1
|
Shao H, Li Q, Chen J, Hu W, Zou Y, Liu H, Wang J, Bai L, Hu J. Regulatory role of the Bxy-gld-1 in meiosis and oocyte development of Bursaphelenchus xylophilus. PEST MANAGEMENT SCIENCE 2025. [PMID: 40271714 DOI: 10.1002/ps.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Investigating the cell fate of the germline in Bursaphelenchus xylophilus can reveal the biological characteristics of its reproductive processes, which is crucial for formulating more targeted control strategies against pine wilt disease. However, the molecular regulatory mechanisms governing cell fate in the germline of B. xylophilus remain unclear. RESULTS In this study, we performed functional validation of the Bxy-gld-1 gene in B. xylophilus through bioinformatics analysis, in situ hybridization, and RNA interference (RNAi) combined with DAPI staining techniques. Bioinformatics research indicates that the Bxy-gld-1 gene is highly similar to the gld-1 gene in the model organism Caenorhabditis elegans. In situ hybridization results demonstrate that the Bxy-gld-1 gene is expressed in the gonadal regions of nematodes at all developmental stages. RNAi results show that silencing the Bxy-gld-1 gene delays the transition of germline cells from mitosis to meiosis in B. xylophilus and can cause abnormal oocyte development in female nematodes, leading to the occurrence of small oocytes. Additionally, lifespan assays revealed that the longevity of virgin female and male nematodes in the RNAi-treated group was significantly reduced. CONCLUSIONS This study identifies the Bxy-gld-1 gene as a key regulator of germline cell fate in B. xylophilus, advancing our understanding of its reproductive mechanisms and providing a basis for targeted therapeutic development. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Quan Li
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Wenxin Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yuxin Zou
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Hengliang Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jinghan Wang
- College of Life Sciences, Huzhou University, Zhejiang, China
| | - Liqun Bai
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
2
|
Xu Y, Li S, Xu Y, Sun X, Wei Y, Wang Y, Li S, Ji Y, Hu K, Xu Y, Zhu C, Lu B, Wang D. Visualize neuronal membrane cholesterol with split-fluorescent protein tagged YDQA sensor. J Lipid Res 2025; 66:100781. [PMID: 40118459 DOI: 10.1016/j.jlr.2025.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Cholesterol is a major component of the cellular plasma membrane (PM), and its homeostasis is essential for brain health. Dysregulated cholesterol homeostasis has been strongly implicated in the pathogenesis of various neurological disorders, including Alzheimer's disease (AD). However, in vivo visualization of cholesterol has remained challenging, hindering a comprehensive understanding of AD pathology. In this study, we generated a new sensor combining the split-fluorescent protein tags with YDQA, a derivate of cholesterol-dependent cytolysin PFO. Through a series of validations in cell and C. elegans models, we demonstrate that the new sensor (name as sfPMcho) efficiently detects neuronal PM cholesterol. We further applied this sensor in 5X FAD and APOE KO mice models and revealed the cholesterol changes within neurons. PM cholesterol became sparse and locally aggregated in neuron bodies but significantly accumulated in nerve fibers. Collectively, this study provides a new tool for detecting neuronal PM cholesterol in vivo and uncovers cholesterol abnormalities in AD-related pathology at the cellular level. Further development based on this sensor or a similar strategy is to be expected.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Saixuan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yiran Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Xiaoqin Sun
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuqing Wei
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuejun Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Shuang Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yongqi Ji
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Keyi Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China
| | - Yuxia Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China.
| | - Cuiqing Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China.
| | - Bin Lu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, PR China.
| | - Dandan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, PR China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
3
|
Jiang WI, Cao Y, Xue Y, Ji Y, Winer BY, Chandra R, Zhang XF, Zhang M, Singhal NS, Pierce JT, Chen S, Ma DK. Suppressing APOE4-induced neural pathologies by targeting the VHL-HIF axis. Proc Natl Acad Sci U S A 2025; 122:e2417515122. [PMID: 39874294 PMCID: PMC11804744 DOI: 10.1073/pnas.2417515122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
The ε4 variant of human apolipoprotein E (APOE4) is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of APOE4 has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human APOE4 in Caenorhabditis elegans. The protective effects of VHL-1 deletion are recapitulated by stabilized HIF-1 (hypoxia-inducible factor), a transcription factor degraded by VHL-1. HIF-1 activates a genetic program that safeguards against mitochondrial dysfunction, oxidative stress, proteostasis imbalance, and endolysosomal rupture-critical cellular events linked to neural pathologies and mortality. Furthermore, genetic inhibition of Vhl reduces cerebral vascular injury and synaptic lesions in APOE4 mice, suggesting an evolutionarily conserved mechanism. Thus, we identify the VHL-HIF axis as a potent modulator of APOE4-induced neural pathologies and propose that targeting this pathway in nonproliferative tissues may curb cellular damage, protect against neurodegeneration, and reduce tissue injuries and mortality.
Collapse
Affiliation(s)
- Wei I. Jiang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
| | - Yiming Cao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yue Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Yichun Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Benjamin Y. Winer
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- HHMI, Chevy Chase, MD20815
| | - Rashmi Chandra
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
| | - Xingyuan Fischer Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
| | - Mengqi Zhang
- Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Neel S. Singhal
- Department of Neurology, University of California San Francisco, San Francisco, CA94158
| | - Jonathan T. Pierce
- Department of Neuroscience, The Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, University of Texas at Austin, Austin, TX78712
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA94158
- Department of Physiology, University of California San Francisco, San Francisco, CA94158
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| |
Collapse
|
4
|
Lehmann M, Halder S, Reinholdt P, Bashawat M, Scheidt HA, Leopold J, Schiller J, di Prima D, Akkerman V, Szomek M, Lauritsen L, Kongsted J, Müller P, Wessig P, Wüstner D. Synthesis and Characterization of a Novel Intrinsically Fluorescent Analog of Cholesterol with Improved Photophysical Properties. Anal Chem 2024; 96:18596-18604. [PMID: 39537343 PMCID: PMC11603404 DOI: 10.1021/acs.analchem.3c05720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Live-cell imaging of cholesterol trafficking depends on suitable cholesterol analogs. However, existing fluorescent analogs of cholesterol either show very different physicochemical properties compared to cholesterol or demand excitation in the ultraviolet spectral region. We present a strategy to synthesize two novel intrinsically fluorescent sterol probes with a close resemblance of cholesterol. The analogs contain four conjugated double bonds in the ring system and either a keto group (probe 5) or a hydroxy group (probe 6) in the C3 position. The emission of 5 is in the visible range of the spectrum, i.e., red-shifted by 150 nm compared to the widely used dehydroergosterol. Together with its high multiphoton absorption, this allows for imaging of 5 on conventional microscopes, including multicolor 3D and time-lapse microscopy. Molecular dynamics simulations and nuclear magnetic resonance spectroscopy reveal that 5 can condense the fatty acyl chains of phospholipids in model membranes. In giant unilamellar vesicles, 5 partitions equally into the liquid-ordered and disordered phases. In contrast, 6 emits in the ultraviolet range and is unstable in solution, preventing its use in live-cell imaging applications. The good photophysical properties of 5 make it a suitable analogue for improved live-cell imaging of sterol transport.
Collapse
Affiliation(s)
- Max Lehmann
- Department
of Chemistry, University of Potsdam, Karl-Liebknecht Str. 24-25, Potsdam 14476, Germany
| | - Senjuti Halder
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Peter Reinholdt
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense M DK-5230, Denmark
| | - Mohammad Bashawat
- Department
of Biology, Humboldt University Berlin, Invalidenstr. 42, Berlin 10115, Germany
| | - Holger A. Scheidt
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstr.
16-18, Leipzig 04107, Germany
| | - Jenny Leopold
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstr.
16-18, Leipzig 04107, Germany
| | - Jürgen Schiller
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstr.
16-18, Leipzig 04107, Germany
| | - Duccio di Prima
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense M DK-5230, Denmark
| | - Vibeke Akkerman
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Maria Szomek
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Line Lauritsen
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Odense M DK-5230, Denmark
| | - Peter Müller
- Department
of Biology, Humboldt University Berlin, Invalidenstr. 42, Berlin 10115, Germany
| | - Pablo Wessig
- Department
of Chemistry, University of Potsdam, Karl-Liebknecht Str. 24-25, Potsdam 14476, Germany
| | - Daniel Wüstner
- Department
of Biochemistry and Molecular Biology, University
of Southern Denmark, Odense
M DK-5230, Denmark
| |
Collapse
|
5
|
Jiang WI, Cao Y, Xue Y, Ji Y, Winer BY, Zhang M, Singhal NS, Pierce JT, Chen S, Ma DK. Suppressing APOE4-induced mortality and cellular damage by targeting VHL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582664. [PMID: 38464138 PMCID: PMC10925324 DOI: 10.1101/2024.02.28.582664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mortality rate increases with age and can accelerate upon extrinsic or intrinsic damage to individuals. Identifying factors and mechanisms that curb population mortality rate has wide-ranging implications. Here, we show that targeting the VHL-1 (Von Hippel-Lindau) protein suppresses C. elegans mortality caused by distinct factors, including elevated reactive oxygen species, temperature, and APOE4, the genetic variant that confers high risks of neurodegeneration in Alzheimer's diseases and all-cause mortality in humans. These mortality factors are of different physical-chemical nature, yet result in similar cellular dysfunction and damage that are suppressed by deleting VHL-1. Stabilized HIF-1 (hypoxia inducible factor), a transcription factor normally targeted for degradation by VHL-1, recapitulates the protective effects of deleting VHL-1. HIF-1 orchestrates a genetic program that defends against mitochondrial abnormalities, excess oxidative stress, cellular proteostasis dysregulation, and endo-lysosomal rupture, key events that lead to mortality. Genetic Vhl inhibition also alleviates cerebral vascular injury and synaptic lesions in APOE4 mice, supporting an evolutionarily conserved mechanism. Collectively, we identify the VHL-HIF axis as a potent modifier of APOE4 and mortality and propose that targeting VHL-HIF in non-proliferative animal tissues may suppress tissue injuries and mortality by broadly curbing cellular damage.
Collapse
Affiliation(s)
- Wei I. Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yiming Cao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Xue
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yichun Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Benjamin Y. Winer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Mengqi Zhang
- Department of Neurology, University of California, San Francisco, San Francisco, USA
| | - Neel S. Singhal
- Department of Neurology, University of California, San Francisco, San Francisco, USA
| | - Jonathan T. Pierce
- Department of Neuroscience, The Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, Institute of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
6
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
7
|
Schmeisser K, Kaptan D, Raghuraman BK, Shevchenko A, Rodenfels J, Penkov S, Kurzchalia TV. Mobilization of cholesterol induces the transition from quiescence to growth in Caenorhabditis elegans through steroid hormone and mTOR signaling. Commun Biol 2024; 7:121. [PMID: 38267699 PMCID: PMC10808130 DOI: 10.1038/s42003-024-05804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Recovery from the quiescent developmental stage called dauer is an essential process in C. elegans and provides an excellent model to understand how metabolic transitions contribute to developmental plasticity. Here we show that cholesterol bound to the small secreted proteins SCL-12 or SCL-13 is sequestered in the gut lumen during the dauer state. Upon recovery from dauer, bound cholesterol undergoes endocytosis into lysosomes of intestinal cells, where SCL-12 and SCL-13 are degraded and cholesterol is released. Free cholesterol activates mTORC1 and is used for the production of dafachronic acids. This leads to promotion of protein synthesis and growth, and a metabolic switch at the transcriptional level. Thus, mobilization of sequestered cholesterol stores is the key event for transition from quiescence to growth, and cholesterol is the major signaling molecule in this process.
Collapse
Affiliation(s)
- Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Damla Kaptan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jonathan Rodenfels
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Physics of Life (PoL), Technical University Dresden, Dresden, Germany
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | | |
Collapse
|
8
|
Hernandez-Cravero B, Gallino S, Florman J, Vranych C, Diaz P, Elgoyhen AB, Alkema MJ, de Mendoza D. Cannabinoids activate the insulin pathway to modulate mobilization of cholesterol in C. elegans. PLoS Genet 2022; 18:e1010346. [PMID: 36346800 PMCID: PMC9674138 DOI: 10.1371/journal.pgen.1010346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is critical. Previously, we demonstrated that the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) plays a key role in C. elegans since it modulates sterol mobilization. However, the mechanism remains unknown. Here we show that mutations in the ocr-2 and osm-9 genes, coding for transient receptors potential V (TRPV) ion channels, dramatically reduce the effect of 2-AG in cholesterol mobilization. Through genetic analysis in combination with the rescue of larval arrest induced by sterol starvation, we found that the insulin/IGF-1signaling (IIS) pathway and UNC-31/CAPS, a calcium-activated regulator of neural dense-core vesicles release, are essential for 2-AG-mediated stimulation of cholesterol mobilization. These findings indicate that 2-AG-dependent cholesterol trafficking requires the release of insulin peptides and signaling through the DAF-2 insulin receptor. These results suggest that 2-AG acts as an endogenous modulator of TRPV signal transduction to control intracellular sterol trafficking through modulation of the IGF-1 signaling pathway
Collapse
Affiliation(s)
- Bruno Hernandez-Cravero
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sofia Gallino
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cecilia Vranych
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
9
|
Tang R, Liang J, Jing X, Liu T. Discrepancy in Sterol Usage between Two Polyphagous Caterpillars, Mythimna separata and Spodoptera frugiperda. INSECTS 2022; 13:876. [PMID: 36292826 PMCID: PMC9604351 DOI: 10.3390/insects13100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Insects are sterol auxotrophs and typically obtain sterols from food. However, the sterol demand and metabolic capacity vary greatly among species, even for closely related species. The low survival of many insects on atypical sterols, such as cholestanol and cholestanone, raises the possibility of using sterol-modified plants to control insect herbivore pests. In this study, we evaluated two devastating migratory crop pests, Mythimna separata and Spodoptera frugiperda, in response to atypical sterols and explored the reasons that caused the divergences in sterol nutritional biology between them. Contrary to M. separata, S. frugiperda had unexpectedly high survival on cholestanone, and nearly 80% of the individuals pupated. Comparative studies, including insect response to multiple diets and larval body sterol/steroids analysis, were performed to explain their differences in cholestanone usage. Our results showed that, in comparison to M. separata, the superiority of S. frugiperda on cholestanone can be attributed to its higher efficiency of converting ketone into available stanol and its lower demand for sterols, which resulted in a better survival when cholesterol was unavailable. This research will help us to better understand insect sterol nutritional biology and the potential of using atypical sterols to control herbivorous insect pests.
Collapse
Affiliation(s)
| | | | - Xiangfeng Jing
- Correspondence: (X.J.); (T.L.); Tel.: +86-18220806257 (X.J.); +86-29-87092663 (T.L.)
| | - Tongxian Liu
- Correspondence: (X.J.); (T.L.); Tel.: +86-18220806257 (X.J.); +86-29-87092663 (T.L.)
| |
Collapse
|
10
|
Wüstner D. Image segmentation and separation of spectrally similar dyes in fluorescence microscopy by dynamic mode decomposition of photobleaching kinetics. BMC Bioinformatics 2022; 23:334. [PMID: 35962314 PMCID: PMC9373304 DOI: 10.1186/s12859-022-04881-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Image segmentation in fluorescence microscopy is often based on spectral separation of fluorescent probes (color-based segmentation) or on significant intensity differences in individual image regions (intensity-based segmentation). These approaches fail, if dye fluorescence shows large spectral overlap with other employed probes or with strong cellular autofluorescence. RESULTS Here, a novel model-free approach is presented which determines bleaching characteristics based on dynamic mode decomposition (DMD) and uses the inferred photobleaching kinetics to distinguish different probes or dye molecules from autofluorescence. DMD is a data-driven computational method for detecting and quantifying dynamic events in complex spatiotemporal data. Here, DMD is first used on synthetic image data and thereafter used to determine photobleaching characteristics of a fluorescent sterol probe, dehydroergosterol (DHE), compared to that of cellular autofluorescence in the nematode Caenorhabditis elegans. It is shown that decomposition of those dynamic modes allows for separating probe from autofluorescence without invoking a particular model for the bleaching process. In a second application, DMD of dye-specific photobleaching is used to separate two green-fluorescent dyes, an NBD-tagged sphingolipid and Alexa488-transferrin, thereby assigning them to different cellular compartments. CONCLUSIONS Data-based decomposition of dynamic modes can be employed to analyze spatially varying photobleaching of fluorescent probes in cells and tissues for spatial and temporal image segmentation, discrimination of probe from autofluorescence and image denoising. The new method should find wide application in analysis of dynamic fluorescence imaging data.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology and Physics of Life Sciences (PhyLife) Center, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
11
|
Chattopadhyay A, Biswas SC, Rukmini R, Saha S, Samanta A. Lack of Environmental Sensitivity of a Naturally Occurring Fluorescent Analog of Cholesterol. J Fluoresc 2021; 31:1401-1407. [PMID: 34224042 DOI: 10.1007/s10895-021-02767-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Dehydroergosterol (DHE, Δ5,7,9(11),22-ergostatetraen-3β-ol) is a naturally occurring fluorescent analog of cholesterol found in yeast. Since DHE has been shown to faithfully mimic cholesterol in a large number of biophysical, biochemical, and cell biological studies, it is widely used to explore cholesterol organization, dynamics and trafficking in model and biological membranes. In this work, we show that DHE, in spite of its localization at the membrane interface, does not exhibit red edge excitation shift (REES) in model membranes, irrespective of the membrane phase. These results are reinforced by semi-empirical quantum chemical calculations of dipole moment changes of DHE in ground and excited states, which show a very small change in the dipole moment of DHE upon excitation. We conclude that DHE fluorescence exhibits lack of environmental sensitivity, despite its usefulness in monitoring cholesterol organization, dynamics and traffic in model and biological membranes.
Collapse
Affiliation(s)
| | - Samares C Biswas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Raju Rukmini
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Satyen Saha
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
- Department of Chemistry, Banaras Hindu University, Varanasi, 221 005, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
12
|
Long-Term Caffeine Intake Exerts Protective Effects on Intestinal Aging by Regulating Vitellogenesis and Mitochondrial Function in an Aged Caenorhabditis Elegans Model. Nutrients 2021; 13:nu13082517. [PMID: 34444677 PMCID: PMC8398797 DOI: 10.3390/nu13082517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Caffeine, a methylxanthine derived from plants, is the most widely consumed ingredient in daily life. Therefore, it is necessary to investigate the effects of caffeine intake on essential biological activities. In this study, we attempted to determine the possible anti-aging effects of long-term caffeine intake in the intestine of an aged Caenorhabditis elegans model. We examined changes in intestinal integrity, production of vitellogenin (VIT), and mitochondrial function after caffeine intake. To evaluate intestinal aging, actin-5 (ACT-5) mislocalization, lumenal expansion, and intestinal colonization were examined after caffeine intake, and the levels of vitellogenesis as well as the mitochondrial activity were measured. We found that the long-term caffeine intake (10 mM) in the L4-stage worms at 25 °C for 3 days suppressed ACT-5 mislocalization. Furthermore, the level of autophagy, which is normally increased in aging animals, was significantly reduced in these animals, and their mitochondrial functions improved after caffeine intake. In addition, the caffeine-ingesting aging animals showed high resistance to oxidative stress and increased the expression of antioxidant proteins. Taken together, these findings reveal that caffeine may be a potential anti-aging agent that can suppress intestinal atrophy during the progression of intestinal aging.
Collapse
|
13
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
14
|
Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56:1394-1407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Lipids play crucial roles in regulating aging and longevity. In the past few decades, a series of genetic pathways have been discovered to regulate lifespan in model organisms. Interestingly, many of these regulatory pathways are linked to lipid metabolism and lipid signaling. Lipid metabolic enzymes undergo significant changes during aging and are regulated by different longevity pathways. Lipids also actively modulate lifespan and health span as signaling molecules. In this review, we summarize recent insights into the roles of lipid metabolism and lipid signaling in aging and discuss lipid-related interventions in promoting longevity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathon Duffy
- Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Plagens RN, Mossiah I, Kim Guisbert KS, Guisbert E. Chronic temperature stress inhibits reproduction and disrupts endocytosis via chaperone titration in Caenorhabditis elegans. BMC Biol 2021; 19:75. [PMID: 33858388 PMCID: PMC8051109 DOI: 10.1186/s12915-021-01008-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Temperature influences biology at all levels, from altering rates of biochemical reactions to determining sustainability of entire ecosystems. Although extended exposure to elevated temperatures influences organismal phenotypes important for human health, agriculture, and ecology, the molecular mechanisms that drive these responses remain largely unexplored. Prolonged, mild temperature stress (48 h at 28 °C) has been shown to inhibit reproduction in Caenorhabditis elegans without significantly impacting motility or viability. Results Analysis of molecular responses to chronic stress using RNA-seq uncovers dramatic effects on the transcriptome that are fundamentally distinct from the well-characterized, acute heat shock response (HSR). While a large portion of the genome is differentially expressed ≥ 4-fold after 48 h at 28 °C, the only major class of oogenesis-associated genes affected is the vitellogenin gene family that encodes for yolk proteins (YPs). Whereas YP mRNAs decrease, the proteins accumulate and mislocalize in the pseudocoelomic space as early as 6 h, well before reproduction declines. A trafficking defect in a second, unrelated fluorescent reporter and a decrease in pre-synaptic neuronal signaling indicate that the YP mislocalization is caused by a generalized defect in endocytosis. Molecular chaperones are involved in both endocytosis and refolding damaged proteins. Decreasing levels of the major HSP70 chaperone, HSP-1, causes similar YP trafficking defects in the absence of stress. Conversely, increasing chaperone levels through overexpression of the transcription factor HSF-1 rescues YP trafficking and restores neuronal signaling. Conclusions These data implicate chaperone titration during chronic stress as a molecular mechanism contributing to endocytic defects that influence multiple aspects of organismal physiology. Notably, HSF-1 overexpression improves recovery of viable offspring after exposure to stress. These findings provide important molecular insights into understanding organismal responses to temperature stress as well as phenotypes associated with chronic protein misfolding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01008-1.
Collapse
Affiliation(s)
- Rosemary N Plagens
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Isiah Mossiah
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Karen S Kim Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Eric Guisbert
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
16
|
Le TS, Nguyen TTH, Thi Mai Huong B, Nguyen HG, Ha BH, Nguyen VS, Nguyen MH, Nguyen HH, Wang J. Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone. J Nematol 2021; 53:e2021-36. [PMID: 33860269 PMCID: PMC8040142 DOI: 10.21307/jofnem-2021-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 01/30/2023] Open
Abstract
The study of species biodiversity within the Caenorhabditis genus of nematodes would be facilitated by the isolation of as many species as possible. So far, over 50 species have been found, usually associated with decaying vegetation or soil samples, with many from Africa, South America and Southeast Asia. Scientists based in these regions can contribute to Caenorhabditis sampling and their proximity would allow intensive sampling, which would be useful for understanding the natural history of these species. However, severely limited research budgets are often a constraint for these local scientists. In this study, we aimed to find a more economical, alternative growth media to rear Caenorhabditis and related species. We tested 25 media permutations using cheaper substitutes for the reagents found in the standard nematode growth media (NGM) and found three media combinations that performed comparably to NGM with respect to the reproduction and longevity of C. elegans. These new media should facilitate the isolation and characterization of Caenorhabditis and other free-living nematodes for the researchers in the poorer regions such as Africa, South America, and Southeast Asia where nematode diversity appears high.
Collapse
Affiliation(s)
- Tho Son Le
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - T. T. Hang Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Bui Thi Mai Huong
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - H. Gam Nguyen
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - B. Hong Ha
- College of Forestry Biotechnology, Vietnam National University of Forestry, Hanoi, Vietnam
| | - Van Sang Nguyen
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Minh Hung Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Huy-Hoang Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. Int J Mol Sci 2020; 21:ijms21218219. [PMID: 33153048 PMCID: PMC7672635 DOI: 10.3390/ijms21218219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 01/16/2023] Open
Abstract
The intestine is an organ essential to organismal nutrient absorption, metabolic control, barrier function and immunoprotection. The Caenorhabditis elegans intestine consists of 20 cells harboring a dense intermediate filament network positioned below the apical plasma membrane that forms a junction-anchored sheath around the intestinal lumen. This evolutionarily conserved arrangement provides mechanical and overall stress-protection, and it serves as an important model for deciphering the role of intestinal architecture in metazoan biology. We recently reported that the loss-of-function mutation of the intestinal intermediate filament organizer IFO-1 perturbs this architecture, leading to reduced body size and reproduction. Here, we demonstrate that the IFO-1 mutation dramatically affects cholesterol metabolism. Mutants showed an increased sensitivity to cholesterol depletion, reduced cholesterol uptake, and cholesterol transfer to the gonads, which is also observed in worms completely lacking an intermediate filament network. Accordingly, we found striking similarities to transcriptome and lipidome profiles of a nuclear hormone receptor (NHR)-8 mutant. NHR-8 is homologous to mammalian LXR (liver X receptor) that serves as a sterol sensor and transcriptional regulator of lipid metabolism. Remarkably, increasing exogenous cholesterol partially rescues the developmental retardation in IFO-1 mutants. Our results uncover a novel link of the intestinal intermediate filament cytoskeleton to cholesterol metabolism that contributes to compromised growth and reproduction.
Collapse
|
18
|
Sornda T, Ezcurra M, Kern C, Galimov ER, Au C, de la Guardia Y, Gems D. Production of YP170 Vitellogenins Promotes Intestinal Senescence in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2020; 74:1180-1188. [PMID: 30854561 PMCID: PMC6625598 DOI: 10.1093/gerona/glz067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
During aging, etiologies of senescence cause multiple pathologies, leading to morbidity and death. To understand aging requires identification of these etiologies. For example, Caenorhabditis elegans hermaphrodites consume their own intestinal biomass to support yolk production, which in later life drives intestinal atrophy and ectopic yolk deposition. Yolk proteins (YPs; vitellogenins) exist as three abundant species: YP170, derived from vit-1–vit-5; and YP115 and YP88, derived from vit-6. Here, we show that inhibiting YP170 synthesis leads to a reciprocal increase in YP115/YP88 levels and vice versa, an effect involving posttranscriptional mechanisms. Inhibiting YP170 production alone, despite increasing YP115/YP88 synthesis, reduces intestinal atrophy as much as inhibition of all YP synthesis, which increases life span. By contrast, inhibiting YP115/YP88 production alone accelerates intestinal atrophy and reduces life span, an effect that is dependent on increased YP170 production. Thus, despite copious abundance of both YP170 and YP115/YP88, only YP170 production is coupled to intestinal atrophy and shortened life span. In addition, increasing levels of YP115/YP88 but not of YP170 increases resistance to oxidative stress; thus, longevity resulting from reduced vitellogenin synthesis is not attributable to oxidative stress resistance.
Collapse
Affiliation(s)
- Thanet Sornda
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Marina Ezcurra
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,School of Biosciences, University of Kent, Canterbury, UK
| | - Carina Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Evgeniy R Galimov
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Catherine Au
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| | - Yila de la Guardia
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK.,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama
| | - David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, UK
| |
Collapse
|
19
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Paolucci M, Coccia E, Imperatore R, Varricchio E. A cross-talk between leptin and 17β-estradiol in vitellogenin synthesis in rainbow trout Oncorhynchus mykiss liver. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:331-344. [PMID: 31713703 DOI: 10.1007/s10695-019-00720-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The existence of nutritional and energy reserves is fundamental for fish female fertility, so that the existence of a correlation between metabolic reserves and reproductive capacity is suggested. Leptin regulates body weight and energy homeostasis. Estradiol induces the synthesis of vitellogenin, a phospholipoglycoprotein produced by the liver and taken up by the growing oocytes. The objective of this study was to investigate the possible existence of a crosstalk between 17β-estradiol (E2) and leptin in the modulation of E2-induced vtg in the rainbow trout Oncorhynchus mykiss. Liver slices were incubated with recombinant trout leptin (rt-lep) at three different concentrations (1-10-100 ng/ml). rt-lep brought about the decrease of E2-induced vtg secretion in the medium and the down-regulation of vtg mRNA expression. Moreover, rt-lep stimulated the lipase activity and diminished the liver fatty acid content. The combined employment of signal transduction inhibitors and the analysis of signal transduction phosphorylated factors revealed that rt-lep effect on E2-induced vtg occurred through the activation of phosphodiesterase, protein kinase C, MAP kinases, and protein kinase A. In conclusion, our study suggests that leptin influences E2-induced vtg synthesis in the rainbow trout Oncorhynchus mykiss by modifying both the protein and the lipid components.
Collapse
Affiliation(s)
- Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy.
| | - Elena Coccia
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100, Benevento, Italy
| |
Collapse
|
21
|
Effects of excess sugars and lipids on the growth and development of Caenorhabditis elegans. GENES AND NUTRITION 2020; 15:1. [PMID: 32015763 PMCID: PMC6988283 DOI: 10.1186/s12263-020-0659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Background Excessive intake of carbohydrates and fats causes over-nutrition, leading to a variety of diseases and complications. Here, we characterized the effects of different types of sugar and lipids on the growth and development of Caenorhabditis elegans. Methods We measured the lifespan, reproductive capacity, and length of nematodes after sugars and lipids treatment alone and co-treatment of sugars and lipids. Furthermore, we studied the mechanisms underlying the damage caused by high-sucrose and high-stearic acid on C.elegans by using transcriptome sequencing technology. Results The results showed that a certain concentration of sugar and lipid promoted the growth and development of nematodes. However, excessive sugars and lipids shortened the lifespan and length of nematodes and destroyed their reproductive capacity. Based on the results of the orthogonal test, we selected 400 mmol/L sucrose and 500 μg/mL stearic acid to model a high-sugar and high-lipid diet for C. elegans. Conclusion High-sugar and high-lipid intake altered the expression of genes involved in biofilm synthesis, genes that catalyze the synthesis and degradation of endogenous substances, and genes involved in innate immunity, resulting in physiological damage. Furthermore, we explored the protective effect of resveratrol on high-sugar and high-lipid damage to nematodes. Resveratrol plays a role in repairing by participating in the metabolism of foreign substances and reducing cellular oxidative stress.
Collapse
|
22
|
Lee S, Kim Y, Choi J. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109777. [PMID: 31670241 DOI: 10.1016/j.ecoenv.2019.109777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 05/19/2023]
Abstract
Microbial community of an organism plays an important role on its fitness, including stress responses. In this study, we investigated the effect of the culturable subset of soil microbial community (SMB) on the stress response of the soil nematode Caenorhabditis elegans, upon exposure to one of the major soil contaminants, cadmium (Cd). Life history traits and the stress responses to Cd exposure were compared between SMB- and Escherichia coli strain OP50-fed worms. SMB-fed worms showed higher reproduction rates and longer lifespans. Also, the SMB-fed worms showed more tolerant response to Cd exposure. Gene expression profiling suggested that the chemical stress and immune response of worms were boosted upon SMB feeding. Finally, we investigated C. elegans gut microbial communities in the presence and absence of Cd in OP50- and SMB-fed C. elegans. In the OP50-fed worms, changes in microbial community by Cd exposure was severe, whereas in the SMB-fed worms, it was comparatively weak. Our results suggest that the SMB affects the response of C. elegans to Cd exposure and highlight the importance of the gut microbiome in host stress response.
Collapse
Affiliation(s)
- Seungbaek Lee
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Youngho Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
23
|
Kamal M, Moshiri H, Magomedova L, Han D, Nguyen KCQ, Yeo M, Knox J, Bagg R, Won AM, Szlapa K, Yip CM, Cummins CL, Hall DH, Roy PJ. The marginal cells of the Caenorhabditis elegans pharynx scavenge cholesterol and other hydrophobic small molecules. Nat Commun 2019; 10:3938. [PMID: 31477732 PMCID: PMC6718421 DOI: 10.1038/s41467-019-11908-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
The nematode Caenorhabditis elegans is a bacterivore filter feeder. Through the contraction of the worm’s pharynx, a bacterial suspension is sucked into the pharynx’s lumen. Excess liquid is then shunted out of the buccal cavity through ancillary channels made by surrounding marginal cells. We find that many worm-bioactive small molecules (a.k.a. wactives) accumulate inside of the marginal cells as crystals or globular spheres. Through screens for mutants that resist the lethality associated with one crystallizing wactive we identify a presumptive sphingomyelin-synthesis pathway that is necessary for crystal and sphere accumulation. We find that expression of sphingomyelin synthase 5 (SMS-5) in the marginal cells is not only sufficient for wactive accumulation but is also important for absorbing exogenous cholesterol, without which C. elegans cannot develop. We conclude that sphingomyelin-rich marginal cells act as a sink to scavenge important nutrients from filtered liquid that might otherwise be shunted back into the environment. The C. elegans nematode worm is a filter-feeder and requires dietary sources of cholesterol. Here, the authors show that the C. elegans pharynx works as a filter to scavenge hydrophobic small molecules from its surrounding liquid environment.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Duhyun Han
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - May Yeo
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Jessica Knox
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Amy M Won
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Karolina Szlapa
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Christopher M Yip
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA
| | - Peter J Roy
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
24
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
25
|
Zečić A, Dhondt I, Braeckman BP. The nutritional requirements of Caenorhabditis elegans. GENES AND NUTRITION 2019; 14:15. [PMID: 31080524 PMCID: PMC6501307 DOI: 10.1186/s12263-019-0637-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Animals require sufficient intake of a variety of nutrients to support their development, somatic maintenance and reproduction. An adequate diet provides cell building blocks, chemical energy to drive cellular processes and essential nutrients that cannot be synthesised by the animal, or at least not in the required amounts. Dietary requirements of nematodes, including Caenorhabditis elegans have been extensively studied with the major aim to develop a chemically defined axenic medium that would support their growth and reproduction. At the same time, these studies helped elucidating important aspects of nutrition-related biochemistry and metabolism as well as the establishment of C. elegans as a powerful model in studying evolutionarily conserved pathways, and the influence of the diet on health.
Collapse
Affiliation(s)
- Aleksandra Zečić
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| | - Bart P Braeckman
- Department of Biology, Laboratory of Aging Physiology and Molecular Evolution, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Papsdorf K, Brunet A. Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends Cell Biol 2019; 29:97-116. [PMID: 30316636 PMCID: PMC6340780 DOI: 10.1016/j.tcb.2018.09.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
The lifespan of an organism is strongly influenced by environmental factors (including diet) and by internal factors (notably reproductive status). Lipid metabolism is critical for adaptation to external conditions or reproduction. Interestingly, specific lipid profiles are associated with longevity, and increased uptake of certain lipids extends longevity in Caenorhabditis elegans and ameliorates disease phenotypes in humans. How lipids impact longevity, and how lipid metabolism is regulated during aging, is just beginning to be unraveled. This review describes recent advances in the regulation and role of lipids in longevity, focusing on the interaction between lipid metabolism and chromatin states in aging and age-related diseases.
Collapse
Affiliation(s)
- Katharina Papsdorf
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Saegusa K, Sato M, Morooka N, Hara T, Sato K. SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. J Cell Biol 2018; 217:2073-2085. [PMID: 29643117 PMCID: PMC5987718 DOI: 10.1083/jcb.201708115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Lipoproteins regulate the overall lipid homeostasis in animals. However, the molecular mechanisms underlying lipoprotein trafficking remain poorly understood. Here, we show that SFT-4, a Caenorhabditis elegans homologue of the yeast Erv29p, is essential for the endoplasmic reticulum (ER) export of the yolk protein VIT-2, which is synthesized as a lipoprotein complex. SFT-4 loss strongly inhibits the ER exit of yolk proteins and certain soluble cargo proteins in intestinal cells. SFT-4 predominantly localizes at ER exit sites (ERES) and physically interacts with VIT-2 in vivo, which suggests that SFT-4 promotes the ER export of soluble proteins as a cargo receptor. Notably, Surf4, a mammalian SFT-4 homologue, physically interacts with apolipoprotein B, a very-low-density lipoprotein core protein, and its loss causes ER accumulation of apolipoprotein B in human hepatic HepG2 cells. Interestingly, loss of SFT-4 and Surf4 reduced the number of COPII-positive ERES. Thus, SFT-4 and Surf4 regulate the export of soluble proteins, including lipoproteins, from the ER and participate in ERES organization in animals.
Collapse
Affiliation(s)
- Keiko Saegusa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miyuki Sato
- Laboratory of Molecular Membrane Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Nobukatsu Morooka
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
28
|
Galles C, Prez GM, Penkov S, Boland S, Porta EOJ, Altabe SG, Labadie GR, Schmidt U, Knölker HJ, Kurzchalia TV, de Mendoza D. Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves. Sci Rep 2018; 8:6398. [PMID: 29686301 PMCID: PMC5913221 DOI: 10.1038/s41598-018-24925-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/11/2018] [Indexed: 12/17/2022] Open
Abstract
Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-β mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.
Collapse
Affiliation(s)
- Celina Galles
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Gastón M Prez
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Sider Penkov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Sebastian Boland
- Department of Genetics and Complex Diseases and Department of Cell Biology, Harvard T.H. Chan School of Public Health and Harvard Medical School, Boston, MA, 02115, USA
| | - Exequiel O J Porta
- Instituto de Química Rosario (IQUIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Silvia G Altabe
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario (IQUIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina
| | - Ulrike Schmidt
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden, Bergstr. 66, 01069, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Diego de Mendoza
- Laboratorio de Fisiología Microbiana, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Argentina.
| |
Collapse
|
29
|
Modzel M, Solanko KA, Szomek M, Hansen SK, Dupont A, Nåbo LJ, Kongsted J, Wüstner D. Live-cell imaging of new polyene sterols for improved analysis of intracellular cholesterol transport. J Microsc 2018. [PMID: 29516493 DOI: 10.1111/jmi.12691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of intracellular cholesterol transport by fluorescence microscopy requires suitable fluorescent analogues of cholesterol. Most existing cholesterol analogues contain lipophilic dyes which can compromise the sterol properties in membranes. An alternative strategy is to introduce additional double bonds into the sterol ring system resulting in intrinsic fluorescence, while at the same time keeping the cholesterol-like properties of the analogues. Existing polyene sterols, such as dehydroergosterol (DHE) or cholestatrienol (CTL), however, contain only three double bonds and suffer from low brightness, significant photobleaching and excitation/emission in the ultraviolet region. Thus, special equipment is required to image such sterols. Here, we describe synthesis, characterization and intracellular imaging of new polyene sterols containing four conjugated double bonds in the sterol ring system. We show that such analogues have red-shifted excitation and emission by ∼20 nm compared to DHE or CTL. The red shift was even more pronounced when preventing keto-enol tautomer equilibration by protecting the 3'-hydroxy group with acetate. We show that the latter analogue can be imaged on a conventional wide field microscope with a DAPI/filipin filter cube. The new polyene sterols show reduced photobleaching compared to DHE or CTL allowing for improved deconvolution microscopy of sterol containing cellular membranes.
Collapse
Affiliation(s)
- M Modzel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - K A Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - M Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - S K Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - A Dupont
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - L J Nåbo
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| | - J Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark
| | - D Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| |
Collapse
|
30
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
31
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
32
|
Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nat Chem Biol 2017; 13:647-654. [PMID: 28369040 DOI: 10.1038/nchembio.2347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/12/2017] [Indexed: 11/08/2022]
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-β mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-β, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.
Collapse
|
33
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
34
|
Seah NE, de Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J, Dillin A, Hansen M, Lapierre LR. Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 2016; 12:261-72. [PMID: 26671266 PMCID: PMC4836030 DOI: 10.1080/15548627.2015.1127464] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis.
Collapse
Affiliation(s)
- Nicole E Seah
- a Department of Molecular Biology , Cell Biology and Biochemistry, Brown University , Providence , RI , USA
| | - C Daniel de Magalhaes Filho
- b The Howard Hughes Medical Institute, The Glenn Center for Aging Research, The Salk Institute for Biological Studies , La Jolla , CA , USA.,c The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley , Berkeley , CA , USA
| | - Anna P Petrashen
- a Department of Molecular Biology , Cell Biology and Biochemistry, Brown University , Providence , RI , USA
| | - Hope R Henderson
- c The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley , Berkeley , CA , USA.,d Del E. Webb Neuroscience , Aging and Stem Cell Research Center, Program of Development and Aging, Sanford-Burnham Medical Research Institute , La Jolla , CA , USA
| | - Jade Laguer
- d Del E. Webb Neuroscience , Aging and Stem Cell Research Center, Program of Development and Aging, Sanford-Burnham Medical Research Institute , La Jolla , CA , USA
| | - Julissa Gonzalez
- d Del E. Webb Neuroscience , Aging and Stem Cell Research Center, Program of Development and Aging, Sanford-Burnham Medical Research Institute , La Jolla , CA , USA
| | - Andrew Dillin
- b The Howard Hughes Medical Institute, The Glenn Center for Aging Research, The Salk Institute for Biological Studies , La Jolla , CA , USA.,c The Howard Hughes Medical Institute, Molecular and Cell Biology Department, Li Ka Shing Center, University of California Berkeley , Berkeley , CA , USA
| | - Malene Hansen
- d Del E. Webb Neuroscience , Aging and Stem Cell Research Center, Program of Development and Aging, Sanford-Burnham Medical Research Institute , La Jolla , CA , USA
| | - Louis R Lapierre
- a Department of Molecular Biology , Cell Biology and Biochemistry, Brown University , Providence , RI , USA.,d Del E. Webb Neuroscience , Aging and Stem Cell Research Center, Program of Development and Aging, Sanford-Burnham Medical Research Institute , La Jolla , CA , USA
| |
Collapse
|
35
|
Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:812-829. [PMID: 26993577 DOI: 10.1016/j.bbalip.2016.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, Université Lyon 1, Villeurbanne 69621, France.
| |
Collapse
|
36
|
Rompay LV, Borghgraef C, Beets I, Caers J, Temmerman L. New genetic regulators question relevance of abundant yolk protein production in C. elegans. Sci Rep 2015; 5:16381. [PMID: 26553710 PMCID: PMC4639837 DOI: 10.1038/srep16381] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022] Open
Abstract
Vitellogenesis or maternal yolk formation is considered critical to the reproduction of egg-laying animals. In invertebrates, however, most of its regulatory genes are still unknown. Via a combined mapping and whole-genome sequencing strategy, we performed a forward genetic screen to isolate novel regulators of yolk production in the nematode model system Caenorhabditis elegans. In addition to isolating new alleles of rab-35, rab-10 and M04F3.2, we identified five mutant alleles corresponding to three novel regulatory genes potently suppressing the expression of a GFP-based yolk reporter. We confirmed that mutations in vrp-1, ceh-60 and lrp-2 disrupt endogenous yolk protein synthesis at the transcriptional and translational level. In contrast to current beliefs, our discovered set of mutants with strongly reduced yolk proteins did not show serious reproduction defects. This raises questions as to whether yolk proteins per se are needed for ultimate reproductive success.
Collapse
Affiliation(s)
- Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Charline Borghgraef
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| | - Liesbet Temmerman
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59 bus 2465, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Nåbo LJ, List NH, Witzke S, Wüstner D, Khandelia H, Kongsted J. Design of new fluorescent cholesterol and ergosterol analogs: Insights from theory. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2188-99. [DOI: 10.1016/j.bbamem.2015.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022]
|
38
|
Sánchez-Blanco A, Rodríguez-Matellán AG, Reis-Sobreiro M, Sáenz-Narciso B, Cabello J, Mohler WA, Mollinedo F. Caenorhabditis elegans as a platform to study the mechanism of action of synthetic antitumor lipids. Cell Cycle 2015; 13:3375-89. [PMID: 25485582 DOI: 10.4161/15384101.2014.952183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Drugs capable of specifically recognizing and killing cancer cells while sparing healthy cells are of great interest in anti-cancer therapy. An example of such a drug is edelfosine, the prototype molecule of a family of synthetic lipids collectively known as antitumor lipids (ATLs). A better understanding of the selectivity and the mechanism of action of these compounds would lead to better anticancer treatments. Using Caenorhabditis elegans, we modeled key features of the ATL selectivity against cancer cells. Edelfosine induced a selective and direct killing action on C. elegans embryos, which was dependent on cholesterol, without affecting adult worms and larvae. Distinct ATLs ranked differently in their embryonic lethal effect with edelfosine > perifosine > erucylphosphocholine >> miltefosine. Following a biased screening of 57 C. elegans mutants we found that inactivation of components of the insulin/IGF-1 signaling pathway led to resistance against the ATL edelfosine in both C. elegans and human tumor cells. This paper shows that C. elegans can be used as a rapid platform to facilitate ATL research and to further understand the mechanism of action of edelfosine and other synthetic ATLs.
Collapse
Affiliation(s)
- Adolfo Sánchez-Blanco
- a Instituto de Biología Molecular y Celular del Cáncer ; Centro de Investigación del Cáncer ; CSIC-Universidad de Salamanca ; Campus Miguel de Unamuno ; Salamanca , Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Hellinga JR, Garduño RA, Kormish JD, Tanner JR, Khan D, Buchko K, Jimenez C, Pinette MM, Brassinga AKC. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes. Microbiologyopen 2015; 4:660-81. [PMID: 26131925 PMCID: PMC4554460 DOI: 10.1002/mbo3.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Legionella pneumophila, a causative agent of Legionnaires’ disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila.
Collapse
Affiliation(s)
- Jacqueline R Hellinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5.,Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 1X5
| | - Jay D Kormish
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Jennifer R Tanner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Deirdre Khan
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Kristyn Buchko
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Celine Jimenez
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Mathieu M Pinette
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
| |
Collapse
|
40
|
Niksirat H, James P, Andersson L, Kouba A, Kozák P. Label-free protein quantification in freshly ejaculated versus post-mating spermatophores of the noble crayfish Astacus astacus. J Proteomics 2015; 123:70-7. [DOI: 10.1016/j.jprot.2015.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/25/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022]
|
41
|
Lee HJ, Zhang W, Zhang D, Yang Y, Liu B, Barker EL, Buhman KK, Slipchenko LV, Dai M, Cheng JX. Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. Sci Rep 2015; 5:7930. [PMID: 25608867 PMCID: PMC4302291 DOI: 10.1038/srep07930] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.
Collapse
Affiliation(s)
- Hyeon Jeong Lee
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Wandi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Delong Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yang Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Bin Liu
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
| | - Eric L. Barker
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Kimberly K. Buhman
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Mingji Dai
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Ji-Xin Cheng
- Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
42
|
Zhu H, Han M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu Rev Genet 2014; 48:119-48. [PMID: 25195508 DOI: 10.1146/annurev-genet-041814-095928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipids are more than biomolecules for energy storage and membrane structure. With ample structural variation, lipids critically participate in nearly all aspects of cellular function. Lipid homeostasis and metabolism are closely related to major human diseases and health problems. However, lipid functional studies have been significantly underdeveloped, partly because of the difficulty in applying genetics and common molecular approaches to tackle the complexity associated with lipid biosynthesis, metabolism, and function. In the past decade, a number of laboratories began to analyze the roles of lipid metabolism in development and other physiological functions using animal models and combining genetics, genomics, and biochemical approaches. These pioneering efforts have not only provided valuable insights regarding lipid functions in vivo but have also established feasible methodology for future studies. Here, we review a subset of these studies using Caenorhabditis elegans and Drosophila melanogaster.
Collapse
Affiliation(s)
- Huanhu Zhu
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309;
| | | |
Collapse
|
43
|
Wang L, Audhya A. In vivo imaging of C. elegans endocytosis. Methods 2014; 68:518-28. [PMID: 24704355 PMCID: PMC4112158 DOI: 10.1016/j.ymeth.2014.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022] Open
Abstract
Over the past decade, the early Caenorhabditis elegans embryo has proven to be a useful animal model to study a variety of membrane trafficking events, at least in part due to its large size, optical transparency, and ease of manipulation. Importantly, the stereotypic nature of membrane remodeling that occurs during early embryogenesis has enabled quantitative measurement of endocytic flux. In the absence of exogenous stimulation, resumption of the cell cycle triggered by fertilization is coupled to a dramatic redistribution of plasma membrane content. Numerous proteins are rapidly internalized via clathrin-mediated endocytosis, and the fate of these cargoes can be followed precisely using live imaging in utero. Key to these studies is the maintenance of animal health and their immobilization, which can become technically challenging during extended imaging sessions. Here we highlight recent advances in live imaging techniques that have facilitated the interrogation of endocytic transport in live animals. We focus on the use of transgenic C. elegans strains that stably express fluorescently-tagged proteins, including components of the endosomal system and cargo molecules that traverse this network of membranes. Our findings demonstrate the utility of the C. elegans embryo in defining regulatory mechanisms that control the numerous steps of endocytic trafficking.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
44
|
Fischer M, Fitzenberger E, Kull R, Boll M, Wenzel U. The zinc matrix metalloproteinase ZMP-2 increases survival of Caenorhabditis elegans through interference with lipoprotein absorption. GENES & NUTRITION 2014; 9:414. [PMID: 24957743 PMCID: PMC4169068 DOI: 10.1007/s12263-014-0414-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/17/2014] [Indexed: 12/27/2022]
Abstract
Matrix metalloproteinases are zinc-dependent endopeptidases conserved throughout the animal kingdom which primarily degrade components of the extracellular matrix. In the nematode Caenorhabditis elegans, the zinc matrix metalloproteinase (ZMP-2) was demonstrated to increase resistance versus heat and bacterial pathogens. Here, we show that the survival reducing activities caused by the knockdown of zmp-2 in C. elegans essentially requires the presence of vitellogenin-6, a protein homologous to mammalian apolipoprotein B, and RME-2, a receptor mediating endocytosis of cholesterol particles. Measurements of reactive oxygen species inside and outside C. elegans revealed that knockdown of zmp-2 causes a prooxidative extracellular mileu which is a prerequisite for the reduction of survival. Interestingly, RNAi for the foxo transcription factor daf-16 completely prevented those survival reducing effects of zmp-2 RNAi, and RNAi in mutants of the steroid signalling pathway revealed that DAF-16 acts by inhibition of DAF-9 and DAF-12. In conclusion, our study demonstrates survival reducing activities caused by the functional loss of ZMP-2 in C. elegans. Those effects are mediated by the transport of oxidized cholesterol adducts which then trigger the inhibition of DAF-9 and DAF-12 through the activation of DAF-16.
Collapse
Affiliation(s)
- Malaika Fischer
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Rebecca Kull
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Michael Boll
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Centre, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
45
|
Armstrong SD, Babayan SA, Lhermitte-Vallarino N, Gray N, Xia D, Martin C, Kumar S, Taylor DW, Blaxter ML, Wastling JM, Makepeace BL. Comparative analysis of the secretome from a model filarial nematode (Litomosoides sigmodontis) reveals maximal diversity in gravid female parasites. Mol Cell Proteomics 2014; 13:2527-44. [PMID: 24958169 DOI: 10.1074/mcp.m114.038539] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Filarial nematodes (superfamily Filarioidea) are responsible for an annual global health burden of ∼6.3 million disability-adjusted life-years, which represents the greatest single component of morbidity attributable to helminths affecting humans. No vaccine exists for the major filarial diseases, lymphatic filariasis and onchocerciasis; in part because research on protective immunity against filariae has been constrained by the inability of the human-parasitic species to complete their lifecycles in laboratory mice. However, the rodent filaria Litomosoides sigmodontis has become a popular experimental model, as BALB/c mice are fully permissive for its development and reproduction. Here, we provide a comprehensive analysis of excretory-secretory products from L. sigmodontis across five lifecycle stages and identifications of host proteins associated with first-stage larvae (microfilariae) in the blood. Applying intensity-based quantification, we determined the abundance of 302 unique excretory-secretory proteins, of which 64.6% were present in quantifiable amounts only from gravid adult female nematodes. This lifecycle stage, together with immature microfilariae, released four proteins that have not previously been evaluated as vaccine candidates: a predicted 28.5 kDa filaria-specific protein, a zonadhesin and SCO-spondin-like protein, a vitellogenin, and a protein containing six metridin-like ShK toxin domains. Female nematodes also released two proteins derived from the obligate Wolbachia symbiont. Notably, excretory-secretory products from all parasite stages contained several uncharacterized members of the transthyretin-like protein family. Furthermore, biotin labeling revealed that redox proteins and enzymes involved in purinergic signaling were enriched on the adult nematode cuticle. Comparison of the L. sigmodontis adult secretome with that of the human-infective filarial nematode Brugia malayi (reported previously in three independent published studies) identified differences that suggest a considerable underlying diversity of potential immunomodulators. The molecules identified in L. sigmodontis excretory-secretory products show promise not only for vaccination against filarial infections, but for the amelioration of allergy and autoimmune diseases.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Simon A Babayan
- §Centre for Immunity, Infection & Evolution and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | | | - Nick Gray
- §Centre for Immunity, Infection & Evolution and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Dong Xia
- From the ‡Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Coralie Martin
- ¶UMR 7245 MCAM CNRS, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Sujai Kumar
- §Centre for Immunity, Infection & Evolution and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - David W Taylor
- ‖Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- §Centre for Immunity, Infection & Evolution and Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK; **The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L Makepeace
- From the ‡Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
46
|
Haberkant P, Holthuis JCM. Fat & fabulous: bifunctional lipids in the spotlight. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1022-30. [PMID: 24440797 DOI: 10.1016/j.bbalip.2014.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 01/25/2023]
Abstract
Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Per Haberkant
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Joost C M Holthuis
- Molecular Cell Biology, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany.
| |
Collapse
|
47
|
Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 2013; 34:8352-60. [DOI: 10.1016/j.biomaterials.2013.07.043] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/11/2013] [Indexed: 02/07/2023]
|
48
|
Liu JL, Hekimi S. The impact of mitochondrial oxidative stress on bile acid-like molecules in C. elegans provides a new perspective on human metabolic diseases. WORM 2013; 2:e21457. [PMID: 24058856 PMCID: PMC3670457 DOI: 10.4161/worm.21457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/11/2012] [Indexed: 12/19/2022]
Abstract
C. elegans is a model used to study cholesterol metabolism and the functions of its metabolites. Several studies have reported that, in worms, cholesterol is not a structural component of the membrane as it is in vertebrates. However, as in other animals, it is used for the synthesis of steroid hormones that regulate physiological processes such as dauer formation, molting and defecation. After cholesterol is taken up by the gut, mechanisms of transport of cholesterol between tissues in C. elegans involve lipoproteins, as in mammals. A recent study shows that both cholesterol uptake and lipoprotein metabolism in C. elegans are regulated by molecules whose activities, biosynthesis, and secretion strongly resemble those of mammalian bile acids, which are metabolites of cholesterol that act on metabolism in a variety of ways. Importantly, it was found that oxidative stress upsets the regulation of the synthesis of these molecules. Given the known function of mammalian bile acids as metabolic regulators of lipid and glucose homeostasis, future investigations of the biology of C. elegans bile acid-like molecules could provide information on the etiology of human metabolic disorders that are characterized by elevated oxidative stress.
Collapse
Affiliation(s)
- Ju-Ling Liu
- Department of Biology; McGill University; Montreal, Québec, Canada
| | | |
Collapse
|
49
|
Zhang J, Hashmi S, Cheema F, Al-Nasser N, Bakheet R, Parhar RS, Al-Mohanna F, Gaugler R, Hussain MM, Hashmi S. Regulation of lipoprotein assembly, secretion and fatty acid β-oxidation by Krüppel-like transcription factor, klf-3. J Mol Biol 2013; 425:2641-55. [PMID: 23639358 DOI: 10.1016/j.jmb.2013.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/21/2013] [Indexed: 12/26/2022]
Abstract
Lipid metabolism is coordinately regulated through signaling networks that integrate biochemical pathways of fat assimilation, mobilization and utilization. Excessive diversion of fat for storage is a key risk factor for many fat-related human diseases. Dietary lipids are absorbed from the intestines and transported to various organs and tissues to provide energy and maintain lipid homeostasis. In humans, disparity between triglycerides (TG) synthesis and removal, via mitochondrial β-oxidation and VLDL (very low density lipoprotein) secretion, causes excessive TG accumulation in the liver. The mutation in Caenorhabditis elegans KLF-3 leads to high TG accumulation in the worm's intestine. Our previous data suggested that klf-3 regulates lipid metabolism by promoting fatty acid β-oxidation. Depletion of cholesterol in the diet has no effect on fat deposition in klf-3 (ok1975) mutants. Addition of vitamin D in the diet, however, increases fat levels in klf-3 worms. This suggests that excess vitamin D may be lowering the rate of fatty acid β-oxidation, with the eventual increase in fat accumulation. We also demonstrate that mutation in klf-3 reduces expression of C. elegans dsc-4 and/or vit genes, the orthologs of mammalian microsomal triglyceride transfer protein and apolipoprotein B, respectively. Both microsomal triglyceride transfer protein and apolipoprotein B are essential for mammalian lipoprotein assembly and transport, and mutation in both dsc-4 (qm182) and vit-5 (ok3239) results in high fat accumulation in worm intestine. Genetic interactions between klf-3 and dsc-4, as well as vit-5 genes, suggest that klf-3 may have an important role in regulating lipid assembly and secretion.
Collapse
Affiliation(s)
- Jun Zhang
- Developmental Biology, New York Blood Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cortes VA, Busso D, Mardones P, Maiz A, Arteaga A, Nervi F, Rigotti A. Retracted: Advances in the physiological and pathological implications of cholesterol. Biol Rev Camb Philos Soc 2013; 88:825-43. [DOI: 10.1111/brv.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Victor A. Cortes
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Dolores Busso
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Pablo Mardones
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Alberto Maiz
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Antonio Arteaga
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| | - Flavio Nervi
- Department of Gastroenterology; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - Attilio Rigotti
- Department of Nutrition Diabetes and Metabolism; School of Medicine; Faculty of Medicine; Pontificia Universidad Catolica de Chile; Marcoleta 367 Edifico de Gastroenterologia 4 piso Santiago Chile
| |
Collapse
|