1
|
Zurita M, Murillo-Maldonado JM. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. Int J Mol Sci 2020; 21:ijms21020630. [PMID: 31963603 PMCID: PMC7013941 DOI: 10.3390/ijms21020630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism for the interpretation of different phenotypes during development as well as the understanding of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH in different developmental processes. Furthermore, studies performed in Drosophila of mutations in different subunits of TFIIH that have not been linked to any human diseases, probably because they are more deleterious, have revealed its roles in differentiation and cell death. In this review, different achievements made through studies in the fly to understand the functions of TFIIH during development and its relationship with human diseases are analysed and discussed.
Collapse
|
2
|
Abstract
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA lesions. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human disorders caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated ageing. All three syndromes include developmental abnormalities, indicating an important role for optimal transcription and for NER in protecting against spontaneous DNA damage during embryonic development. Here, we review the current knowledge on genes that function in NER that also affect embryonic development, in particular the development of a fully functional nervous system.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain
| | - Isao Kuraoka
- Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
3
|
Cruz-Becerra G, Valerio-Cabrera S, Juárez M, Bucio-Mendez A, Zurita M. TFIIH localization is highly dynamic during zygotic genome activation in Drosophila, and its depletion causes catastrophic mitosis. J Cell Sci 2018; 131:jcs.211631. [PMID: 29643118 DOI: 10.1242/jcs.211631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
In Drosophila, zygotic genome activation occurs in pre-blastoderm embryos during rapid mitotic divisions. How the transcription machinery is coordinated to achieve this goal in a very brief time span is still poorly understood. Transcription factor II H (TFIIH) is fundamental for transcription initiation by RNA polymerase II (RNAPII). Herein, we show the in vivo dynamics of TFIIH at the onset of transcription in Drosophila embryos. TFIIH shows an oscillatory behaviour between the nucleus and cytoplasm. TFIIH foci are observed from interphase to metaphase, and colocalize with those for RNAPII phosphorylated at serine 5 (RNAPIIS5P) at prophase, suggesting that transcription occurs during the first mitotic phases. Furthermore, embryos with defects in subunits of either the CAK or the core subcomplexes of TFIIH show catastrophic mitosis. Although, transcriptome analyses show altered expression of several maternal genes that participate in mitosis, the global level of RNAPIIS5P in TFIIH mutant embryos is similar to that in the wild type, therefore, a direct role for TFIIH in mitosis cannot be ruled out. These results provide important insights regarding the role of a basal transcription machinery component when the zygotic genome is activated.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Sarai Valerio-Cabrera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mandy Juárez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Alyeri Bucio-Mendez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| |
Collapse
|
4
|
Zaytseva O, Quinn LM. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes (Basel) 2017; 8:genes8040118. [PMID: 28398229 PMCID: PMC5406865 DOI: 10.3390/genes8040118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
5
|
Cruz-Becerra G, Juárez M, Valadez-Graham V, Zurita M. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation. Open Biol 2016; 6:rsob.160222. [PMID: 27805905 PMCID: PMC5090060 DOI: 10.1098/rsob.160222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mandy Juárez
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
6
|
Yadav AK, Srikrishna S, Gupta SC. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back. Trends Pharmacol Sci 2016; 37:789-806. [PMID: 27298020 DOI: 10.1016/j.tips.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster has been used for modeling cancer and as an in vivo tool for the validation and/or development of cancer therapeutics. The impetus for the use of Drosophila in cancer research stems from the high conservation of its signaling pathways, lower genetic redundancy, short life cycle, genetic amenability, and ease of maintenance. Several cell signaling pathways in Drosophila have been used for cancer drug development. The efficacy of combination therapy and uptake/bioavailability of drugs have also been studied. Drosophila has been validated using several FDA-approved drugs, suggesting a potential application of this model in drug repurposing. The model is emerging as a powerful tool for high-throughput screening and should significantly reduce the cost and time associated with drug development. In this review we discuss the applications of Drosophila in cancer drug development. The advantages and limitations of the model are discussed.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
7
|
Lee JEA, Mitchell NC, Zaytseva O, Chahal A, Mendis P, Cartier-Michaud A, Parsons LM, Poortinga G, Levens DL, Hannan RD, Quinn LM. Defective Hfp-dependent transcriptional repression of dMYC is fundamental to tissue overgrowth in Drosophila XPB models. Nat Commun 2015; 6:7404. [PMID: 26074141 DOI: 10.1038/ncomms8404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
Nucleotide excision DNA repair (NER) pathway mutations cause neurodegenerative and progeroid disorders (xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD)), which are inexplicably associated with (XP) or without (CS/TTD) cancer. Moreover, cancer progression occurs in certain patients, but not others, with similar C-terminal mutations in the XPB helicase subunit of transcription and NER factor TFIIH. Mechanisms driving overproliferation and, therefore, cancer associated with XPB mutations are currently unknown. Here using Drosophila models, we provide evidence that C-terminally truncated Hay/XPB alleles enhance overgrowth dependent on reduced abundance of RNA recognition motif protein Hfp/FIR, which transcriptionally represses the MYC oncogene homologue, dMYC. The data demonstrate that dMYC repression and dMYC-dependent overgrowth in the Hfp hypomorph is further impaired in the C-terminal Hay/XPB mutant background. Thus, we predict defective transcriptional repression of MYC by the Hfp orthologue, FIR, might provide one mechanism for cancer progression in XP/CS.
Collapse
Affiliation(s)
- Jue Er Amanda Lee
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Naomi C Mitchell
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Olga Zaytseva
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Arjun Chahal
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Peter Mendis
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | | | - Linda M Parsons
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Victoria 3002, Australia
| | - David L Levens
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Ross D Hannan
- 1] Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne Victoria 3002, Australia [2] Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra Australian Capital Territory 2600, Australia
| | - Leonie M Quinn
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
8
|
Stettler K, Li X, Sandrock B, Braga-Lagache S, Heller M, Dümbgen L, Suter B. A Drosophila XPD model links cell cycle coordination with neuro-development and suggests links to cancer. Dis Model Mech 2014; 8:81-91. [PMID: 25431422 PMCID: PMC4283652 DOI: 10.1242/dmm.016907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Collapse
Affiliation(s)
- Karin Stettler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Xiaoming Li
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany
| | | | - Manfred Heller
- Department of Clinical Research, University of Bern, 3010 Bern, Switzerland
| | - Lutz Dümbgen
- Institute of Mathematical Statistics and Actuarial Science, University of Bern, 3012 Bern, Switzerland
| | - Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
Villicaña C, Cruz G, Zurita M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int 2014; 14:18. [PMID: 24576043 PMCID: PMC3942515 DOI: 10.1186/1475-2867-14-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/21/2014] [Indexed: 01/11/2023] Open
Abstract
General transcription is required for the growth and survival of all living cells. However, tumor cells require extraordinary levels of transcription, including the transcription of ribosomal RNA genes by RNA polymerase I (RNPI) and mRNA by RNA polymerase II (RNPII). In fact, cancer cells have mutations that directly enhance transcription and are frequently required for cancer transformation. For example, the recent discovery that MYC enhances the transcription of the majority genes in the genome correlates with the fact that several transcription interfering drugs preferentially kill cancer cells. In recent years, advances in the mechanistic studies of the basal transcription machinery and the discovery of drugs that interfere with multiple components of transcription are being used to combat cancer. For example, drugs such as triptolide that targets the general transcription factors TFIIH and JQ1 to inhibit BRD4 are administered to target the high proliferative rate of cancer cells. Given the importance of finding new strategies to preferentially sensitize tumor cells, this review primarily focuses on several transcription inhibitory drugs to demonstrate that the basal transcription machinery constitutes a potential target for the design of novel cancer drugs. We highlight the drugs’ mechanisms for interfering with tumor cell survival, their importance in cancer treatment and the challenges of clinical application.
Collapse
Affiliation(s)
| | | | - Mario Zurita
- Departament of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico.
| |
Collapse
|
10
|
Villicaña C, Cruz G, Zurita M. The genetic depletion or the triptolide inhibition of TFIIH in p53 deficient cells induce a JNK-dependent cell death in Drosophila. J Cell Sci 2013; 126:2502-15. [DOI: 10.1242/jcs.122721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TFIIH participates in transcription, nucleotide excision repair and the control of the cell cycle. In this work, we demonstrate that the Dmp52 subunit of TFIIH in Drosophila physically interacts with the fly p53 homologue, Dp53. The depletion of Dmp52 in the wing disc generates chromosome fragility, increases apoptosis and produces wings with a reduced number of cells; cellular proliferation, however, is not affected. Interestingly, instead of suppressing the apoptotic phenotype, the depletion of Dp53 in Dmp52-depleted wing disc cells increases apoptosis and the number of cells that suffer from chromosome fragility. The apoptosis induced by the depletion of Dmp52 alone is partially dependent on the JNK pathway. In contrast, the enhanced apoptosis caused by the simultaneous depletion of Dp53 and Dmp52 is absolutely JNK-dependent. In this study, we also show that the anti-proliferative drug triptolide, which inhibits the ATPase activity of the XPB subunit of TFIIH, phenocopies the JNK-dependent massive apoptotic phenotype of Dp53-depleted wing disc cells; this observation suggests that the mechanism by which triptolide induces apoptosis in p53-deficient cancer cells involves the activation of the JNK death pathway.
Collapse
|
11
|
Herrera-Cruz M, Cruz G, Valadez-Graham V, Fregoso-Lomas M, Villicaña C, Vázquez M, Reynaud E, Zurita M. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH. J Biol Chem 2012; 287:33567-80. [PMID: 22865882 DOI: 10.1074/jbc.m112.383505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes.
Collapse
Affiliation(s)
- Mariana Herrera-Cruz
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Baradaran-Heravi A, Cho KS, Tolhuis B, Sanyal M, Morozova O, Morimoto M, Elizondo LI, Bridgewater D, Lubieniecka J, Beirnes K, Myung C, Leung D, Fam HK, Choi K, Huang Y, Dionis KY, Zonana J, Keller K, Stenzel P, Mayfield C, Lücke T, Bokenkamp A, Marra MA, van Lohuizen M, Lewis DB, Shaw C, Boerkoel CF. Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression. Hum Mol Genet 2012; 21:2572-87. [PMID: 22378147 PMCID: PMC3349428 DOI: 10.1093/hmg/dds083] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/07/2012] [Accepted: 02/24/2012] [Indexed: 01/21/2023] Open
Abstract
Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila and mouse models, we show that the proteins encoded by SMARCAL1 orthologs localize to transcriptionally active chromatin and modulate gene expression. We also show that, as found in SIOD patients, deficiency of the SMARCAL1 orthologs alone is insufficient to cause disease in fruit flies and mice, although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Reyes-Carmona S, Valadéz-Graham V, Aguilar-Fuentes J, Zurita M, León-Del-Río A. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Mol Genet Metab 2011; 103:240-8. [PMID: 21463962 DOI: 10.1016/j.ymgme.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/05/2011] [Accepted: 03/05/2011] [Indexed: 11/26/2022]
Abstract
This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.
Collapse
Affiliation(s)
- Sandra Reyes-Carmona
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF 04510, Mexico.
| | | | | | | | | |
Collapse
|
14
|
Palomera-Sanchez Z, Bucio-Mendez A, Valadez-Graham V, Reynaud E, Zurita M. Drosophila p53 is required to increase the levels of the dKDM4B demethylase after UV-induced DNA damage to demethylate histone H3 lysine 9. J Biol Chem 2010; 285:31370-9. [PMID: 20675387 DOI: 10.1074/jbc.m110.128462] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chromatin undergoes a variety of changes in response to UV-induced DNA damage, including histone acetylation. In human and Drosophila cells, this response is affected by mutations in the tumor suppressor p53. In this work, we report that there is a global decrease in trimethylated Lys-9 in histone H3 (H3K9me3) in salivary gland cells in wild type flies in response to UV irradiation. In contrast, flies with mutations in the Dmp53 gene have reduced basal levels of H3K9me3, which are then increased after UV irradiation. The reduction of H3K9me3 in response to DNA damage occurs preferentially in heterochromatin. Our experiments demonstrate that UV irradiation enhances the levels of Lys-9 demethylase (dKDM4B) transcript and protein in wild type flies, but not in Dmp53 mutant flies. Dmp53 binds to a DNA element in the dKdm4B gene as a response to UV irradiation. Furthermore, heterozygous mutants for the dKdm4B gene are more sensitive to UV irradiation; they are deficient in the removal of cyclobutane-pyrimidine dimers, and the decrease of H3K9me3 levels following DNA damage is not observed in dKdm4B mutant flies. We propose that in response to UV irradiation, Dmp53 enhances the expression of the dKDM4B histone demethylase, which demethylates H3K9me3 preferentially in heterochromatin regions. This mechanism appears to be essential for the proper function of the nucleotide excision repair system.
Collapse
Affiliation(s)
- Zoraya Palomera-Sanchez
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 62250, Cuernavaca Morelos, México
| | | | | | | | | |
Collapse
|
15
|
Mitchell NC, Johanson TM, Cranna NJ, Er ALJ, Richardson HE, Hannan RD, Quinn LM. Hfp inhibits Drosophila myc transcription and cell growth in a TFIIH/Hay-dependent manner. Development 2010; 137:2875-84. [PMID: 20667914 DOI: 10.1242/dev.049585] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unresolved question regarding the RNA-recognition motif (RRM) protein Half pint (Hfp) has been whether its tumour suppressor behaviour occurs by a transcriptional mechanism or via effects on splicing. The data presented here demonstrate that Hfp achieves cell cycle inhibition via an essential role in the repression of Drosophila myc (dmyc) transcription. We demonstrate that regulation of dmyc requires interaction between the transcriptional repressor Hfp and the DNA helicase subunit of TFIIH, Haywire (Hay). In vivo studies show that Hfp binds to the dmyc promoter and that repression of dmyc transcription requires Hfp. In addition, loss of Hfp results in enhanced cell growth, which depends on the presence of dMyc. This is consistent with Hfp being essential for inhibition of dmyc transcription and cell growth. Further support for Hfp controlling dmyc transcriptionally comes from the demonstration that Hfp physically and genetically interacts with the XPB helicase component of the TFIIH transcription factor complex, Hay, which is required for normal levels of dmyc expression, cell growth and cell cycle progression. Together, these data demonstrate that Hfp is crucial for repression of dmyc, suggesting that a transcriptional, rather than splicing, mechanism underlies the regulation of dMyc and the tumour suppressor behaviour of Hfp.
Collapse
Affiliation(s)
- Naomi C Mitchell
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Aguilar-Fuentes J, Fregoso M, Herrera M, Reynaud E, Braun C, Egly JM, Zurita M. p8/TTDA overexpression enhances UV-irradiation resistance and suppresses TFIIH mutations in a Drosophila trichothiodystrophy model. PLoS Genet 2008; 4:e1000253. [PMID: 19008953 PMCID: PMC2576456 DOI: 10.1371/journal.pgen.1000253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 10/03/2008] [Indexed: 11/25/2022] Open
Abstract
Mutations in certain subunits of the DNA repair/transcription factor complex TFIIH are linked to the human syndromes xeroderma pigmentosum (XP), Cockayne's syndrome (CS), and trichothiodystrophy (TTD). One of these subunits, p8/TTDA, interacts with p52 and XPD and is important in maintaining TFIIH stability. Drosophila mutants in the p52 (Dmp52) subunit exhibit phenotypic defects similar to those observed in TTD patients with defects in p8/TTDA and XPD, including reduced levels of TFIIH. Here, we demonstrate that several Dmp52 phenotypes, including lethality, developmental defects, and sterility, can be suppressed by p8/TTDA overexpression. TFIIH levels were also recovered in rescued flies. In addition, p8/TTDA overexpression suppressed a lethal allele of the Drosophila XPB homolog. Furthermore, transgenic flies overexpressing p8/TTDA were more resistant to UV irradiation than were wild-type flies, apparently because of enhanced efficiency of cyclobutane-pyrimidine-dimers and 6–4 pyrimidine-pyrimidone photoproducts repair. This study is the first using an intact higher-animal model to show that one subunit mutant can trans-complement another subunit in a multi-subunit complex linked to human diseases. TFIIH participates in RNA polymerase II transcription, nucleotide excision repair, and control of the cell cycle. In humans, certain mutations in the XPB and XPD subunits of TFIIH generate the syndromes trichothiodystrophy (TTD), xeroderma pigmentosum (XP), and Cockayne's syndrome (CS). In contrast, mutations in the p8/TTDA subunit have been linked only to TTD. Cells derived from TTD patients with defects in p8/TTDA have reduced levels of TFIIH. Therefore, it has been proposed that the main function of p8/TTDA is to stabilize and maintain steady-state levels of TFIIH. In Drosophila, mutations in Dmp52 and haywire genes generate phenotypes that share similarities with those associated with mutations in their human counterparts, including reduced TFIIH levels. We report that p8/TTDA overexpression suppressed accumulated developmental defects associated with mutations in the Dmp52 and haywire genes. We also provide evidence suggesting that the rescue of these defects is, in part, because of the recovery of normal TFIIH levels in mutant flies. These results indicate that overexpression of p8/TTDA trans-complemented mutations in other TFIIH subunits and suppressed defects accumulated during fly development. The overexpression of p8/TTDA in wild-type flies increased their UV irradiation resistance, apparently because of more efficient nucleotide excision repair.
Collapse
Affiliation(s)
- Javier Aguilar-Fuentes
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Mariana Fregoso
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Mariana Herrera
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Enrique Reynaud
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Cathy Braun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U. de Strasbourg, France
| | - Jean Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U. de Strasbourg, France
| | - Mario Zurita
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
- * E-mail:
| |
Collapse
|
17
|
Yang SZ, Zhang YF, Zhang LM, Huang YL, Sun FY. Immunohistochemical Analysis of Nucleotide Excision Repair Factors XPA and XPB in Adult Rat Brain. Anat Rec (Hoboken) 2008; 291:775-80. [DOI: 10.1002/ar.20713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Matsuno M, Kose H, Okabe M, Hiromi Y. TFIIH controls developmentally-regulated cell cycle progression as a holocomplex. Genes Cells 2008; 12:1289-300. [PMID: 17986012 DOI: 10.1111/j.1365-2443.2007.01133.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Basal transcription factor, TFIIH, is a multifunctional complex that carries out not only transcription but also DNA repair and cell cycle control. TFIIH is composed of two sub-complexes: core TFIIH and Cdk-activating kinase (CAK). In vitro studies suggest that CAK is sufficient for cell cycle regulation, whereas core TFIIH is required for DNA repair. However, the TFIIH complexes that perform these functions in vivo have yet to be identified. Here, we perform an in vivo dissection of TFIIH activity by characterizing mutations in a core subunit p52 in Drosophila. p52 mutants are hypersensitive to UV, suggesting a defect in DNA repair. Nonetheless, mutant cells are able to divide and express a variety of differentiation markers. Although p52 is not essential for cell cycle progression itself, p52 mutant cells in the eye imaginal disc are unable to synchronize their cell cycles and remain arrested at G1. Similar cell cycle phenotypes are observed in mutations in another core subunit XPB and a CAK-component CDK7, suggesting that defects in core TFIIH affect the G1/S transition through modification of CAK activity. We propose that during development the function of TFIIH as a cell cycle regulator is carried out by holo-TFIIH.
Collapse
Affiliation(s)
- Motomi Matsuno
- Department of Developmental Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | | | |
Collapse
|
19
|
Fregoso M, Lainé JP, Aguilar-Fuentes J, Mocquet V, Reynaud E, Coin F, Egly JM, Zurita M. DNA repair and transcriptional deficiencies caused by mutations in the Drosophila p52 subunit of TFIIH generate developmental defects and chromosome fragility. Mol Cell Biol 2007; 27:3640-50. [PMID: 17339330 PMCID: PMC1899989 DOI: 10.1128/mcb.00030-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription and DNA repair factor TFIIH is composed of 10 subunits. Mutations in the XPB, XPD, and p8 subunits are genetically linked to human diseases, including cancer. However, no reports of mutations in other TFIIH subunits have been reported in higher eukaryotes. Here, we analyze at genetic, molecular, and biochemical levels the Drosophila melanogaster p52 (DMP52) subunit of TFIIH. We found that DMP52 is encoded by the gene marionette in Drosophila and that a defective DMP52 produces UV light-sensitive flies and specific phenotypes during development: organisms are smaller than their wild-type siblings and present tumors and chromosomal instability. The human homologue of DMP52 partially rescues some of these phenotypes. Some of the defects observed in the fly caused by mutations in DMP52 generate trichothiodystrophy and cancer-like phenotypes. Biochemical analysis of DMP52 point mutations introduced in human p52 at positions homologous to those of defects in DMP52 destabilize the interaction between p52 and XPB, another TFIIH subunit, thus compromising the assembly of the complex. This study significantly extends the role of p52 in regulating XPB ATPase activity and, consequently, both its transcriptional and nucleotide excision repair functions.
Collapse
Affiliation(s)
- Mariana Fregoso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Aguilar-Fuentes J, Valadez-Graham V, Reynaud E, Zurita M. TFIIH trafficking and its nuclear assembly during early Drosophila embryo development. J Cell Sci 2006; 119:3866-75. [PMID: 16940351 DOI: 10.1242/jcs.03150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the first analysis of the dynamics of the transcription DNA-repair factor TFIIH at the onset of transcription in early Drosophila development. TFIIH is composed of ten polypeptides that are part of two complexes - the core and the CAK. We found that the TFIIH core is initially located in the cytoplasm of syncytial blastoderm embryos, and that after mitotic division ten and until the cellular blastoderm stage, the core moves from the cytoplasm to the nucleus. By contrast, the CAK complex is mostly cytoplasmic during cellularization and during gastrulation. However, both components are positioned at promoters of genes that are activated at transcription onset. Later in development, the CAK complex becomes mostly nuclear and co-localizes in most chromosomal regions with the TFIIH core, but not in all sites, suggesting that the CAK complex could have a TFIIH-independent role in transcription of some loci. We also demonstrate that even though the CAK and the core coexist in the early embryo cytoplasm, they do not interact until they are in the nucleus and suggest that the complete assembly of the ten subunits of TFIIH occurs in the nucleus at the mid-blastula transition. In addition, we present evidence that suggests that DNA helicase subunits XPB and XPD are assembled in the core when they are transported into the nucleus and are required for the onset of transcription.
Collapse
Affiliation(s)
- Javier Aguilar-Fuentes
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National Autonomous University of México, Av. Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | | | | | | |
Collapse
|
21
|
Bassal S, El-Osta A. DNA damage detection and repair, and the involvement of epigenetic states. Hum Mutat 2006; 25:101-9. [PMID: 15643607 DOI: 10.1002/humu.20130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromatin is a highly dynamic structure that acts alternately as a substrate and a template in a number of critical biological processes. Modification of chromatin is pertinent and is responsible for a number of nuclear processes, including DNA repair, replication, transcription, and recombination. The purpose of this review is to discuss specific interactions between chromatin remodeling, DNA repair, and transcription. These areas are demonstrated to share commonality, particularly with a number of key molecules that appear to have roles in a number of pathways. The implications of pathway cross-over and communication form a seamless continuation of genomic integrity and stability.
Collapse
Affiliation(s)
- Sahar Bassal
- Alfred Medical Research and Education Precinct, Baker Medical Research Institute, Epigenetics in Human Health and Disease Laboratory, Prahran, Australia
| | | |
Collapse
|
22
|
Rebollar E, Valadez-Graham V, Vázquez M, Reynaud E, Zurita M. Role of the p53 homologue fromDrosophila melanogasterin the maintenance of histone H3 acetylation and response to UV-light irradiation. FEBS Lett 2006; 580:642-8. [PMID: 16412438 DOI: 10.1016/j.febslet.2005.12.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 12/20/2005] [Accepted: 12/27/2005] [Indexed: 01/01/2023]
Abstract
It has been demonstrated that the human tumor suppressor p53 has an important role in modulating histone modifications after UV light irradiation. In this work we explored if the p53 Drosophila homologue has a similar role. Taking advantage of the existence of polytene chromosomes in the salivary glands of third instar larvae, we analyzed K9 and K14 H3 acetylation patterns in situ after UV irradiation of wild-type and Dmp53 null flies. As in human cells, after UV damage there is an increase in H3 acetylation in wild-type organisms. In Dmp53 mutant flies, this response is significantly affected at the K9 position. These results are similar to those found in human p53 mutant tumor cells with one interesting difference, only the basal H3 acetylation of K14 is reduced in Dmp53 mutant flies, while the basal H3-K9 acetylation is not affected. This work shows, that the presence of Dmp53 is necessary to maintain normal H3-K14 acetylation levels in Drosophila chromatin and that the function of p53 to maintaining histone modifications, is conserved in Drosophila and humans.
Collapse
Affiliation(s)
- Eria Rebollar
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National University of México, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
23
|
Gutiérrez L, Merino C, Vázquez M, Reynaud E, Zurita M. RNA polymerase II 140wimp mutant and mutations in the TFIIH subunit XPB differentially affect homeotic gene expression in Drosophila. Genesis 2005; 40:58-66. [PMID: 15354295 DOI: 10.1002/gene.20066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mutations in the XPB and XPD helicases of the DNA repair/transcription factor TFIIH are involved in several human genetic disorders. An unanswered problem concerning the complexity of the phenotype-genotype relationship is why mutations in individual subunits of TFIIH produce specific phenotypes and not many others. In order to investigate this question we tested whether mutations in the Drosophila XPB homolog, haywire (hay), would modify homeotic derepression phenotypes. In this work, we report that mutations in hay and in the 140-kDa subunit of the RNA polymerase II (RpII140wimp) act as dominant modifiers of the derepression phenotypes of the Sex combs reduced (Scr) and Ultrabithorax (Ubx) genes. The hay mutations only weakly suppress the Scr derepression phenotype caused by the Antp(Scx) mutation but not by Polycomb. In contrast, the RpII140wimp mutation strongly suppresses both Scr derepression phenotypes. In addition, the RpII140wimp also generates phenotypes indicative of loss of Ubx function. On the other hand, all the derepression homeotic phenotypes are sensitive to the generalized reduction of transcription levels when the flies are grown with actinomycin D. We also show that different promoter control regions have differential sensitivity to different hay alleles. All these results support that although TFIIH is a basal transcription factor, mutations in the subunit encoded by hay have specific effects in the transcription of some genes.
Collapse
Affiliation(s)
- Luis Gutiérrez
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | |
Collapse
|
24
|
Laurencon A, Orme CM, Peters HK, Boulton CL, Vladar EK, Langley SA, Bakis EP, Harris DT, Harris NJ, Wayson SM, Hawley RS, Burtis KC. A large-scale screen for mutagen-sensitive loci in Drosophila. Genetics 2005; 167:217-31. [PMID: 15166149 PMCID: PMC1470880 DOI: 10.1534/genetics.167.1.217] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In a screen for new DNA repair mutants, we tested 6275 Drosophila strains bearing homozygous mutagenized autosomes (obtained from C. Zuker) for hypersensitivity to methyl methanesulfonate (MMS) and nitrogen mustard (HN2). Testing of 2585 second-chromosome lines resulted in the recovery of 18 mutants, 8 of which were alleles of known genes. The remaining 10 second-chromosome mutants were solely sensitive to MMS and define 8 new mutagen-sensitive genes (mus212-mus219). Testing of 3690 third chromosomes led to the identification of 60 third-chromosome mutants, 44 of which were alleles of known genes. The remaining 16 mutants define 14 new mutagen-sensitive genes (mus314-mus327). We have initiated efforts to identify these genes at the molecular level and report here the first two identified. The HN2-sensitive mus322 mutant defines the Drosophila ortholog of the yeast snm1 gene, and the MMS- and HN2-sensitive mus301 mutant defines the Drosophila ortholog of the human HEL308 gene. We have also identified a second-chromosome mutant, mus215(ZIII-2059), that uniformly reduces the frequency of meiotic recombination to <3% of that observed in wild type and thus defines a function required for both DNA repair and meiotic recombination. At least one allele of each new gene identified in this study is available at the Bloomington Stock Center.
Collapse
Affiliation(s)
- Anne Laurencon
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Mutations in some subunits of the basal DNA repair and transcription factor II H (TFIIH) are involved in several human genetic disorders. Transcription factor II H interacts with a variety of factors during transcription, including nuclear receptors, tissue-specific transcription factors, chromatin remodeling complexes and RNA, suggesting that, in addition to its essential role in transcription initiation, it also participates as a regulatory factor. Interpretation of the phenotypes produced by mutations in TFIIH is complicated by the recent finding that TFIIH plays a role in RNA polymerase I (RNA Pol I)-mediated transcription. In vitro reconstituted systems and genetic analysis suggest two possible explanations for the transcriptional phenotypes of TFIIH mutations that are not mutually excluding. The first is that different sets of genes require different levels of transcription to maintain a wild-type phenotype. The second suggests that mutations in TFIIH produce specific phenotypes arising from differential interactions of this complex with different transcription regulatory factors.
Collapse
Affiliation(s)
- Mario Zurita
- Dept of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, APDO-Postal 510-3, 62250, Cuernavaca Morelos, México.
| | | |
Collapse
|
26
|
Schwartz BE, Larochelle S, Suter B, Lis JT. Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol Cell Biol 2003; 23:6876-86. [PMID: 12972606 PMCID: PMC193928 DOI: 10.1128/mcb.23.19.6876-6886.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIIH has been implicated in several fundamental cellular processes, including DNA repair, cell cycle progression, and transcription. In transcription, the helicase activity of TFIIH functions to melt promoter DNA; however, the in vivo function of the Cdk7 kinase subunit of TFIIH, which has been hypothesized to be involved in RNA polymerase II (Pol II) phosphorylation, is not clearly understood. Using temperature-sensitive and null alleles of cdk7, we have examined the role of Cdk7 in the activation of Drosophila heat shock genes. Several in vivo approaches, including polytene chromosome immunofluorescence, nuclear run-on assays, and, in particular, a protein-DNA cross-linking assay customized for adults, revealed that Cdk7 kinase activity is required for full activation of heat shock genes, promoter-proximal Pol II pausing, and Pol II-dependent chromatin decondensation. The requirement for Cdk7 occurs very early in the transcription cycle. Furthermore, we provide evidence that TFIIH associates with the elongation complex much longer than previously suspected.
Collapse
Affiliation(s)
- Brian E Schwartz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
27
|
Dubaele S, Proietti De Santis L, Bienstock RJ, Keriel A, Stefanini M, Van Houten B, Egly JM. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 2003; 11:1635-46. [PMID: 12820975 DOI: 10.1016/s1097-2765(03)00182-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations in the XPD gene result in xeroderma pigmentosum (XP) and trichothiodystrophy (TTD), the phenotypes of which are often intricate. To understand the genotype/phenotype relationship, we engineered recombinant TFIIHs in which XPD subunits carry amino acid changes found in XPD patients. We demonstrate that all the XPD mutations are detrimental for XPD helicase activity, thus explaining the NER defect. We also show that TFIIH from TTD patients, but not from XP patients, exhibits a significant in vitro basal transcription defect in addition to a reduced intracellular concentration. Moreover, when XPD mutations prevent interaction with the p44 subunit of TFIIH, transactivation directed by certain nuclear receptors is inhibited, regardless of TTD versus XP phenotype, thus explaining the overlapping symptoms. The implications of these mutations are discussed using a structural model of the XPD protein. Our study provides explanations for the nature and the severity of the various clinical features.
Collapse
Affiliation(s)
- Sandy Dubaele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 10142, 67404 Illkirch Cedex, C.U. Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|