1
|
Santana EGM, Ferreira FDS, Brito WRDS, Lopes FT, de Lima ACR, Neto GDSP, Amoras EDSG, Lima SS, da Costa CA, Souza MS, Ishak R, Cayres-Vallinoto IMV, Vallinoto ACR, Queiroz MAF. TLR7 rs179008 (A/T) and TLR7 rs3853839 (C/G) polymorphisms are associated with variations in IFN-α levels in HTLV-1 infection. Front Immunol 2024; 15:1462352. [PMID: 39650644 PMCID: PMC11621001 DOI: 10.3389/fimmu.2024.1462352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction TLR7 detects the presence of single-stranded RNA (ssRNA) viruses, including human T-lymphotropic virus 1 (HTLV-1), and triggers antiviral and inflammatory responses that are responsible for infection control. Genetic variations in the TLR7 gene may alter cytokine production and influence the course of HTLV-1 infection. In the present study, the associations of TLR7 gene polymorphisms with HTLV-1-related symptoms, receptor expression levels, IFN-α and TNF-α levels and the proviral load were investigated. Methods Blood samples from 159 individuals with HTLV-1 infection (66 with inflammatory diseases and 93 asymptomatic individuals) and 159 controls were collected. The genotyping of polymorphisms, TLR7 gene expression analysis and the quantification of the proviral load were performed by real-time PCR, and cytokine measurement was performed by enzyme-linked immunosorbent assay (ELISA). Results Carriers of the polymorphic allele for TLR7 rs179008 (A/T) had lower levels of IFN-α, while carriers of the polymorphic allele for TLR7 rs3853839 (C/G) had higher levels of TLR7 and IFN-α expression. The polymorphisms were not associated with symptoms of diseases related to HTLV-1 infection. The combination of A/G alleles for the TLR7 rs179008 (A/T) and TLR7 rs3853839 (C/G) polymorphisms was associated with increased IFN-α levels and a decreased proviral load. Discussion Although the polymorphisms did not influence the presence of symptoms of diseases caused by HTLV-1, carriers of the wild-type alleles for TLR7 rs179008 (A/T) and the polymorphism for TLR7 rs3853839 (C/G) appears to have a stronger antiviral response and increased infection control.
Collapse
Affiliation(s)
| | | | | | - Felipe Teixeira Lopes
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Aline Cecy Rocha de Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Sandra Souza Lima
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Carlos Araujo da Costa
- Laboratory of Cellular and Molecular Biology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Maísa Silva Souza
- Laboratory of Cellular and Molecular Biology, Tropical Medicine Center, Federal University of Pará, Belém, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | |
Collapse
|
2
|
Gois LL, Ribeiro-Soares B, Regis-Silva CG, Zanette DL, Lisboa R, Nascimento RS, Coutinho Junior R, Galvão-Castro B, Grassi MFR. Imbalanced IL10/TGF-β production by regulatory T-lymphocytes in patients with HTLV-1-associated myelopathy/ tropical spastic paraparesis. BMC Infect Dis 2024; 24:652. [PMID: 38943078 PMCID: PMC11214226 DOI: 10.1186/s12879-024-09494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Human T-cell lymphotropic virus type 1 (HTLV-1), also denominated Human T-cell leukemia virus-1, induces immune activation and secretion of proinflammatory cytokines, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Regulatory T lymphocytes (Tregs) may control of inflammation through the production of regulatory cytokines, including IL10 and TGF-β. In this study we determined the frequencies of CD4 + and CD8 + Tregs in a HAM/TSP population, compared to asymptomatic carriers and uninfected individuals, as well as investigated the profiles of regulatory and inflammatory cytokines. METHODS Asymptomatic HTLV-1 carriers and HAM/TSP patients were matched by sex and age. The frequencies of IL10- and/or TGF-β-producing Tregs were quantified by flow cytometry. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to quantify HTLV-1 proviral load and the mRNA expression of cytokines and cellular receptors in peripheral blood mononuclear cells. RESULTS Total frequencies of CD4 + Tregs, as well as the IL10-producing CD4 + and CD8 + Treg subsets, were statistically higher in patients with HAM/TSP compared to asymptomatic HTLV-1-infected individuals. In addition, a positive correlation was found between the frequency of CD4 + IL10 + Tregs and proviral load in the HAM/TSP patients evaluated. A positive correlation was also observed between gene expression of proinflammatory versus regulatory cytokines only in HAM / TSP group. CONCLUSIONS A higher frequencies of IL10-producing Tregs were identified in patients with HAM/TSP. Imbalanced production of IL10 in relation to TGF-β may contribute to the increased inflammatory response characteristically seen in HAM/TSP patients.
Collapse
Affiliation(s)
- Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
- Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia (ICS/UFBA), Salvador-Bahia, Brazil
| | - Bárbara Ribeiro-Soares
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Carlos Gustavo Regis-Silva
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Dalila L Zanette
- Laboratório de Ciências e Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz (ICC/FIOCRUZ-PR), Curitiba-Paraná, Brazil
| | - Raphaella Lisboa
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Regina Santos Nascimento
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Raimundo Coutinho Junior
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Bernardo Galvão-Castro
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil
| | - Maria Fernanda Rios Grassi
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador-Bahia, Brazil.
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (LASP, IGM, FIOCRUZ), Salvador-Bahia, Brazil.
| |
Collapse
|
3
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
4
|
Lim AG, Maini PK. HTLV-I infection: a dynamic struggle between viral persistence and host immunity. J Theor Biol 2014; 352:92-108. [PMID: 24583256 DOI: 10.1016/j.jtbi.2014.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
Human T-lymphotropic virus type I (HTLV-I) causes chronic infection for which there is no cure or neutralising vaccine. HTLV-I has been clinically linked to the development of adult T-cell leukaemia/lymphoma (ATL), an aggressive blood cancer, and HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, persistently activated CD8(+) cytotoxic T-lymphocyte (CTL) response against HTLV-I-infected cells, but ultimately fail to effectively eliminate the virus. Moreover, the identification of determinants to disease manifestation has thus far been elusive. A key issue in current HTLV-I research is to better understand the dynamic interaction between persistent infection by HTLV-I and virus-specific host immunity. Recent experimental hypotheses for the persistence of HTLV-I in vivo have led to the development of mathematical models illuminating the balance between proviral latency and activation in the target cell population. We investigate the role of a constantly changing anti-viral immune environment acting in response to the effects of infected T-cell activation and subsequent viral expression. The resulting model is a four-dimensional, non-linear system of ordinary differential equations that describes the dynamic interactions among viral expression, infected target cell activation, and the HTLV-I-specific CTL response. The global dynamics of the model is established through the construction of appropriate Lyapunov functions. Examining the particular roles of viral expression and host immunity during the chronic phase of HTLV-I infection offers important insights regarding the evolution of viral persistence and proposes a hypothesis for pathogenesis.
Collapse
Affiliation(s)
- Aaron G Lim
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
5
|
Malta TM, Silva IT, Pinheiro DG, Santos AR, Pinto MT, Panepucci RA, Takayanagui OM, Tanaka Y, Covas DT, Kashima S. Altered expression of degranulation-related genes in CD8+ T cells in human T lymphotropic virus type I infection. AIDS Res Hum Retroviruses 2013; 29:826-36. [PMID: 23301858 DOI: 10.1089/aid.2012.0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human T lymphotropic virus type I (HTLV-1) is the etiological agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). CD8+ T cells may contribute to the protection or development of HAM/TSP. In this study we used SAGE methodology to screen for differentially expressed genes in CD8+ T cells isolated from HTLV-1 asymptomatic carriers (HAC) and from HAM/TSP patients to identify genes involved in HAM/TSP development. SAGE analysis was conducted by pooling samples according to clinical status. The comparison of gene expression profiles between HAC and HAM/TSP libraries identified 285 differentially expressed tags. We focus on cytotoxicity and cytokine-related genes due to their potential biological role in HTLV-1 infection. Our results showed that patients with HAM/TSP have high expression levels of degranulation-related genes, namely GZMH and PRF1, and of the cytoskeletal adaptor PXN. We found that GZMB and ZAP70 were overexpressed in HTLV-infected patients compared to the noninfected group. We also detected that CCL5 was higher in the HAM/TSP group compared to the HAC and CT groups. Our findings showed that CD8+ T cells of HAM/TSP patients have an inflammatory and active profile. PXN and ZAP70 overexpression in HTLV-1-infected patients was described for the first time here and reinforces this concept. However, although active and abundant, CD8+ T cells are not able to completely eliminate infected cells and prevent the development of HAM/TSP and, moreover, these cells might contribute to the pathogenesis of the disease by migrating to the central nervous system (CNS). These results should be further tested with biological functional assays to increase our understanding on the role of these molecules in the development of HTLV-1-related diseases.
Collapse
Affiliation(s)
- Tathiane M. Malta
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Israel T. Silva
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Daniel G. Pinheiro
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Anemarie R.D. Santos
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - Mariana T. Pinto
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo A. Panepucci
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Dimas T. Covas
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Simone Kashima
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell Therapy and Regional Blood Center, Blood Center of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
- Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Gutiérrez G, Carignano H, Alvarez I, Martínez C, Porta N, Politzki R, Gammella M, Lomonaco M, Fondevila N, Poli M, Trono K. Bovine leukemia virus p24 antibodies reflect blood proviral load. BMC Vet Res 2012; 8:187. [PMID: 23047073 PMCID: PMC3526540 DOI: 10.1186/1746-6148-8-187] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/04/2012] [Indexed: 11/24/2022] Open
Abstract
Background Bovine leukemia virus (BLV) is worldwide distributed and highly endemic in Argentina. Among the strategies to prevent BLV dissemination, a control plan based on the selective segregation of animals according to their proviral load (PVL) is promising for our dairy productive system. The objective of this work was to study the relationship between the blood PVL and the antibody level, in order to identify whether the individual humoral response, i.e. the anti-p24 or anti-whole-BLV particle, could be used as a marker of the blood level of infection and thus help to recruit animals that may pose a lower risk of dissemination under natural conditions. Results The prevalence of p24 antibodies on the 15 farms studied was over 66%. The prevalence of p24 and whole-BLV antibodies and PVL quantification were analyzed in all the samples (n = 196) taken from herds T1 and 51. ROC analysis showed a higher AUC for p24 antibodies than whole-BLV antibodies (Zreactivity: 3.55, P < 0.001; Ztiter: 2.88, P < 0.01), and as consequence a better performance to predict the proviral load status in herd 51. No significant differences were found between the performance of p24 and whole-BLV antibodies in herd T1. A significant positive correlation was observed between PVL values and p24 antibody reactivity in both farms (r T1 = 0.7, P < 0.001, r 51 = 0.71, P < 0.0001). The analysis was extended to the whole number of weak p24 antibody reactors (n = 311) of the other 13 farms. The mean of high PVL reactors within weak p24 reactors was 17.38% (SD = 8.92). In 5/15 farms, the number of weak p24 reactors with high PVL was lower than 10%. Conclusions We found that the humoral response reflected the level of in vivo infection, and may therefore have useful epidemiological applications. Whereas the quantitative evaluation of blood proviral load using real-time PCR is expensive and technically demanding, the measurement of antibodies in blood by ELISA is relatively straightforward and could therefore constitute a cost-effective tool in a BLV control intervention strategy, especially in highly infected herds such as Argentinean dairy ones.
Collapse
Affiliation(s)
- Gerónimo Gutiérrez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, C.C. 1712, Castelar, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sato T, Azakami K, Ando H, Araya N, Yamano Y. Human T-lymphotropic virus type 1 (HTLV-1) and innate immunity. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention. Bull Math Biol 2009; 72:681-96. [PMID: 20041353 DOI: 10.1007/s11538-009-9465-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
Human T-cell leukaemia/lymphoma virus type I (HTLV-I) is a retrovirus that has been identified as the causative agent of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other illnesses. HTLV-I infects primarily CD4(+) T cells and the transmission occurs through direct cell-to-cell contact. HAM/TSP patients harbor higher proviral loads in peripheral blood lymphocytes than asymptomatic carriers. Also, HAM/TSP patients exhibit a remarkably high number of circulating HTLV-I-specific CD8(+) cytotoxic T lymphocytes (CTLs) in the peripheral blood. While CTLs have a protective role by killing the infected cells and lowering the proviral load, a high level of CTLs and their cytotoxicity are believed to be a main cause of the development of HAM/TSP. A mathematical model for HTLV-I infection of CD4(+) T cells that incorporates the CD8(+) cytotoxic T-cell (CTL) response is investigated. Our mathematical analysis reveals that the system can stabilize at a carrier steady-state with persistent viral infection but no CTL response, or at a HAM/TSP steady-state at which both the viral infection and CTL response are persistent. We also establish two threshold parameters R(0) and R(1), the basic reproduction numbers for viral persistence and for CTL response, respectively. We show that the parameter R(1) can be used to distinguish asymptomatic carriers from HAM/TSP patients, and as an important control parameter for preventing the development of HAM/TSP.
Collapse
|
9
|
A new hypothesis for the pathogenesis of Human T-lymphotropic virus type 1 associated myelopathy/tropical spastic paraparesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.bihy.2009.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Best I, Adaui V, Verdonck K, González E, Tipismana M, Clark D, Gotuzzo E, Vanham G. Proviral load and immune markers associated with human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Peru. Clin Exp Immunol 2006; 146:226-33. [PMID: 17034574 PMCID: PMC1942059 DOI: 10.1111/j.1365-2249.2006.03208.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2006] [Indexed: 11/30/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the aetiological agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The objective of this study is to identify which ex vivo and in vivo markers are associated independently with HAM/TSP in a Peruvian population. Eighty-one subjects (33 men/48 women) were enrolled: 35 presented with HAM/TSP, 33 were asymptomatic HTLV-1 carriers (ACs) and 13 were HTLV-1-seronegative controls (SCs). Ex vivo markers included T cell proliferation and Th1 [interferon (IFN)-gamma], Th2 [interleukin (IL)-4, IL-5], proinflammatory [tumour necrosis factor (TNF)-alpha] and anti-inflammatory (IL-10) cytokine production in non-stimulated peripheral blood mononuclear cell (PBMC) cultures. In vivo CD4(+) T cell count, markers of Th1 [interferon-inducible protein (IP)-10] and Th2 (sCD30) activity in plasma and HTLV-1 proviral load in PBMCs were also evaluated. In univariate analysis, several markers, including T cell proliferation, IFN-gamma, IP-10, sCD30 and proviral load were associated with HAM/TSP, but in a multiple logistic regression analysis only the proviral load remained associated significantly with disease manifestation [adjusted OR 9.10 (1.24-66.91)]. Our findings suggest that HAM/TSP is associated primarily with proviral load, whereas the observed association with some immune markers seems secondary.
Collapse
Affiliation(s)
- I Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Datta A, Sinha-Datta U, Dhillon NK, Buch S, Nicot C. The HTLV-I p30 Interferes with TLR4 Signaling and Modulates the Release of Pro- and Anti-inflammatory Cytokines from Human Macrophages. J Biol Chem 2006; 281:23414-24. [PMID: 16785240 DOI: 10.1074/jbc.m600684200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas adaptive immunity has been extensively studied, very little is known about the innate immunity of the host to HTLV-I infection. HTLV-I-infected ATL patients have pronounced immunodeficiency associated with frequent opportunistic infections, and in these patients, concurrent infections with bacteria and/or parasites are known to increase risks of progression to ATL. The Toll-like receptor-4 (TLR4) activation in response to bacterial infection is essential for dendritic cell maturation and links the innate and adaptive immune responses. Recent reports indicate that TLR4 is targeted by viruses such as RSV, HCV, and MMTV. Here we report that HTLV-I has also evolved a protein that interferes with TLR4 signaling; p30 interacts with and inhibits the DNA binding and transcription activity of PU.1 resulting in the down-regulation of the TLR4 expression from the cell surface. Expression of p30 hampers the release of pro-inflammatory cytokines MCP-1, TNF-alpha, and IL-8 and stimulates release of anti-inflammatory IL-10 following stimulation of TLR4 in human macrophage. Finally, we found that p30 increases phosphorylation and inactivation of GSK3-beta a key step for IL-10 production. Our study suggests a novel function of p30, which may instigate immune tolerance by reducing activation of adaptive immunity in ATL patients.
Collapse
Affiliation(s)
- Abhik Datta
- Department of Microbiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
12
|
Kim SJ, Nair AM, Fernandez S, Mathes L, Lairmore MD. Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus type 1 p12I1. THE JOURNAL OF IMMUNOLOGY 2006; 176:5463-70. [PMID: 16622014 PMCID: PMC2668115 DOI: 10.4049/jimmunol.176.9.5463] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cell-to-cell transmission of retroviruses, such as human T lymphotropic virus type 1 (HTLV-1), is well documented, but the roles of viral regulatory or other nonstructural proteins in the modulation of T cell adhesion are incompletely understood. In this study we tested the role of the HTLV-1 accessory protein, p12(I), on LFA-1-mediated cell adhesion. p12(I) is critical for early HTLV-1 infection by causing the release of calcium from the endoplasmic reticulum to activate NFAT-mediated transcription. We tested the role of this novel viral protein in mediating LFA-1-dependent cell adhesion. Our data indicated that T cells expressing a mutant HTLV-1 provirus that does not produce p12(I) mRNA (ACH.p12(I)) exhibited reduced LFA-1-mediated adhesion compared with wild-type HTLV-1-expressing cells (ACH). Furthermore, the expression of p12(I) in Jurkat T cells using lentiviral vectors enhanced LFA-1-mediated cell adhesion, which was inhibited by the calcium chelator BAPTA-AM, the calcium channel blocker SK&F 96365, and calpeptin, an inhibitor of the calcium-dependent protease calpain. Similar to the intracellular calcium mobilizer, thapsigargin, the expression of p12(I) in Jurkat T cells induced cell surface clustering of LFA-1 without changing the level of integrin expression. Our data are the first to indicate that HTLV-1 p12(I), in addition to enhancing T cell activation, promotes cell-to-cell spread by inducing LFA-1 clustering on T cells via calcium-dependent signaling.
Collapse
Affiliation(s)
- Seung-jae Kim
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
| | - Amrithraj M. Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
| | | | - Lawrence Mathes
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210
| | - Michael D. Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210
- Address correspondence and reprint requests to Dr. Michael D. Lairmore, Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093. E-mail address:
| |
Collapse
|