1
|
Anstead GM. A One Health Perspective on the Resurgence of Flea-Borne Typhus in Texas in the 21st Century: Part 1: The Bacteria, the Cat Flea, Urbanization, and Climate Change. Pathogens 2025; 14:154. [PMID: 40005529 PMCID: PMC11858070 DOI: 10.3390/pathogens14020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Flea-borne typhus (FBT), due to Rickettsia typhi and R. felis, is an infection typically causing fever, headache, rash, hepatitis, and thrombocytopenia. About one quarter of patients suffer pulmonary, neurologic, hematologic, renal, hepatic, cardiac, ocular or other complications. In the 21st century, the incidence of FBT has increased in both Texas and California compared to the 1990s. In this paper, county-level epidemiological data for the number of cases of FBT occurring in Texas for two decades, 1990-1999 and 2010-2019, were compared with respect to county of residence, urbanization, and climatic region. Human population growth in Texas has promoted FBT by increased urbanization and the abundance of pet dogs and cats, stray/feral dogs and cats, and opossums. Increasing temperatures in Texas in the new millennium have increased the flea-borne transmission of FBT by promoting host infestation and flea feeding and defecation, accelerating the flea life cycle, and increasing rickettsial replication within the flea. Increased numbers of opossums and stray cats and dogs in the urban/suburban landscape have increased the risk of flea transfer to humans and their pets.
Collapse
Affiliation(s)
- Gregory M. Anstead
- Division of Infectious Diseases, Medical Service, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX 78229, USA;
- Division of Infectious Diseases, Depatment of Medicine, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Danchenko M, Macaluso KR. Salivary glands of the cat flea, Ctenocephalides felis: Dissection and microscopy guide. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100080. [PMID: 38623392 PMCID: PMC11016963 DOI: 10.1016/j.cris.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Fleas are morphologically unique ectoparasites that are hardly mistaken for any other insect. Most flea species that feed on humans and their companion animals, including the cat flea (Ctenocephalides felis), have medical and veterinary importance. Besides facilitating blood acquisition, salivary biomolecules can modulate pathogen transmission. Thus, dissection of salivary glands is essential for comprehensive studies on disease vectors like the cat flea. Herein, we present the pictorial dissection protocol assisting future research targeting individual flea organs, for revealing their roles in vector competence and physiology. We provide a comprehensive guide, allowing researchers, even with limited practical experience, to successfully perform microdissection for collecting cat flea salivary glands. Furthermore, the protocol does not require expensive, sophisticated equipment and can be accomplished with routinely available tools. We illustrated expected results with morphological changes of salivary glands upon blood feeding as well as fluorescently stained these organs.
Collapse
Affiliation(s)
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, University of South Alabama Frederick P. Whiddon College of Medicine, 610 Clinic Dr, Mobile, AL, 36688, United States
| |
Collapse
|
3
|
Moore CO, André MR, Šlapeta J, Breitschwerdt EB. Vector biology of the cat flea Ctenocephalides felis. Trends Parasitol 2024; 40:324-337. [PMID: 38458883 PMCID: PMC11168582 DOI: 10.1016/j.pt.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Ctenocephalides felis, the cat flea, is among the most prevalent and widely dispersed vectors worldwide. Unfortunately, research on C. felis and associated pathogens (Bartonella and Rickettsia spp.) lags behind that of other vectors and vector-borne pathogens. Therefore, we aimed to review fundamental aspects of C. felis as a vector (behavior, epidemiology, phylogenetics, immunology, and microbiome composition) with an emphasis on key techniques and research avenues employed in other vector species. Future laboratory C. felis experimental infections with Bartonella, Rickettsia, and Wolbachia species/strains should examine the vector-pathogen interface utilizing contemporary visualization, transcriptomic, and gene-editing techniques. Further environmental sampling will inform the range and prevalence of C. felis and associated pathogens, improving the accuracy of vector and pathogen modeling to improve infection/infestation risk assessment and diagnostic recommendations.
Collapse
Affiliation(s)
- Charlotte O Moore
- Intracellular Pathogens Research Laboratory, Department of Clinical Science, North Carolina State University, NC, USA
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (FCAV/UNESP), Jaboticabal, SP 14884-900, Brazil
| | - Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Edward B Breitschwerdt
- Intracellular Pathogens Research Laboratory, Department of Clinical Science, North Carolina State University, NC, USA.
| |
Collapse
|
4
|
Lu S, Danchenko M, Macaluso KR, Ribeiro JMC. Revisiting the sialome of the cat flea Ctenocephalides felis. PLoS One 2023; 18:e0279070. [PMID: 36649293 PMCID: PMC9844850 DOI: 10.1371/journal.pone.0279070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/29/2022] [Indexed: 01/18/2023] Open
Abstract
The hematophagous behaviour emerged independently in several instances during arthropod evolution. Survey of salivary gland and saliva composition and its pharmacological activity led to the conclusion that blood-feeding arthropods evolved a distinct salivary mixture that can interfere with host defensive response, thus facilitating blood acquisition and pathogen transmission. The cat flea, Ctenocephalides felis, is the major vector of several pathogens, including Rickettsia typhi, Rickettsia felis and Bartonella spp. and therefore, represents an important insect species from the medical and veterinary perspectives. Previously, a Sanger-based sialome of adult C. felis female salivary glands was published and reported 1,840 expressing sequence tags (ESTs) which were assembled into 896 contigs. Here, we provide a deeper insight into C. felis salivary gland composition using an Illumina-based sequencing approach. In the current dataset, we report 8,892 coding sequences (CDS) classified into 27 functional classes, which were assembled from 42,754,615 reads. Moreover, we paired our RNAseq data with a mass spectrometry analysis using the translated transcripts as a reference, confirming the presence of several putative secreted protein families in the cat flea salivary gland homogenates. Both transcriptomic and proteomic approaches confirmed that FS-H-like proteins and acid phosphatases lacking their putative catalytic residues are the two most abundant salivary proteins families of C. felis and are potentially related to blood acquisition. We also report several novel sequences similar to apyrases, odorant binding proteins, antigen 5, cholinesterases, proteases, and proteases inhibitors, in addition to putative novel sequences that presented low or no sequence identity to previously deposited sequences. Together, the data represents an extended reference for the identification and characterization of the pharmacological activity present in C. felis salivary glands.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, Maryland, United States of America
- * E-mail:
| | - Monika Danchenko
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - José M. C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Rockville, Maryland, United States of America
| |
Collapse
|
5
|
Tsokana CN, Kapna I, Valiakos G. Current Data on Rickettsia felis Occurrence in Vectors, Human and Animal Hosts in Europe: A Scoping Review. Microorganisms 2022; 10:2491. [PMID: 36557744 PMCID: PMC9781214 DOI: 10.3390/microorganisms10122491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Rickettsia felis is an emerging pathogen with increasing reports of human cases and detection in arthropod and animal host species worldwide. In this scoping review we record the newest data reported for R. felis in Europe: the vector and host species found to be infected, and the geographical distribution and prevalence of R. felis infection in vectors and hosts. A total of 15 European countries reported the occurrence of R. felis in hosts and vectors during 2017−2022. The vectors found to be infected by R. felis were flea, tick and mite species; Ctenocephalides felis and Ixodes ricinus were the dominant ones. The hosts found to be infected and/or exposed to R. felis were humans, cats and small mammals. Physicians should be aware of the epidemiology and include illness caused by R. felis in the differential diagnosis of febrile disease. Veterinarians should keep training pet owners on the need for effective year-round arthropod control on their pets, especially for fleas.
Collapse
Affiliation(s)
| | | | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
6
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Fongsaran C, Jirakanwisal K, Tongluan N, Latour A, Healy S, Christofferson RC, Macaluso KR. The role of cofeeding arthropods in the transmission of Rickettsia felis. PLoS Negl Trop Dis 2022; 16:e0010576. [PMID: 35759517 PMCID: PMC9269922 DOI: 10.1371/journal.pntd.0010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/08/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rickettsia felis is an emerging etiological agent of rickettsioses worldwide. The cosmopolitan cat flea (Ctenocephalides felis) is the primary vector of R. felis, but R. felis has also been reported in other species of hematophagous arthropods including ticks and mosquitoes. Canines can serve as a bacteremic host to infect fleas under laboratory conditions, yet isolation of R. felis from the blood of a vertebrate host in nature has not been realized. Cofeeding transmission is an efficient mechanism for transmitting rickettsiae between infected and uninfected fleas; however, the mechanism of transmission among different orders and classes of arthropods is not known. The potential for R. felis transmission between infected fleas and tick (Dermacentor variabilis) and mosquito (Anopheles quadrimaculatus) hosts was examined via cofeeding bioassays. Donor cat fleas infected with R. felis transmitted the agent to naïve D. variabilis nymphs via cofeeding on a rat host. Subsequent transstadial transmission of R. felis from the engorged nymphs to the adult ticks was observed with reduced prevalence in adult ticks. Using an artificial host system, An. quadrimaculatus exposed to a R. felis-infected blood meal acquired rickettsiae and maintained infection over 12 days post-exposure (dpe). Similar to ticks, mosquitoes were able to acquire R. felis while cofeeding with infected cat fleas on rats infection persisting in the mosquito for up to 3 dpe. The results indicate R. felis-infected cat fleas can transmit rickettsiae to both ticks and mosquitoes via cofeeding on a vertebrate host, thus providing a potential avenue for the diversity of R. felis-infected arthropods in nature. Primarily associated with the common cat flea, Rickettsia felis is an intracellular bacterial pathogen that can be transmitted from the flea to vertebrate hosts. This flea-borne infection has now been identified worldwide as a human pathogen. In addition to fleas, other blood feeding arthropods including ticks and mosquitoes are being recognized as possible vectors of R. felis. Although the mammalian infectious source for arthropods is still unknown, cofeeding transmission of Rickettsia is known to occur between vectors of the same species. However, potential for flea transmission of R. felis to other orders and classes of arthropods is unknown. Here, we examined the potential for fleas to transmit R. felis to American dog ticks and mosquitoes during feeding events on rat hosts. Our data suggested that ticks and mosquitoes can be infected when simultaneously feeding on a host with R. felis-infected cat fleas.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Krit Jirakanwisal
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Natthida Tongluan
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Allison Latour
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sean Healy
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-Borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
8
|
Danchenko M, Laukaitis HJ, Macaluso KR. Dynamic gene expression in salivary glands of the cat flea during Rickettsia felis infection. Pathog Dis 2021; 79:6189691. [PMID: 33770162 PMCID: PMC8062234 DOI: 10.1093/femspd/ftab020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cat flea, Ctenocephalides felis, is an arthropod vector capable of transmitting several human pathogens including Rickettsia species. Earlier studies identified Rickettsia felis in the salivary glands of the cat flea and transmission of rickettsiae during arthropod feeding. The saliva of hematophagous insects contains multiple biomolecules with anticlotting, vasodilatory and immunomodulatory activities. Notably, the exact role of salivary factors in the molecular interaction between flea-borne rickettsiae and their insect host is still largely unknown. To determine if R. felis modulates gene expression in the cat flea salivary glands, cat fleas were infected with R. felis and transcription patterns of selected salivary gland-derived factors, including antimicrobial peptides and flea-specific antigens, were assessed. Salivary glands were microdissected from infected and control cat fleas at different time points after exposure and total RNA was extracted and subjected to reverse-transcriptase quantitative PCR for gene expression analysis. During the experimental 10-day feeding period, a dynamic change in gene expression of immunity-related transcripts and salivary antigens between the two experimental groups was detected. The data indicated that defensin-2 (Cf-726), glycine-rich antimicrobial peptide (Cf-83), salivary antigens (Cf-169 and Cf-65) and deorphanized peptide (Cf-75) are flea-derived factors responsive to rickettsial infection.
Collapse
Affiliation(s)
- Monika Danchenko
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 610 Clinic Drive, Mobile, AL 36688, USA
| | - Hanna J Laukaitis
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 610 Clinic Drive, Mobile, AL 36688, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, 610 Clinic Drive, Mobile, AL 36688, USA
| |
Collapse
|
9
|
Hoque MM, Barua S, Kelly PJ, Chenoweth K, Kaltenboeck B, Wang C. Identification of Rickettsia felis DNA in the blood of domestic cats and dogs in the USA. Parasit Vectors 2020; 13:581. [PMID: 33208186 PMCID: PMC7672164 DOI: 10.1186/s13071-020-04464-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The main vector and reservoir host of Rickettsia felis, an emerging human pathogen causing flea-borne spotted fever, is the cat flea Ctenocephalides felis. While cats have not been found to be infected with the organism, significant percentages of dogs from Australia and Africa are infected, indicating that they may be important mammalian reservoirs. The objective of this study was to determine the presence of R. felis DNA in the blood of domestic dogs and cats in the USA. METHODS Three previously validated PCR assays for R. felis and DNA sequencing were performed on blood samples obtained from clinically ill domestic cats and dogs from 45 states (2008-2020) in the USA. The blood samples had been submitted for the diagnosis of various tick-borne diseases in dogs and feline infectious peritonitis virus, feline immunodeficiency virus, and Bartonella spp. in cats. Phylogenetic comparisons were performed on the gltA nucleotide sequences obtained in the study and those reported for R. felis and R. felis-like organisms. RESULTS Low copy numbers of R. felis DNA (around 100 copies/ml whole blood) were found in four cats (4/752, 0.53%) and three dogs (3/777, 0.39%). The very low levels of infection in clinically ill animals is consistent with R. felis being an unlikely cause of disease in naturally infected dogs and cats. The low copy numbers we found emphasize the requirement for very sensitive PCRs in prevalence studies. CONCLUSIONS The low prevalence of naturally infected PCR-positive cats is further evidence that cats are unlikely to be important reservoirs of R. felis. Similarly, the low prevalence in dogs suggests they are not important reservoirs in the USA. Investigations should continue into the role other mammalian species may be playing in the epidemiology of R. felis infections.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Subarna Barua
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Patrick John Kelly
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Island Main Road, West Farm, Basseterre, Saint Kitts and Nevis
| | - Kelly Chenoweth
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Bernhard Kaltenboeck
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL, 36832, USA.
| |
Collapse
|
10
|
Tsai KH, Yen TY, Wu WJ, Carvalho R, Raoult D, Fournier PE. Investigation of Ctenocephalides felis on domestic dogs and Rickettsia felis infection in the Democratic Republic of Sao Tome and Principe. Zoonoses Public Health 2020; 67:892-902. [PMID: 33145971 DOI: 10.1111/zph.12776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Rickettsia felis is an obligate intracellular Gram-negative bacterium which causes flea-borne spotted fever in humans. In the past decades, R. felis has been detected worldwide in Ctenocephalides felis fleas and various other arthropods. However, due to its shared symptoms with other common vector-borne diseases, human infection is prone to be underestimated or misdiagnosed, especially in the malaria-endemic areas including sub-Saharan Africa, where confirmatory laboratory diagnoses are not usually available. In this study, a 'One Health' approach was adopted to explore potential vector-borne and zoonotic pathogens in the Democratic Republic of Sao Tome and Principe (DRSTP), an island nation in the Gulf of Guinea. By collaborating with local veterinarians, 1,187 fleas were collected from 95 domestic dogs across the country and later identified as Ct. felis using taxonomic keys. A cytochrome oxidase gene-based phylogenetic analysis revealed that all collected fleas belonged to a single haplotype and were identical to isolates from Ivory Coast and Brazil that clustered into a clade of tropical distribution. Additional samples of 14 chigoe fleas (Tunga penetrans) were collected from the surrounding environment of the dogs' resting spots. Rickettsia felis infection in fleas was examined by molecular methods targeting the citrate synthase (gltA)- and outer membrane protein A (ompA)-coding genes as well as the R. felis-specific pRF plasmid. The bacterial DNA was detected in 21.01% (146/695) of cat fleas but none of the chigoe fleas. Microimmunofluorescence assay was then performed to assess pathogen exposure of the residents. Of 240 dried blood spots from participants with dog contacts, 8 (3.33%) exhibited R. felis antibodies. Our findings demonstrated the presence of R. felis in DRSTP. Further extensive epidemiological studies regarding its prevalence and its role in causing febrile illness while the nation is entering pre-elimination stage of malaria will be carried out.
Collapse
Affiliation(s)
- Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Jer Wu
- Department of Entomology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ronalg Carvalho
- Taiwanese Medical Mission, Sao Tome, Democratic Republic of Sao Tome and Principe
| | - Didier Raoult
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France.,French Reference Center for Rickettsioses, Q fever and Bartonelloses, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France.,French Reference Center for Rickettsioses, Q fever and Bartonelloses, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| |
Collapse
|
11
|
Hamzaoui BE, Zurita A, Cutillas C, Parola P. Fleas and flea-borne diseases of North Africa. Acta Trop 2020; 211:105627. [PMID: 32652054 DOI: 10.1016/j.actatropica.2020.105627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
North Africa has an interesting and rich wildlife including hematophagous arthropods, and specifically fleas, which constitute a large part of the North African fauna, and are recognised vectors of several zoonotic bacteria. Flea-borne organisms are widely distributed throughout the world in endemic disease foci, where components of the enzootic cycle are present. Furthermore, flea-borne diseases could re-emerge in epidemic form because of changes in the vector-host ecology due to environmental and human behaviour modifications. We need to know the real incidences of flea-borne diseases in the world due to this incidence could be much greater than are generally recognized by physicians and health authorities. As a result, diagnosis and treatment are often delayed by health care professionals who are unaware of the presence of these infections and thus do not take them into consideration when attempting to determine the cause of a patient's illness. In this context, this bibliographic review aims to summarise the main species of fleas present in North Africa, their geographical distribution, flea-borne diseases, and their possible re-emergence.
Collapse
Affiliation(s)
- Basma El Hamzaoui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME; IHU Méditerranée Infection, Marseille, France.
| | - Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain.
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
12
|
Domestic dogs are mammalian reservoirs for the emerging zoonosis flea-borne spotted fever, caused by Rickettsia felis. Sci Rep 2020; 10:4151. [PMID: 32139802 PMCID: PMC7058065 DOI: 10.1038/s41598-020-61122-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Rickettsia felis is an obligate intracellular bacterium that is being increasingly recognized as an etiological agent of human rickettsial disease globally. The agent is transmitted through the bite of an infected vector, the cat flea, Ctenocephalides felis, however there is to date, no consensus on the pathogen's vertebrate reservoir, required for the maintenance of this agent in nature. This study for the first time, demonstrates the role of the domestic dog (Canis familiaris) as a vertebrate reservoir of R. felis. The ability of dogs to sustain prolonged periods of rickettsemia, ability to remain asymptomatically infected with normal haematological parameters and ability to act as biological vehicles for the horizontal transmission of R. felis between infected and uninfected fleas provides indication of their status as a mammalian reservoir of this emerging zoonosis.
Collapse
|
13
|
Brown LD. Immunity of fleas (Order Siphonaptera). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:76-79. [PMID: 31002845 DOI: 10.1016/j.dci.2019.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
The immune response of arthropod vectors plays a key role in the spread and transmission of vector-borne diseases. Although fleas transmit several human pathogens (e.g., Bartonella henselae, Rickettsia felis, R. typhi, and Yersinia pestis), few studies have examined how these vectors respond to infection. In hematophagous arthropods, imbibed pathogens must survive the hostile environment of blood meal digestion, which includes proteolytic digestive enzymes, protease inhibitors and expression of genes associated with protection of epithelial linings. Additionally, insect epithelial cells exhibit local immune defense against ingested pathogens by producing antimicrobial peptides and reactive oxygen species. This review details these and other aspects of insect immunity as it relates to fleas, with an emphasis on the gut immune response to two blood-borne pathogens, R. typhi and Y. pestis.
Collapse
Affiliation(s)
- Lisa D Brown
- Department of Biology, Georgia Southern University, P.O. Box 8042-1, Statesboro, GA, 30460, USA.
| |
Collapse
|
14
|
Laroche M, Raoult D, Parola P. Insects and the Transmission of Bacterial Agents. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0017-2016. [PMID: 30306888 PMCID: PMC11633630 DOI: 10.1128/microbiolspec.mtbp-0017-2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/14/2023] Open
Abstract
Arthropods are small invertebrate animals, among which some species are hematophagous. It is during their blood meal that they can transmit pathogenic microorganisms that they may be harboring to the vertebrate host that they parasitize, which in turn will potentially develop a vector-borne disease. The transmission may occur directly through their bite, but also through contaminated feces. Zoonotic diseases, diseases that can naturally be transmitted between humans and animals, are a considerable part of emerging diseases worldwide, and a major part of them are vector-borne. Research and public attention has long been focused on malaria and mosquito-borne arboviruses, and bacterial vector-borne diseases remains today a neglected field of medical entomology. Despite the emphasis on Lyme disease in recent decades, and despite the major outbreaks caused by bacteria in the last few centuries, this field has in fact been poorly explored and is therefore relatively poorly known, other than the most famous examples such as the plague and epidemic typhus outbreaks. Here we propose to review the state of knowledge of bacterial agents transmitted by arthropod vectors.
Collapse
Affiliation(s)
- Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
15
|
Shi PQ, Wang L, Liu Y, An X, Chen XS, Ahmed MZ, Qiu BL, Sang W. Infection dynamics of endosymbionts reveal three novel localization patterns of Rickettsia during the development of whitefly Bemisia tabaci. FEMS Microbiol Ecol 2018; 94:5076031. [DOI: 10.1093/femsec/fiy165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/17/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Pei-Qiong Shi
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Lei Wang
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Yuan Liu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Xuan An
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Xiao-Sheng Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510640, China
| | - Muhammad Z Ahmed
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32614-7100, USA
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| | - Wen Sang
- Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
16
|
Ren SL, Li YH, Ou D, Guo YJ, Qureshi JA, Stansly PA, Qiu BL. Localization and dynamics of Wolbachia infection in Asian citrus psyllid Diaphorina citri, the insect vector of the causal pathogens of Huanglongbing. Microbiologyopen 2018; 7:e00561. [PMID: 29573202 PMCID: PMC6011985 DOI: 10.1002/mbo3.561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Wolbachia is a group of intracellular bacteria that infect a wide range of arthropods including the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. This insect is the vector of Candidatus Liberibacter asiaticus (CLas), the causal pathogen of Huanglongbing or citrus greening disease. Here, we investigated the localization pattern and infection dynamics of Wolbachia in different developmental stages of ACP. Results revealed that all developmental stages of ACP including egg, 1st–5th instar nymphs, and adults of both gender were infected with Wolbachia. FISH visualization of an ACP egg showed that Wolbachia moved from the egg stalk of newly laid eggs to a randomly distributed pattern throughout the egg prior to hatching. The infection rate varied between nymphal instars. The titers of Wolbachia in fourth and fifth instar nymphs were significantly higher than those in the first and second instar nymphs. Wolbachia were scattered in all nymphal stages, but with highest intensity in the U‐shaped bacteriome located in the abdomen of the nymph. Wolbachia was confined to two symmetrical organizations in the abdomen of newly emerged female and male adults. The potential mechanisms of Wolbachia infection dynamics are discussed.
Collapse
Affiliation(s)
- Su-Li Ren
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Technology Research Center of Agricultural Pest Biocontrol, South China Agricultural University, Guangzhou, China.,Airport Management College, Guangzhou Civil Aviation College, Guangzhou, China
| | - Yi-Han Li
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Technology Research Center of Agricultural Pest Biocontrol, South China Agricultural University, Guangzhou, China
| | - Da Ou
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Technology Research Center of Agricultural Pest Biocontrol, South China Agricultural University, Guangzhou, China
| | - Yan-Jun Guo
- Institute of Fruit Science, Zhaoqing University, Zhaoqing, China
| | - Jawwad A Qureshi
- Entomology and Nematology Department, University of Florida/IFAS, Indian River Research & Education Center, Fort Pierce, FL, USA
| | - Philip A Stansly
- Southwest Florida Research & Education Center, University of Florida/IFAS, Immokalee, FL, USA
| | - Bao-Li Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Technology Research Center of Agricultural Pest Biocontrol, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Rickettsia felis: A Review of Transmission Mechanisms of an Emerging Pathogen. Trop Med Infect Dis 2017; 2:tropicalmed2040064. [PMID: 30270921 PMCID: PMC6082062 DOI: 10.3390/tropicalmed2040064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Rickettsia felis is an emerging pathogen of the transitional group of Rickettsia species and an important cause of febrile illness in Africa. Since the organism’s original discovery in the early 1990s, much research has been directed towards elucidating transmission mechanisms within the primary host and reservoir, the cat flea (Ctenocephalides felis). Several mechanisms for vertical and horizontal transmission within this vector have been thoroughly described, as well as transmission to other arthropod vectors, including other species of fleas. However, while a growing number of human cases of flea-borne spotted fever are being reported throughout the world, a definitive transmission mechanism from arthropod host to vertebrate host resulting in disease has not been found. Several possible mechanisms, including bite of infected arthropods and association with infectious arthropod feces, are currently being investigated.
Collapse
|
18
|
Billeter SA, Metzger ME. Limited Evidence for Rickettsia felis as a Cause of Zoonotic Flea-Borne Rickettsiosis in Southern California. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:4-7. [PMID: 28082625 DOI: 10.1093/jme/tjw179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Over 90% of human flea-borne rickettsioses cases in California are reported from suburban communities of Los Angeles and Orange counties and are presumed to be associated with either Rickettsia typhi or Rickettsia felis infection. Ctenocephalides felis (Bouché) is considered the principal vector for both rickettsiae, and R. felis has largely replaced R. typhi as the presumptive etiologic agent based on the widespread incidence of R. felis in cat flea populations. However, with no evidence to confirm R. felis as the cause of human illness in southern California, coupled with recent findings that showed R. felis to be widespread in cat fleas statewide, we propose that this hypothesis should be reconsidered. Evidence of only limited numbers of R. typhi-infected cat fleas in the environment may indicate a very rare infection and explain why so few cases of flea-borne rickettsioses are reported each year in southern California relative to the population.
Collapse
Affiliation(s)
- Sarah A Billeter
- California Department of Public Health, Vector-Borne Disease Section, Ontario, CA 91764 (; )
| | - Marco E Metzger
- California Department of Public Health, Vector-Borne Disease Section, Ontario, CA 91764 (; )
| |
Collapse
|
19
|
Brown LD, Banajee KH, Foil LD, Macaluso KR. Transmission mechanisms of an emerging insect-borne rickettsial pathogen. Parasit Vectors 2016; 9:237. [PMID: 27117813 PMCID: PMC4847369 DOI: 10.1186/s13071-016-1511-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vector-borne pathogens must overcome arthropod infection and escape barriers (e.g. midgut and salivary glands) during the extrinsic incubation period (EIP) before subsequent transmission to another host. This particular timespan is undetermined for the etiological agent of flea-borne spotted fever (Rickettsia felis). Artificial acquisition of R. felis by blood-feeding cat fleas revealed dissemination to the salivary glands after seven days; however, this length of time is inconsistent with co-feeding studies that produced infectious cat fleas within 24 h of infection. In the current study, we demonstrated that an alternative mechanism is responsible for the early-phase transmission that typifies flea-borne R. felis spread. METHODS Co-feeding transmission bioassays were constructed to assess temporal dynamics of R. felis amongst cat fleas, including exposure time to produce infectious fleas and association time to transmit infection to naïve fleas. Additional experiments examined the proportion of R. felis-exposed cat fleas with contaminated mouthparts, as well as the likelihood for cat fleas to release R. felis from their mouthparts following exposure to an infectious bloodmeal. The potential for mechanical transmission of R. felis by co-feeding cat fleas was further examined using fluorescent latex beads, as opposed to a live pathogen, which would not require a biological mechanism to achieve transmission. RESULTS Analyses revealed that R. felis-infected cat fleas were infectious to naïve fleas less than 24 h after exposure to the pathogen, but showed no rickettsial dissemination to the salivary glands during this early-phase transmission. Additionally, the current study revealed that R. felis-infected cat fleas must co-feed with naïve fleas for more than 12 h in order for early-phase transmission to occur. Further evidence supported that contaminated flea mouthparts may be the source of the bacteria transmitted early, and demonstrated that R. felis is released from the mouthparts during brief probing events. Moreover, the use of fluorescent latex beads supports the notion that early-phase transmission of R. felis is a mechanical mechanism. CONCLUSIONS Determination of the transmission mechanisms utilized by R. felis is essential to fully understand the vulnerability of susceptible vertebrate hosts, including humans, to this pathogen.
Collapse
Affiliation(s)
- Lisa D. Brown
- />Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, SVM-3213, Baton Rouge, LA 70803 USA
| | - Kaikhushroo H. Banajee
- />Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, SVM-3213, Baton Rouge, LA 70803 USA
| | - Lane D. Foil
- />Department of Entomology, Louisiana State University Agricultural Center, LSB-413, Baton Rouge, LA 70803 USA
| | - Kevin R. Macaluso
- />Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, SVM-3213, Baton Rouge, LA 70803 USA
| |
Collapse
|
20
|
Development of Acanthocheilonema reconditum (Spirurida, Onchocercidae) in the cat flea Ctenocephalides felis (Siphonaptera, Pulicidae). Parasitology 2014; 141:1718-25. [PMID: 25068432 DOI: 10.1017/s0031182014001000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate larval development of Acanthocheilonema reconditum in the cat flea Ctenocephalides felis, fleas were fed through an artificial feeding system with dog blood containing different concentrations of microfilariae (i.e. low, group L = 250; medium, group M = 500; high, group H = 1500 microfilariae per mL) or no microfilariae (group C). Fleas were sampled at 12 different time-points throughout the study period (D1-D28) and A. reconditum was detected by dissection, PCR and histology. Of 2105 fleas fed with infected dog blood, 891 (38·7%) died during the study before being sampled whilst the remaining (n = 1214) were examined for A. reconditum. Upon dissection, first-stage larvae (L1) were identified after 2 days post infection (D2), second-stage (L2) at D13 and infective third-stage larvae (L3) at D15. Eighteen (30%) of 60 pools of fleas molecularly examined tested positive. Histologically, L2 were detected at D13 in the sub-cuticle region embedded in the back muscle of one female flea. This study provides original data on larval development of A. reconditum in C. felis and reports on the usefulness of the artificial feeding system.
Collapse
|
21
|
Su Q, Xie W, Wang S, Wu Q, Ghanim M, Zhang Y. Location of symbionts in the whitefly Bemisia tabaci affects their densities during host development and environmental stress. PLoS One 2014; 9:e91802. [PMID: 24632746 PMCID: PMC3954726 DOI: 10.1371/journal.pone.0091802] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
Abstract
Bacterial symbionts often enhance the physiological capabilities of their arthropod hosts and enable their hosts to expand into formerly unavailable niches, thus leading to biological diversification. Many arthropods, including the worldwide invasive whitefly Bemisia tabaci, have individuals simultaneously infected with symbionts of multiple genera that occur in different locations in the host. This study examined the population dynamics of symbionts that are located in different areas within B. tabaci. While densities of Portiera and Hamiltonella (which are located in bacteriocytes) appeared to be well-regulated during host development, densities of Rickettsia (which are not located in bacteriocytes) were highly variable among individual hosts during host development. Host mating did not significantly affect symbiont densities. Infection by Tomato yellow leaf curl virus did not affect Portiera and Hamiltonella densities in either sex, but increased Rickettsia densities in females. High and low temperatures did not affect Portiera and Hamiltonella densities, but low temperature (15°C) significantly suppressed Rickettsia densities whereas high temperature (35°C) had little effect on Rickettsia densities. The results are consistent with the view that the population dynamics of bacterial symbionts in B. tabaci are regulated by symbiont location within the host and that the regulation reflects adaptation between the bacteria and insect.
Collapse
Affiliation(s)
- Qi Su
- College of Plant Protection, Hunan Agricultural University, Changsha, Hunan, People’s Republic of China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Murad Ghanim
- Department of Entomology, The Agricultural Research Organization (ARO), Volcani Center, Bet Dagan, Israel
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
22
|
Thepparit C, Hirunkanokpun S, Popov VL, Foil LD, Macaluso KR. Dissemination of bloodmeal acquired Rickettsia felis in cat fleas, Ctenocephalides felis. Parasit Vectors 2013; 6:149. [PMID: 23705666 PMCID: PMC3671220 DOI: 10.1186/1756-3305-6-149] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/21/2013] [Indexed: 12/02/2022] Open
Abstract
Background Cat fleas, Ctenocephalides felis, are known biological vectors for Rickettsia felis. Rickettsial transmission can be vertical via transovarial transmission within a flea population, as well as horizontal between fleas through a bloodmeal. The previously undescribed infection kinetics of bloodmeal-acquired R. felis in cat fleas provides insight into the R. felis-flea interaction. Findings In the present study, dissemination of R. felis in previously uninfected cat fleas fed an R. felis-infected bloodmeal was investigated. At weekly intervals for 28 days, rickettsial propagation, accumulation, and dissemination in gut epithelial cells, specifically in the hindgut and the specialized cells in the neck region of midgut, were observed on paraffin sections of infected cat fleas by immunofluorescence assay (IFA) and confirmed by PCR detection of R. felis 17-kDa antigen gene. IFA results demonstrate ingested rickettsiae in vacuoles during early infection of the gut; lysosomal activity, indicated by lysosome marker staining of freshly-dissected gut, suggests the presence of phagolysosome-associated vacuoles. Subsequent to infection in the gut, rickettsiae spread to the hemocoel and other tissues including reproductive organs. Densely-packed rickettsiae forming mycetome-like structures were observed in the abdomen of infected male cat fleas during late infection. Ultrastructural analysis by transmission electron microscopy (TEM) confirmed the presence and infection characteristics of Rickettsia including rickettsial destruction in the phagolysosome, rickettsial division, and accumulation in the flea gut. Conclusions This study intimately profiles R. felis dissemination in cat fleas and further illuminates the mechanisms of rickettsial transmission in nature.
Collapse
|
23
|
Abstract
Rickettsia felis was described as a human pathogen almost two decades ago, and human infection is currently reported in 18 countries in all continents. The distribution of this species is worldwide, determined by the presence of the main arthropod vector, Ctenocephalides felis (Bouché). The list of symptoms, which includes fever, headache, myalgia, and rash, keeps increasing as new cases with unexpected symptoms are described. Moreover, the clinical presentation of R. felis infection can be easily confused with many tropical and nontropical diseases, as well as other rickettsial infections. Although specific laboratory diagnosis and treatment for this flea-borne rickettsiosis are detailed in the scientific literature, it is possible that most human cases are not being diagnosed properly. Furthermore, since the cat flea infests different common domestic animals, contact with humans may be more frequent than reported. In this review, we provide an update on methods for specific detection of human infection by R. felis described in the literature, as well as the treatment prescribed to the patients. Considering advances in molecular detection tools, as well as options for as-yet-unreported isolation of R. felis from patients in cell culture, increased diagnosis and characterization of this emerging pathogen is warranted.
Collapse
Affiliation(s)
- Laya Hun
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica,
| | - Adriana Troyo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica,
| |
Collapse
|
24
|
Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl Environ Microbiol 2012; 78:5565-74. [PMID: 22660706 DOI: 10.1128/aem.01184-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The whitefly Bemisia tabaci is a cosmopolitan insect pest that harbors Portiera aleyrodidarum, the primary obligatory symbiotic bacterium, and several facultative secondary symbionts. Secondary symbionts in B. tabaci are generally associated with the bacteriome, ensuring their vertical transmission; however, Rickettsia is an exception and occupies most of the body cavity, except the bacteriome. The mode of Rickettsia transfer between generations and its subcellular localization in insect organs have not been investigated. Using electron and fluorescence microscopy, we show that Rickettsia infects the digestive, salivary, and reproductive organs of the insect; however, it was not observed in the bacteriome. Rickettsia invades the oocytes during early developmental stages and resides in follicular cells and cytoplasm; it is mostly excluded when the egg matures; however, some bacterial cells remain in the egg, ensuring their transfer to subsequent generations. Rickettsia was localized to testicles and the spermatheca, suggesting a horizontal transfer between males and females during mating. The bacterium was further observed at large amounts in midgut cells, concentrating in vacuole-like structures, and was located in the hemolymph, specifically at exceptionally large amounts around bacteriocytes and in fat bodies. Organs further infected by Rickettsia included the primary salivary glands and stylets, sites of possible secretion of the bacterium outside the whitefly body. The close association between Rickettsia and the B. tabaci digestive system might be important for digestive purposes. The vertical transmission of Rickettsia to subsequent generations occurs via the oocyte and not, like other secondary symbionts, the bacteriome.
Collapse
|
25
|
Saisongkorh W, El Karkouri K, Patrice JY, Bernard A, Rolain JM, Raoult D. Tryptose phosphate broth improves Rickettsia felis replication in mammalian cells. ACTA ACUST UNITED AC 2012; 64:111-4. [PMID: 22066776 DOI: 10.1111/j.1574-695x.2011.00882.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cell culture, Rickettsia felis grows only at low temperatures (< 31 °C). Therefore, its ability to enter, survive and grow in cell lines has primarily been tested in cells derived from amphibians and arthropods, which naturally grow at low temperatures, and only infrequently in mammalian cells. We subcultured R. felis in mammalian cells for more than 10 passages using media supplemented with tryptose phosphate broth (TPB) and found that TPB is critical for optimal growth of R. felis in mammalian cells.
Collapse
Affiliation(s)
- Watcharee Saisongkorh
- URMITE UMR CNRS 6236-IRD198, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
26
|
Parola P. Rickettsia felis: from a rare disease in the USA to a common cause of fever in sub-Saharan Africa. Clin Microbiol Infect 2011; 17:996-1000. [PMID: 21722253 DOI: 10.1111/j.1469-0691.2011.03516.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rickettsia felis is a spotted fever group rickettsia that has been definitely described in 2002. Within the last 20 years, there have been a growing number of reports implicating R. felis as a human pathogen, parallel to the fast-growing reports of the worldwide detection of R. felis in arthropod hosts, mainly the cat flea Ctenocephalides felis felis. R. felis is now known as the agent of the so-called flea-borne spotted fever, with more than 70 cases documented in the literature. Recently, two studies respectively conducted in Senegal and Kenya, have challenged the importance of R. felis infection in patients with unexplained fever in sub-Saharan Africa. We focus here on the epidemiological and clinical aspects of R. felis infection. More studies are needed, including the study of other arthropod vectors, but it can be speculated that R. felis infection might be an important neglected agent of fever in sub-Saharan Africa.
Collapse
Affiliation(s)
- P Parola
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 - IRD, WHO Collaborative Center for Rickettsioses and Other Arthropod Borne Bacterial Diseases, Faculté de Médecine, Université de Méditerranée, Marseille Cedex 5, France.
| |
Collapse
|
27
|
Hirunkanokpun S, Thepparit C, Foil LD, Macaluso KR. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Mol Ecol 2011; 20:4577-86. [PMID: 21967477 DOI: 10.1111/j.1365-294x.2011.05289.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rickettsia felis is a rickettsial pathogen primarily associated with the cat flea, Ctenocephalides felis. Although laboratory studies have confirmed that R. felis is maintained by transstadial and transovarial transmission in C. felis, distinct mechanisms of horizontal transmission of R. felis among cat fleas are undefined. Based on the inefficient vertical transmission of R. felis by cat fleas and the detection of R. felis in a variety of haematophagous arthropods, we hypothesize that R. felis is horizontally transmitted between cat fleas. Towards testing this hypothesis, flea transmission of R. felis via a bloodmeal was assessed weekly for 4 weeks. Rhodamine B was used to distinguish uninfected recipient and R. felis-infected donor fleas in a rickettsial horizontal transmission bioassay, and quantitative real-time PCR assay was used to measure transmission frequency; immunofluorescence assay also confirmed transmission. Female fleas acquired R. felis infection more readily than male fleas after feeding on a R. felis-infected bloodmeal for 24 h (69.3% and 43.3%, respectively) and both Rickettsia-uninfected recipient male and female fleas became infected with R. felis after cofeeding with R. felis-infected donor fleas (3.3-40.0%). Distinct bioassays were developed to further determine that R. felis was transmitted from R. felis-infected to uninfected fleas during cofeeding and copulation. Vertical transmission of R. felis by infected fleas was not demonstrated in this study. The demonstration of horizontal transmission of R. felis between cat fleas has broad implications for the ecology of R. felis rickettsiosis.
Collapse
Affiliation(s)
- Supanee Hirunkanokpun
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, SVM-3213, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
28
|
Caspi-Fluger A, Inbar M, Mozes-Daube N, Mouton L, Hunter MS, Zchori-Fein E. Rickettsia 'in' and 'out': two different localization patterns of a bacterial symbiont in the same insect species. PLoS One 2011; 6:e21096. [PMID: 21712994 PMCID: PMC3119683 DOI: 10.1371/journal.pone.0021096] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022] Open
Abstract
Intracellular symbionts of arthropods have diverse influences on their hosts, and their functions generally appear to be associated with their localization within the host. The effect of localization pattern on the role of a particular symbiont cannot normally be tested since the localization pattern within hosts is generally invariant. However, in Israel, the secondary symbiont Rickettsia is unusual in that it presents two distinct localization patterns throughout development and adulthood in its whitefly host, Bemisia tabaci (B biotype). In the “scattered” pattern, Rickettsia is localized throughout the whitefly hemocoel, excluding the bacteriocytes, where the obligate symbiont Portiera aleyrodidarum and some other secondary symbionts are housed. In the “confined” pattern, Rickettsia is restricted to the bacteriocytes. We examined the effects of these patterns on Rickettsia densities, association with other symbionts (Portiera and Hamiltonella defensa inside the bacteriocytes) and on the potential for horizontal transmission to the parasitoid wasp, Eretmocerus mundus, while the wasp larvae are developing within the whitefly nymph. Sequences of four Rickettsia genes were found to be identical for both localization patterns, suggesting that they are closely related strains. However, real-time PCR analysis showed very different dynamics for the two localization types. On the first day post-adult emergence, Rickettsia densities were 21 times higher in the “confined” pattern vs. “scattered” pattern whiteflies. During adulthood, Rickettsia increased in density in the “scattered” pattern whiteflies until it reached the “confined” pattern Rickettsia density on day 21. No correlation between Rickettsia densities and Hamiltonella or Portiera densities were found for either localization pattern. Using FISH technique, we found Rickettsia in the gut of the parasitoid wasps only when they developed on whiteflies with the “scattered” pattern. The results suggest that the localization pattern of a symbiont may influence its dynamics within the host.
Collapse
Affiliation(s)
- Ayelet Caspi-Fluger
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Moshe Inbar
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Netta Mozes-Daube
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
| | - Laurence Mouton
- Laboratoire de Biométrie et Biologie Evolutive (UMR-CNRS 5558), Université Claude Bernard—Lyon1, Villeurbanne, France
| | - Martha S. Hunter
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishay, Israel
- * E-mail:
| |
Collapse
|
29
|
Hii SF, Kopp SR, Abdad MY, Thompson MF, O'Leary CA, Rees RL, Traub RJ. Molecular evidence supports the role of dogs as potential reservoirs for Rickettsia felis. Vector Borne Zoonotic Dis 2011; 11:1007-12. [PMID: 21612534 DOI: 10.1089/vbz.2010.0270] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rickettsia felis causes flea-borne spotted fever in humans worldwide. The cat flea, Ctenocephalides felis, serves as vector and reservoir host for this disease agent. To determine the role of dogs as potential reservoir hosts for spotted fever group rickettsiae, we screened blood from 100 pound dogs in Southeast Queensland by using a highly sensitive genus-specific PCR. Nine of the pound dogs were positive for rickettsial DNA and subsequent molecular sequencing confirmed amplification of R. felis. A high prevalence of R. felis in dogs in our study suggests that dogs may act as an important reservoir host for R. felis and as a potential source of human rickettsial infection.
Collapse
Affiliation(s)
- Sze Fui Hii
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Isolation of a rickettsial pathogen from a non-hematophagous arthropod. PLoS One 2011; 6:e16396. [PMID: 21283549 PMCID: PMC3026830 DOI: 10.1371/journal.pone.0016396] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/15/2010] [Indexed: 11/19/2022] Open
Abstract
Rickettsial diversity is intriguing in that some species are transmissible to vertebrates, while others appear exclusive to invertebrate hosts. Of particular interest is Rickettsia felis, identifiable in both stored product insect pests and hematophagous disease vectors. To understand rickettsial survival tactics in, and probable movement between, both insect systems will explicate the determinants of rickettsial pathogenicity. Towards this objective, a population of Liposcelis bostrychophila, common booklice, was successfully used for rickettsial isolation in ISE6 (tick-derived cells). Rickettsiae were also observed in L. bostrychophila by electron microscopy and in paraffin sections of booklice by immunofluorescence assay using anti-R. felis polyclonal antibody. The isolate, designated R. felis strain LSU-Lb, resembles typical rickettsiae when examined by microscopy. Sequence analysis of portions of the Rickettsia specific 17-kDa antigen gene, citrate synthase (gltA) gene, rickettsial outer membrane protein A (ompA) gene, and the presence of the R. felis plasmid in the cell culture isolate confirmed the isolate as R. felis. Variable nucleotide sequences from the isolate were obtained for R. felis-specific pRF-associated putative tldD/pmbA. Expression of rickettsial outer membrane protein B (OmpB) was verified in R. felis (LSU-Lb) using a monoclonal antibody. Additionally, a quantitative real-time PCR assay was used to identify a significantly greater median rickettsial load in the booklice, compared to cat flea hosts. With the potential to manipulate arthropod host biology and infect vertebrate hosts, the dual nature of R. felis provides an excellent model for the study of rickettsial pathogenesis and transmission. In addition, this study is the first isolation of a rickettsial pathogen from a non-hematophagous arthropod.
Collapse
|
31
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
It has been two decades since the first description of Rickettsia felis, and although a nearly cosmopolitan distribution is now apparent, much of the ecology of this unique microorganism remains unresolved. The cat flea, Ctenocephalides felis, is currently the only known biological vector of R. felis; however, molecular evidence of R. felis in other species of fleas as well as in ticks and mites suggests a variety of arthropod hosts. Studies examining the transmission of R. felis using colonized cat fleas have shown stable vertical transmission but not horizontal transmission. Likewise, serological and molecular tools have been used to detect R. felis in a number of vertebrate hosts, including humans, in the absence of a clear mechanism of horizontal transmission. Considered an emerging flea-borne rickettsiosis, clinical manifestation of R. felis infection in humans, including, fever, rash, and headache is similar to other rickettsial diseases. Recent advances toward further understanding the ecology of R. felis have been facilitated by stable R. felis-infected cat flea colonies, several primary flea isolates and sustained maintenance of R. felis in cell culture systems, and highly sensitive quantitative molecular assays. Here, we provide a synopsis of R. felis including the known distribution and arthropods infected; transmission mechanisms; current understanding of vertebrate infection and human disease; and the tools available to further examine R. felis.
Collapse
Affiliation(s)
- Kathryn E Reif
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Dr., Baton Rouge, LA 70803, USA
| | | |
Collapse
|
33
|
|
34
|
Capelli G, Montarsi F, Porcellato E, Maioli G, Furnari C, Rinaldi L, Oliva G, Otranto D. Occurrence of Rickettsia felis in dog and cat fleas (Ctenocephalides felis) from Italy. Parasit Vectors 2009; 2 Suppl 1:S8. [PMID: 19426447 PMCID: PMC2679400 DOI: 10.1186/1756-3305-2-s1-s8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rickettsia felis is an obligate intracellular bacterium belonging to the spotted fever group, suspected to cause a murine typhus-like illness in humans, with a cosmopolitan distribution. This study was designed to estimate presence and occurrence of this pathogen in fleas collected from dogs and cats in different areas of Italy. Two species of fleas were identified, Ctenocephalides felis (80.3%) and Ctenocephalides canis (19.7%). Overall, 320 fleas (257 C. felis and 63 C. canis) collected from 117 animals (73 dogs and 44 cats) were tested. Thirty-eight (11.9%) C. felis fleas, 13 from cats (17.6%) and 25 from dogs (10.2%) were positive for R. felis. No C. canis was positive. Fleas from cats showed a tendency to be more positive than fleas from dogs. Prevalence of R. felis among areas and within provinces of the same area was extremely variable, ranging from 0 to 35.3%. Overall, prevalence in north-eastern Italy (23.2%) was significantly higher than in south-western Italy (7.1%). This study confirmed the occurrence of R. felis in cat and dog fleas (C. felis) from Italy, similar to other European countries. The results also suggest that R. felis should be considered in the human differential diagnosis of any spotted-like fever in Italy, especially if the patient is known to have been exposed to flea bites.
Collapse
Affiliation(s)
- Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gillespie JJ, Ammerman NC, Beier-Sexton M, Sobral BS, Azad AF. Louse- and flea-borne rickettsioses: biological and genomic analyses. Vet Res 2009; 40:12. [PMID: 19036234 PMCID: PMC2695025 DOI: 10.1051/vetres:2008050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 11/24/2008] [Indexed: 11/14/2022] Open
Abstract
In contrast to 15 or more validated and/or proposed tick-borne spotted fever group species, only three named medically important rickettsial species are associated with insects. These insect-borne rickettsiae are comprised of two highly pathogenic species, Rickettsia prowazekii (the agent of epidemic typhus) and R. typhi (the agent of murine typhus), as well as R. felis, a species with unconfirmed pathogenicity. Rickettsial association with obligate hematophagous insects such as the human body louse (R. prowazekii transmitted by Pediculus h. humanus) and several flea species (R. typhi and R. felis, as well as R. prowazekii in sylvatic form) provides rickettsiae the potential for further multiplications, longer transmission cycles and rapid spread among susceptible human populations. Both human body lice and fleas are intermittent feeders capable of multiple blood meals per generation, facilitating the efficient transmission of rickettsiae to several disparate hosts within urban/rural ecosystems. While taking into consideration the existing knowledge of rickettsial biology and genomic attributes, we have analyzed and summarized the interacting features that are unique to both the rickettsiae and their vector fleas and lice. Furthermore, factors that underlie rickettsial changing ecology, where native mammalian populations are involved in the maintenance of rickettsial cycle and transmission, are discussed.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA.
| | | | | | | | | |
Collapse
|
36
|
Prevalence and infection load dynamics of Rickettsia felis in actively feeding cat fleas. PLoS One 2008; 3:e2805. [PMID: 18665265 PMCID: PMC2474969 DOI: 10.1371/journal.pone.0002805] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/20/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rickettsia felis is a flea-associated rickettsial pathogen recurrently identified in both colonized and wild-caught cat fleas, Ctenocephalides felis. We hypothesized that within colonized fleas, the intimate relationship between R. felis and C. felis allows for the coordination of rickettsial replication and metabolically active periods during flea bloodmeal acquisition and oogenesis. METHODOLOGY/PRINCIPAL FINDINGS A quantitative real-time PCR assay was developed to quantify R. felis in actively feeding R. felis-infected fleas. In three separate trials, fleas were allowed to feed on cats, and a mean of 3.9x10(6) R. felis 17-kDa gene copies was detected for each flea. A distinct R. felis infection pattern was not observed in fleas during nine consecutive days of bloodfeeding. However, an inverse correlation between the prevalence of R. felis-infection, which ranged from 96% in Trial 1 to 35% in Trial 3, and the R. felis-infection load in individual fleas was identified. Expression of R. felis-infection load as a ratio of R. felis/C. felis genes confirmed that fleas in Trial 3 had significantly greater rickettsial loads than those in Trial 1. CONCLUSION/SIGNIFICANCE Examining rickettsial infection dynamics in the flea vector will further elucidate the intimate relationship between R. felis and C. felis, and facilitate a more accurate understanding of the ecology and epidemiology of R. felis transmission in nature.
Collapse
|
37
|
Characterization and growth of polymorphic Rickettsia felis in a tick cell line. Appl Environ Microbiol 2008; 74:3151-8. [PMID: 18359823 DOI: 10.1128/aem.00025-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morphological differentiation in some arthropod-borne bacteria is correlated with increased bacterial virulence, transmission potential, and/or as a response to environmental stress. In the current study, we utilized an in vitro model to examine Rickettsia felis morphology and growth under various culture conditions and bacterial densities to identify potential factors that contribute to polymorphism in rickettsiae. We utilized microscopy (electron microscopy and immunofluorescence), genomic (PCR amplification and DNA sequencing of rickettsial genes), and proteomic (Western blotting and liquid chromatography-tandem mass spectrometry) techniques to identify and characterize morphologically distinct, long-form R. felis. Without exchange of host cell growth medium, polymorphic R. felis was detected at 12 days postinoculation when rickettsiae were seeded at a multiplicity of infection (MOI) of 5 and 50. Compared to short-form R. felis organisms, no change in membrane ultrastructure in long-form polymorphic rickettsiae was observed, and rickettsiae were up to six times the length of typical short-form rickettsiae. In vitro assays demonstrated that short-form R. felis entered into and replicated in host cells faster than long-form R. felis. However, when both short- and long-form R. felis organisms were maintained in cell-free medium for 12 days, the infectivity of short-form R. felis was decreased compared to long-form R. felis organisms, which were capable of entering host cells, suggesting that long-form R. felis is more stable outside the host cell. The relationship between rickettsial polymorphism and rickettsial survivorship should be examined further as the yet undetermined route of horizontal transmission of R. felis may utilize metabolically and morphologically distinct forms for successful transmission.
Collapse
|