1
|
Vogt N, Wermter FC, Nahrgang J, Storch D, Bock C. Tracking gonadal development in fish: An in vivo MRI study on polar cod, Boreogadus saida (Lepechin, 1774). NMR IN BIOMEDICINE 2024; 37:e5231. [PMID: 39113215 DOI: 10.1002/nbm.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 11/15/2024]
Abstract
Magnetic resonance imaging (MRI) was applied to determine the sex of polar cod (Boreogadus saida Lepechin, 1774) (Actinopterygii: Gadidae) and to follow the gonadal development in individual animals over time. Individual unanaesthetised fish were transferred to a measurement chamber inside a preclinical 9.4 T MRI scanner and continuously perfused with aerated seawater. A screening procedure at an average of 3.5 h, consisting of a set of MRI scans of different orientations, was repeated every 4 weeks on the same set of reproducing B. saida (n = 10) with a body length of about 20 cm. Adapted multi-slice flow-compensated fast low-angle shot (FcFLASH) and rapid acquisition with relaxation enhancement (RARE) protocols with an in-plane resolution of 313 μm and an acquisition time of 2.5 min were used to visualise the morphology of various organs, including the gonads within the field of view (FOV). The MR images provided high resolution, enabling specific sex determination, calculation of gonad volumes, and determination of oocyte sizes. Gonad maturation was followed over 4 months from November 2021 until shortly before spawning in February 2022. The gonad volume increased by 2.3-25.5% for males and by 11.5-760.7% for females during the observation period. From October to February, the oocyte diameter increased from 427 μm (n = 1) to 1346 ± 27 μm (n = 4). Interestingly, individual oocytes showed changes in MR contrast over time that can be attributed to the morphological development of the oocytes. The results fit well with previous literature data from classical invasive studies. The presented approach has great potential for various ecophysiological applications such as monitoring natural or delayed development of internal organs or sex determination under different environmental conditions.
Collapse
Affiliation(s)
- Nicole Vogt
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Felizitas C Wermter
- Department of Chemistry, in-vivo-MR group, University Bremen, Bremen, Germany
| | - Jasmine Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Daniela Storch
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| |
Collapse
|
2
|
Singer R, Oganezova I, Hu W, Liu L, Ding Y, de Groot HJM, Spaink HP, Alia A. Ultrahigh field diffusion magnetic resonance imaging uncovers intriguing microstructural changes in the adult zebrafish brain caused by Toll-like receptor 2 genomic deletion. NMR IN BIOMEDICINE 2024; 37:e5170. [PMID: 38742727 DOI: 10.1002/nbm.5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024]
Abstract
Toll-like receptor 2 (TLR2) belongs to the TLR protein family that plays an important role in the immune and inflammation response system. While TLR2 is predominantly expressed in immune cells, its expression has also been detected in the brain, specifically in microglia and astrocytes. Recent studies indicate that genomic deletion of TLR2 can result in impaired neurobehavioural function. It is currently not clear if the genomic deletion of TLR2 leads to any alterations in the microstructural features of the brain. In the current study, we noninvasively assess microstructural changes in the brain of TLR2-deficient (tlr2-/-) zebrafish using state-of-the art magnetic resonance imaging (MRI) methods at ultrahigh magnetic field strength (17.6 T). A significant increase in cortical thickness and an overall trend towards increased brain volumes were observed in young tlr2-/- zebrafish. An elevated T2 relaxation time and significantly reduced apparent diffusion coefficient (ADC) unveil brain-wide microstructural alterations, potentially indicative of cytotoxic oedema and astrogliosis in the tlr2-/- zebrafish. Multicomponent analysis of the ADC diffusivity signal by the phasor approach shows an increase in the slow ADC component associated with restricted diffusion. Diffusion tensor imaging and diffusion kurtosis imaging analysis revealed diminished diffusivity and enhanced kurtosis in various white matter tracks in tlr2-/- compared with control zebrafish, identifying the microstructural underpinnings associated with compromised white matter integrity and axonal degeneration. Taken together, our findings demonstrate that the genomic deletion of TLR2 results in severe alterations to the microstructural features of the zebrafish brain. This study also highlights the potential of ultrahigh field diffusion MRI techniques in discerning exceptionally fine microstructural details within the small zebrafish brain, offering potential for investigating microstructural changes in zebrafish models of various brain diseases.
Collapse
Affiliation(s)
- Rico Singer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Ina Oganezova
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Wanbin Hu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Li Liu
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yi Ding
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Singer R, Oganezova I, Hu W, Ding Y, Papaioannou A, de Groot HJM, Spaink HP, Alia A. Unveiling the Exquisite Microstructural Details in Zebrafish Brain Non-Invasively Using Magnetic Resonance Imaging at 28.2 T. Molecules 2024; 29:4637. [PMID: 39407567 PMCID: PMC11477492 DOI: 10.3390/molecules29194637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Zebrafish (Danio rerio) is an important animal model for a wide range of neurodegenerative diseases. However, obtaining the cellular resolution that is essential for studying the zebrafish brain remains challenging as it requires high spatial resolution and signal-to-noise ratios (SNR). In the current study, we present the first MRI results of the zebrafish brain at the state-of-the-art magnetic field strength of 28.2 T. The performance of MRI at 28.2 T was compared to 17.6 T. A 20% improvement in SNR was observed at 28.2 T as compared to 17.6 T. Excellent contrast, resolution, and SNR allowed the identification of several brain structures. The normative T1 and T2 relaxation values were established over different zebrafish brain structures at 28.2 T. To zoom into the white matter structures, we applied diffusion tensor imaging (DTI) and obtained axial, radial, and mean diffusivity, as well as fractional anisotropy, at a very high spatial resolution. Visualisation of white matter structures was achieved by short-track track-density imaging by applying the constrained spherical deconvolution method (stTDI CSD). For the first time, an algorithm for stTDI with multi-shell multi-tissue (msmt) CSD was tested on zebrafish brain data. A significant reduction in false-positive tracks from grey matter signals was observed compared to stTDI with single-shell single-tissue (ssst) CSD. This allowed the non-invasive identification of white matter structures at high resolution and contrast. Our results show that ultra-high field DTI and tractography provide reproducible and quantitative maps of fibre organisation from tiny zebrafish brains, which can be implemented in the future for a mechanistic understanding of disease-related microstructural changes in zebrafish models of various brain diseases.
Collapse
Affiliation(s)
- Rico Singer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Ina Oganezova
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Wanbin Hu
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | - Yi Ding
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | | | - Huub J. M. de Groot
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (W.H.); (Y.D.); (H.P.S.)
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands; (R.S.); (I.O.); (H.J.M.d.G.)
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
4
|
Sharma S, Magnitsky S, Reesey E, Schwartz M, Haroon S, Lavorato M, Chan S, Xiao R, Wilkins BJ, Martinez D, Seiler C, Falk MJ. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish 2024; 21:28-38. [PMID: 37603286 PMCID: PMC10886421 DOI: 10.1089/zeb.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Zebrafish (Danio rerio) is a widely used vertebrate animal for modeling genetic diseases by targeted editing strategies followed by gross phenotypic and biomarker characterization. While larval transparency permits microscopic detection of anatomical defects, histological adult screening for organ-level defects remains invasive, tedious, inefficient, and subject to technical artifact. Here, we describe a noninvasive magnetic resonance imaging (MRI) approach to systematically screen adult zebrafish for anatomical growth defects. An anatomical atlas of wild-type (WT) zebrafish at 5-31 months post-fertilization was created by ex vivo MRI with a 9.4 T magnet. Volumetric growth over time was measured of animals and major organs, including the brain, spinal cord, heart, eyes, optic nerve, ear, liver, kidneys, and swim bladder. Subsequently, surf1-/-, fbxl4-/-, and opa1+/- mitochondrial disease mutant adult zebrafish were quantitatively studied to compare organ volumes with age-matched WT zebrafish. Results demonstrated that MRI enabled noninvasive, high-resolution, rapid screening of mutant adult zebrafish for overall and organ-specific growth abnormalities. Detailed volumetric analyses of three mitochondrial disease mutants delineated specific organ differences, including significantly increased brain growth in surf1-/- and opa1+/-, and marginally significant decreased heart and spinal cord volumes in surf1-/- mutants. This is interesting as we know neurological involvement can be seen in SURF1-/- patients with ataxia, dystonia, and lesions in basal ganglia, as well as in OPA1+/- patients with spasticity, ataxia, and hyperreflexia indicative of neuropathology. Similarly, cardiomyopathy is a known sequelae of cardiac pathology in patients with SURF1-/--related disease. Future studies will define MRI signaling patterns of organ dysfunction to further delineate specific pathology.
Collapse
Affiliation(s)
- Sonal Sharma
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sergey Magnitsky
- Small Animal Imaging Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Emily Reesey
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mitchell Schwartz
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Suraiya Haroon
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Manuela Lavorato
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sherine Chan
- Neuroene Therapeutics, Washington, DC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rui Xiao
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin J. Wilkins
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christoph Seiler
- Zebrafish Core Facility, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Zvolský M, Schaar M, Seeger S, Rakers S, Rafecas M. Development of a digital zebrafish phantom and its application to dedicated small-fish PET. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac71ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. We are developing a small-fish positron emission tomography (PET) scanner dedicated to small aquatic animals relevant for biomedical and biological research, e.g. zebrafish. We plan to use Monte Carlo simulations to optimize its configuration and the required water-filled imaging chambers. Our objectives were: (1) to create a digital 3D zebrafish phantom using conventional micro-CT, (2) include the phantom into a simulated PET environment based on the framework GATE, and (3) investigate the effects of the water environment on the reconstructed images. Approach. To create the phantom, we performed ex vivo measurements of zebrafish specimen using a tabletop micro-CT and compared three methods to fixate the specimen. From segmented micro-CT images we created digital emission and transmission phantoms which were incorporated in GATE via tessellated volumes. Two chamber sizes were considered. For reference, a simulation with the zebrafish in air was implemented. The simulated data were reconstructed using CASToR. For attenuation correction, we used the exact attenuation information or a uniform distribution (only water). Several realizations of each scenario were performed; the reconstructed images were quantitatively evaluated. Main results. Fixation in formalin led to the best soft-tissue contrast at the cost of some specimen deformation. After attenuation correction, no significant differences were found between the reconstructed images. The PET images reflected well the higher uptake simulated in the brain and heart, despite their small size and surrounding background activity; the swim bladder (no activity) was clearly identified. The simplified attenuation map, consisting only of water, slightly worsened the images. Significance. A conventional micro-CT can provide sufficient image quality to generate numerical phantoms of small fish without contrast media. Such phantoms are useful to evaluate in-silico small aquatic animal imaging concepts and develop imaging protocols. Our results support the feasibility of zebrafish PET with an aqueous environment.
Collapse
|
6
|
Wermter FC, Bock C, Dreher W. Characterization of amine proton exchange for analyzing the specificity and intensity of the CEST effect: from humans to fish. NMR IN BIOMEDICINE 2022; 35:e4622. [PMID: 34605080 DOI: 10.1002/nbm.4622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Chemical exchange saturation transfer (CEST) at about 2.8 ppm downfield from water is characterized besides other compounds by exchanging amine protons of relatively high concentration amino acids and is determined by several physiological (pH, T) and experimental (B0 , B1 , tsat ) parameters. Although the weighting of the CEST effect observed in vivo can be attributed mainly to one compound depending on the organism and organ, there are still several other amino acids, proteins and molecules that also contribute. These contributions in turn exhibit dependences and thus can lead to possible misinterpretation of the measured changes in the CEST effect. With this in mind, this work aimed to determine the exchange rates of six important amino acids as a function of pH and temperature, and thus to create multi-pool models that allow the accurate analysis of the CEST effect concerning different physiological and experimental parameters for a wide variety of organisms. The results show that small changes in the above parameters have a significant impact on the CEST effect at about 2.8 ppm for the chosen organisms, i.e. the human brain (37 °C) and the brain of polar cod (1.5 °C), furthermore, the specificity of the CEST effect observed in vivo can be significantly affected. Based on the exchange rates ksw (pH, T) determined for six metabolites in this study, it is possible to optimize the intensity and the specificity for the CEST effect of amino acids at about 2.8 ppm for different organisms with their specific physiological characteristics. By adjusting experimental parameters accordingly, this optimization will help to avoid possible misinterpretations of CEST measurements. Furthermore, the multi-pool models can be utilized to further optimize the saturation.
Collapse
Affiliation(s)
- Felizitas C Wermter
- Department of Chemistry, in-vivo-MR group, University Bremen, Bremen, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Wolfgang Dreher
- Department of Chemistry, in-vivo-MR group, University Bremen, Bremen, Germany
| |
Collapse
|
7
|
Bensimon-Brito A, Boezio GLM, Cardeira-da-Silva J, Wietelmann A, Ramkumar S, Lundegaard PR, Helker CSM, Ramadass R, Piesker J, Nauerth A, Mueller C, Stainier DYR. Integration of multiple imaging platforms to uncover cardiovascular defects in adult zebrafish. Cardiovasc Res 2021; 118:2665-2687. [PMID: 34609500 PMCID: PMC9491864 DOI: 10.1093/cvr/cvab310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Aims Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. Methods and results Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. Conclusion We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Collapse
Affiliation(s)
- Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Giulia L M Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Astrid Wietelmann
- Scientific Service Group MRI and µ-CT, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Pia R Lundegaard
- Laboratory for Molecular Cardiology, Department of Cardiology, Vascular, Pulmonary and Infectious Diseases, University Hospital of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
8
|
Kline TL, Sussman CR, Irazabal MV, Mishra PK, Pearson EA, Torres VE, Macura SI. Three-dimensional NMR microscopy of zebrafish specimens. NMR IN BIOMEDICINE 2019; 32:e4031. [PMID: 30431194 PMCID: PMC6537090 DOI: 10.1002/nbm.4031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
While zebrafish embryos in the first five days after fertilization are clear and amenable to optical analysis, older juveniles and adults are not, due to pigmentation development and tissue growth. Thus other imaging methods are needed to image adult specimens. NMR is a versatile tool for studies of biological systems and has been successfully used for in vivo zebrafish microscopy. In this work we use NMR microscopy (MRM) for assessment of zebrafish specimens, which includes imaging of formalin fixed (FF), formalin fixed and paraffin embedded (FFPE), fresh (unfixed), and FF gadolinium doped specimens. To delineate the size and shape of various organs we concentrated on 3D MRM. We have shown that at 7 T a 3D NMR image can be obtained with isotropic resolution of 50 μm/pxl within 10 min and 25 μm/pxl within 4 h. Also, we have analyzed sources of contrast and have found that in FF specimens the best contrast is obtained by T1 weighting (3D FLASH, 3D FISP), whereas in FFPE specimens T2 weighting (3D RARE) is the best. We highlight an approach to perform segmentation of the organs in order to study morphological changes associated with mutations. The broader implication of this work is development of NMR methodology for high contrast and high resolution serial imaging and automated analysis of morphology of various zebrafish mutants.
Collapse
Affiliation(s)
| | - Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
9
|
Chang CC, Chen PY, Huang H, Huang CC. In Vivo Visualization of Vasculature in Adult Zebrafish by Using High-Frequency Ultrafast Ultrasound Imaging. IEEE Trans Biomed Eng 2018; 66:1742-1751. [PMID: 30387718 DOI: 10.1109/tbme.2018.2878887] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Zebrafish has been recently considered an ideal vertebrate for studying developmental biology, genetics, particularly for modeling tumorigenesis, angiogenesis, and regeneration in vivo. However, when a zebrafish matures completely, its body loses transparency, thus making conventional optical imaging techniques difficult for imaging internal anatomy and vasculature. Acoustic wave penetration outperforms optical methods, high-frequency (>30 MHz) ultrasound (HFUS) was consequently an alternative imaging modality for adult zebrafish imaging, particularly for echocardiography However, visualizing peripheral vessels in a zebrafish by using conventional HFUS is still difficult. METHODS In the present study, high-frequency micro-Doppler imaging (HFμDI) based on ultrafast ultrasound imaging was proposed for zebrafish dorsal vascular mapping in vivo. HFμDI uses a 40-MHz ultrasound transducer, which is an ultrafast ultrasound imaging technology with the highest frequency available currently. Blood flow signals were extracted using an eigen-based clutter filter with different settings. Experiments were performed on an 8-month-old wild-type AB-line adult zebrafish. RESULTS Blood vessels, including intersegmental vessels, parachordal vessel, dorsal longitudinal anastomotic vessel, and dorsal aorta, from the dorsal side of the zebrafish were clearly observed in two-dimensional (2-D) and 3-D HFμDI. CONCLUSION The maximum image depth of HFμDI and the minimal diameter of vessel can be detected were 4 mm and 36 μm, respectively; they were determined without any use of microbubbles. The maximum flow velocity range was approximately 3-4 mm/s on the dorsal vessels of the adult zebrafish. SIGNIFICANCE Compared with conventional ultrasound Doppler imaging, HFμDI exhibited superior small vessel imaging.
Collapse
|
10
|
Merrifield GD, Mullin J, Gallagher L, Tucker C, Jansen MA, Denvir M, Holmes WM. Rapid and recoverable in vivo magnetic resonance imaging of the adult zebrafish at 7T. Magn Reson Imaging 2017; 37:9-15. [PMID: 27751860 PMCID: PMC5344283 DOI: 10.1016/j.mri.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Increasing scientific interest in the zebrafish as a model organism across a range of biomedical and biological research areas raises the need for the development of in vivo imaging tools appropriate to this subject. Development of the embryonic and early stage forms of the subject can currently be assessed using optical based techniques due to the transparent nature of the species at these early stages. However this is not an option during the juvenile and adult stages when the subjects become opaque. Magnetic resonance imaging (MRI) techniques would allow for the longitudinal and non-invasive assessment of development and health in these later life stages. However, the small size of the zebrafish and its aquatic environment represent considerable challenges for the technique. We have developed a suitable flow cell system that incorporates a dedicated MRI imaging coil to solve these challenges. The system maintains and monitors a zebrafish during a scan and allows for it to be fully recovered. The imaging properties of this system compare well with those of other preclinical MRI coils used in rodent models. This enables the rapid acquisition of MRI data which are comparable in terms of quality and acquisition time. This would allow the many unique opportunities of the zebrafish as a model organism to be combined with the benefits of non-invasive MRI.
Collapse
Affiliation(s)
- Gavin D Merrifield
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, UK
| | - James Mullin
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, UK
| | - Lindsay Gallagher
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, UK
| | - Carl Tucker
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Maurits A Jansen
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - Martin Denvir
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, University of Glasgow, UK.
| |
Collapse
|
11
|
Chen Q, Jin T, Qi W, Mo X, Xi L. Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish. BIOMEDICAL OPTICS EXPRESS 2017; 8:2359-2367. [PMID: 28736676 DOI: 10.1364/boe.8.002359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
Zebrafish play an important role in biology, pharmacology, toxicology, and medicine. The cardio-cerebrovascular development of zebrafish is particularly critical to understand both brain disorders and cardiovascular diseases in human. In this paper, we applied optical resolution photoacoustic microscopy (ORPAM) to image the whole-body vasculature of the embryonic zebrafish with a special focus on the development of the cardio-cerebrovascular system. Using the intrinsic optical absorption contrast of the embryo, we successfully visualized the formation of the cardio-cerebrovascular network in high-resolution using a 10 × objective, and monitored the whole-body vascular development using a 4 × objective. In addition, we evaluated the impact of the eggshell and pigment inhibitor on the image quality. Our results suggest that ORPAM is capable of studying the cardio-cerebrovascular development of zebrafish in the embryonic stage, and thus has the potential to investigate the cardiovascular and cerebrovascular diseases of human in the future.
Collapse
Affiliation(s)
- Qian Chen
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tian Jin
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weizhi Qi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Xi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China.,Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Huang N, Guo H, Qi W, Zhang Z, Rong J, Yuan Z, Ge W, Jiang H, Xi L. Whole-body multispectral photoacoustic imaging of adult zebrafish. BIOMEDICAL OPTICS EXPRESS 2016; 7:3543-3550. [PMID: 27699119 PMCID: PMC5030031 DOI: 10.1364/boe.7.003543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/27/2016] [Accepted: 08/12/2016] [Indexed: 05/19/2023]
Abstract
The zebrafish, an ideal vertebrate for studying developmental biology and genetics, is increasingly being used to understand human diseases, due to its high similarity to the human genome and its optical transparency during embryonic stages. Once the zebrafish has fully developed, especially wild-type breeds, conventional optical imaging techniques have difficulty in imaging the internal organs and structures with sufficient resolution and penetration depth. Even with established mutant lines that remain transparent throughout their life cycle, it is still challenging for purely optical imaging modalities to visualize the organs of juvenile and adult zebrafish at a micro-scale spatial resolution. In this work, we developed a non-invasive three-dimensional photoacoustic imaging platform with an optimized illumination pattern and a cylindrical-scanning-based data collection system to image entire zebrafish with micro-scale resolutions of 80 μm and 600 μm in the lateral and axial directions, respectively. In addition, we employed a multispectral strategy that utilized excitation wavelengths from 690 nm to 930 nm to statistically quantify the relative optical absorption spectrum of major organs.
Collapse
Affiliation(s)
- Na Huang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Heng Guo
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Weizhi Qi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- These authors contributed equally to this work
| | - Zhiwei Zhang
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Jian Rong
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Huabei Jiang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Lei Xi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
13
|
Berry JP, Roy U, Jaja-Chimedza A, Sanchez K, Matysik J, Alia A. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance of Intact Zebrafish Embryos Detects Metabolic Changes Following Exposure to Teratogenic Polymethoxyalkenes from Algae. Zebrafish 2016; 13:456-65. [PMID: 27348393 DOI: 10.1089/zeb.2016.1280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Techniques based on nuclear magnetic resonance (NMR) for imaging and chemical analyses of in vivo, or otherwise intact, biological systems are rapidly emerging and finding diverse applications within a wide range of fields. Very recently, several NMR-based techniques have been developed for the zebrafish as a model animal system. In the current study, the novel application of high-resolution magic angle spinning (HR-MAS) NMR is presented as a means of metabolic profiling of intact zebrafish embryos. Toward investigating the utility of HR-MAS NMR as a toxicological tool, these studies specifically examined metabolic changes of embryos exposed to polymethoxy-1-alkenes (PMAs)-a recently identified family of teratogenic compounds from freshwater algae-as emerging environmental contaminants. One-dimensional and two-dimensional HR-MAS NMR analyses were able to effectively identify and quantify diverse metabolites in early-stage (≤36 h postfertilization) embryos. Subsequent comparison of the metabolic profiles between PMA-exposed and control embryos identified several statistically significant metabolic changes associated with subacute exposure to the teratogen, including (1) elevated inositol as a recognized component of signaling pathways involved in embryo development; (2) increases in several metabolites, including inositol, phosphoryl choline, fatty acids, and cholesterol, which are associated with lipid composition of cell membranes; (3) concomitant increase in glucose and decrease in lactate; and (4) decreases in several biochemically related metabolites associated with central nervous system development and function, including γ-aminobutyric acid, glycine, glutamate, and glutamine. A potentially unifying model/hypothesis of PMA teratogenicity based on the data is presented. These findings, taken together, demonstrate that HR-MAS NMR is a promising tool for metabolic profiling in the zebrafish embryo, including toxicological applications.
Collapse
Affiliation(s)
- John P Berry
- 1 Department of Chemistry and Biochemistry, Florida International University , North Miami, Florida
| | - Upasana Roy
- 2 Institute of Medical Physics and Biophysics, University of Leipzig , Leipzig, Germany .,3 Institut für Analytische Chemie, University of Leipzig , Leipzig, Germany
| | - Asha Jaja-Chimedza
- 1 Department of Chemistry and Biochemistry, Florida International University , North Miami, Florida
| | - Kristel Sanchez
- 1 Department of Chemistry and Biochemistry, Florida International University , North Miami, Florida
| | - Joerg Matysik
- 3 Institut für Analytische Chemie, University of Leipzig , Leipzig, Germany
| | - A Alia
- 2 Institute of Medical Physics and Biophysics, University of Leipzig , Leipzig, Germany .,4 Leiden Institute of Chemistry , Leiden, the Netherlands
| |
Collapse
|
14
|
Ueno T, Suzuki H, Hiraishi M, Amano H, Fukuyama H, Sugimoto N. In vivo Magnetic Resonance Microscopy and Hypothermic Anaesthesia of a Disease Model in Medaka. Sci Rep 2016; 6:27188. [PMID: 27251889 PMCID: PMC4890013 DOI: 10.1038/srep27188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022] Open
Abstract
In medical and pharmacological research, various human disease models in small fish, such as medaka (Oryzias latipes), have been created. To investigate these disease models noninvasively, magnetic resonance imaging (MRI) is suitable because these small fish are no longer transparent as adults. However, their small body size requires a high spatial resolution, and a water pool should be avoided to maximize the strength of MRI. We developed in vivo magnetic resonance microscopy (MR microscopy) without a water pool by combining hypothermic anaesthesia and a 14.1 T MR microscope. Using in vivo MR microscopy, we noninvasively evaluated the hepatic steatosis level of a non-alcoholic fatty liver disease model in medaka and followed the individual disease progression. The steatosis level was quantified by the MRI-estimated proton density fat-fraction (MRI-PDFF), which estimates the triglyceride fat concentration in liver tissue and is recognized as an imaging biomarker. The MRI-PDFF results agreed with a histological analysis. Moreover, we optimized the hypothermic anaesthesia procedure to obtain a recovery proportion of 1 in the experiment involving MR microscopy. Recovered medaka could not be distinguished from naïve medaka after the experiment. Therefore, the in vivo MR microscopy will expand the possibilities of a human disease model in fish.
Collapse
Affiliation(s)
- Tomohiro Ueno
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hirokazu Suzuki
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Hiraishi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hideaki Amano
- Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naozo Sugimoto
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
15
|
Tat J, Liu M, Wen XY. Zebrafish cancer and metastasis models for in vivo drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e83-9. [PMID: 24050234 DOI: 10.1016/j.ddtec.2012.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is a great need for more efficient methods to discover new cancer therapeutics, as traditional drug development processes are slow and expensive. The use of zebrafish as a whole-organism screen is a time and cost-effective means of improving the efficiency and efficacy of drug development. This review features zebrafish genetic and cell transplantation models of cancer and metastasis, and current imaging and automation technologies that, together, will significantly advance the field of anti-cancer drug discovery.
Collapse
|
16
|
Craig MP, Gilday SD, Dabiri D, Hove JR. An optimized method for delivering flow tracer particles to intravital fluid environments in the developing zebrafish. Zebrafish 2013; 9:108-19. [PMID: 22985309 DOI: 10.1089/zeb.2012.0740] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests that intravital flow-structure interactions are critical morphogens for normal embryonic development and disease progression, but fluid mechanical studies aimed at investigating these interactions have been limited in their ability to visualize and quantify fluid flow. In this study, we describe a protocol for injecting small (≤1.0 μm) tracer particles into fluid beds of the larval zebrafish to facilitate microscale fluid mechanical analyses. The microinjection apparatus and associated borosilicate pipette design, typically blunt-tipped with a 2-4 micron tip O.D., yielded highly linear (r(2)=0.99) in vitro bolus ejection volumes. The physical characteristics of the tracer particles were optimized for efficient particle delivery. Seeding densities suitable for quantitative blood flow mapping (≥50 thousand tracers per fish) were routinely achieved and had no adverse effects on zebrafish physiology or long-term survivorship. The data and methods reported here will prove valuable for a broad range of in vivo imaging technologies [e.g., particle-tracking velocimetry, μ-Doppler, digital particle image velocimetry (DPIV), and 4-dimensional-DPIV] which rely on tracer particles to visualize and quantify fluid flow in the developing zebrafish.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
17
|
Abstract
For decades, the advancement of cancer research has relied on in vivo models for examining key processes in cancer pathogenesis, including neoplastic transformation, progression, and response to therapy. These studies, which have traditionally relied on rodent models, have engendered a vast body of scientific literature. Recently, experimental cancer researchers have embraced many new and alternative model systems, including the zebrafish ( Danio rerio). The general benefits of the zebrafish model for laboratory investigation, such as cost, size, fecundity, and generation time, were quickly superseded by the discovery that zebrafish are amenable to a wide range of investigative techniques, many of which are difficult or impossible to perform in mammalian models. These advantages, coupled with the finding that many aspects of carcinogenesis are conserved in zebrafish as compared with humans, have firmly established a unique niche for the zebrafish model in comparative cancer research. This article introduces methods for generating cancer models in zebrafish and reviews a range of models that have been developed for specific cancer types.
Collapse
Affiliation(s)
- H. R. Shive
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Ma R, Distel M, Deán-Ben XL, Ntziachristos V, Razansky D. Non-invasive whole-body imaging of adult zebrafish with optoacoustic tomography. Phys Med Biol 2012; 57:7227-37. [PMID: 23075767 DOI: 10.1088/0031-9155/57/22/7227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zebrafish has emerged as an excellent vertebrate model organism for studies of evolution, development and disease. Due to its external development and optical transparency in embryonic stages, zebrafish offers a major advantage over other vertebrate model organisms by being amenable for microscopic studies of biological processes within their natural environment directly in the living organism. However, commonly used zebrafish strains lose their transparency within their first two weeks of development and thus are no longer accessible for optical imaging approaches at juvenile or adult stages. In this study we successfully apply optoacoustic imaging for non-invasive three-dimensional imaging of adult zebrafish. Since optoacoustics does not necessarily require labeling, but can instead rely on the intrinsic tissue contrast, this imaging method has the potential to become a versatile tool for developmental studies from juvenile to adult stages in the intact zebrafish.
Collapse
Affiliation(s)
- Rui Ma
- Technical University of Munich, Ingolstädter Landstraße 1, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
19
|
Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang W, Wu R, Wu L, Wu Y, Xu A. Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics 2010; 32:94-101. [PMID: 21225886 DOI: 10.1002/bem.20617] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 08/19/2010] [Indexed: 01/20/2023]
Abstract
The literature on the impact of strong static magnetic fields (SMF) on human health is vast and contradictory. The present study focused on the cellular effects of strong homogeneous SMF in human-hamster hybrid (A(L) ) cells, mitochondria-deficient (ρ(0) A(L) ) cells, and double-strand break (DSB) repair-deficient (XRS-5) cells. Adenosine triphosphate (ATP) content was significantly decreased in A(L) cells exposed to 8.5 Tesla (T) but not 1 or 4 T SMF for either 3 or 5 h. In addition, ATP content significantly decreased in the two deficient cell lines exposed to 8.5 T SMF for 3 h. With further incubation of 12 or 24 h without SMF exposure, ATP content could retrieve to the control level in the A(L) cells but not ρ(0) A(L) and XRS-5 cells. Under a fluorescence reader, the levels of reactive oxygen species (ROS) in the three cell lines were significantly increased by exposure to 8.5 T SMF for 3 h. Concurrent treatment with ROS inhibitor, DMSO, dramatically suppressed the ATP content in exposed A(L) cells. However, the CD59 mutation frequency and the cell cycle distribution were not significantly affected by exposure to 8.5 T SMF for 3 h. Our results indicated that the cellular ATP content was reduced by 8.5 T SMF for 3 h exposure, which was partially mediated by mitochondria and the DNA DSB repair process. Moreover, ROS were involved in the process of the cellular perturbations from the SMF.
Collapse
Affiliation(s)
- Guoping Zhao
- Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|