1
|
Xu Y, Wang H, Li H, Wei C, Zhu Z, Zhao Y, Zhu J, Lei M, Sun Y, Yang Q. Nicotinamide Riboside Supplementation Alleviates Testicular Aging Induced by Disruption of Qprt-Dependent NAD + De Novo Synthesis in Mice. Aging Cell 2025:e70004. [PMID: 39902575 DOI: 10.1111/acel.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Recent studies have shown that disruptions in the nicotinamide adenine dinucleotide (NAD+) de novo synthesis pathway accelerate ovarian aging, yet its role in spermatogenesis remains largely unknown. In this study, we investigated the impact of the NAD+ de novo synthesis pathway on spermatogenesis by generating Qprt-deficient mice using CRISPR-Cas9 to target quinolinate phosphoribosyl transferase (Qprt), a key enzyme predominantly expressed in spermatocytes. Our results revealed that the deletion of Qprt did not affect NAD+ levels or spermatogenesis in the testes of 3-month-old mice. However, from 6 months of age onward, Qprt-deficient mice exhibited significantly reduced NAD+ levels in the testes compared to wild-type (WT) controls, along with a notable decrease in germ cell numbers and increased apoptosis. Additionally, these mice demonstrated mitochondrial dysfunction in spermatocytes, impaired progression through prophase I of meiosis, defective double-strand break (DSB) repair, and abnormal meiotic sex chromosome inactivation. Importantly, supplementation with the NAD+ precursor nicotinamide riboside (NR) in Qprt-deficient mice restored NAD+ levels and rescued the spermatogenic defects. These findings underscore the critical role of NAD+ de novo synthesis in maintaining NAD+ homeostasis and highlight its importance in meiotic recombination and meiotic sex chromosome inactivation in spermatogenesis.
Collapse
Affiliation(s)
- Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajia Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Kazi S, Castañeda JM, Savolainen A, Xu Y, Liu N, Qiao H, Ramirez‐Solis R, Nozawa K, Yu Z, Matzuk MM, Prunskaite‐Hyyryläinen R. MRNIP interacts with sex body chromatin to support meiotic progression, spermatogenesis, and male fertility in mice. FASEB J 2022; 36:e22479. [PMID: 35920200 PMCID: PMC9544956 DOI: 10.1096/fj.202101168rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Meiosis has a principal role in sexual reproduction to generate haploid gametes in both sexes. During meiosis, the cell nucleus hosts a dynamic environment where some genes are transcriptionally activated, and some are inactivated at the same time. This becomes possible through subnuclear compartmentalization. The sex body, sequestering X and Y chromosomes during male meiosis and creating an environment for the meiotic sex chromosome inactivation (MSCI) is one of the best known and studied subnuclear compartments. Herein, we show that MRNIP forms droplet-like accumulations that fuse together to create a distinct subnuclear compartment that partially overlaps with the sex body chromatin during diplotene. We demonstrate that Mrnip-/- spermatocytes have impaired DNA double-strand break (DSB) repair, they display reduced sex body formation and defective MSCI. We show that Mrnip-/- undergoes critical meiocyte loss at the diplotene stage. Furthermore, we determine that DNA DSBs (induced by SPO11) and synapsis initiation (facilitated by SYCP1) precede Mrnip expression in testes. Altogether, our findings indicate that in addition to an emerging role in DNA DSB repair, MRNIP has an essential function in spermatogenesis during meiosis I by forming drop-like accumulations interacting with the sex body.
Collapse
Affiliation(s)
- Samina Kazi
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | | | - Audrey Savolainen
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Yiding Xu
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Ning Liu
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Huanyu Qiao
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | | | - Kaori Nozawa
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Zhifeng Yu
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Center for Drug DiscoveryBaylor College of MedicineHoustonTexasUSA
| | - Martin M. Matzuk
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTexasUSA
- Center for Drug DiscoveryBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
3
|
Yu C, Diao R, Khan R, Deng C, Ma H, Chang Z, Jiang X, Shi Q. The Dispensable Roles of X-Linked Ubl4a and Its Autosomal Counterpart Ubl4b in Spermatogenesis Represent a New Evolutionary Type of X-Derived Retrogenes. Front Genet 2021; 12:689902. [PMID: 34249105 PMCID: PMC8267814 DOI: 10.3389/fgene.2021.689902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
X-derived retrogenes contribute to genetic diversity in evolution and are usually specifically expressed in testis and perform important functions during spermatogenesis. Ubl4b is an autosomal retrogene with testis-specific expression derived from Ubl4a, an X-linked housekeeping gene. In the current study, we performed phylogenetic analysis and revealed that Ubl4a and Ubl4b are subject to purifying selection and may have conserved functions in evolution. Ubl4b was knocked out in mice using CRISPR/Cas9 genome editing technology and interestingly, we found no alterations in reproductive parameters of Ubl4b-/- male mice. To get insights into whether Ubl4a could compensate the absence of Ubl4b in vivo, we further obtained Ubl4a-/Y; Ubl4b-/- mice that lack both Ubl4a and Ubl4b, and the double knockout (dKO) mice also displayed normal spermatogenesis, showing that Ubl4a and Ubl4b are both dispensable for spermatogenesis. Thus, through the in vivo study of UBL4A and UBL4B, we provided a direct evidence for the first time that some X chromosome-derived autosomal retrogenes can be unfunctional in spermatogenesis, which represents an additional evolutionary type of X-derived retrogenes.
Collapse
Affiliation(s)
- Changping Yu
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Runjie Diao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ranjha Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Hui Ma
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, National Engineering Laboratory for Anti-tumor Therapeutics, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohua Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Bose R, Sheng K, Moawad AR, Manku G, O'Flaherty C, Taketo T, Culty M, Fok KL, Wing SS. Ubiquitin Ligase Huwe1 Modulates Spermatogenesis by Regulating Spermatogonial Differentiation and Entry into Meiosis. Sci Rep 2017; 7:17759. [PMID: 29259204 PMCID: PMC5736635 DOI: 10.1038/s41598-017-17902-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 12/02/2022] Open
Abstract
Spermatogenesis consists of a series of highly regulated processes that include mitotic proliferation, meiosis and cellular remodeling. Although alterations in gene expression are well known to modulate spermatogenesis, posttranscriptional mechanisms are less well defined. The ubiquitin proteasome system plays a significant role in protein turnover and may be involved in these posttranscriptional mechanisms. We previously identified ubiquitin ligase Huwe1 in the testis and showed that it can ubiquitinate histones. Since modulation of histones is important at many steps in spermatogenesis, we performed a complete characterization of the functions of Huwe1 in this process by examining the effects of its inactivation in the differentiating spermatogonia, spermatocytes and spermatids. Inactivation of Huwe1 in differentiating spermatogonia led to their depletion and formation of fewer pre-leptotene spermatocytes. The cell degeneration was associated with an accumulation of DNA damage response protein γH2AX, impaired downstream signalling and apoptosis. Inactivation of Huwe1 in spermatocytes indicated that Huwe1 is not essential for meiosis and spermiogenesis, but can result in accumulation of γH2AX. Collectively, these results provide a comprehensive survey of the functions of Huwe1 in spermatogenesis and reveal Huwe1’s critical role as a modulator of the DNA damage response pathway in the earliest steps of spermatogonial differentiation.
Collapse
Affiliation(s)
- Rohini Bose
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Kai Sheng
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Adel R Moawad
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Surgery, McGill University, Montréal, Québec, Canada.,Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gurpreet Manku
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Cristian O'Flaherty
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Surgery, McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Surgery, McGill University, Montréal, Québec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada.,Department of Biology, McGill University, Montréal, Québec, Canada
| | - Martine Culty
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Dept. of Pharmacology, University of Southern California, Los Angeles, California, USA
| | - Kin Lam Fok
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Epithelial Cell Biology Research Center, School of Biomedical Sciences, The Faculty of Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong - Shenzhen, Shenzhen, China
| | - Simon S Wing
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Matveevsky S, Bakloushinskaya I, Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci Rep 2016; 6:29949. [PMID: 27425629 PMCID: PMC4947958 DOI: 10.1038/srep29949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023] Open
Abstract
Most mammalian species have heteromorphic sex chromosomes in males, except for a few enigmatic groups such as the mole voles Ellobius, which do not have the Y chromosome and Sry gene. The Ellobius (XX ♀♂) system of sex chromosomes has no analogues among other animals. The structure and meiotic behaviour of the two X chromosomes were investigated for males of the sibling species Ellobius talpinus and Ellobius tancrei. Their sex chromosomes, despite their identical G-structure, demonstrate short synaptic fragments and crossover-associated MLH1 foci in both telomeric regions only. The chromatin undergoes modifications in the meiotic sex chromosomes. SUMO-1 marks a small nucleolus-like body of the meiotic XX. ATR and ubiH2A are localized in the asynaptic area and the histone γH2AFX covers the entire XX bivalent. The distribution of some markers of chromatin inactivation differentiates sex chromosomes of mole voles from those of other mammals. Sex chromosomes of both studied species have identical recombination and meiotic inactivation patterns. In Ellobius, similar chromosome morphology masks the functional heteromorphism of the male sex chromosomes, which can be seen at meiosis.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Cytogenetics Laboratory, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Irina Bakloushinskaya
- Evolutionary and Developmental Genetics Laboratory, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oxana Kolomiets
- Cytogenetics Laboratory, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
6
|
Hernández-Hernández A, Lilienthal I, Fukuda N, Galjart N, Höög C. CTCF contributes in a critical way to spermatogenesis and male fertility. Sci Rep 2016; 6:28355. [PMID: 27345455 PMCID: PMC4921845 DOI: 10.1038/srep28355] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 11/21/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is an architectural protein that governs chromatin organization and gene expression in somatic cells. Here, we show that CTCF regulates chromatin compaction necessary for packaging of the paternal genome into mature sperm. Inactivation of Ctcf in male germ cells in mice (Ctcf-cKO mice) resulted in impaired spermiogenesis and infertility. Residual spermatozoa in Ctcf-cKO mice displayed abnormal head morphology, aberrant chromatin compaction, impaired protamine 1 incorporation into chromatin and accelerated histone depletion. Thus, CTCF regulates chromatin organization during spermiogenesis, contributing to the functional organization of mature sperm.
Collapse
Affiliation(s)
| | - Ingrid Lilienthal
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Nanaho Fukuda
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 2040 CA Rotterdam, The Netherlands
| | - Christer Höög
- Karolinska Institutet, Department of Cell and Molecular Biology, Berzelius väg 35, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
de Vries M, Vosters S, Merkx G, D'Hauwers K, Wansink DG, Ramos L, de Boer P. Human male meiotic sex chromosome inactivation. PLoS One 2012; 7:e31485. [PMID: 22355370 PMCID: PMC3280304 DOI: 10.1371/journal.pone.0031485] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 01/09/2012] [Indexed: 11/30/2022] Open
Abstract
In mammalian male gametogenesis the sex chromosomes are distinctive in both gene activity and epigenetic strategy. At first meiotic prophase the heteromorphic X and Y chromosomes are placed in a separate chromatin domain called the XY body. In this process, X,Y chromatin becomes highly phosphorylated at S139 of H2AX leading to the repression of gonosomal genes, a process known as meiotic sex chromosome inactivation (MSCI), which has been studied best in mice. Post-meiotically this repression is largely maintained. Disturbance of MSCI in mice leads to harmful X,Y gene expression, eventuating in spermatocyte death and sperm heterogeneity. Sperm heterogeneity is a characteristic of the human male. For this reason we were interested in the efficiency of MSCI in human primary spermatocytes. We investigated MSCI in pachytene spermatocytes of seven probands: four infertile men and three fertile controls, using direct and indirect in situ methods. A considerable degree of variation in the degree of MSCI was detected, both between and within probands. Moreover, in post-meiotic stages this variation was observed as well, indicating survival of spermatocytes with incompletely inactivated sex chromosomes. Furthermore, we investigated the presence of H3K9me3 posttranslational modifications on the X and Y chromatin. Contrary to constitutive centromeric heterochromatin, this heterochromatin marker did not specifically accumulate on the XY body, with the exception of the heterochromatic part of the Y chromosome. This may reflect the lower degree of MSCI in man compared to mouse. These results point at relaxation of MSCI, which can be explained by genetic changes in sex chromosome composition during evolution and candidates as a mechanism behind human sperm heterogeneity.
Collapse
Affiliation(s)
- Marieke de Vries
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sanne Vosters
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gerard Merkx
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kathleen D'Hauwers
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Derick G. Wansink
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Liliana Ramos
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter de Boer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Gallach M, Domingues S, Betrán E. Gene duplication and the genome distribution of sex-biased genes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:989438. [PMID: 21904687 PMCID: PMC3167187 DOI: 10.4061/2011/989438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/26/2011] [Accepted: 06/05/2011] [Indexed: 12/04/2022]
Abstract
In species that have two sexes, a single genome encodes two morphs, as each sex can be thought of as a distinct morph. This means that the same set of genes are differentially expressed in the different sexes. Many questions emanate from this statement. What proportion of genes contributes to sexual dimorphism? How do they contribute to sexual dimorphism? How is sex-biased expression achieved? Which sex and what tissues contribute the most to sex-biased expression? Do sex-biased genes have the same evolutionary patterns as nonbiased genes? We review the current data on sex-biased expression in species with heteromorphic sex chromosomes and comment on the most important hypotheses suggested to explain the origin, evolution, and distribution patterns of sex-biased genes. In this perspective we emphasize how gene duplication serves as an important molecular mechanism to resolve genomic clashes and genetic conflicts by generating sex-biased genes, often sex-specific genes, and contributes greatly to the underlying genetic basis of sexual dimorphism.
Collapse
Affiliation(s)
- Miguel Gallach
- Department of Biology, University of Texas at Arlington, P.O. Box 19498, Arlington, TX 76019, USA
| | | | | |
Collapse
|
9
|
Baumann C, Daly CM, McDonnell SM, Viveiros MM, De La Fuente R. Chromatin configuration and epigenetic landscape at the sex chromosome bivalent during equine spermatogenesis. Chromosoma 2011; 120:227-44. [PMID: 21274552 PMCID: PMC3100478 DOI: 10.1007/s00412-010-0306-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 12/03/2010] [Accepted: 12/16/2010] [Indexed: 11/24/2022]
Abstract
Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, New Bolton Center, Kennett Square, PA 19348, USA
| | | | | | | | | |
Collapse
|
10
|
Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 2010; 18:371-84. [PMID: 20153262 DOI: 10.1016/j.devcel.2010.01.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/25/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.
Collapse
Affiliation(s)
- Lin-Yu Lu
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 1520, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
11
|
Noguchi J, Ozawa M, Nakai M, Somfai T, Kikuchi K, Kaneko H, Kunieda T. Affected homologous chromosome pairing and phosphorylation of testis specific histone, H2AX, in male meiosis under FKBP6 deficiency. J Reprod Dev 2008; 54:203-7. [PMID: 18408354 DOI: 10.1262/jrd.19158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene for FK506 binding protein 6 (Fkbp6) expresses during a specific stage of male and female meiosis. Disruption of the gene influences male reproduction, i.e. arrests spermatogenesis, but not female reproduction. Using the mouse model (targeted disruption), the role of the gene in homologous chromosome pairing has been demonstrated in a previous study. For further understanding the function of Fkbp6 in chromosome synapsis, we evaluated chromosome pairings during male meiosis in the as/as rat, a spontaneous null mutation, and compared them with those of the mouse model. Electron microscopy of the pachytene nuclei unveiled several types of abnormal chromosome pairing in the rat model, as shown in the mouse previously. The frequencies of aberrant pairings in the knockout mice and mutant rats were 42 of 67 nuclei (62.7%) and 20 out of 74 nuclei (27.0%), respectively. In order to clarify the mechanism of male specific infertility in Fkbp6 deficiency, the localization of gammaH2AX, a marker protein of XY chromosome inactivation during male meiosis, was examined. Immunostaining of gammaH2AX unveiled normal localization of the molecule to XY chromosomes (XY body) in both models, showing the independency of FKBP6 in sex chromosome inactivation. Besides the XY body, focal localization of gammaH2AX was observed in accordance with the unsynapsed chromosomes in both types of null animal. These results indicate the fundamental role of Fkbp6 in homologous chromosome synapsis during male meiosis. In conclusion, male specific infertility under Fkbp6 deficiency remains unsolved.
Collapse
Affiliation(s)
- Junko Noguchi
- Reproductive Biology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Dantzer F, Mark M, Quenet D, Scherthan H, Huber A, Liebe B, Monaco L, Chicheportiche A, Sassone-Corsi P, de Murcia G, Ménissier-de Murcia J. Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci U S A 2006; 103:14854-9. [PMID: 17001008 PMCID: PMC1595440 DOI: 10.1073/pnas.0604252103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Besides the established central role of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in the maintenance of genomic integrity, accumulating evidence indicates that poly(ADP-ribosyl)ation may modulate epigenetic modifications under physiological conditions. Here, we provide in vivo evidence for the pleiotropic involvement of Parp-2 in both meiotic and postmeiotic processes. We show that Parp-2-deficient mice exhibit severely impaired spermatogenesis, with a defect in prophase of meiosis I characterized by massive apoptosis at pachytene and metaphase I stages. Although Parp-2(-/-) spermatocytes exhibit normal telomere dynamics and normal chromosome synapsis, they display defective meiotic sex chromosome inactivation associated with derailed regulation of histone acetylation and methylation and up-regulated X- and Y-linked gene expression. Furthermore, a drastically reduced number of crossover-associated Mlh1 foci are associated with chromosome missegregation at metaphase I. Moreover, Parp-2(-/-) spermatids are severely compromised in differentiation and exhibit a marked delay in nuclear elongation. Altogether, our findings indicate that, in addition to its well known role in DNA repair, Parp-2 exerts essential functions during meiosis I and haploid gamete differentiation.
Collapse
Affiliation(s)
- Françoise Dantzer
- Intégrité du Génome, Unité Mixte de Recherche 7175, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bishop CL, Ramalho M, Nadkarni N, May Kong W, Higgins CF, Krauzewicz N. Role for centromeric heterochromatin and PML nuclear bodies in the cellular response to foreign DNA. Mol Cell Biol 2006; 26:2583-94. [PMID: 16537904 PMCID: PMC1430340 DOI: 10.1128/mcb.26.7.2583-2594.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear spatial positioning plays an important role in the epigenetic regulation of eukaryotic gene expression. Here we show a role for nuclear spatial positioning in regulating episomal transgenes that are delivered by virus-like particles (VLPs). VLPs mediate the delivery of plasmid DNA (pDNA) to cell nuclei but lack viral factors involved in initiating and regulating transcription. By tracking single fluorescently labeled VLPs, coupled with luciferase reporter gene assays, we found that VLPs transported pDNA to cell nuclei efficiently but transgenes were immediately silenced by the cell. An investigation of the nuclear location of fluorescent VLPs revealed that the pDNAs were positioned next to centromeric heterochromatin. The activation of transcription by providing viral factors or inhibiting histone deacetylase activity resulted in the localization to euchromatin regions. Further, the activation of transcription induced the recruitment of PML nuclear bodies (PML-NBs) to the VLPs. This association did not play a role in regulating transgene expression, but PML protein was necessary for the inhibition of transgene expression with alpha interferon (IFN-alpha). These results support a model whereby cells can prevent foreign gene expression at two levels: by positioning transgenes next to centromeric heterochromatin or, if that is overcome, via the type I IFN response facilitated by PML-NB recruitment.
Collapse
Affiliation(s)
- Cleo L Bishop
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Wang PJ, Page DC, McCarrey JR. Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Hum Mol Genet 2005; 14:2911-8. [PMID: 16118233 PMCID: PMC1994333 DOI: 10.1093/hmg/ddi322] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have examined expression during spermatogenesis in the mouse of three Y-linked genes, 11 X-linked genes and 22 autosomal genes, all previously shown to be germ-cell-specific and expressed in premeiotic spermatogonia, plus another 21 germ-cell-specific autosomal genes that initiate expression in meiotic spermatocytes. Our data demonstrate that, like sex-linked housekeeping genes, germ-cell-specific sex-linked genes are subject to meiotic sex-chromosome inactivation (MSCI). Although all the sex-linked genes we investigated underwent MSCI, 14 of the 22 autosomal genes expressed in spermatogonia showed no decrease in expression in meiotic spermatocytes. This along with our observation that an additional 21 germ-cell-specific autosomal genes initiate or significantly up-regulate expression in spermatocytes confirms that MSCI is indeed a sex-chromosome-specific effect. Our results further demonstrate that the chromosome-wide repression imposed by MSCI is limited to meiotic spermatocytes and that postmeiotic expression of sex-linked genes is variable. Thus, 13 of the 14 sex-linked genes we examined showed some degree of postmeiotic reactivation. The extent of postmeiotic reactivation of germ-cell-specific X-linked genes did not correlate with proximity to the X inactivation center or the Xist gene locus. The implications of these findings are discussed with respect to differential gene regulation and the function of MSCI during spermatogenesis, including epigenetic programming of the future paternal genome during spermatogenesis.
Collapse
Affiliation(s)
- P Jeremy Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA
| | | | | |
Collapse
|
15
|
Escalier D, Garchon HJ. XMR, a dual location protein in the XY pair and in its associated nucleolus in mouse spermatocytes. Mol Reprod Dev 2005; 72:105-12. [PMID: 15818601 DOI: 10.1002/mrd.20268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Xlr and Xmr are sex-specific genes which are expressed during the meiotic prophase I in the mouse. In spermatocytes, XMR concentrates on the asynapsed regions of the XY chromosomes, suggesting that XMR plays a role in sex chromosome condensation and silencing. The present study shows that in the mouse, XMR also concentrates in the nucleolus which is closely associated with the XY chromosome pair. In this species, the formation of a large fibrillo-granular nucleolus signals the activation of the ribosomal genes, but release of pre-ribosomal particles is inhibited. Using laser confocal microscopy we characterized the distribution of XMR in the XY body relative to the XY chromatin and the nucleolus. Immunoelectron microscopy showed that XMR concentrates in the fibrillo-granular component and the granular component (GC) of the nucleolus. In (T[X;16]16H) mouse spermatocytes, the nucleolus displays little or no activity and does not associate with the XY pair. XMR concentrated only on the XY chromosomes in (T[X;16]16H) mouse spermatocytes. These data suggest that XMR could play a role both in the XY pair and the nucleolus associated to the sex chromosomes.
Collapse
Affiliation(s)
- Denise Escalier
- Laboratoire d'Histologie Fonctionnelle et Moléculaire, Université Paris 5, Paris, France.
| | | |
Collapse
|
16
|
Jarvis S, Elliott DJ, Morgan D, Winston R, Readhead C. Molecular markers for the assessment of postnatal male germ cell development in the mouse. Hum Reprod 2005; 20:108-16. [PMID: 15539445 DOI: 10.1093/humrep/deh565] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A proliferation marker, proliferating cell nuclear antigen (PCNA), a Sertoli cell specific transcription factor, GATA-1 and the male germ cell specific, RNA binding motif (RBM), were used to identify different cellular populations during postnatal development of the mouse testis. METHODS Immunohistochemistry, RT-PCR and real-time quantitative RT-PCR (QRT-PCR) were used. RESULTS PCNA was expressed in pre-Sertoli and germ cells on the day of birth. Both pre-meiotic germ cells and spermatocytes expressed RBM throughout postnatal development. RBM-positive cell counts and QRT-PCR of RBM showed that average level of RBM per cell is highest in juvenile males between 14 and 21 days. From 42 days onward, there was a dramatic decrease in RBM expression in individual pre-meiotic and meiotic germ cells. CONCLUSIONS These markers were used to correlate cell proliferative capability, gene expression profile and anatomic location within the developing mouse testis. The majority of germ cells start active proliferation once they have migrated to the basement membrane or immediately before. RBM is more highly expressed during the first wave of spermatogenesis versus subsequent waves, suggesting that there may be a change in the activity of RBM.
Collapse
Affiliation(s)
- Sheba Jarvis
- Institute of Reproductive and Developmental Biology, Imperial College Faculty of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | | | | | |
Collapse
|
17
|
van der Laan R, Uringa EJ, Wassenaar E, Hoogerbrugge JW, Sleddens E, Odijk H, Roest HP, de Boer P, Hoeijmakers JHJ, Grootegoed JA, Baarends WM. Ubiquitin ligase Rad18Sc localizes to the XY body and to other chromosomal regions that are unpaired and transcriptionally silenced during male meiotic prophase. J Cell Sci 2004; 117:5023-33. [PMID: 15383616 DOI: 10.1242/jcs.01368] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In replicative damage bypass (RDB) in yeast, the ubiquitinconjugating enzyme RAD6 interacts with the ubiquitin ligase RAD18. In the mouse, these enzymes are represented by two homologs of RAD6, HR6a and HR6b, and one homolog of RAD18, Rad18Sc. Expression of these genes and the encoded proteins is ubiquitous, but there is relatively high expression in the testis. We have studied the subcellular localization by immunostaining Rad18Sc and other RDB proteins in mouse primary spermatocytes passing through meiotic prophase in spermatogenesis. The highest Rad18Sc protein level is found at pachytene and diplotene, and the protein localizes mainly to the XY body, a subnuclear region that contains the transcriptionally inactivated X and Y chromosomes. In spermatocytes that carry translocations for chromosomes 1 and 13, Rad18Sc protein concentrates on translocation bivalents that are not fully synapsed. The partly synapsed bivalents are often localized in the vicinity of the XY body, and show a very low level of RNA polymerase II, indicating that the chromatin is in a silent configuration similar to transcriptional silencing of the XY body. Thus, Rad18Sc localizes to unsynapsed and silenced chromosome segments during the male meiotic prophase. All known functions of RAD18 in yeast are related to RDB. However, in contrast to Rad18Sc, expression of UBC13 and polη, known to be involved in subsequent steps of RDB, appears to be diminished in the XY body and regions containing the unpaired translocation bivalents. Taken together, these observations suggest that the observed subnuclear localization of Rad18Sc may involve a function outside the context of RDB. This function is probably related to a mechanism that signals the presence of unsynapsed chromosomal regions and subsequently leads to transcriptional silencing of these regions during male meiotic prophase.
Collapse
Affiliation(s)
- Roald van der Laan
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rohozinski J, Bishop CE. The mouse juvenile spermatogonial depletion (jsd) phenotype is due to a mutation in the X-derived retrogene, mUtp14b. Proc Natl Acad Sci U S A 2004; 101:11695-700. [PMID: 15289605 PMCID: PMC511039 DOI: 10.1073/pnas.0401130101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recessive juvenile spermatogonial depletion (jsd) mutation results in a single wave of spermatogenesis, followed by failure of type A spermatogonia to differentiate, resulting in adult male sterility. We have identified a jsd-specific rearrangement in the mouse homologue of the Saccharomyces cerevisiae gene UTP14, termed mUtp14b. Confirmation that mUtp14b underlies the jsd phenotype was obtained by transgenic bacterial artificial chromosome (BAC) rescue. We also identified a homologous gene on the Mus musculus X chromosome (MMUX) (mUtp14a) that is the strict homologue of the yeast gene, from which the intronless mUtp14b has been derived by retrotransposition. Expression analysis showed that mUtp14b is predominantly expressed in the germ line of the testis from zygotene through round spermatids, whereas mUtp14a, although well expressed in all somatic tissues, could be detected only in the germ line in round spermatids. In yeast, depletion of the UTP proteins impedes production of 18S rRNA, leading to cell death. We propose that the retroposed autosomal copy mUtp14b, having acquired a testis-specific expression pattern, could have provided a mechanism for increasing the efficiency and/or numbers of germ cells produced by meeting the need for more 18S rRNA and protein. Such a mechanism would be of obvious reproductive advantage and be strongly selected for in evolution. Consistent with this hypothesis is the finding of a similar X-autosome retroposition of UTP14 in human which seems to have arisen independently of that in rodents. In jsd homozygotes, which lack a functional copy of Utp14b, insufficient production of rRNA quickly leads to a cessation of spermatogenesis.
Collapse
Affiliation(s)
- Jan Rohozinski
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Bradley J, Baltus A, Skaletsky H, Royce-Tolland M, Dewar K, Page DC. An X-to-autosome retrogene is required for spermatogenesis in mice. Nat Genet 2004; 36:872-6. [PMID: 15258580 DOI: 10.1038/ng1390] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 06/03/2004] [Indexed: 11/09/2022]
Abstract
We identified the gene carrying the juvenile spermatogonial depletion mutation (jsd), a recessive spermatogenic defect mapped to mouse chromosome 1 (refs. 1,2). We localized jsd to a 272-kb region and resequenced this area to identify the underlying mutation: a frameshift that severely truncates the predicted protein product of a 2.3-kb genomic open reading frame. This gene, Utp14b, evidently arose through reverse transcription of an mRNA from an X-linked gene and integration of the resulting cDNA into an intron of an autosomal gene, whose promoter and 5' untranslated exons are shared with Utp14b. To our knowledge, Utp14b is the first protein-coding retrogene to be linked to a recessive mammalian phenotype. The X-linked progenitor of Utp14b is the mammalian ortholog of yeast Utp14, which encodes a protein required for processing of pre-rRNA and hence for ribosome assembly. Our findings substantiate the hypothesis that mammalian spermatogenesis is supported by autosomal retrogenes that evolved from X-linked housekeeping genes to compensate for silencing of the X chromosome during male meiosis. We find that Utp14b-like retrogenes arose independently and were conserved during evolution in at least four mammalian lineages. This recurrence implies a strong selective pressure, perhaps to enable ribosome assembly in male meiotic cells.
Collapse
Affiliation(s)
- Julie Bradley
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Retrogenes originate from their progenitor genes by retroposition. Several retrogenes reported in recent studies are autosomal, originating from X-linked progenitor genes, and have evolved a testis-specific expression pattern. During male meiosis, sex chromosomes are segregated into a so-called 'XY' body and are silenced transcriptionally. It has been widely hypothesized that the silencing of the X chromosome during male meiosis is the driving force behind the retroposition of X-linked genes to autosomes during evolution. With the advent of sequenced genomes of many species, many retrogenes can be identified and characterized. The testis-specific retrogenes might be associated with human male infertility. My goal here is to integrate recent findings, highlight controversies in the field and identify areas for further study.
Collapse
Affiliation(s)
- P Jeremy Wang
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Ausió J, Abbott D. The role of histone variability in chromatin stability and folding. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
22
|
Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet 2003; 4:865-75. [PMID: 14634634 DOI: 10.1038/nrg1204] [Citation(s) in RCA: 670] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA.
| | | | | | | |
Collapse
|
23
|
Maymon BBS, Paz G, Elliott DJ, Lifschitz-Mercer B, Yogev L, Kleiman SE, Botchan A, Hauser R, Schreiber L, Yavetz H. Localization of the germ cell-specific protein, hnRNP G-T, in testicular biopsies of azoospermic men. Acta Histochem 2003; 104:255-61. [PMID: 12389739 DOI: 10.1078/0065-1281-00657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The increasing interest in the application of in vitro fertilization techniques in human reproduction has led to a wide use of testicular biopsies to identify the presence of spermatogenic foci in testes of azoospermic men. Histopathologic evaluation of these testicular biopsies is required to determine the spermatogenic state with respect to fertility potential and to rule out preinvasive testicular lesions. Heterogeneous nuclear ribonucleoprotein G-T (hnRNP G-T) is a germ cell-specific protein expressed most prominently during meiosis. We studied the usefulness of hnRNP G-T antibody in the evaluation of these biopsies and reasoned that its germ cell-restricted expression pattern might provide a marker to improve accuracy of diagnosis. Testicular biopsies with various spermatogenic impairments were evaluated immunohistochemically for hnRNP G-T expression. In biopsies exhibiting normal spermatogenesis (obstructive azoospermia), hnRNP G-T was localized in meiotic pachytene spermatocytes and round spermatids. Immunostaining was barely detected when maturation was arrested at the spermatocyte level and not at all in cases of Sertoli cell-only syndrome. Biopsies with a mixed histologic phenotype and minute concentrations of spermatogenesis demonstrated strong immunostaining only in tubules with full spermatogenesis. This distribution pattern of hnRNP G-T enabled instant identification of spermatogenic foci. Thus, exploitation of the hnRNP G-T marker, which is expressed preferentially as meiosis proceeds, enhances sensitivity and accuracy of diagnosis in the histologic evaluation of testicular biopsies.
Collapse
|
24
|
Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 2003; 4:497-508. [PMID: 12689589 DOI: 10.1016/s1534-5807(03)00093-5] [Citation(s) in RCA: 460] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During meiotic prophase in male mammals, the X and Y chromosomes condense to form a macrochromatin body, termed the sex, or XY, body, within which X- and Y-linked genes are transcriptionally repressed. The molecular basis and biological function of both sex body formation and meiotic sex chromosome inactivation (MSCI) are unknown. A phosphorylated form of H2AX, a histone H2A variant implicated in DNA repair, accumulates in the sex body in a manner independent of meiotic recombination-associated double-strand breaks. Here we show that the X and Y chromosomes of histone H2AX-deficient spermatocytes fail to condense to form a sex body, do not initiate MSCI, and exhibit severe defects in meiotic pairing. Moreover, other sex body proteins, including macroH2A1.2 and XMR, do not preferentially localize with the sex chromosomes in the absence of H2AX. Thus, H2AX is required for the chromatin remodeling and associated silencing in male meiosis.
Collapse
Affiliation(s)
- Oscar Fernandez-Capetillo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Turner JMA, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, Burgoyne PS. Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 2002; 115:4097-105. [PMID: 12356914 DOI: 10.1242/jcs.00111] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X chromosome inactivation occurs twice during the life cycle of placental mammals. In normal females, one X chromosome in each cell is inactivated early in embryogenesis, while in the male, the X chromosome is inactivated together with the Y chromosome in spermatogenic cells shortly before or during early meiotic prophase. Inactivation of one X chromosome in somatic cells of females serves to equalise X-linked gene dosage between males and females, but the role of male meiotic sex chromosome inactivation (MSCI) is unknown. The inactive X-chromosome of somatic cells and male meiotic cells share similar properties such as late replication and enrichment for histone macroH2A1.2, suggesting a common mechanism of inactivation. This possibility is supported by the fact that Xist RNA that mediates somatic X-inactivation is expressed in the testis of male mice and humans. In the present study we show that both Xist RNA and Tsix RNA, an antisense RNA that controls Xist function in the soma, are expressed in the testis in a germ-cell-dependent manner. However, our finding that MSCI and sex-body formation are unaltered in mice with targeted mutations of Xist that prevent somatic X inactivation suggests that somatic X-inactivation and MSCI occur by fundamentally different mechanisms.
Collapse
Affiliation(s)
- James M A Turner
- Division of Developmental Genetics, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
López-Fernández LA, Párraga M, del Mazo J. Ilf2 is regulated during meiosis and associated to transcriptionally active chromatin. Mech Dev 2002; 111:153-7. [PMID: 11804788 DOI: 10.1016/s0925-4773(01)00612-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Analysis of gene expression during testis development demonstrated accumulation of Ilf2 mRNA in pachytene spermatocytes. In these cells, the protein was localized in the nucleus, but it was absent from chromatin of the XY pachytene bivalent, in which there is no transcriptional activity. Nucleolar signal is inmmunolocalized in spermatogonia, Sertoli cells and oocytes. By in situ hybridisation, Ilf2 expression is detected in proliferative cells of adult ovary and a defined pattern is also exhibited in different tissues of embryos. The presence of ILF2 in active chromatin is corroborated in NIH3T3 cultured cells after transfection with Ilf2-EGFP constructs.
Collapse
Affiliation(s)
- L A López-Fernández
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas, Velázquez, 144, 28006, Madrid, Spain
| | | | | |
Collapse
|
27
|
Farazmand A, Koykul W, Peippo J, Baguma-Nibasheka M, King WA, Basrur PK. Sex-linked genes are not silenced in fetal bovine testes expressing X-inactive specific transcript (XIST). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2001; 290:327-40. [PMID: 11550180 DOI: 10.1002/jez.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
X-inactive specific transcript (XIST), which is thought to be the central factor for the X-inactivation process in female mammals, is known to be expressed in males during spermatogenesis. Our studies have shown that XIST is not only expressed in adult bovine testis but is also expressed in fetal, newborn, and prepubertal testes long before spermatogenesis is established. To determine whether the XIST expressed in fetal testes is involved in silencing the genes on the X chromosome, we investigated the status of X-linked genes, including glucose-6-phosphate-dehydrogenase (G6PD), hypoxanthine phosphoribosyl transferase (HPRT), and X-linked zinc finger protein gene (ZFX), in fetal bovine gonads at the developmental stage, when meiosis is initiated in fetal ovaries in this species. Reverse transcription and a semiquantitative polymerase chain reaction based on the optical density of each gene-specific band relative to that of the co-amplified Quantum RNA 18S Internal Standard (Ambion, Austin, TX) showed that the XIST gene was expressed in the testes of approximately 90-day-old fetuses and was silent in all their nongonadal organs tested, although at a significantly lower level than that in fetal organs of female fetuses. Our observation that the expression of X-linked genes in the fetal testis was comparable to that in male nongonadal organs, in which X inactivation does not occur, indicates that the low level of XIST, or XIST-like RNA, expressed in the fetal bovine testis is not involved in silencing X-linked genes.
Collapse
Affiliation(s)
- A Farazmand
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Differentiation in several stem cell systems is associated with major morphological changes in global nuclear shape. We studied the fate of inner-nuclear structures, splicing factor-rich foci and Cajal (coiled) bodies in differentiating hemopoietic, testis and skin tissues. Using antibodies to the splicing factors PSF, U2AF(65) and snRNPs we find that these proteins localize in foci throughout the nuclei of immature bone marrow cells. Yet, when granulocytic cells differentiate and their nuclei condense and become segmented, the staining localizes in a unique compact and thread-like structure. The splicing factor-rich foci concentrate in the interior of these nuclei while the nuclear periphery and areas of highly compact chromatin remain devoid of these molecules. Differentiated myeloid cells do not stain for p80 coilin, the marker for Cajal bodies. Immature myeloid cells contain Cajal bodies although these usually do not coloclaize with PSF-rich foci. Following complete inhibition of transcription in myeloid cells, the threaded PSF pattern becomes localized in several foci in the different lobes of mature granulocytes while in human HL-60 immature myeloid leukemia cells PSF is found in the perinucleolar compartment. Studies of other differentiating stem cell systems show that PSF staining disappears completely in differentiated, transcriptionally inactive sperm cells, is scarce as cells migrate from the inner skin layers outward and is lost as cells of the hair follicle mature. We conclude that the formation and distribution of splicing factor-rich foci in the nucleus during differentiation of various cell lineages is dependent on the levels of chromatin condensation and the differentiation status of the cell.
Collapse
Affiliation(s)
- Y Shav-Tal
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
29
|
Farazmand A, Koykul W, King WA, Basrur PK. Expression of X inactive specific transcript (Xist) and testicular morphogenesis in bovine fetuses. Anim Biotechnol 2001; 11:51-61. [PMID: 10885812 DOI: 10.1080/10495390009525947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Inactivation of one of the 2 X chromosomes in the somatic cells of female mammals is the process by which their X-linked gene products are equalized to those of their male counterparts. In male mammals, however, a sex vesicle representing the condensed and transcriptionally silenced sex chromosomes is detected during early meiotic prophase. Since the exact stage of development at which X inactivation is initiated in the bovine testis is not established as yet, we undertook to study fetuses ranging in age from 30 to 180 days of gestation, to determine the transcriptional status of the Xist gene currently thought to be the prerequisite component of X inactivation. Our studies using reverse transcription polymerase chain reaction (RT-PCR) approach with primers designed to amplify a 463 bp product from a conserved region of the first exon of bovine Xist gene, proved that Xist expression is evident in bovine fetal testes as early as 50 days of gestation and that it continues at least to the end of the second trimester (180 days) of gestation. Morphological studies on fetal testes during gestational stage spanning the period of Xist expression revealed the presence of large intra-tubular cells overtly resembling the prespermatogonia of postnatal bovine testes, at 50 days and preleptotene like cells as early as 90 days of gestation. We hypothesize that the expression of the Xist gene, or the recently discovered Tsix gene antisense to Xist in orientation, may be related to the presence of these cells which participate in the morphogenesis of the fetal bovine testis.
Collapse
Affiliation(s)
- A Farazmand
- Department of Biomedical Sciences, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Adams SH, Esser V, Brown NF, Ing NH, Johnson L, Foster DW, McGarry JD. Expression and possible role of muscle-type carnitine palmitoyltransferase I during sperm development in the rat. Biol Reprod 1998; 59:1399-405. [PMID: 9828184 DOI: 10.1095/biolreprod59.6.1399] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because we had found whole testis from adult rats to be much richer in the messenger RNA for the muscle (M) than for the liver (L) form of mitochondrial carnitine palmitoyltransferase I (CPT I), we sought to determine which cell type(s) accounts for this expression pattern and how it might relate to reproductive function. Studies with immature (14-day-old) and adult animals included 1) Northern blot analysis of testis mRNA; 2) in situ hybridization with slices of testis; 3) enzyme assays for CPT I, CPT II, and carnitine acetyltransferase (CAT) in testicular germ cells and nongerm cells, together with measurement of the malonyl-coenzyme A (CoA) sensitivity and affinity for carnitine of CPT I; 4) labeling of testicular CPT I with [3H]etomoxir, a covalent inhibitor of the enzyme; and 5) the response of testicular and nontesticular CPT I to dietary etomoxir. The data established the following: 1) L-CPT I was the sole isoform detected in immature testis. 2) Expression of the M-CPT I gene was associated only with meiotic and postmeiotic germ cells. 3) Adult testis contains a mixture of the L- and M-CPT I enzymes, the L and M form dominating in extratubular cells and spermatids, respectively. Mature epididymal spermatozoa appear to be devoid of CPT I activity while possessing abundant levels of CPT II and CAT. 4) Five days of dietary etomoxir treatment at a dose that resulted in essentially complete inhibition of CPT I in liver, heart, skeletal muscle, and kidney was totally without effect on either the L- or M-type enzyme in the testis of mature rats. The data point to an important role for transient expression of M-CPT I, coupled with sustained activity of CAT, in the maturation and/or function of rat sperm. They also suggest that, at least in the case of one CPT I inhibitor (etomoxir), the testis is unusually resistant to the agent when given orally.
Collapse
Affiliation(s)
- S H Adams
- Departments of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 75235-9135, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Recent cell biological observations have provided new insights into how transcription, pre-mRNA splicing and 3' processing are organized and coordinated with each other in the mammalian cell nucleus. Morphological observations are supported by biochemical evidence that suggests physical interactions between components of the transcription and RNA processing machineries. A working model of the cellular organization of gene expression is now emerging.
Collapse
Affiliation(s)
- T Misteli
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | |
Collapse
|
32
|
Elliott DJ, Oghene K, Makarov G, Makarova O, Hargreave TB, Chandley AC, Eperon IC, Cooke HJ. Dynamic changes in the subnuclear organisation of pre-mRNA splicing proteins and RBM during human germ cell development. J Cell Sci 1998; 111 ( Pt 9):1255-65. [PMID: 9547301 DOI: 10.1242/jcs.111.9.1255] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RBM is a germ-cell-specific RNA-binding protein encoded by the Y chromosome in all mammals, implying an important and evolutionarily conserved (but as yet unidentified) function during male germ cell development. In order to address this function, we have developed new antibody reagents to immunolocalise RBM in the different cell types in the human testis. We find that RBM has a different expression profile from its closest homologue hnRNPG. Despite its ubiquitous expression in all transcriptionally active germ cell types, RBM has a complex and dynamic cell biology in human germ cells. The ratio of RBM distributed between punctate nuclear structures and the remainder of the nucleoplasm is dynamically modulated over the course of germ cell development. Moreover, pre-mRNA splicing components are targeted to the same punctate nuclear regions as RBM during the early stages of germ cell development but late in meiosis this spatial association breaks down. After meiosis, pre-mRNA splicing components are differentially targeted to a specific region of the nucleus. While pre-mRNA splicing components undergo profound spatial reorganisations during spermatogenesis, neither heterogeneous ribonucleoproteins nor the transcription factor Sp1 show either developmental spatial reorganisations or any specific co-localisation with RBM. These results suggest dynamic and possibly multiple functions for RBM in germ cell development.
Collapse
Affiliation(s)
- D J Elliott
- Medical Research Council Genetics Unit, Western General Hospital, Edinburgh, Scotland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sandri-Goldin RM, Hibbard MK, Hardwicke MA. The C-terminal repressor region of herpes simplex virus type 1 ICP27 is required for the redistribution of small nuclear ribonucleoprotein particles and splicing factor SC35; however, these alterations are not sufficient to inhibit host cell splicing. J Virol 1995; 69:6063-76. [PMID: 7666511 PMCID: PMC189503 DOI: 10.1128/jvi.69.10.6063-6076.1995] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Herpes simplex virus type 1 infection results in a reorganization of antigens associated with the small nuclear ribonucleoprotein particles (snRNPs), resulting in the formation of prominent clusters near the nuclear periphery. In this study, we show that the immediate-early protein ICP27, which is involved in the impairment of host cell splicing and in the changes in the distribution of snRNPs, is also required for reassorting the SR domain splicing factor SC35. Other viral processes, such as adsorption and penetration, shutoff of host protein synthesis, early and late gene expression, and DNA replication, do not appear to play a role in changing the staining pattern of splicing antigens. Furthermore, the C-terminal repressor region of ICP27, which is required for the inhibitory effects on splicing, also is involved in redistributing the snRNPs and SC35. During infection or transfection with five different repressor mutants, the speckled staining pattern characteristic of uninfected cells was seen and the level of a spliced target mRNA was not reduced. Infections in the presence of activator mutants showed a redistributed snRNP pattern and a decreased accumulation of spliced target mRNA. Moreover, two arginine-rich regions in the N-terminal half of ICP27 were not required for the redistribution of snRNPs or SC35. Substitution of these regions with a lysine-rich sequence from simian virus 40 large-T antigen resulted in a redistribution of splicing antigens. Unexpectedly, a repressor mutant with a ts phenotype showed a redistributed staining pattern like that seen with wild-type infected cells. During infections with this ts mutant, splicing was not inhibited, as shown in this and previous studies, confirming its repressor phenotype. Furthermore, both the mutant and the wild-type protein colocalized with snRNPs. Therefore, the redistribution of snRNPs and SC35 correlates with ICP27-mediated impairment of host cell splicing, but these alterations are not sufficient to fully inhibit splicing. This indicates that active splicing complexes are still present even after dramatic changes in the organization of the snRNPs.
Collapse
Affiliation(s)
- R M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717-4025, USA
| | | | | |
Collapse
|