducing the size of commonly used microbubbles to submicron-size is not trivial. We introduce stabilized NBs in the 100-250-nm size range, manufactured by agitating human serum albumin and perfluoro-propane. These NBs were exposed to 3.34- and 5.39-MHz US, and their sensitivity to US was proven by detecting inertial cavitation. The cavitation-threshold information was used to run a numerical parametric study based on a modified Rayleigh-Plesset equation (with a Newtonian rheology model). The determined values of surface tension ranged from 0 N/m to 0.06 N/m. The corresponding values of dilatational viscosity ranged from 5.10-10 Ns/m to 1.10-9 Ns/m. These parameters were reported to be 0.6 N/m and 1.10-8 Ns/m for the reference microbubble contrast agent. This result suggests the possibility of using albumin as a stabilizer for the nanobubbles that could be maintained in circulation and presenting satisfying US sensitivity, even in the 3-5-MHz range.
Collapse
Affiliation(s)
- Maxime Lafond
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan.
| | - Akiko Watanabe
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shin Yoshizawa
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Shin-Ichiro Umemura
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Katsuro Tachibana
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
39
|
Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B, Grange C, Mastrocola R, Castellano I, Berta L, Cavalli R, Catalano MG. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr Relat Cancer 2017; 24:275-286. [PMID: 28487350 DOI: 10.1530/erc-17-0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 01/04/2023]
Abstract
Anaplastic thyroid cancer is one of the most lethal diseases, and a curative therapy does not exist. Doxorubicin, the only drug approved for anaplastic thyroid cancer treatment, has a very low response rate and causes numerous side effects among which cardiotoxicity is the most prominent. Thus, doxorubicin delivery to the tumor site could be an import goal aimed to improve the drug efficacy and to reduce its systemic side effects. We recently reported that, in human anaplastic thyroid cancer cell lines, combining doxorubicin-loaded nanobubbles with extracorporeal shock waves, acoustic waves used in lithotripsy and orthopedics without side effects, increased the intracellular drug content and in vitro cytotoxicity. In the present study, we tested the efficacy of this treatment on a human anaplastic thyroid cancer xenograft mouse model. After 21 days, the combined treatment determined the greatest drug accumulation in tumors with consequent reduction of tumor volume and weight, and an extension of the tumor doubling time. Mechanistically, the treatment induced tumor apoptosis and decreased cell proliferation. Finally, although doxorubicin caused the increase of fibrosis markers and oxidative stress in animal hearts, loading doxorubicin into nanobubbles avoided these effects preventing heart damage. The improvement of doxorubicin anti-tumor effects together with the prevention of heart damage suggests that the combination of doxorubicin-loaded nanobubbles with extracorporeal shock waves might be a promising drug delivery system for anaplastic thyroid cancer treatment.
Collapse
Affiliation(s)
| | - Roberto Frairia
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Letizia Rinella
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | - Monica Argenziano
- Department of Drug Science and TechnologyUniversity of Turin, Turin, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of Turin, Turin, Italy
| | - Cristina Grange
- Department of Medical SciencesUniversity of Turin, Turin, Italy
| | | | | | | | - Roberta Cavalli
- Department of Drug Science and TechnologyUniversity of Turin, Turin, Italy
| | | |
Collapse
|
40
|
Spielman D, Badhey A, Kadakia S, Inman J, Ducic Y. Rare Thyroid Malignancies: an Overview for the Oncologist. Clin Oncol (R Coll Radiol) 2017; 29:298-306. [DOI: 10.1016/j.clon.2017.01.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/07/2017] [Accepted: 01/19/2017] [Indexed: 12/26/2022]
|
41
|
Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR, Khadjavi A, Spagnolo R, Tullio V, Giribaldi G, Guiot C, Cuffini AM, Prato M, Cavalli R. Vancomycin-loaded nanobubbles: A new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm 2017; 523:176-188. [PMID: 28330735 DOI: 10.1016/j.ijpharm.2017.03.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/30/2022]
Abstract
Vancomycin (Vm) currently represents the gold standard against methicillin-resistant Staphylococcus aureus (MRSA) infections. However, it is associated with low oral bioavailability, formulation stability issues, and severe side effects upon systemic administration. These drawbacks could be overcome by Vm topical administration if properly encapsulated in a nanocarrier. Intriguingly, nanobubbles (NBs) are responsive to physical external stimuli such as ultrasound (US), promoting drug delivery. In this work, perfluoropentane (PFP)-cored NBs were loaded with Vm by coupling to the outer dextran sulfate shell. Vm-loaded NBs (VmLNBs) displayed ∼300nm sizes, anionic surfaces and good drug encapsulation efficiency. In vitro, VmLNBs showed prolonged drug release kinetics, not accompanied by cytotoxicity on human keratinocytes. Interestingly, VmLNBs were generally more effective than Vm alone in MRSA killing, with VmLNB antibacterial activity being more sustained over time as a result of prolonged drug release profile. Besides, VmLNBs were not internalized by staphylococci, opposite to Vm solution. Further US association promoted drug delivery from VmLNBs through an in vitro model of porcine skin. Taken together, these results support the hypothesis that proper Vm encapsulation in US-responsive NBs might be a promising strategy for the topical treatment of MRSA wound infections.
Collapse
Affiliation(s)
- Monica Argenziano
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Giuliana Banche
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Via Santena 9, 10126 Torino, Italy.
| | - Anna Luganini
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Torino, Italy
| | - Nicole Finesso
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Valeria Allizond
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Via Santena 9, 10126 Torino, Italy
| | | | - Amina Khadjavi
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy; Dipartimento di Neuroscienze, Università degli Studi di Torino, Torino, Italy
| | - Rita Spagnolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Vivian Tullio
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Via Santena 9, 10126 Torino, Italy
| | - Giuliana Giribaldi
- Dipartimento di Oncologia, Università degli Studi di Torino, Torino, Italy
| | - Caterina Guiot
- Dipartimento di Neuroscienze, Università degli Studi di Torino, Torino, Italy
| | - Anna Maria Cuffini
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Via Santena 9, 10126 Torino, Italy
| | - Mauro Prato
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Via Santena 9, 10126 Torino, Italy; Dipartimento di Neuroscienze, Università degli Studi di Torino, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125 Torino, Italy.
| |
Collapse
|
42
|
Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves. PLoS One 2016; 11:e0168553. [PMID: 28002459 PMCID: PMC5176187 DOI: 10.1371/journal.pone.0168553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/02/2016] [Indexed: 01/31/2023] Open
Abstract
To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.
Collapse
|