1
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
2
|
Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:151-88. [PMID: 26055058 DOI: 10.1016/bs.pmbts.2015.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Adrenergic receptors (βARs), prototypical G-protein-coupled receptors, play a pivotal role in regulating neuronal and cardiovascular responses to catecholamines during stress. Agonist-induced receptor endocytosis is traditionally considered as a primary mechanism to turn off the receptor signaling (or receptor desensitization). However, recent progress suggests that intracellular trafficking of βAR presents a mean to translocate receptor signaling machinery to intracellular organelles/compartments while terminating the signaling at the cell surface. Moreover, the apparent multidimensionality of ligand efficacy in space and time in a cell has forecasted exciting pathophysiological implications, which are just beginning to be explored. As we begin to understand how these pathways impact downstream cellular programs, this will have significant implications for a number of pathophysiological conditions in heart and other systems, that in turn open up new therapeutic opportunities.
Collapse
|
3
|
Fu Q, Xu B, Parikh D, Cervantes D, Xiang YK. Insulin induces IRS2-dependent and GRK2-mediated β2AR internalization to attenuate βAR signaling in cardiomyocytes. Cell Signal 2014; 27:707-15. [PMID: 25460042 DOI: 10.1016/j.cellsig.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
The counter-regulatory effects of insulin and catecholamines on carbohydrate and lipid metabolism are well studied, whereas the details of insulin regulation of β adrenergic receptor (βAR) signaling pathway in heart remain unknown. Here, we characterize a novel signaling pathway of insulin receptor (IR) to G protein-coupled receptor kinase 2 (GRK2) in the heart. Insulin stimulates recruitment of GRK2 to β2AR, which induces β2AR phosphorylation at the GRK sites of serine 355/356 and subsequently β2AR internalization. Insulin thereby suppresses βAR-induced cAMP-PKA activities and contractile response in neonatal and adult mouse cardiomyocytes. Deletion of insulin receptor substrate 2 (IRS2) disrupts the complex of IR and GRK2, which attenuates insulin-mediated β2AR phosphorylation at the GRK sites and β2AR internalization, and the counter-regulation effects of insulin on βAR signaling. These data indicate the requirements of IRS2 and GRK2 for insulin to stimulate counter-regulation of βAR via β2AR phosphorylation and internalization in cardiomyocytes.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, University of California at Davis, CA 95616, United States.
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, CA 95616, United States
| | - Dippal Parikh
- Department of Pharmacology, University of California at Davis, CA 95616, United States
| | - David Cervantes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL 61801, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, CA 95616, United States
| |
Collapse
|
4
|
Fu Q, Xu B, Liu Y, Parikh D, Li J, Li Y, Zhang Y, Riehle C, Zhu Y, Rawlings T, Shi Q, Clark RB, Chen X, Abel ED, Xiang YK. Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts. Diabetes 2014; 63:2676-89. [PMID: 24677713 PMCID: PMC4113065 DOI: 10.2337/db13-1763] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Insulin/administration & dosage
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Mice
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocardial Contraction/physiology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, University of California, Davis, Davis, CADepartment of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, ChinaDepartment of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, CA
| | - Yongming Liu
- Department of Pharmacology, University of California, Davis, Davis, CAShuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dippal Parikh
- Department of Pharmacology, University of California, Davis, Davis, CA
| | - Jing Li
- Department of Physiology and Cardiovascular Research Center, Temple University Medical Center, Philadelphia, PA
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center, Temple University Medical Center, Philadelphia, PA
| | - Yuan Zhang
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UTFraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Christian Riehle
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UTFraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Yi Zhu
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Tenley Rawlings
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Qian Shi
- Department of Pharmacology, University of California, Davis, Davis, CADepartment of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL
| | - Richard B Clark
- Department of Integrative Biology and Pharmacology, University of Texas Houston Medical Center, Houston, TX
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Temple University Medical Center, Philadelphia, PA
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UTFraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CADepartment of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL
| |
Collapse
|
5
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
6
|
Mielke JG, Wang YT. Insulin, synaptic function, and opportunities for neuroprotection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:133-86. [PMID: 21199772 DOI: 10.1016/b978-0-12-385506-0.00004-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A steadily growing number of studies have begun to establish that the brain and insulin, while traditionally viewed as separate, do indeed have a relationship. The uptake of pancreatic insulin, along with neuronal biosynthesis, provides neural tissue with the hormone. As well, insulin acts upon a neuronal receptor that, although a close reflection of its peripheral counterpart, is characterized by unique structural and functional properties. One distinction is that the neural variant plays only a limited part in neuronal glucose transport. However, a number of other roles for neural insulin are gradually emerging; most significant among these is the modulation of ligand-gated ion channel (LGIC) trafficking. Notably, insulin has been shown to affect the tone of synaptic transmission by regulating cell-surface expression of inhibitory and excitatory receptors. The manner in which insulin regulates receptor movement may provide a cellular mechanism for insulin-mediated neuroprotection in the absence of hypoglycemia and stimulate the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- John G Mielke
- Faculty of Applied Health Sciences, Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
7
|
Mishra PK, Givvimani S, Metreveli N, Tyagi SC. Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochem Biophys Res Commun 2010; 401:175-81. [PMID: 20836991 DOI: 10.1016/j.bbrc.2010.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 12/12/2022]
Abstract
Although adrenergic receptors (AR) and hyperhomocysteinemia (HHcy) are implicated in heart failure, their role in diabetic cardiomyopathy is not completely understood. We tested the hypothesis that glucose mediated depletion of beta2-AR and HHcy impair contractile function of cardiomyocytes leading to diabetic cardiomyopathy. To prove the hypothesis, cardiac function was assessed in 12week male diabetic Ins2+/- Akita and C57BL/6J mice by echocardiography, pressure-volume loop, and contractile function of cardiomyocytes. The results revealed cardiac dysfunction in Akita. To investigate the mechanism, the levels of beta2-AR, GLUT4, sarcoplasmic reticulum calcium ATP-ase-isoform 2 (SERCA-2) and homocysteine (Hcy) metabolic enzymes-cystathionine beta synthase (CBS), cystathionine gamma lyase (CTH), and methyl tetrahydrofolate reductase (MTHFR) were determined in the heart. It revealed down-regulation of beta2-AR, GLUT4, SERCA-2, CBS, CTH, and MTHFR in Akita. Attenuation of beta2-AR in hyperglycemic condition was also confirmed in cardiomyocytes at in vitro level. Interestingly, the ex vivo treatment of cardiomyocytes with beta2-AR antagonist deteriorated whereas beta-AR agonist ameliorated contractile function. It points to the involvement of beta2-AR in diabetic cardiomyopathy. We conclude that degradation of beta2-AR and impairment of Hcy metabolism is implicated in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Physiology & Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
8
|
Alcántara-Hernández R, Casas-González P, García-Sáinz JA. Roles of c-Src in alpha1B-adrenoceptor phosphorylation and desensitization. ACTA ACUST UNITED AC 2008; 28:29-39. [PMID: 18257749 DOI: 10.1111/j.1474-8673.2007.00414.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1 The role of the protein tyrosine kinase, c-Src, on the function and phosphorylation of alpha1B-adrenoceptors (alpha1B-AR) and their association with G-protein-coupled receptor kinase (GRK) isozymes was studied. 2 Inhibitors of this kinase (PP2 and Src Inhibitor II) decreased ( approximately 50-75%) noradrenaline- (NA) and phorbol myristate acetate-mediated receptor phosphorylation. Expression of a dominant-negative mutant of c-Src similarly reduced receptor phosphorylation induced by the natural agonists, active phorbol esters and endothelin-1 (ET-1). 3 c-Src, GRK2, GRK3 and GRK5 coimmunoprecipitate with alpha1B-ARs in the basal state. In cells treated with NA or phorbol myristate acetate the amount of coimmunoprecipitated GRK2 and GRK3 increased ( approximately 2- to 3-fold), while treatment with ET-1 only augmented the amount of coimmunoprecipitated GRK2 ( approximately 2-fold). The Src inhibitor, PP2, markedly attenuated all these increases. 4 Cell pretreatment with PP2 amplified the increase in intracellular-free calcium observed with NA, in the basal state and after the stimulation (desensitization) induced by ET-1. 5 The data suggest a role of c-Src in alpha1B-AR desensitization/phosphorylation and in the interaction of these ARs with GRKs.
Collapse
Affiliation(s)
- R Alcántara-Hernández
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, México DF 04510
| | | | | |
Collapse
|
9
|
Gavi S, Yin D, Shumay E, Wang HY, Malbon CC. Insulin-like growth factor-I provokes functional antagonism and internalization of beta1-adrenergic receptors. Endocrinology 2007; 148:2653-62. [PMID: 17363461 DOI: 10.1210/en.2006-1569] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormones that activate receptor tyrosine kinases have been shown to regulate G protein-coupled receptors, and herein we investigate the ability of IGF-I to regulate the beta(1)-adrenergic receptor. Treating Chinese hamster ovary cells in culture with IGF-I is shown to functionally antagonize the ability of expressed beta(1)-adrenergic receptors to accumulate intracellular cAMP in response to stimulation by the beta-adrenergic agonist Iso. The attenuation of beta(1)-adrenergic action was accompanied by internalization of beta(1)-adrenergic receptors in response to IGF-I. Inhibiting either phosphatidylinositol 3-kinase or the serine/threonine protein kinase Akt blocks the ability of IGF-I to antagonize and to internalize beta(1)-adrenergic receptors. Mutation of one potential Akt substrate site Ser412Ala, but not another Ser312Ala, of the beta(1)-adrenergic receptor abolishes the ability of IGF-I to functionally antagonize and to sequester the beta(1)-adrenergic receptor. We also tested the ability of IGF-I to regulate beta(1)-adrenergic receptors and their signaling in adult canine cardiac myocytes. IGF-I attenuates the ability of beta(1)-adrenergic receptors to accumulate intracellular cAMP in response to Iso and promotes internalization of beta(1)-adrenergic receptors in these cardiac myocytes.
Collapse
Affiliation(s)
- Shai Gavi
- Department of Pharmacology, Diabetes and Metabolic Diseases Research Center, School of Medicine-HSC, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
10
|
Walwyn W, Evans CJ, Hales TG. Beta-arrestin2 and c-Src regulate the constitutive activity and recycling of mu opioid receptors in dorsal root ganglion neurons. J Neurosci 2007; 27:5092-104. [PMID: 17494695 PMCID: PMC6672367 DOI: 10.1523/jneurosci.1157-07.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/30/2007] [Accepted: 04/01/2007] [Indexed: 11/21/2022] Open
Abstract
Beta-arrestins bind to agonist-activated G-protein-coupled receptors regulating signaling events and initiating endocytosis. In beta-arrestin2-/- (beta arr2-/-) mice, a complex phenotype is observed that includes altered sensitivity to morphine. However, little is known of how beta-arrestin2 affects mu receptor signaling. We investigated the coupling of mu receptors to voltage-gated Ca2+ channels (VGCCs) in beta arr2+/+ and beta arr2-/- dorsal root ganglion neurons. A lack of beta-arrestin2 reduced the maximum inhibition of VGCCs by morphine and DAMGO (D-Ala2-N-Me-Phe4-glycol5-enkephalin) without affecting agonist potency, the onset of receptor desensitization, or the functional contribution of N-type VGCCs. The reduction in inhibition was accompanied by increased naltrexone-sensitive constitutive inhibitory coupling of mu receptors to VGCCs. Agonist-independent mu receptor inhibitory coupling was insensitive to CTAP (Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2), a neutral antagonist that inhibited the inverse agonist action of naltrexone. These functional changes were accompanied by diminished constitutive recycling and increased cell-surface mu receptor expression in beta arr2-/- compared with beta arr2+/+ neurons. Such changes could not be explained by the classical role of beta-arrestins in agonist-induced endocytosis. The localization of the nonreceptor tyrosine kinase c-Src appeared disrupted in beta arr2-/- neurons, and there was reduced activation of c-Src by DAMGO. Using the Src inhibitor PP2 [4-amino-5-(4-chlorophenyl)-(t-butyl)pyrazolo[3,4-d]pyrimidine], we demonstrated that defective Src signaling mimics the beta arr2-/- cellular phenotype of reduced mu agonist efficacy, increased constitutive mu receptor activity, and reduced constitutive recycling. We propose that beta-arrestin2 is required to target c-Src to constitutively active mu receptors, resulting in their internalization, providing another dimension to the complex role of beta-arrestin2 and c-Src in G-protein-coupled receptor function.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Arrestins/genetics
- Arrestins/metabolism
- CSK Tyrosine-Protein Kinase
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Endocytosis/drug effects
- Endocytosis/physiology
- Female
- Ganglia, Spinal/metabolism
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/metabolism
- Pain/physiopathology
- Patch-Clamp Techniques
- Protein Transport/drug effects
- Protein Transport/physiology
- Protein-Tyrosine Kinases/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- beta-Arrestin 2
- beta-Arrestins
- src-Family Kinases
Collapse
Affiliation(s)
- Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center, University of California, Los Angeles, Los Angeles, California 90095, and
| | - Christopher J. Evans
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center, University of California, Los Angeles, Los Angeles, California 90095, and
| | - Tim G. Hales
- Departments of Pharmacology and Physiology, and Anesthesiology and Critical Care Medicine, The George Washington University, Washington, DC 20037
| |
Collapse
|
11
|
Tao J, Wang HY, Malbon CC. Src Docks to A-kinase Anchoring Protein Gravin, Regulating β2-Adrenergic Receptor Resensitization and Recycling. J Biol Chem 2007; 282:6597-608. [PMID: 17200117 DOI: 10.1074/jbc.m608927200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
12
|
Gavi S, Shumay E, Wang HY, Malbon CC. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab 2006; 17:48-54. [PMID: 16460957 DOI: 10.1016/j.tem.2006.01.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/19/2005] [Accepted: 01/19/2006] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptors and protein tyrosine kinases represent two prominent pathways for cellular signaling. As our knowledge of cell signaling pathways mediated by the superfamily of G-protein-coupled receptors and the smaller family of receptor tyrosine kinases expands, so does our appreciation of how these two major signaling platforms share information and modulate each other, otherwise termed "cross-talk". Cross-talk between G-protein-coupled receptors and tyrosine kinases can occur at several levels, including the receptor-to-receptor level, and at crucial downstream points (e.g. phosphatidylinositol-3-kinase, Akt/protein kinase B and the mitogen-activated protein kinase cascade). Regulation of G-protein-coupled receptors by non-receptor tyrosine kinases, such as Src family members, also operates in signaling. A broader understanding of how G-protein-coupled receptors and tyrosine kinases cross-talk reveals new insights into signaling modalities in both health and disease.
Collapse
Affiliation(s)
- Shai Gavi
- Department of Pharmacology, Diabetes and Metabolic Diseases Research Center, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | | | |
Collapse
|
13
|
van der Heide LP, Kamal A, Artola A, Gispen WH, Ramakers GMJ. Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 2005; 94:1158-66. [PMID: 16092951 DOI: 10.1111/j.1471-4159.2005.03269.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.
Collapse
Affiliation(s)
- Lars P van der Heide
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
14
|
Malbon CC, Tao J, Shumay E, Wang HY. AKAP (A-kinase anchoring protein) domains: beads of structure-function on the necklace of G-protein signalling. Biochem Soc Trans 2005; 32:861-4. [PMID: 15494034 DOI: 10.1042/bst0320861] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AKAPs (A-kinase anchoring proteins) are members of a diverse family of scaffold proteins that minimally possess a characteristic binding domain for the RI/RII regulatory subunit of protein kinase A and play critical roles in establishing spatial constraints for multivalent signalling assemblies. Especially for G-protein-coupled receptors, the AKAPs provide an organizing centre about which various protein kinases and phosphatases can be assembled to create solid-state signalling devices that can signal, be modulated and trafficked within the cell. The structure of AKAP250 (also known as gravin or AKAP12), based on analyses of milligram quantities of recombinant protein expressed in Escherichia coli, suggests that the AKAP is probably an unordered scaffold, acting as a necklace on which 'jewels' of structure-function (e.g. the RII-binding domain) that provide docking sites on which signalling components can be assembled. Recent results suggest that AKAP250 provides not only a 'tool box' for assembling signalling elements, but may indeed provide a basis for spatial constraint observed for many signalling paradigms. The spatial dimension of the integration of cell signalling will probably reflect many functions performed by members of the AKAP family.
Collapse
Affiliation(s)
- C C Malbon
- Department of Pharmacology, Diabetes & Metabolic Diseases Research Center, School of Medicine-HSC, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | | | |
Collapse
|
15
|
Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR. The Stomatin/Prohibitin/Flotillin/HflK/C Domain of Flotillin-1 Contains Distinct Sequences That Direct Plasma Membrane Localization and Protein Interactions in 3T3-L1 Adipocytes. J Biol Chem 2005; 280:16125-34. [PMID: 15713660 DOI: 10.1074/jbc.m500940200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Flotillin-1 is a lipid raft-associated protein that has been implicated in various cellular processes. We examined the subcellular distribution of flotillin-1 in different cell types and found that localization is cell type-specific. Flotillin-1 relocates from a cytoplasmic compartment to the plasma membrane upon the differentiation of 3T3-L1 adipocytes. To delineate the structural determinants necessary for its localization, we generated a series of truncation mutants of flotillin-1. Wild type flotillin-1 has two putative hydrophobic domains and is localized to lipid raft microdomains at the plasma membrane. Flotillin-1 fragments lacking the N-terminal hydrophobic stretch are excluded from the lipid raft compartments but remain at the plasma membrane. On the other hand, mutants with the second hydrophobic region deleted fail to traffic to the plasma membrane but are instead found in intracellular granule-like structures. Flotillin-1 specifically interacts with the adaptor protein CAP, the Src family kinase Fyn, and cortical F-actin in lipid raft microdomains in adipocytes. Furthermore, CAP and Fyn associate with different regions in the N-terminal sequences of flotillin-1. These results furthered our understanding for how flotillin-1 can function as a molecular link between lipid rafts of the plasma membrane and a multimeric signaling complex at the actin cytoskeleton.
Collapse
Affiliation(s)
- Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
16
|
Rosenzweig T, Aga-Mizrachi S, Bak A, Sampson SR. Src tyrosine kinase regulates insulin-induced activation of protein kinase C (PKC) delta in skeletal muscle. Cell Signal 2005; 16:1299-308. [PMID: 15337529 DOI: 10.1016/j.cellsig.2004.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 02/06/2023]
Abstract
Insulin stimulation of skeletal muscle results in rapid activation of protein kinase Cdelta (PKCdelta), which is associated with its tyrosine phosphorylation and physical association with insulin receptor (IR). The mechanisms underlying tyrosine phosphorylation of PKCdelta have not been determined. In this study, we investigated the possibility that the Src family of nonreceptor tyrosine kinases may be involved upstream insulin signaling. Studies were done on differentiated rat skeletal myotubes in primary culture. Insulin caused an immediate stimulation of Src and induced its physical association with both IR and PKCdelta. Inhibition of Src by treatment with the Src family inhibitor PP2 reduced insulin-stimulated Src-PKCdelta association, PKCdelta tyrosine phosphorylation and PKCdelta activation. PP2 inhibition of Src also decreased insulin-induced IR tyrosine phosphorylation, IR-PKCdelta association and association of Src with both PKCdelta and IR. Finally, inhibition of Src decreased insulin-induced glucose uptake. We conclude that insulin activates Src tyrosine kinase, which regulates PKCdelta activity. Thus, Src tyrosine kinase may play an important role in insulin-induced tyrosine phosphorylation of both IR and PKCdelta. Moreover, both Src and PKCdelta appear to be involved in IR activation and subsequent downstream signaling.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Gonda-Goldschmeid Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
17
|
Abstract
The three subtypes of beta-adrenergic receptor (beta AR) all interact with G proteins as a central aspect of their signaling. The various beta AR subtypes also associate differentially with a variety of other cytoplasmic and transmembrane proteins. These beta AR-interacting proteins play distinct roles in the regulation of receptor signaling and trafficking. The specificity of beta AR associations with various binding partners can help to explain key physiological differences between beta AR subtypes. Moreover, the differential tissue expression patterns of many of the beta AR-interacting proteins may contribute to tissue-specific regulation of beta AR function.
Collapse
Affiliation(s)
- Randy A Hall
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, 5113 Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Malbon CC, Tao J, Wang HY. AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 2004; 379:1-9. [PMID: 14715081 PMCID: PMC1224059 DOI: 10.1042/bj20031648] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/08/2003] [Accepted: 01/09/2004] [Indexed: 11/17/2022]
Abstract
Cell signalling mediated via GPCRs (G-protein-coupled receptors) is a major paradigm in biology, involving the assembly of receptors, G-proteins, effectors and downstream elements into complexes that approach in design 'solid-state' signalling devices. Scaffold molecules, such as the AKAPs (A-kinase anchoring proteins), were discovered more than a decade ago and represent dynamic platforms, enabling multivalent signalling. AKAP79 and AKAP250 were the first to be shown to bind to membrane-embedded GPCRs, orchestrating the interactions of various protein kinases (including tyrosine kinases), protein phosphatases (e.g. calcineurin) and cytoskeletal elements with at least one member of the superfamily of GPCRs, the prototypical beta2-adrenergic receptor. In this review, the multivalent interactions of AKAP250 with the cell membrane, receptor, cytoskeleton and constituent components are detailed, providing a working model for AKAP-based GPCR signalling complexes. Dynamic regulation of the AKAP-receptor complex is mediated by ordered protein phosphorylation.
Collapse
Affiliation(s)
- Craig C Malbon
- Department of Molecular Pharmacology, University Medical Center, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| | | | | |
Collapse
|
19
|
Yin D, Gavi S, Wang HY, Malbon CC. Probing receptor structure/function with chimeric G-protein-coupled receptors. Mol Pharmacol 2004; 65:1323-32. [PMID: 15155825 DOI: 10.1124/mol.65.6.1323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Owing its name to an image borrowed from Greek mythology, a chimera is seen to represent a new entity created as a composite from existing creatures or, in this case, molecules. Making use of various combinations of three basic domains of the receptors (i.e., exofacial, transmembrane, and cytoplasmic segments) that couple agonist binding into activation of effectors through heterotrimeric G-proteins, molecular pharmacology has probed the basic organization, structure/function relationships of this superfamily of heptahelical receptors. Chimeric G-protein-coupled receptors obviate the need for a particular agonist ligand when the ligand is resistant to purification or, in the case of orphan receptors, is not known. Chimeric receptors created from distant members of the heptahelical receptors enable new strategies in understanding how these receptors transduce agonist binding into receptor activation and may be able to offer insights into the evolution of G-protein-coupled receptors from yeast to humans.
Collapse
Affiliation(s)
- Dezhong Yin
- Department of Molecular Pharmacology, University Medical Center, Stony Brook University, Stony Brook, New York, USA
| | | | | | | |
Collapse
|
20
|
Cao H, Sanguinetti AR, Mastick CC. Oxidative stress activates both Src-kinases and their negative regulator Csk and induces phosphorylation of two targeting proteins for Csk: caveolin-1 and paxillin. Exp Cell Res 2004; 294:159-71. [PMID: 14980511 DOI: 10.1016/j.yexcr.2003.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 11/10/2003] [Indexed: 10/26/2022]
Abstract
Csk negatively regulates Src family kinases (SFKs). In lymphocytes, Csk is constitutively active, and is transiently inactivated in response to extracellular stimuli, allowing activation of SFKs. In contrast, both SFKs and Csk were inactive in unstimulated mouse embryonic fibroblasts, and both were activated in response to oxidative stress. Csk modulated the oxidative stress-induced, but not the basal SFK activity in these cells. These data indicate that Csk may be more important for the return of Src-kinases to the basal state than for the maintenance of basal activity in some cell types. Csk must be targeted to its SFK substrates through an SH2-domain-mediated interaction with a phosphoprotein. Our data indicate that caveolin-1 is one of these targeting proteins. SFKs bind to caveolin-1 and phosphorylate it in response to oxidative stress and insulin. Csk binds specifically to the phosphorylated caveolin-1 and attenuates its stress-induced phosphorylation. Importantly, phosphocaveolin was one of two major phosphoproteins associated with Csk after incubation with peroxide or insulin. Paxillin was the other. Activation/rapid attenuation of SFKs by Csk is required for actin remodeling. Caveolin-1 is phosphorylated at the ends of actin fibers at points of contact between the actin cytoskeleton and the plasma membrane, where it could in part mediate this attenuation.
Collapse
Affiliation(s)
- Haiming Cao
- Department of Biochemistry, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
21
|
Shumay E, Gavi S, Wang HY, Malbon CC. Trafficking of β2-adrenergic receptors: insulin and β-agonists regulate internalization by distinct cytoskeletal pathways. J Cell Sci 2004; 117:593-600. [PMID: 14709719 DOI: 10.1242/jcs.00890] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insulin and β-adrenergic agonists stimulate a rapid phosphorylation and sequestration of the β2-adrenergic receptors (β2ARs). Although the expectation was that a common pathway would be involved in the trafficking of the β2AR in response to either hormone, studies reported herein show the existence of unique cytoskeletal requirements for internalization/recycling of G-protein-coupled receptors, such as the β2AR. Treatment of human epidermoid carcinoma A431 cells with nocodazole, which binds tubulin monomer in vivo and catalyzes the depolymerization of microtubules, effectively blocks β-adrenergic agonist-induced, but not insulin-induced, sequestration of β2ARs. Treatment with latrunculin-A, an agent that sequesters actin monomer and leads to loss of actin filaments, had no effect on the ability of β-adrenergic agonists to stimulate internalization of β2ARs, but blocked the ability of insulin to stimulate counterregulation of β2ARs via internalization. Although nocodazole had no effect on insulin-stimulated sequestration of β2ARs, the recycling of the internalized receptors to the cell membrane was sensitive to depolymerization of microtubules by this agent. Latrunculin-A, by contrast, blocks the recycling of β2ARs internalized in response to β-agonist, while attenuating recycling of receptors internalized in response to insulin stimulation. These data show the existence of unique cytoskeletal requirements for G-protein-coupled-receptor trafficking in response to agonist compared with a counterregulatory hormone, and for sequestration versus recycling of the receptors to the cell membrane.
Collapse
Affiliation(s)
- Elena Shumay
- Department of Pharmacology, Diabetes & Metabolic Diseases Research Center-HSC, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | | | |
Collapse
|