1
|
Gostomczyk K, Drozd M, Marsool Marsool MD, Pandey A, Tugas K, Chacon J, Tayyab H, Ullah A, Borowczak J, Szylberg Ł. Biomarkers for the detection of circulating tumor cells. Exp Cell Res 2025; 448:114555. [PMID: 40228709 DOI: 10.1016/j.yexcr.2025.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Circulating tumor cells (CTCs) have emerged as a key biomarker in cancer detection and prognosis, and their molecular profiling is gaining importance in precision oncology. Liquid biopsies, which allow the extraction of CTCs, circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), have measurable advantages over traditional tissue biopsies, especially when molecular material is difficult to obtain. However, this method is not without limitations. Difficulties in differentiating between primary and metastatic lesions, uncertain predictive values and the complexity of the biomarkers used can prove challenging. Recently, high cell heterogeneity has been identified as the main obstacle to achieving high diagnostic accuracy. Because not all cells undergo epithelial-mesenchymal transition (EMT) at the same time, there is a large population of hybrid CTCs that express both epithelial and mesenchymal markers. Since traditional diagnostic tools primarily detect epithelial markers, they are often unable to detect cells with a hybrid phenotype; therefore, additional markers may be required to avoid false negatives. In this review, we summarize recent reports on emerging CTCs markers, with particular emphasis on their use in cancer diagnosis. Most of them, including vimentin, TWIST1, SNAI1, ZEB1, cadherins, CD44, TGM2, PD-L1 and GATA, hold promise for the detection of CTCs, but are also implicated in cancer progression, metastasis, and therapeutic resistance. Therefore, understanding the nature and drivers of epithelial-mesenchymal plasticity (EMP) is critical to advancing our knowledge in this field.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland.
| | - Magdalena Drozd
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| | | | - Anju Pandey
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Jose Chacon
- American University of Integrative Sciences, Saint Martin, Cole Bay, Barbados
| | | | - Ashraf Ullah
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Pathology, Dr Jan Biziel Memorial University Hospital, Bydgoszcz, Poland
| |
Collapse
|
2
|
Marjan T, Lafuente-Gómez N, Rampal A, Mooney DJ, Peyton SR, Qazi TH. Cell-Instructive Biomaterials with Native-Like Biochemical Complexity. Annu Rev Biomed Eng 2025; 27:185-209. [PMID: 39874600 DOI: 10.1146/annurev-bioeng-120823-020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases. In this review, we discuss advances in characterizing, mimicking, and harnessing biochemical signals in developing advanced engineered biomaterials. An overview of the diverse forms in which these biochemical signals exist and their effects on intracellular signal transduction is also provided. Finally, we highlight the application of biochemically complex biomaterials in the three broadly defined areas of tissue regeneration, immunoengineering, and organoid morphogenesis.
Collapse
Affiliation(s)
- Tuba Marjan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Nuria Lafuente-Gómez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Akaansha Rampal
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
3
|
Chylińska N, Maciejczyk M. Hyaluronic Acid and Skin: Its Role in Aging and Wound-Healing Processes. Gels 2025; 11:281. [PMID: 40277717 PMCID: PMC12026949 DOI: 10.3390/gels11040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Hyaluronic acid (HA) is a linear, unbranched polysaccharide classified as a glycosaminoglycan. While HA is found in various tissues throughout the body, over half of its total proportion is found in the skin. The role of HA in the skin is complex and multifaceted. HA maintains proper hydration, elasticity, and skin firmness, serving as a key extracellular matrix (ECM) component. With age, HA production gradually decreases, leading to reduced water-binding capacity, drier and less elastic skin, and the formation of wrinkles. Additionally, HA plays an active role in the wound-healing process at every stage. This review summarizes the current background knowledge about the role of HA in skin aging and wound healing. We discuss the latest applications of HA in aging prevention, including anti-aging formulations, nutricosmetics, microneedles, nanoparticles, HA-based fillers, and skin biostimulators. Furthermore, we explore various HA-based dressings used in wound treatment, such as hydrogels, sponges, membranes, and films.
Collapse
Affiliation(s)
- Natalia Chylińska
- Independent Laboratory of Cosmetology, Medical University of Białystok, Akademicka 3, 15-267 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Mickiewicza 2c, 15-022 Bialystok, Poland;
| |
Collapse
|
4
|
Zhang H, Hong Z, Jiang Z, Hu W, Hu J, Zhu R. miR-29b-3p Affects the Hypertrophy of Ligamentum Flavum in Lumbar Spinal Stenosis and its Mechanism. Biochem Genet 2025; 63:1824-1838. [PMID: 38625592 DOI: 10.1007/s10528-024-10811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
To explore the effect of miR-29b-3p on fibrosis and hypertrophy of ligamentum flavum (LF) in lumbar spinal stenosis (LSS) and its underlying mechanism. Patients with LSS and lumbar disc herniation (LDH) (control) undergoing posterior lumbar laminectomy were included in this study. Human LF samples were obtained for LF cell isolation, RNA, and protein extraction. Histomorphological analysis of LF was performed using hematoxylin-eosin (HE) staining. After isolation, culture, and transfection of primary LF cells, different transfection groups were constructed: NC-mimic, miR-29b-3p-mimic, NC-inhibitor, and miR-29b-3p-inhibitor. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29b-3p in LF and LF cells. Western blot analysis detected the protein expressions of P16 and CyclinD1. ELISA detected the protein expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, and Type III collagen. Finally, LF cell viability was detected using the Cell Counting Kit-8 (CCK8) assay. The thickness of LF was significantly thicker in the LSS group compared to the LDH group (p < 0.05), accompanied by a higher calcification degree, more fibroblasts, and a larger area of collagen fiber proliferation. miR-29b-3p expression was significantly lower in LSS-derived LF tissues and cells than in LDH-derived tissues and cells (both p < 0.05). Compared to the NC-mimic group, the miR-29b-3p-mimic group exhibited significantly higher miR-29b-3p expression, decreased protein expressions of Type I collagen, Type III collagen, TGF-β1, Smad2, Smad3, TLR4, P16, and CyclinD1, and inhibited LF cell proliferation (all p < 0.05). As expected, the miR-29b-3p-inhibitor group displayed contrasting expression patterns (all p < 0.05). Compared to the phosphate buffer saline (PBS) group, the Trimethylamine-N-Oxide (TMAO) group showed significantly increased expressions of TGF-β1, Smad2, Smad3, TLR4, Type I collagen, Type III collagen, P16, and CyclinD1, as well as enhanced LF cell proliferation (all p < 0.05). However, there was no significant difference between the TMAO group and the Ang II group (all p > 0.05). Upregulation of miR-29b-3p expression may play a role in improving LF fibrosis and hypertrophy in LSS by inhibiting P16 expression and suppressing the activation of the TGF-β/Smad signaling pathway. This finding offers new insights into future gene modification therapy for this patient population.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Zhixiong Hong
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Zehua Jiang
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China
| | - Jiashao Hu
- Department of Orthopedics, Dehong People's Hospital, Kunming Medical University Affiliated Dehong Hospital, Dehong, No.13 Yonghan Road, Mangshi District, 678400, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, No.190 Jieyuan Road, Hongqiao District, Tianjin, 300122, China.
| |
Collapse
|
5
|
Bao Y, Wu W, Lin J, Yang Y, Lin S, Su J, Qin Y, Wang B, Duan S. Increased HA/CD44/TGFβ signaling implicates in renal fibrosis of a Col4a5 mutant Alport mice. Mol Med 2025; 31:96. [PMID: 40075271 PMCID: PMC11905560 DOI: 10.1186/s10020-025-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
X-linked Alport syndrome (XLAS) caused by X-linked COL4A5 gene mutation is a hereditary disease that affects mainly the kidney. XLAS patients, especially males whose single copy of the COL4A5 gene is disrupted, suffer from a life-threatening renal disease, the mechanism of which remains unclear. Renal fibrosis is a characteristic pathology observed in XLAS kidney tissue. However, the molecular path from COL4A5 loss-of-function to fibrotic pathology is largely unknown. On the basis of a previously established XLAS mouse model, our study revealed an activated CD44-TGFβ signaling known to strongly promote fibrosis, along with an increased level of low molecular weight hyaluronan (LMW-HA) instead of high molecular weight hyaluronan (HMW-HA), to activate CD44-dependent TGFβ signaling in XLAS renal tissues. Additionally, hyaluronan synthase 2 (HAS2), an enzyme primarily responsible for HA production, was found to be upregulated in XLAS. In particular, in vitro studies revealed that COL4A5 knockdown in human kidney-derived HEK-293 cells can upregulate HAS2 at both the RNA and protein levels. The novel contribution of our study is finding that COL4A5 deficiency may lead to HAS2 overexpression and HA accumulation to activate CD44-TGFβ signaling, thereby promoting fibrosis, possibly suggesting that HAS2 and CD44 are potential therapeutic targets for impeding renal fibrosis in XLAS.
Collapse
Affiliation(s)
- Yantao Bao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Weiqing Wu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jiyun Lin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Yuankai Yang
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, 518028, Guangdong, China
| | - Jindi Su
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Yueyuan Qin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Baojiang Wang
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Shan Duan
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China.
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China.
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518040, Guandong, China.
| |
Collapse
|
6
|
Kim KP, Lemmon CA. Fibrotic extracellular matrix preferentially induces a partial Epithelial-Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis. Math Biosci 2025; 381:109375. [PMID: 39832653 PMCID: PMC11925401 DOI: 10.1016/j.mbs.2025.109375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
One of the main drivers of fibrotic diseases is epithelial-mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-β1 (TGF-β1) has been previously shown to regulate EMT. TGF-β1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-β1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-β1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-β1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-β1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-β1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-β1-FN fibril tethering by locally reducing the TGF-β1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-β1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-β1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-β1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.
Collapse
Affiliation(s)
- Kristin P Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA, 23284, USA.
| |
Collapse
|
7
|
Rosales P, Vitale D, Icardi A, Sevic I, Alaniz L. Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. Semin Immunopathol 2024; 46:15. [PMID: 39240397 DOI: 10.1007/s00281-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.
Collapse
Affiliation(s)
- Paolo Rosales
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Daiana Vitale
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Ina Sevic
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral, CIBA, UNNOBA/ CIT NOBA (UNNOBA-UNSADA- CONICET), Jorge Newbery 261, Junín, 6000, Bs. As, Argentina.
| |
Collapse
|
8
|
Sun Y, King B, Hamlin AJ, Saniepay M, Gorshkov K, Barker G, Ziegler M, Mukundan S, Cvijic ME, Schwarzbauer JE. Identification of a fibronectin-binding protein signature associated with idiopathic pulmonary fibrosis. Cells Dev 2024; 179:203941. [PMID: 39038657 PMCID: PMC11344656 DOI: 10.1016/j.cdev.2024.203941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
The extracellular matrix (ECM) is a critical component of tissue where it provides structural and signaling support to cells. Its dysregulation and accumulation lead to fibrosis, a major clinical challenge underlying many diseases that currently has little effective treatment. An understanding of the key molecular initiators of fibrosis would be both diagnostically useful and provide potential targets for therapeutics. The ECM protein fibronectin (FN) is upregulated in fibrotic conditions and other ECM proteins depend on assembly of a FN foundational ECM for their matrix incorporation. We used cell culture and in vivo models to investigate the role of FN in the progression of lung fibrosis. We confirmed that normal human lung fibroblasts (NHLFs) treated with transforming growth factor-beta (TGF-β) to stimulate fibrotic gene expression significantly increased both FN expression and its assembly into a matrix. We found that levels of alternatively spliced EDA and EDB exons were proportional to the increase in total FN RNA and protein showing that inclusion of these exons is not enhanced by TGF-β stimulation. RNA-sequencing identified 43 core matrisome genes that were significantly up- or down-regulated by TGF-β treatment and a Luminex immunoassay demonstrated increased levels of ECM proteins in conditioned medium of TGF-β-treated NHLFs. Interestingly, among the regulated core matrisome genes, 16 encode known FN-binding proteins and, of these, insulin-like growth factor binding protein 3 (IGFBP3) was most highly up-regulated. To link the NHLF results with in vivo disease, we analyzed lung tissue and bronchoalveolar lavage fluid from bleomycin-treated mice and found dramatically higher levels of FN and the FN-binding proteins IGFBP3, tenascin-C, and type I collagen in fibrotic conditions compared to controls. Altogether, our data identify a set of FN-binding proteins whose upregulation is characteristic of IPF and suggest that FN provides the foundational matrix for deposition of these proteins as fibrosis develops.
Collapse
Affiliation(s)
- Yu Sun
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA 08544
| | - Benjamin King
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Aaron J. Hamlin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA 08544
| | - Mersedeh Saniepay
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Kirill Gorshkov
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Gregory Barker
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Milinda Ziegler
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Shilpaa Mukundan
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Mary Ellen Cvijic
- Leads Discovery and Optimization, Bristol Myers Squibb, Lawrenceville, New Jersey, USA 08648
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA 08544
| |
Collapse
|
9
|
Li Z, Yang H, Li X, She T, Tao Z, Zhong Y, Su T, Feng Y, Shi Q, Li L, Tian R, Wang S, Cheng J, Cai H, Lu X. Platelet-derived growth factor receptor β-targeted positron emission tomography imaging for the noninvasive monitoring of liver fibrosis. Eur J Nucl Med Mol Imaging 2024; 51:1530-1543. [PMID: 38189910 DOI: 10.1007/s00259-023-06577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Noninvasive quantifying activated hepatic stellate cells (aHSCs) by molecular imaging is helpful for assessing disease progression and therapeutic responses of liver fibrosis. Our purpose is to develop platelet-derived growth factor receptor β (PDGFRβ)-targeted radioactive tracer for assessing liver fibrosis by positron emission tomography (PET) imaging of aHSCs. METHODS Comparative transcriptomics, immunofluorescence staining and flow cytometry were used to evaluate PDGFRβ as biomarker for human aHSCs and determine the correlation of PDGFRβ with the severity of liver fibrosis. The high affinity affibody for PDGFRβ (ZPDGFRβ) was labeled with gallium-68 (68Ga) for PET imaging of mice with carbon tetrachloride (CCl4)-induced liver fibrosis. Binding of the [68Ga]Ga-labeled ZPDGFRβ ([68Ga]Ga-DOTA-ZPDGFRβ) for aHSCs in human liver tissues was measured by autoradiography. RESULTS PDGFRβ overexpressed in aHSCs was highly correlated with the severity of liver fibrosis in patients and CCl4-treated mice. The 68Ga-labeled ZPDGFRβ affibody ([68Ga]Ga-DOTA-ZPDGFRβ) showed PDGFRβ-dependent binding to aHSCs. According to the PET imaging, hepatic uptake of [68Ga]Ga-DOTA-ZPDGFRβ increased with the accumulation of aHSCs and collagens in the fibrotic livers of mice. In contrast, hepatic uptake of [68Ga]Ga-DOTA-ZPDGFRβ decreased with spontaneous recovery or treatment of liver fibrosis, indicating that the progression and therapeutic responses of liver fibrosis in mice could be visualized by PDGFRβ-targeted PET imaging. [68Ga]Ga-DOTA-ZPDGFRβ also bound human aHSCs and visualized fibrosis in patient-derived liver tissues. CONCLUSIONS PDGFRβ is a reliable biomarker for both human and mouse aHSCs. PDGFRβ-targeted PET imaging could be used for noninvasive monitoring of liver fibrosis in mice and has great potential for clinical translation.
Collapse
Affiliation(s)
- Zhao Li
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tianshan She
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ze Tao
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Su
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanru Feng
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuxiao Shi
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Li
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tian
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shisheng Wang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics , West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu Cheng
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine , West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiaofeng Lu
- Department of Nuclear Medicine, NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Torrecillas-Baena B, Camacho-Cardenosa M, Carmona-Luque MD, Dorado G, Berenguer-Pérez M, Quesada-Gómez JM, Gálvez-Moreno MÁ, Casado-Díaz A. Comparative Study of the Efficacy of EHO-85, a Hydrogel Containing Olive Tree ( Olea europaea) Leaf Extract, in Skin Wound Healing. Int J Mol Sci 2023; 24:13328. [PMID: 37686133 PMCID: PMC10487427 DOI: 10.3390/ijms241713328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Olive tree (Olea europaea) leaf extract (OELE) has important antioxidant and anti-inflammatory properties, supporting its use in human clinical practice. We recently designed an amorphous hydrogel called EHO-85 (EHO indicates olive leaf extract in Spanish) containing OELE for skin ulcer treatments. Yet, its effectiveness has not been previously compared with other products used in routine clinical practice. This is necessary to evaluate its potential translation to the human clinic. Thus, in this study, the effect of EHO-85 on healing was evaluated in comparison with treatments containing Indian/Asiatic pennywort (Centella asiatica), hyaluronic acid, or dexpanthenol in a rat model. The speed of wound closure and histological parameters after seven and 14 days were analyzed. All treatments accelerated wound closure, but there were differences between them. Dexpanthenol after seven days produced the highest epithelialization and the lowest inflammation and vascularization. EHO-85 also promoted epithelialization and reduced vascularization. After 14 days, wounds treated with EHO-85 showed less inflammation and higher levels of collagen in the extracellular matrix. This indicates a higher degree of maturity in the regenerated tissue. In conclusion, the effect of EHO-85 on healing was equal to or superior to that of other treatments routinely used in human clinical practice. Therefore, these results, together with previous data on the effects of this hydrogel on ulcer healing in humans, indicate that EHO-85 is a suitable, low-cost, and efficient therapeutic option for wound healing.
Collapse
Affiliation(s)
- Bárbara Torrecillas-Baena
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Marta Camacho-Cardenosa
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - María Dolores Carmona-Luque
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Gabriel Dorado
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Miriam Berenguer-Pérez
- Department of Community Nursing, Preventive Medicine and Public Health and History of Science, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain;
| | - José Manuel Quesada-Gómez
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
| | - María Ángeles Gálvez-Moreno
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
| | - Antonio Casado-Díaz
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (B.T.-B.); (M.C.-C.); (M.D.C.-L.); (J.M.Q.-G.)
- Endocrinology and Nutrition Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
12
|
Maddali P, Ambesi A, McKeown-Longo PJ. Induction of pro-inflammatory genes by fibronectin DAMPs in three fibroblast cell lines: Role of TAK1 and MAP kinases. PLoS One 2023; 18:e0286390. [PMID: 37228128 DOI: 10.1371/journal.pone.0286390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4). However, the role of signaling molecules downstream of TLR-4 such as TGF-β Activated Kinase 1 (TAK1) and Mitogen activated protein kinases (MAPK) in regulating the expression of fibronectin DAMP induced inflammatory genes in specific cell types is not known. In the current study, we evaluate the molecular steps regulating the fibronectin driven induction of inflammatory genes in three human fibroblast cell lines: embryonic foreskin, adult dermal, and adult kidney. The fibronectin derived DAMPs each induce the phosphorylation and activation of TAK1 which results in the activation of two downstream signaling arms, IKK/NF-κB and MAPK. Using the specific inhibitor 5Z-(7)-Oxozeanol as well as siRNA, we show TAK1 to be a crucial signaling mediator in the release of cytokines in response to fibronectin DAMPs in all three cell types. Finally, we show that FnEDA and FnIII-1c induce several pro-inflammatory cytokines whose expression is dependent on both TAK1 and JNK MAPK and highlight cell-type specific differences in the gene-expression profiles of the fibroblast cell-lines.
Collapse
Affiliation(s)
- Pranav Maddali
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Anthony Ambesi
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Paula J McKeown-Longo
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
13
|
Wu L, Huang K, Li Q, Wu H, Gao Y, Xu X, Liu X, Han L. Crosstalk between myofibroblasts and macrophages: A regulative factor of valvular fibrosis in calcific aortic valve disease. Cell Biol Int 2023; 47:754-767. [PMID: 36542640 DOI: 10.1002/cbin.11980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Inflammation and fibrosis are highly correlated with the progression of calcific aortic valve disease (CAVD). As one of the differentiated forms of valvular interstitial cells, myofibroblasts play a critical role in CAVD's development as do macrophages. Although numerous studies have been conducted on them separately, their communication and interaction remain unclear. We used porcine aortic valves to isolate valve interstitial cells (VICs). VICs were induced to differentiate into myofibroblasts by transforming growth factor-β1 (TGF-β1). After successful activation was determined, the myofibroblast-conditioned medium (CM) was collected and used to act on RAW264.7, a macrophage cell line. A migration and adhesion assay estimated the recruitment capability of myofibroblasts on macrophages. We used flow cytometry, quantitative polymerase chain reaction (qPCR), and Western blot analysis to investigate myofibroblasts' polarity promotion function in macrophages. Finally, we used macrophage-CM on VICs to explore the differentiation induction function of polarized macrophages. Myofibroblast marker alpha-smooth muscle actin and M2 macrophage marker CD163 were detected as upregulated in CAVD patients, and their expression has a certain correlation. The Smad3/HA/CD44 axis activated the differentiation of myofibroblasts by Western blot. The myofibroblast-CM can promote chemotaxis and adhesion of macrophages through protein kinase B/chemokine (C-C motif) ligand5 and Smad3/HA/CD44, respectively. Hyaluronic acid (HA) inside the myofibroblast-CM stimulates macrophages to polarize into M2 macrophages. In turn, M2 macrophage-CM has the promotive ability to activate myofibroblasts but fails to induce the osteoblast differentiation of VICs directly. The crosstalk between myofibroblasts and macrophages causes the excessive activation of myofibroblasts. This positive feedback loop may play a vital role in CAVD progression.
Collapse
Affiliation(s)
- Lujia Wu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kai Huang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin Li
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohong Liu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Han
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Claridge B, Drack A, Pinto AR, Greening DW. Defining cardiac fibrosis complexity and regulation towards therapeutic development. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
Abstract
AbstractCardiac fibrosis is insidious, accelerating cardiovascular diseases, heart failure, and death. With a notable lack of effective therapies, advances in both understanding and targeted treatment of fibrosis are urgently needed. Remodelling of the extracellular matrix alters the biomechanical and biochemical cardiac structure and function, disrupting cell‐matrix interactions and exacerbating pathogenesis to ultimately impair cardiac function. Attempts at clinical fibrotic reduction have been fruitless, constrained by an understanding which severely underestimates its dynamic complexity and regulation. Integration of single‐cell sequencing and quantitative proteomics has provided new insights into cardiac fibrosis, including reparative or maladaptive processes, spatiotemporal changes and fibroblast heterogeneity. Further studies have revealed microenvironmental and intercellular signalling mechanisms (including soluble mediators and extracellular vesicles), and intracellular regulators including post‐translational/epigenetic modifications, RNA binding proteins, and non‐coding RNAs. This understanding of novel disease processes and molecular targets has supported the development of innovative therapeutic strategies. Indeed, targeted modulation of cellular heterogeneity, microenvironmental signalling, and intracellular regulation offer promising pre‐clinical therapeutic leads. Clinical development will require further advances in our mechanistic understanding of cardiac fibrosis and dissection of the molecular basis for fibrotic remodelling. This review provides an overview of the complexities of cardiac fibrosis, emerging regulatory mechanisms and therapeutic strategies, and highlights knowledge gaps and opportunities for further investigation towards therapeutic/clinical translation.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Alexander R. Pinto
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
- Baker Department of Cardiometabolic Health University of Melbourne Melbourne Australia
- Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
15
|
Abstract
Renal fibrosis is a hallmark of end-stage chronic kidney disease. It is characterized by increased accumulation of extracellular matrix (ECM), which disrupts cellular organization and function within the kidney. Here, we review the bi-directional interactions between cells and the ECM that drive renal fibrosis. We will discuss the cells involved in renal fibrosis, changes that occur in the ECM, the interactions between renal cells and the surrounding fibrotic microenvironment, and signal transduction pathways that are misregulated as fibrosis proceeds. Understanding the underlying mechanisms of cell-ECM crosstalk will identify novel targets to better identify and treat renal fibrosis and associated renal disease.
Collapse
Affiliation(s)
- Kristin P. Kim
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Caitlin E. Williams
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
16
|
Bianchi L, Altera A, Barone V, Bonente D, Bacci T, De Benedetto E, Bini L, Tosi GM, Galvagni F, Bertelli E. Untangling the Extracellular Matrix of Idiopathic Epiretinal Membrane: A Path Winding among Structure, Interactomics and Translational Medicine. Cells 2022; 11:cells11162531. [PMID: 36010606 PMCID: PMC9406781 DOI: 10.3390/cells11162531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell–matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin β1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein–protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.
Collapse
Affiliation(s)
- Laura Bianchi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Altera
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
17
|
Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol 2022; 128:137-144. [PMID: 35339360 DOI: 10.1016/j.semcdb.2022.02.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) is a dynamic structure that surrounds and anchors cellular components in tissues. In addition to functioning as a structural scaffold for cellular components, ECMs also regulate diverse biological functions, including cell adhesion, proliferation, differentiation, migration, cell-cell interactions, and intracellular signaling events. Dermal fibroblasts (dFBs), the major cellular source of skin ECM, develop from a common embryonic precursor to the highly heterogeneous subpopulations during development and adulthood. Upon injury, dFBs migrate into wound granulation tissue and transdifferentiate into myofibroblasts, which play a critical role in wound contraction and dermal ECM regeneration and deposition. In this review, we describe the plasticity of dFBs during development and wound healing and how various dFB-derived ECM molecules, including collagen, proteoglycans, glycosaminoglycans, fibrillins and matricellular proteins are expressed and regulated, and in turn how these ECM molecules play a role in regulating the function of dFBs and immune cells. Finally, we describe how dysregulation of ECM matrix is associated the pathogenesis of wound healing related skin diseases, including chronic wounds and keloid.
Collapse
|
18
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
20
|
Current Perspectives on Nucleus Pulposus Fibrosis in Disc Degeneration and Repair. Int J Mol Sci 2022; 23:ijms23126612. [PMID: 35743056 PMCID: PMC9223673 DOI: 10.3390/ijms23126612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence in humans and animal models indicates an association between intervertebral disc degeneration (IDD) and increased fibrotic elements in the nucleus pulposus (NP). These include enhanced matrix turnover along with the abnormal deposition of collagens and other fibrous matrices, the emergence of fibrosis effector cells, such as macrophages and active fibroblasts, and the upregulation of the fibroinflammatory factors TGF-β1 and IL-1/-13. Studies have suggested a role for NP cells in fibroblastic differentiation through the TGF-βR1-Smad2/3 pathway, inflammatory activation and mechanosensing machineries. Moreover, NP fibrosis is linked to abnormal MMP activity, consistent with the role of matrix proteases in regulating tissue fibrosis. MMP-2 and MMP-12 are the two main profibrogenic markers of myofibroblastic NP cells. This review revisits studies in the literature relevant to NP fibrosis in an attempt to stratify its biochemical features and the molecular identity of fibroblastic cells in the context of IDD. Given the role of fibrosis in tissue healing and diseases, the perspective may provide new insights into the pathomechanism of IDD and its management.
Collapse
|
21
|
Keskin E, Tönge Ç, Kaya M, Işık E. Evaluation of the effects of berberine in the prevention of epidural fibrosis in rats: An experimental research. Saudi Med J 2022; 43:370-377. [PMID: 35414615 PMCID: PMC9998064 DOI: 10.15537/smj.2022.43.4.20210918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To evaluate the effect of berberine (BBR) in preventing the development of epidural fibrosis (EF) after lumbar surgery in rats. METHODS This experimental study was carried out at the animal laboratory of Zonguldak Bülent Ecevit University, Zonguldak, Trurkey, between April 2020 and June 2020. A total of 32 Wistar albino female rats underwent laminectomy and were divided into 4 equal groups. Group 1 did not receive any treatment (control group). In group 2, absorbable gelatin sponge was placed at the surgical site. Groups 3 was administered BBR 10 mg/kg and group 4 was administered BBR 60 mg/kg per oral per day for one week after laminectomy. All rats were sacrificed 6 weeks after the operation. Concentration of hydroxyproline (HP) in tissues and histopathological evaluations were carried out to evaluate the level of fibrosis. RESULTS Epidural fibrosis results in group 4 were significantly lower than those in groups 1 and 2 (p≤0.001). However, there was no significant difference between the mean EF degree between group 2 and group 3. Arachnoidal invasion in both group 3 and group 4 were significantly lower compared to group 1 (p<0.05). In terms of HP results, the difference between group 4 and group 1 was statistically significant (p<0.001). CONCLUSION This study provides preliminary evidence of the potential use of BBR for preventing the development of EF.
Collapse
Affiliation(s)
- Emrah Keskin
- From the Department of Neurosurgery (Keskin), Faculty of Medicine, Zonguldak Bülent Ecevit University, Zonguldak; from the Department of Neurosurgery (Tönge), University of Health Sciences, Gulhane School of Medicine, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara; from the Department of Neurosurgery (Kaya), Sakarya University Education and Research Hospital, Sakarya; and from the Department of Pathology (Işık), Tunceli State Hospital, Tunceli, Turkey.
| | - Çağhan Tönge
- From the Department of Neurosurgery (Keskin), Faculty of Medicine, Zonguldak Bülent Ecevit University, Zonguldak; from the Department of Neurosurgery (Tönge), University of Health Sciences, Gulhane School of Medicine, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara; from the Department of Neurosurgery (Kaya), Sakarya University Education and Research Hospital, Sakarya; and from the Department of Pathology (Işık), Tunceli State Hospital, Tunceli, Turkey.
| | - Mustafa Kaya
- From the Department of Neurosurgery (Keskin), Faculty of Medicine, Zonguldak Bülent Ecevit University, Zonguldak; from the Department of Neurosurgery (Tönge), University of Health Sciences, Gulhane School of Medicine, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara; from the Department of Neurosurgery (Kaya), Sakarya University Education and Research Hospital, Sakarya; and from the Department of Pathology (Işık), Tunceli State Hospital, Tunceli, Turkey.
| | - Emre Işık
- From the Department of Neurosurgery (Keskin), Faculty of Medicine, Zonguldak Bülent Ecevit University, Zonguldak; from the Department of Neurosurgery (Tönge), University of Health Sciences, Gulhane School of Medicine, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara; from the Department of Neurosurgery (Kaya), Sakarya University Education and Research Hospital, Sakarya; and from the Department of Pathology (Işık), Tunceli State Hospital, Tunceli, Turkey.
| |
Collapse
|
22
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
23
|
Phillips AT, Boumil EF, Castro N, Venkatesan A, Gallo E, Adams JJ, Sidhu SS, Bernstein AM. USP10 Promotes Fibronectin Recycling, Secretion, and Organization. Invest Ophthalmol Vis Sci 2021; 62:15. [PMID: 34665194 PMCID: PMC8543399 DOI: 10.1167/iovs.62.13.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose Integrins play a central role in myofibroblast pathological adhesion, over-contraction, and TGFβ activation. Previously, we demonstrated that after corneal wounding, αv integrins are protected from intracellular degradation by upregulation of the deubiquitinase USP10, leading to cell-surface integrin accumulation. Because integrins bind to and internalize extracellular matrix (ECM), we tested whether extracellular fibronectin (FN) accumulation can result from an increase in integrin and matrix recycling in primary human corneal fibroblasts (HCFs). Methods Primary HCFs were isolated from cadaver eyes. HCFs were transfected with either USP10 cDNA or control cDNA by nucleofection. Internalized FN was quantified with a FN ELISA. Recycled extracellular integrin and FN were detected with streptavidin-488 by live cell confocal microscopy (Zeiss LSM 780). Endogenous FN extra domain A was detected by immunocytochemistry. Cell size and removal of FN from the cell surface was determined by flow cytometry. Results USP10 overexpression increased α5β1 (1.9-fold; P < 0.001) and αv (1.7-fold; P < 0.05) integrin recycling, with a concomitant increase in biotinylated FN internalization (2.1-fold; P < 0.05) and recycling over 4 days (1.7–2.2-fold; P < 0.05). The dependence of FN recycling on integrins was demonstrated by α5β1 and αv integrin blocking antibodies, which, compared with control IgG, decreased biotinylated FN recycling (62% and 84%, respectively; P < 0.05). Overall, we established that extracellular FN was composed of approximately 1/3 recycled biotinylated FN and 2/3 endogenously secreted FN. Conclusions Our data suggest that reduced integrin degradation with a subsequent increase in integrin/FN recycling after wounding may be a newly identified mechanism for the characteristic accumulation of ECM in corneal scar tissue.
Collapse
Affiliation(s)
- Andrew T Phillips
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Edward F Boumil
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Nileyma Castro
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States.,Syracuse VA Medical Center, New York VA Health Care, Syracuse, New York, United States
| | - Arunkumar Venkatesan
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jarrett J Adams
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Audrey M Bernstein
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States.,Syracuse VA Medical Center, New York VA Health Care, Syracuse, New York, United States
| |
Collapse
|
24
|
Unfer V, Tilotta M, Kaya C, Noventa M, Török P, Alkatout I, Gitas G, Bilotta G, Laganà AS. Absorption, distribution, metabolism and excretion of hyaluronic acid during pregnancy: a matter of molecular weight. Expert Opin Drug Metab Toxicol 2021; 17:823-840. [PMID: 33999749 DOI: 10.1080/17425255.2021.1931682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION For many years hyaluronic acid (HA) was mainly used for its hydrating properties. However, new applications have recently arisen, considering the biological properties of HA and its molecular weight. Clinical application of low molecular weight HA (LMW-HA) initially was supported by specific absorption data. The identification of high molecular weight HA (HMW-HA) absorption pathways and the knowledge of its physiological role allowed to evaluate its clinical application. Based on the immunomodulatory properties of HMW-HA and its physiological involvement as signaling molecule, pregnancy represents an interesting context of application. AREA COVERED This expert opinion includes in-vitro, in-vivo, ex-vivo and clinical studies on gestational models. It provides an overview of the physiological and the therapeutic role of HMW-HA in pregnancy starting from its metabolism. Indeed, HMW-HA is widely involved in several physiological processes as implantation, immune response, uterine quiescence and cervical remodeling, and therefore is an essential molecule for a successful pregnancy. EXPERT OPINION Available evidence suggests that HMW-HA administration can support physiological pregnancy, favoring blastocyst adhesion and development, preventing miscarriage and pre-term birth. For this reason, supplementation in pregnancy should be evaluated.
Collapse
Affiliation(s)
| | | | - Cihan Kaya
- Department of Obstetrics and Gynaecology, University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Marco Noventa
- Department of Women and Children's Health, Clinic of Gynecology and Obstetrics, University of Padua, Padua, Italy
| | - Péter Török
- Faculty of Medicine, Institute of Obstetrics and Gynecology, University of Debrecen, Hungary
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Georgios Gitas
- Department of Obstetrics and Gynecology, University Hospital Schleswig Holstein, Lübeck, Germany
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital,University of Insubria, Varese, Italy
| |
Collapse
|
25
|
CD34+ Stromal Cells/Telocytes as a Source of Cancer-Associated Fibroblasts (CAFs) in Invasive Lobular Carcinoma of the Breast. Int J Mol Sci 2021; 22:ijms22073686. [PMID: 33916213 PMCID: PMC8037555 DOI: 10.3390/ijms22073686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Several origins have been proposed for cancer-associated fibroblasts (CAFs), including resident CD34+ stromal cells/telocytes (CD34+SCs/TCs). The characteristics and arrangement of mammary CD34+SCs/TCs are well known and invasive lobular carcinoma of the breast (ILC) is one of the few malignant epithelial tumours with stromal cells that can express CD34 or αSMA, which could facilitate tracking these cells. Our objective is to assess whether tissue-resident CD34+SCs/TCs participate in the origin of CAFs in ILCs. For this purpose, using conventional and immunohistochemical procedures, we studied stromal cells in ILCs (n:42) and in normal breasts (n:6, also using electron microscopy). The results showed (a) the presence of anti-CD34+ or anti-αSMA+ stromal cells in varying proportion (from very rare in one of the markers to balanced) around nests/strands of neoplastic cells, (b) a similar arrangement and location of stromal cells in ILC to CD34+SCs/TCs in the normal breast, (c) both types of stromal cells coinciding around the same nest of neoplastic cells and (d) the coexpression of CD34 and αSMA in stromal cells in ILC. In conclusion, our findings support the hypothesis that resident CD34+SCs/TCs participate as an important source of CAFs in ILC. Further studies are required in this regard in other tumours.
Collapse
|
26
|
Kawai K, Tomonou M, Machida Y, Karuo Y, Tarui A, Sato K, Ikeda Y, Kinashi T, Omote M. Effect of Learning Dataset for Identification of Active Molecules: A Case Study of Integrin αIIbβ3 Inhibitors. Mol Inform 2021; 40:e2060040. [PMID: 33738924 DOI: 10.1002/minf.202060040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/13/2023]
Abstract
Efficient in silico approaches are needed to identify strong integrin αIIbβ3 inhibitors through a small number of measurements. To address the challenge, we investigated the effect of learning dataset on the classification performance of machine learning models focusing on weak and inactive compounds. The structure and activity information of the compounds were obtained from ChEMBL, and pCHEMBL values were used to classify them as active, inactive, or weak. Datasets with various imbalance levels from active:inactive=1 : 1 to 1 : 1000 were used for the machine learning. The prediction scores of the weak samples were found to lie between the predictive values of active and inactive compounds. In addition, another dataset that consists of 149 actives and 6.9 million inactives was screened; the results indicated that the number of positive predictions decreased for models trained with a higher number of inactives. Although there is a trade-off between false positives and false negatives, for determination of compounds with strong activity using a reduced number of measurements, it is better to use a large number of inactives for learning and identifying compounds that score higher than the weak samples.
Collapse
Affiliation(s)
- Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Mami Tomonou
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yume Machida
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|